aboutsummaryrefslogblamecommitdiffstats
path: root/les/fetcher.go
blob: dcaea87e82f4ae1122bafe7b10498e083c5fdf3d (plain) (tree)
1
                                         


















                                                                                  
             




                                                
                                                       

                                                    
                                               
                                             

 





                                                                                                                               


                              























                                                                            

 




















                                                                                              
                          




                              

 
                                                      


                               
                     

 
                                              

                                                         









                                                                  




                       




                                                       
                           







                                                                                    

                                          
                                                              



                                                                                                   












                                                                                                    







                                                                                          











                                                                                                                                  
                                                                                              
















                                                                                                                                         
                                                                                                             




                                                                
                                                                                       


                                               
                 
         

 

                                                    





                                                                 




                                                                                         
 

                                                            



                        












                                                                                 
                                                                                                                                          


                        
                                                                




                                                                             
                                                                             
                                        

                      




                                                      
                 
                            
         




























                                                                                                                  
 


                                     
                 





                                                                                       
                         


                                                 

                 











                                                                                                                       
 






                                  

 



                                                                                    
                             














                                                                                                                                         

 
                                                                  
                                                                                                         

                        
                                                               
                                                 
                               
         
                                                                                       

                                
                                                                                  
                                           
                                       
                   
                                                 
                               

         
                          

                                                                 



                                                                                                    



                                              



























                                                                               
                                                                                          


















                                                                                                                
                                         

         
                                                                                                  





                                                                                                      


                                        



                                                         
                                            

 




                                                                                          
                                                                                          

                                                                                          
                                                                                                                                                                 






                                                                        


                                               
                                                                          

                            


                                                                          
                              
                                                                                                     

                                    
                           
         
                                  


                   





                                                                              
                                                                                         
                                                
                 

                                                                                             

                 


                                             

 











                                                                                                                 
 






























                                                                                                                                         

                                 



                                                                                      
                         


                                                                                                             
                         



                                                                                
                         


                                           
                         









                                                                                
                                                                          











                                                                    
                                                                                   



















                                                                                 
                                                                      



                                                                                  
                                                                                 














                                                                                                             
                         

















































                                                                                                                       
                                        
















                                                                                                                      
                                                                        












                                                                                                                  


                 
// Copyright 2016 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

// Package les implements the Light Ethereum Subprotocol.
package les

import (
    "fmt"
    "math/big"
    "sync"
    "time"

    "github.com/ethereum/go-ethereum/common"
    "github.com/ethereum/go-ethereum/common/mclock"
    "github.com/ethereum/go-ethereum/core"
    "github.com/ethereum/go-ethereum/core/types"
    "github.com/ethereum/go-ethereum/light"
    "github.com/ethereum/go-ethereum/log"
)

const (
    blockDelayTimeout = time.Second * 10 // timeout for a peer to announce a head that has already been confirmed by others
    maxNodeCount      = 20               // maximum number of fetcherTreeNode entries remembered for each peer
)

// lightFetcher
type lightFetcher struct {
    pm    *ProtocolManager
    odr   *LesOdr
    chain *light.LightChain

    maxConfirmedTd  *big.Int
    peers           map[*peer]*fetcherPeerInfo
    lastUpdateStats *updateStatsEntry

    lock       sync.Mutex // qwerqwerqwe
    deliverChn chan fetchResponse
    reqMu      sync.RWMutex
    requested  map[uint64]fetchRequest
    timeoutChn chan uint64
    requestChn chan bool // true if initiated from outside
    syncing    bool
    syncDone   chan *peer
}

// fetcherPeerInfo holds fetcher-specific information about each active peer
type fetcherPeerInfo struct {
    root, lastAnnounced *fetcherTreeNode
    nodeCnt             int
    confirmedTd         *big.Int
    bestConfirmed       *fetcherTreeNode
    nodeByHash          map[common.Hash]*fetcherTreeNode
    firstUpdateStats    *updateStatsEntry
}

