// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// This file contains some shares testing functionality, common to multiple
// different files and modules being tested.
package dex
import (
"crypto/ecdsa"
"math/big"
"net"
"sort"
"sync"
"testing"
"github.com/dexon-foundation/dexon/common"
"github.com/dexon-foundation/dexon/consensus/ethash"
"github.com/dexon-foundation/dexon/core"
"github.com/dexon-foundation/dexon/core/types"
"github.com/dexon-foundation/dexon/core/vm"
"github.com/dexon-foundation/dexon/crypto"
"github.com/dexon-foundation/dexon/dex/downloader"
"github.com/dexon-foundation/dexon/ethdb"
"github.com/dexon-foundation/dexon/event"
"github.com/dexon-foundation/dexon/p2p"
"github.com/dexon-foundation/dexon/p2p/enode"
"github.com/dexon-foundation/dexon/params"
)
var (
testBankKey, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291")
testBank = crypto.PubkeyToAddress(testBankKey.PublicKey)
)
// testP2PServer is a fake, helper p2p server for testing purposes.
type testP2PServer struct {
mu sync.Mutex
self *enode.Node
privkey *ecdsa.PrivateKey
direct map[enode.ID]*enode.Node
group map[string][]*enode.Node
}
func newTestP2PServer(privkey *ecdsa.PrivateKey) *testP2PServer {
self := enode.NewV4(&privkey.PublicKey, net.IP{}, 0, 0)
return &testP2PServer{
self: self,
privkey: privkey,
direct: make(map[enode.ID]*enode.Node),
group: make(map[string][]*enode.Node),
}
}
func (s *testP2PServer) Self() *enode.Node {
return s.self
}
func (s *testP2PServer) GetPrivateKey() *ecdsa.PrivateKey {
return s.privkey
}
func (s *testP2PServer) AddDirectPeer(node *enode.Node) {
s.mu.Lock()
defer s.mu.Unlock()
s.direct[node.ID()] = node
}
func (s *testP2PServer) RemoveDirectPeer(node *enode.Node) {
s.mu.Lock()
defer s.mu.Unlock()
delete(s.direct, node.ID())
}
func (s *testP2PServer) AddGroup(
name string, nodes []*enode.Node, num uint64) {
s.mu.Lock()
defer s.mu.Unlock()
s.group[name] = nodes
}
func (s *testP2PServer) RemoveGroup(name string) {
s.mu.Lock()
defer s.mu.Unlock()
delete(s.group, name)
}
type testApp struct {
finalizedBlockFeed event.Feed
}
func (a *testApp) SubscribeNewFinalizedBlockEvent(
ch chan<- core.NewFinalizedBlockEvent) event.Subscription {
return a.finalizedBlockFeed.Subscribe(ch)
}
// newTestProtocolManager creates a new protocol manager for testing purposes,
// with the given number of blocks already known, and potential notification
// channels for different events.
func newTestProtocolManager(mode downloader.SyncMode, blocks int, generator func(int, *core.BlockGen), newtx chan<- []*types.Transaction) (*ProtocolManager, *ethdb.MemDatabase, error) {
var (
evmux = new(event.TypeMux)
engine = ethash.NewFaker()
db = ethdb.NewMemDatabase()
gspec = &core.Genesis{
Config: params.TestChainConfig,
Alloc: core.GenesisAlloc{testBank: {Balance: big.NewInt(1000000), Staked: big.NewInt(0)}},
}
genesis = gspec.MustCommit(db)
blockchain, _ = core.NewBlockChain(db, nil, gspec.Config, engine, vm.Config{}, nil)
)
chain, _ := core.GenerateChain(gspec.Config, genesis, ethash.NewFaker(), db, blocks, generator)
if _, err := blockchain.InsertChain(chain); err != nil {
panic(err)
}
tgov := &testGovernance{
lenCRSFunc: func() uint64 { return 1 },
dkgSetFunc: func(uint64) (map[string]struct{}, error) { return nil, nil },
notarySetFunc: func(uint64) (map[string]struct{}, error) { return nil, nil },
}
pm, err := NewProtocolManager(gspec.Config, mode, DefaultConfig.NetworkId, evmux, &testTxPool{added: newtx}, engine, blockchain, db, true, tgov, &testApp{})
if err != nil {
return nil, nil, err
}
key, err := crypto.GenerateKey()
if err != nil {
return nil, nil, err
}
pm.Start(newTestP2PServer(key), 1000)
return pm, db, nil
}
// newTestProtocolManagerMust creates a new protocol manager for testing purposes,
// with the given number of blocks already known, and potential notification
// channels for different events. In case of an error, the constructor force-
// fails the test.
