// Copyright 2018 The dexon-consensus Authors
// This file is part of the dexon-consensus library.
//
// The dexon-consensus library is free software: you can redistribute it
// and/or modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation, either version 3 of the License,
// or (at your option) any later version.
//
// The dexon-consensus library is distributed in the hope that it will be
// useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
// General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the dexon-consensus library. If not, see
// <http://www.gnu.org/licenses/>.
// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package dex
import (
"bytes"
"context"
"encoding/hex"
"encoding/json"
"errors"
"fmt"
"math"
"math/big"
"sync"
"sync/atomic"
"time"
coreCommon "github.com/tangerine-network/tangerine-consensus/common"
dexCore "github.com/tangerine-network/tangerine-consensus/core"
coreCrypto "github.com/tangerine-network/tangerine-consensus/core/crypto"
coreTypes "github.com/tangerine-network/tangerine-consensus/core/types"
dkgTypes "github.com/tangerine-network/tangerine-consensus/core/types/dkg"
"github.com/tangerine-network/go-tangerine/common"
"github.com/tangerine-network/go-tangerine/consensus"
"github.com/tangerine-network/go-tangerine/core"
"github.com/tangerine-network/go-tangerine/core/types"
"github.com/tangerine-network/go-tangerine/core/vm"
"github.com/tangerine-network/go-tangerine/crypto"
dexDB "github.com/tangerine-network/go-tangerine/dex/db"
"github.com/tangerine-network/go-tangerine/dex/downloader"
"github.com/tangerine-network/go-tangerine/dex/fetcher"
"github.com/tangerine-network/go-tangerine/ethdb"
"github.com/tangerine-network/go-tangerine/event"
"github.com/tangerine-network/go-tangerine/log"
"github.com/tangerine-network/go-tangerine/metrics"
"github.com/tangerine-network/go-tangerine/p2p"
"github.com/tangerine-network/go-tangerine/p2p/enode"
"github.com/tangerine-network/go-tangerine/params"
"github.com/tangerine-network/go-tangerine/rlp"
)
const (
softResponseLimit = 2 * 1024 * 1024 // Target maximum size of returned blocks, headers or node data.
estHeaderRlpSize = 500 // Approximate size of an RLP encoded block header
// txChanSize is the size of channel listening to NewTxsEvent.
// The number is referenced from the size of tx pool.
txChanSize = 4096
minTxReceiver = 3
finalizedBlockChanSize = 128
maxPullPeers = 3
maxPullVotePeers = 1
pullVoteRateLimit = 3 * time.Second
pullBlockRateLimit = 500 * time.Millisecond
maxAgreementResultBroadcast = 3
maxFinalizedBlockBroadcast = 3
checkPeerDuration = 10 * time.Minute
receiveChannelSize = 2048
)
// errIncompatibleConfig is returned if the requested protocols and configs are
// not compatible (low protocol version restrictions and high requirements).
var errIncompatibleConfig = errors.New("incompatible configuration")
func errResp(code errCode, format string, v ...interface{}) error {
return fmt.Errorf("%v - %v", code, fmt.Sprintf(format, v...))
}
type ProtocolManager struct {
networkID uint64
fastSync uint32 // Flag whether fast sync is enabled (gets disabled if we already have blocks)
acceptTxs uint32 // Flag whether we're considered synchronised (enables transaction processing)
txpool txPool
gov governance
blockchain *core.BlockChain
chainconfig *params.ChainConfig
cache *cache
nextPullVote *sync.Map
nextPullBlock *sync.Map
maxPeers int
downloader *downloader.Downloader
fetcher *fetcher.Fetcher
peers *peerSet
SubProtocols []p2p.Protocol
eventMux *event.TypeMux
txsCh chan core.NewTxsEvent
txsSub event.Subscription
whitelist map[uint64]common.Hash
// channels for fetcher, syncer, txsyncLoop
newPeerCh chan *peer
txsyncCh chan *txsync
quitSync chan struct{}
noMorePeers chan struct{}
// channels for peerSetLoop
chainHeadCh chan core.ChainHeadEvent
chainHeadSub event.Subscription
// channels for dexon consensus core
receiveCh chan coreTypes.Msg
reportBadPeerChan chan interface{}
receiveCoreMessage int32
srvr p2pServer
// wait group is used for graceful shutdowns during downloading
// and processing
wg sync.WaitGroup
// Dexcon
isBlockProposer bool
app dexconApp
finalizedBlockCh chan core.NewFinalizedBlockEvent
finalizedBlockSub event.Subscription
// metrics
blockNumberGauge metrics.Gauge
}
// NewProtocolManager returns a new Ethereum sub protocol manager. The Ethereum sub protocol manages peers capable
// with the Ethereum network.