// fetcherTreeNode is a node of a tree that holds information about blocks recently
// announced and confirmed by a certain peer. Each new announce message from a peer
// adds nodes to the tree, based on the previous announced head and the reorg depth.
// There are three possible states for a tree node:
// - announced: not downloaded (known) yet, but we know its head, number and td
// - intermediate: not known, hash and td are empty, they are filled out when it becomes known
// - known: both announced by this peer and downloaded (from any peer).
// This structure makes it possible to always know which peer has a certain block,
// which is necessary for selecting a suitable peer for ODR requests and also for
// canonizing new heads. It also helps to always download the minimum necessary
// amount of headers with a single request.
type fetcherTreeNode struct {
    hash             common.Hash
    number           uint64
    td               *big.Int
    known, requested bool
    parent           *fetcherTreeNode
    children         []*fetcherTreeNode
}

// fetchRequest represents a header download request
type fetchRequest struct {
    hash    common.Hash
    amount  uint64
    peer    *peer
    sent    mclock.AbsTime
    timeout bool
}

// fetchResponse represents a header download response
type fetchResponse struct {
    reqID   uint64
    headers []*types.Header
    peer    *peer
}

// newLightFetcher creates a new light fetcher
func newLightFetcher(pm *ProtocolManager) *lightFetcher {
    f := &lightFetcher{
        pm:             pm,
        chain:          pm.blockchain.(*light.LightChain),
        odr:            pm.odr,
        peers:          make(map[*peer]*fetcherPeerInfo),
        deliverChn:     make(chan fetchResponse, 100),
        requested:      make(map[uint64]fetchRequest),
        timeoutChn:     make(chan uint64),
        requestChn:     make(chan bool, 100),
        syncDone:       make(chan *peer),
        maxConfirmedTd: big.NewInt(0),
    }
    go f.syncLoop()
    return f
}

// syncLoop is the main event loop of the light fetcher
func (f *lightFetcher) syncLoop() {
    f.pm.wg.Add(1)
    defer f.pm.wg.Done()

    requesting := false
    for {
        select {
        case <-f.pm.quitSync:
            return
        // when a new announce is received, request loop keeps running until
        // no further requests are necessary or possible
        case newAnnounce := <-f.requestChn:
            f.lock.Lock()
            s := requesting
            requesting = false
            if !f.syncing && !(newAnnounce && s) {
                reqID := getNextReqID()
                if peer, node, amount, retry := f.nextRequest(reqID); node != nil {
                    requesting = true
                    if reqID, ok := f.request(peer, reqID, node, amount); ok {
                        go func() {
                            time.Sleep(softRequestTimeout)
                            f.reqMu.Lock()
                            req, ok := f.requested[reqID]
                            if ok {
                                req.timeout = true
                                f.requested[reqID] = req
                            }
                            f.reqMu.Unlock()
                            // keep starting new requests while possible
                            f.requestChn <- false
                        }()
                    }
                } else {
                    if retry {
                        requesting = true
                        go func() {
                            time.Sleep(time.Millisecond * 100)
                            f.requestChn <- false
                        }()
                    }
                }
            }
            f.lock.Unlock()
        case reqID := <-f.timeoutChn:
            f.reqMu.Lock()
            req, ok := f.requested[reqID]
            if ok {
                delete(f.requested, reqID)
            }
            f.reqMu.Unlock()
            if ok {
                f.pm.serverPool.adjustResponseTime(req.peer.poolEntry, time.Duration(mclock.Now()-req.sent), true)
                log.Debug(fmt.Sprintf("hard timeout by peer %v", req.peer.id))
                go f.pm.removePeer(req.peer.id)
            }
        case resp := <-f.deliverChn:
            f.reqMu.Lock()
            req, ok := f.requested[resp.reqID]
            if ok && req.peer != resp.peer {
                ok = false
            }
            if ok {
                delete(f.requested, resp.reqID)
            }
            f.reqMu.Unlock()
            if ok {
                f.pm.serverPool.adjustResponseTime(req.peer.poolEntry, time.Duration(mclock.Now()-req.sent), req.timeout)
            }
            f.lock.Lock()
            if !ok || !(f.syncing || f.processResponse(req, resp)) {
                log.Debug(fmt.Sprintf("failed processing response by peer %v", resp.peer.id))
                go f.pm.removePeer(resp.peer.id)
            }
            f.lock.Unlock()
        case p := <-f.syncDone:
            f.lock.Lock()
            log.Debug(fmt.Sprintf("done synchronising with peer %v", p.id))
            f.checkSyncedHeaders(p)
            f.syncing = false
            f.lock.Unlock()
        }
    }
}