func newTestProtocolManagerMust(t *testing.T, mode downloader.SyncMode, blocks int, generator func(int, *core.BlockGen), newtx chan<- []*types.Transaction) (*ProtocolManager, *ethdb.MemDatabase) {
pm, db, err := newTestProtocolManager(mode, blocks, generator, newtx)
if err != nil {
t.Fatalf("Failed to create protocol manager: %v", err)
}
return pm, db
}
// testTxPool is a fake, helper transaction pool for testing purposes
type testTxPool struct {
txFeed event.Feed
pool []*types.Transaction // Collection of all transactions
added chan<- []*types.Transaction // Notification channel for new transactions
lock sync.RWMutex // Protects the transaction pool
}
// AddRemotes appends a batch of transactions to the pool, and notifies any
// listeners if the addition channel is non nil
func (p *testTxPool) AddRemotes(txs []*types.Transaction) []error {
p.lock.Lock()
defer p.lock.Unlock()
p.pool = append(p.pool, txs...)
if p.added != nil {
p.added <- txs
}
return make([]error, len(txs))
}
// Pending returns all the transactions known to the pool
func (p *testTxPool) Pending() (map[common.Address]types.Transactions, error) {
p.lock.RLock()
defer p.lock.RUnlock()
batches := make(map[common.Address]types.Transactions)
for _, tx := range p.pool {
from, _ := types.Sender(types.HomesteadSigner{}, tx)
batches[from] = append(batches[from], tx)
}
for _, batch := range batches {
sort.Sort(types.TxByNonce(batch))
}
return batches, nil
}
func (p *testTxPool) SubscribeNewTxsEvent(ch chan<- core.NewTxsEvent) event.Subscription {
return p.txFeed.Subscribe(ch)
}
// newTestTransaction create a new dummy transaction.
func newTestTransaction(from *ecdsa.PrivateKey, nonce uint64, datasize int) *types.Transaction {
tx := types.NewTransaction(nonce, common.Address{}, big.NewInt(0), 100000, big.NewInt(0), make([]byte, datasize))
tx, _ = types.SignTx(tx, types.HomesteadSigner{}, from)
return tx
}
// testGovernance is a fake, helper governance for testing purposes
type testGovernance struct {
lenCRSFunc func() uint64
notarySetFunc func(uint64) (map[string]struct{}, error)
dkgSetFunc func(uint64) (map[string]struct{}, error)
}
func (g *testGovernance) Round() uint64 {
return g.lenCRSFunc()
}
func (g *testGovernance) CRSRound() uint64 {
return g.lenCRSFunc()
}
func (g *testGovernance) NotarySet(
round uint64) (map[string]struct{}, error) {
return g.notarySetFunc(round)
}
func (g *testGovernance) DKGSet(round uint64) (map[string]struct{}, error) {
return g.dkgSetFunc(round)
}
func (g *testGovernance) GetRoundHeight(round uint64) uint64 {
return 0
}
// testPeer is a simulated peer to allow testing direct network calls.
type testPeer struct {
net p2p.MsgReadWriter // Network layer reader/writer to simulate remote messaging
app *p2p.MsgPipeRW // Application layer reader/writer to simulate the local side
*peer
}
// newTestPeer creates a new peer registered at the given protocol manager.
func newTestPeer(name string, version int, pm *ProtocolManager, shake bool) (*testPeer, <-chan error) {
// Create a message pipe to communicate through
app, pipenet := p2p.MsgPipe()
// Generate a random key and create the peer
key, err := crypto.GenerateKey()
if err != nil {
panic(err)
}
node := enode.NewV4(&key.PublicKey, net.IP{}, 0, 0)
peer := pm.newPeer(version, p2p.NewPeerWithEnode(node, name, nil), pipenet)
// Start the peer on a new thread
errc := make(chan error, 1)
go func() {
select {
case pm.newPeerCh <- peer:
errc <- pm.handle(peer)
case <-pm.quitSync:
errc <- p2p.DiscQuitting
}
}()
tp := &testPeer{app: app, net: pipenet, peer: peer}
// Execute any implicitly requested handshakes and return
if shake {
var (
genesis = pm.blockchain.Genesis()
head = pm.blockchain.CurrentHeader()
number = head.Number.Uint64()
)
tp.handshake(nil, number, head.Hash(), genesis.Hash())
}
return tp, errc
}
// handshake simulates a trivial handshake that expects the same state from the
// remote side as we are simulating locally.
func (p *testPeer) handshake(t *testing.T, number uint64, head common.Hash, genesis common.Hash) {
msg := &statusData{
ProtocolVersion: uint32(p.version),
NetworkId: DefaultConfig.NetworkId,
Number: number,
CurrentBlock: head,
GenesisBlock: genesis,
}
if err := p2p.ExpectMsg(p.app, StatusMsg, msg); err != nil {
t.Fatalf("status recv: %v", err)
}
if err := p2p.Send(p.app, StatusMsg, msg); err != nil {
t.Fatalf("status send: %v", err)
}
}
// close terminates the local side of the peer, notifying the remote protocol
// manager of termination.
func (p *testPeer) close() {
p.app.Close()
}