func NewProtocolManager(
config *params.ChainConfig, mode downloader.SyncMode, networkID uint64,
mux *event.TypeMux, txpool txPool, engine consensus.Engine,
blockchain *core.BlockChain, chaindb ethdb.Database, whitelist map[uint64]common.Hash,
isBlockProposer bool, gov governance, app dexconApp) (*ProtocolManager, error) {
// Create the protocol manager with the base fields
manager := &ProtocolManager{
networkID: networkID,
eventMux: mux,
txpool: txpool,
gov: gov,
blockchain: blockchain,
cache: newCache(5120, dexDB.NewDatabase(chaindb)),
nextPullVote: &sync.Map{},
nextPullBlock: &sync.Map{},
chainconfig: config,
whitelist: whitelist,
newPeerCh: make(chan *peer),
noMorePeers: make(chan struct{}),
txsyncCh: make(chan *txsync),
quitSync: make(chan struct{}),
receiveCh: make(chan coreTypes.Msg, receiveChannelSize),
reportBadPeerChan: make(chan interface{}, 128),
receiveCoreMessage: 0,
isBlockProposer: isBlockProposer,
app: app,
blockNumberGauge: metrics.GetOrRegisterGauge("dex/blocknumber", nil),
}
// Figure out whether to allow fast sync or not
if mode == downloader.FastSync && blockchain.CurrentBlock().NumberU64() > 0 {
log.Warn("Blockchain not empty, fast sync disabled")
mode = downloader.FullSync
}
if mode == downloader.FastSync {
manager.fastSync = uint32(1)
}
// Initiate a sub-protocol for every implemented version we can handle
manager.SubProtocols = make([]p2p.Protocol, 0, len(ProtocolVersions))
for i, version := range ProtocolVersions {
version := version // Closure for the run
manager.SubProtocols = append(manager.SubProtocols, p2p.Protocol{
Name: ProtocolName,
Version: version,
Length: ProtocolLengths[i],
Run: func(p *p2p.Peer, rw p2p.MsgReadWriter) error {
peer := manager.newPeer(int(version), p, rw)
select {
case manager.newPeerCh <- peer:
manager.wg.Add(1)
defer manager.wg.Done()
return manager.handle(peer)
case <-manager.quitSync:
return p2p.DiscQuitting
}
},
NodeInfo: func() interface{} {
return manager.NodeInfo()
},
PeerInfo: func(id enode.ID) interface{} {
if p := manager.peers.Peer(id.String()); p != nil {
return p.Info()
}
return nil
},
})
}
if len(manager.SubProtocols) == 0 {
return nil, errIncompatibleConfig
}
// Construct the different synchronisation mechanisms
manager.downloader = downloader.New(mode, chaindb, manager.eventMux, blockchain, nil, manager.removePeer)
validator := func(header *types.Header) error {
return blockchain.VerifyTangerineHeader(header)
}
heighter := func() uint64 {
return blockchain.CurrentBlock().NumberU64()
}
inserter := func(blocks types.Blocks) (int, error) {
// If fast sync is running, deny importing weird blocks
if atomic.LoadUint32(&manager.fastSync) == 1 {
log.Warn("Discarded bad propagated block", "number", blocks[0].Number(), "hash", blocks[0].Hash())
return 0, nil
}
atomic.StoreUint32(&manager.acceptTxs, 1) // Mark initial sync done on any fetcher import
return manager.blockchain.InsertTangerineChain(blocks)
}