// addPeer adds a new peer to the fetcher's peer set
func (f *lightFetcher) addPeer(p *peer) {
    p.lock.Lock()
    p.hasBlock = func(hash common.Hash, number uint64) bool {
        return f.peerHasBlock(p, hash, number)
    }
    p.lock.Unlock()

    f.lock.Lock()
    defer f.lock.Unlock()

    f.peers[p] = &fetcherPeerInfo{nodeByHash: make(map[common.Hash]*fetcherTreeNode)}
}

// removePeer removes a new peer from the fetcher's peer set
func (f *lightFetcher) removePeer(p *peer) {
    p.lock.Lock()
    p.hasBlock = nil
    p.lock.Unlock()

    f.lock.Lock()
    defer f.lock.Unlock()

    // check for potential timed out block delay statistics
    f.checkUpdateStats(p, nil)
    delete(f.peers, p)
}

// announce processes a new announcement message received from a peer, adding new
// nodes to the peer's block tree and removing old nodes if necessary
func (f *lightFetcher) announce(p *peer, head *announceData) {
    f.lock.Lock()
    defer f.lock.Unlock()
    log.Debug(fmt.Sprintf("received announce from peer %v  #%d  %016x  reorg: %d", p.id, head.Number, head.Hash[:8], head.ReorgDepth))

    fp := f.peers[p]
    if fp == nil {
        log.Debug(fmt.Sprintf("announce: unknown peer"))
        return
    }

    if fp.lastAnnounced != nil && head.Td.Cmp(fp.lastAnnounced.td) <= 0 {
        // announced tds should be strictly monotonic
        log.Debug(fmt.Sprintf("non-monotonic Td from peer %v", p.id))
        go f.pm.removePeer(p.id)
        return
    }

    n := fp.lastAnnounced
    for i := uint64(0); i < head.ReorgDepth; i++ {
        if n == nil {
            break
        }
        n = n.parent
    }
    if n != nil {
        // n is now the reorg common ancestor, add a new branch of nodes
        // check if the node count is too high to add new nodes
        locked := false
        for uint64(fp.nodeCnt)+head.Number-n.number > maxNodeCount && fp.root != nil {
            if !locked {
                f.chain.LockChain()
                defer f.chain.UnlockChain()
                locked = true
            }
            // if one of root's children is canonical, keep it, delete other branches and root itself
            var newRoot *fetcherTreeNode
            for i, nn := range fp.root.children {
                if core.GetCanonicalHash(f.pm.chainDb, nn.number) == nn.hash {
                    fp.root.children = append(fp.root.children[:i], fp.root.children[i+1:]...)
                    nn.parent = nil
                    newRoot = nn
                    break
                }
            }
            fp.deleteNode(fp.root)
            if n == fp.root {
                n = newRoot
            }
            fp.root = newRoot
            if newRoot == nil || !f.checkKnownNode(p, newRoot) {
                fp.bestConfirmed = nil
                fp.confirmedTd = nil
            }

            if n == nil {
                break
            }
        }
        if n != nil {
            for n.number < head.Number {
                nn := &fetcherTreeNode{number: n.number + 1, parent: n}
                n.children = append(n.children, nn)
                n = nn
                fp.nodeCnt++
            }
            n.hash = head.Hash
            n.td = head.Td
            fp.nodeByHash[n.hash] = n
        }
    }
    if n == nil {
        // could not find reorg common ancestor or had to delete entire tree, a new root and a resync is needed
        if fp.root != nil {
            fp.deleteNode(fp.root)
        }
        n = &fetcherTreeNode{hash: head.Hash, number: head.Number, td: head.Td}
        fp.root = n
        fp.nodeCnt++
        fp.nodeByHash[n.hash] = n
        fp.bestConfirmed = nil
        fp.confirmedTd = nil
    }

    f.checkKnownNode(p, n)
    p.lock.Lock()
    p.headInfo = head
    fp.lastAnnounced = n
    p.lock.Unlock()
    f.checkUpdateStats(p, nil)
    f.requestChn <- true
}

// peerHasBlock returns true if we can assume the peer knows the given block
// based on its announcements
func (f *lightFetcher) peerHasBlock(p *peer, hash common.Hash, number uint64) bool {
    f.lock.Lock()
    defer f.lock.Unlock()

    fp := f.peers[p]
    if fp == nil || fp.root == nil {
        return false
    }

    if number >= fp.root.number {
        // it is recent enough that if it is known, is should be in the peer's block tree
        return fp.nodeByHash[hash] != nil
    }
    f.chain.LockChain()
    defer f.chain.UnlockChain()
    // if it's older than the peer's block tree root but it's in the same canonical chain
    // than the root, we can still be sure the peer knows it
    return core.GetCanonicalHash(f.pm.chainDb, fp.root.number) == fp.root.hash && core.GetCanonicalHash(f.pm.chainDb, number) == hash
}

// request initiates a header download request from a certain peer
func (f *lightFetcher) request(p *peer, reqID uint64, n *fetcherTreeNode, amount uint64) (uint64, bool) {
    fp := f.peers[p]
    if fp == nil {
        log.Debug(fmt.Sprintf("request: unknown peer"))
        p.fcServer.DeassignRequest(reqID)
        return 0, false
    }
    if fp.bestConfirmed == nil || fp.root == nil || !f.checkKnownNode(p, fp.root) {
        f.syncing = true
        go func() {
            log.Debug(fmt.Sprintf("synchronising with peer %v", p.id))
            f.pm.synchronise(p)
            f.syncDone <- p
        }()
        p.fcServer.DeassignRequest(reqID)
        return 0, false
    }

    n.requested = true
    cost := p.GetRequestCost(GetBlockHeadersMsg, int(amount))
    p.fcServer.SendRequest(reqID, cost)
    f.reqMu.Lock()
    f.requested[reqID] = fetchRequest{hash: n.hash, amount: amount, peer: p, sent: mclock.Now()}
    f.reqMu.Unlock()
    go p.RequestHeadersByHash(reqID, cost, n.hash, int(amount), 0, true)
    go func() {
        time.Sleep(hardRequestTimeout)
        f.timeoutChn <- reqID
    }()
    return reqID, true
}

// requestAmount calculates the amount of headers to be downloaded starting
// from a certain head backwards
func (f *lightFetcher) requestAmount(p *peer, n *fetcherTreeNode) uint64 {
    amount := uint64(0)
    nn := n
    for nn != nil && !f.checkKnownNode(p, nn) {
        nn = nn.parent
        amount++
    }
    if nn == nil {
        amount = n.number
    }
    return amount
}

// requestedID tells if a certain reqID has been requested by the fetcher
func (f *lightFetcher) requestedID(reqID uint64) bool {
    f.reqMu.RLock()
    _, ok := f.requested[reqID]
    f.reqMu.RUnlock()
    return ok
}

// nextRequest selects the peer and announced head to be requested next, amount
// to be downloaded starting from the head backwards is also returned
func (f *lightFetcher) nextRequest(reqID uint64) (*peer, *fetcherTreeNode, uint64, bool) {
    var (
        bestHash   common.Hash
        bestAmount uint64
    )
    bestTd := f.maxConfirmedTd

    for p, fp := range f.peers {
        for hash, n := range fp.nodeByHash {
            if !f.checkKnownNode(p, n) && !n.requested && (bestTd == nil || n.td.Cmp(bestTd) >= 0) {
                amount := f.requestAmount(p, n)
                if bestTd == nil || n.td.Cmp(bestTd) > 0 || amount < bestAmount {
                    bestHash = hash
                    bestAmount = amount
                    bestTd = n.td
                }
            }
        }
    }
    if bestTd == f.maxConfirmedTd {
        return nil, nil, 0, false
    }

    peer, _, locked := f.pm.serverPool.selectPeer(reqID, func(p *peer) (bool, time.Duration) {
        fp := f.peers[p]
        if fp == nil || fp.nodeByHash[bestHash] == nil {
            return false, 0
        }
        return true, p.fcServer.CanSend(p.GetRequestCost(GetBlockHeadersMsg, int(bestAmount)))
    })
    if !locked {
        return nil, nil, 0, true
    }
    var node *fetcherTreeNode
    if peer != nil {
        node = f.peers[peer].nodeByHash[bestHash]
    }
    return peer, node, bestAmount, false
}

// deliverHeaders delivers header download request responses for processing
func (f *lightFetcher) deliverHeaders(peer *peer, reqID uint64, headers []*types.Header) {
    f.deliverChn <- fetchResponse{reqID: reqID, headers: headers, peer: peer}
}

// processResponse processes header download request responses, returns true if successful
func (f *lightFetcher) processResponse(req fetchRequest, resp fetchResponse) bool {
    if uint64(len(resp.headers)) != req.amount || resp.headers[0].Hash() != req.hash {
        log.Debug(fmt.Sprintf("response mismatch %v %016x != %v %016x", len(resp.headers), resp.headers[0].Hash().Bytes()[:8], req.amount, req.hash[:8]))
        return false
    }
    headers := make([]*types.Header, req.amount)
    for i, header := range resp.headers {
        headers[int(req.amount)-1-i] = header
    }
    if _, err := f.chain.InsertHeaderChain(headers, 1); err != nil {
        if err == core.BlockFutureErr {
            return true
        }
        log.Debug(fmt.Sprintf("InsertHeaderChain error: %v", err))
        return false
    }
    tds := make([]*big.Int, len(headers))
    for i, header := range headers {
        td := f.chain.GetTd(header.Hash(), header.Number.Uint64())
        if td == nil {
            log.Debug(fmt.Sprintf("TD not found for header %v of %v", i+1, len(headers)))
            return false
        }
        tds[i] = td
    }
    f.newHeaders(headers, tds)
    return true
}

// newHeaders updates the block trees of all active peers according to a newly
// downloaded and validated batch or headers
func (f *lightFetcher) newHeaders(headers []*types.Header, tds []*big.Int) {
    var maxTd *big.Int
    for p, fp := range f.peers {
        if !f.checkAnnouncedHeaders(fp, headers, tds) {
            log.Debug(fmt.Sprintf("announce inconsistency by peer %v", p.id))
            go f.pm.removePeer(p.id)
        }
        if fp.confirmedTd != nil && (maxTd == nil || maxTd.Cmp(fp.confirmedTd) > 0) {
            maxTd = fp.confirmedTd
        }
    }
    if maxTd != nil {
        f.updateMaxConfirmedTd(maxTd)
    }
}

// checkAnnouncedHeaders updates peer's block tree if necessary after validating
// a batch of headers. It searches for the latest header in the batch that has a
// matching tree node (if any), and if it has not been marked as known already,
// sets it and its parents to known (even those which are older than the currently
// validated ones). Return value shows if all hashes, numbers and Tds matched
// correctly to the announced values (otherwise the peer should be dropped).
func (f *lightFetcher) checkAnnouncedHeaders(fp *fetcherPeerInfo, headers []*types.Header, tds []*big.Int) bool {
    var (
        n      *fetcherTreeNode
        header *types.Header
        td     *big.Int
    )

    for i := len(headers) - 1; ; i-- {
        if i < 0 {
            if n == nil {
                // no more headers and nothing to match
                return true
            }
            // we ran out of recently delivered headers but have not reached a node known by this peer yet, continue matching
            td = f.chain.GetTd(header.ParentHash, header.Number.Uint64()-1)
            header = f.chain.GetHeader(header.ParentHash, header.Number.Uint64()-1)
        } else {
            header = headers[i]
            td = tds[i]
        }
        hash := header.Hash()
        number := header.Number.Uint64()
        if n == nil {
            n = fp.nodeByHash[hash]
        }
        if n != nil {
            if n.td == nil {
                // node was unannounced
                if nn := fp.nodeByHash[hash]; nn != nil {
                    // if there was already a node with the same hash, continue there and drop this one
                    nn.children = append(nn.children, n.children...)
                    n.children = nil
                    fp.deleteNode(n)
                    n = nn
                } else {
                    n.hash = hash
                    n.td = td
                    fp.nodeByHash[hash] = n
                }
            }
            // check if it matches the header
            if n.hash != hash || n.number != number || n.td.Cmp(td) != 0 {
                // peer has previously made an invalid announcement
                return false
            }
            if n.known {
                // we reached a known node that matched our expectations, return with success
                return true
            }
            n.known = true
            if fp.confirmedTd == nil || td.Cmp(fp.confirmedTd) > 0 {
                fp.confirmedTd = td
                fp.bestConfirmed = n
            }
            n = n.parent
            if n == nil {
                return true
            }
        }
    }
}

// checkSyncedHeaders updates peer's block tree after synchronisation by marking
// downloaded headers as known. If none of the announced headers are found after
// syncing, the peer is dropped.
func (f *lightFetcher) checkSyncedHeaders(p *peer) {
    fp := f.peers[p]
    if fp == nil {
        log.Debug(fmt.Sprintf("checkSyncedHeaders: unknown peer"))
        return
    }
    n := fp.lastAnnounced
    var td *big.Int
    for n != nil {
        if td = f.chain.GetTd(n.hash, n.number); td != nil {
            break
        }
        n = n.parent
    }
    // now n is the latest downloaded header after syncing
    if n == nil {
        log.Debug(fmt.Sprintf("synchronisation failed with peer %v", p.id))
        go f.pm.removePeer(p.id)
    } else {
        header := f.chain.GetHeader(n.hash, n.number)
        f.newHeaders([]*types.Header{header}, []*big.Int{td})
    }
}

// checkKnownNode checks if a block tree node is known (downloaded and validated)
// If it was not known previously but found in the database, sets its known flag
func (f *lightFetcher) checkKnownNode(p *peer, n *fetcherTreeNode) bool {
    if n.known {
        return true
    }
    td := f.chain.GetTd(n.hash, n.number)
    if td == nil {
        return false
    }

    fp := f.peers[p]
    if fp == nil {
        log.Debug(fmt.Sprintf("checkKnownNode: unknown peer"))
        return false
    }
    header := f.chain.GetHeader(n.hash, n.number)
    if !f.checkAnnouncedHeaders(fp, []*types.Header{header}, []*big.Int{td}) {
        log.Debug(fmt.Sprintf("announce inconsistency by peer %v", p.id))
        go f.pm.removePeer(p.id)
    }
    if fp.confirmedTd != nil {
        f.updateMaxConfirmedTd(fp.confirmedTd)
    }
    return n.known
}

// deleteNode deletes a node and its child subtrees from a peer's block tree
func (fp *fetcherPeerInfo) deleteNode(n *fetcherTreeNode) {
    if n.parent != nil {
        for i, nn := range n.parent.children {
            if nn == n {
                n.parent.children = append(n.parent.children[:i], n.parent.children[i+1:]...)
                break
            }
        }
    }
    for {
        if n.td != nil {
            delete(fp.nodeByHash, n.hash)
        }
        fp.nodeCnt--
        if len(n.children) == 0 {
            return
        }
        for i, nn := range n.children {
            if i == 0 {
                n = nn
            } else {
                fp.deleteNode(nn)
            }
        }
    }
}

// updateStatsEntry items form a linked list that is expanded with a new item every time a new head with a higher Td
// than the previous one has been downloaded and validated. The list contains a series of maximum confirmed Td values
// and the time these values have been confirmed, both increasing monotonically. A maximum confirmed Td is calculated
// both globally for all peers and also for each individual peer (meaning that the given peer has announced the head
// and it has also been downloaded from any peer, either before or after the given announcement).
// The linked list has a global tail where new confirmed Td entries are added and a separate head for each peer,
// pointing to the next Td entry that is higher than the peer's max confirmed Td (nil if it has already confirmed
// the current global head).
type updateStatsEntry struct {
    time mclock.AbsTime
    td   *big.Int
    next *updateStatsEntry
}

// updateMaxConfirmedTd updates the block delay statistics of active peers. Whenever a new highest Td is confirmed,
// adds it to the end of a linked list together with the time it has been confirmed. Then checks which peers have
// already confirmed a head with the same or higher Td (which counts as zero block delay) and updates their statistics.
// Those who have not confirmed such a head by now will be updated by a subsequent checkUpdateStats call with a
// positive block delay value.
func (f *lightFetcher) updateMaxConfirmedTd(td *big.Int) {
    if f.maxConfirmedTd == nil || td.Cmp(f.maxConfirmedTd) > 0 {
        f.maxConfirmedTd = td
        newEntry := &updateStatsEntry{
            time: mclock.Now(),
            td:   td,
        }
        if f.lastUpdateStats != nil {
            f.lastUpdateStats.next = newEntry
        }
        f.lastUpdateStats = newEntry
        for p := range f.peers {
            f.checkUpdateStats(p, newEntry)
        }
    }
}

// checkUpdateStats checks those peers who have not confirmed a certain highest Td (or a larger one) by the time it
// has been confirmed by another peer. If they have confirmed such a head by now, their stats are updated with the
// block delay which is (this peer's confirmation time)-(first confirmation time). After blockDelayTimeout has passed,
// the stats are updated with blockDelayTimeout value. In either case, the confirmed or timed out updateStatsEntry
// items are removed from the head of the linked list.
// If a new entry has been added to the global tail, it is passed as a parameter here even though this function
// assumes that it has already been added, so that if the peer's list is empty (all heads confirmed, head is nil),
// it can set the new head to newEntry.
func (f *lightFetcher) checkUpdateStats(p *peer, newEntry *updateStatsEntry) {
    now := mclock.Now()
    fp := f.peers[p]
    if fp == nil {
        log.Debug(fmt.Sprintf("checkUpdateStats: unknown peer"))
        return
    }
    if newEntry != nil && fp.firstUpdateStats == nil {
        fp.firstUpdateStats = newEntry
    }
    for fp.firstUpdateStats != nil && fp.firstUpdateStats.time <= now-mclock.AbsTime(blockDelayTimeout) {
        f.pm.serverPool.adjustBlockDelay(p.poolEntry, blockDelayTimeout)
        fp.firstUpdateStats = fp.firstUpdateStats.next
    }
    if fp.confirmedTd != nil {
        for fp.firstUpdateStats != nil && fp.firstUpdateStats.td.Cmp(fp.confirmedTd) <= 0 {
            f.pm.serverPool.adjustBlockDelay(p.poolEntry, time.Duration(now-fp.firstUpdateStats.time))
            fp.firstUpdateStats = fp.firstUpdateStats.next
        }
    }
}