manager.fetcher = fetcher.New(blockchain.GetBlockByHash, validator, manager.BroadcastBlock, heighter, inserter, manager.removePeer)
return manager, nil
}
func (pm *ProtocolManager) removePeer(id string) {
// Short circuit if the peer was already removed
peer := pm.peers.Peer(id)
if peer == nil {
return
}
log.Debug("Removing Ethereum peer", "peer", id)
pm.nextPullVote.Delete(peer.ID())
pm.nextPullBlock.Delete(peer.ID())
// Unregister the peer from the downloader and Ethereum peer set
pm.downloader.UnregisterPeer(id)
log.Debug("after downloader unregister peer", "id", id)
if err := pm.peers.Unregister(id); err != nil {
log.Error("Peer removal failed", "peer", id, "err", err)
}
log.Debug("after unregister peer", "id", id)
// Hard disconnect at the networking layer
if peer != nil {
log.Debug("removePeer: peer disconnect")
peer.Peer.Disconnect(p2p.DiscUselessPeer)
}
log.Debug("peer removed", "id", id)
}
func (pm *ProtocolManager) Start(srvr p2pServer, maxPeers int) {
pm.maxPeers = maxPeers
pm.srvr = srvr
pm.peers = newPeerSet(pm.gov, pm.srvr)
// broadcast transactions
pm.txsCh = make(chan core.NewTxsEvent, txChanSize)
pm.txsSub = pm.txpool.SubscribeNewTxsEvent(pm.txsCh)
go pm.txBroadcastLoop()
if pm.isBlockProposer {
// broadcast finalized blocks
pm.finalizedBlockCh = make(chan core.NewFinalizedBlockEvent,
finalizedBlockChanSize)
pm.finalizedBlockSub = pm.app.SubscribeNewFinalizedBlockEvent(
pm.finalizedBlockCh)
go pm.finalizedBlockBroadcastLoop()
}
// run the peer set loop
pm.chainHeadCh = make(chan core.ChainHeadEvent)
pm.chainHeadSub = pm.blockchain.SubscribeChainHeadEvent(pm.chainHeadCh)
go pm.peerSetLoop()
// start sync handlers
go pm.syncer()
go pm.txsyncLoop()
// Listen to bad peer and disconnect it.
go pm.badPeerWatchLoop()
}
func (pm *ProtocolManager) Stop() {
log.Info("Stopping protocol manager")
pm.txsSub.Unsubscribe() // quits txBroadcastLoop
pm.chainHeadSub.Unsubscribe()
if pm.isBlockProposer {
pm.finalizedBlockSub.Unsubscribe()
}
// Quit the sync loop.
// After this send has completed, no new peers will be accepted.
pm.noMorePeers <- struct{}{}
// Quit fetcher, txsyncLoop.
close(pm.quitSync)
// Disconnect existing sessions.
// This also closes the gate for any new registrations on the peer set.
// sessions which are already established but not added to pm.peers yet
// will exit when they try to register.
pm.peers.Close()
// Wait for all peer handler goroutines and the loops to come down.
pm.wg.Wait()
log.Info("Protocol manager stopped")
}
func (pm *ProtocolManager) ReceiveChan() <-chan coreTypes.Msg {
return pm.receiveCh
}
func (pm *ProtocolManager) sendCoreMsg(msg *coreTypes.Msg) {
pm.receiveCh <- *msg
}
func (pm *ProtocolManager) ReportBadPeerChan() chan<- interface{} {
return pm.reportBadPeerChan
}
func (pm *ProtocolManager) badPeerWatchLoop() {
go pm.checkPeerInWhitelist(pm.reportBadPeerChan)
for {
select {
case id := <-pm.reportBadPeerChan:
log.Debug("Bad peer detected, removing", "id", id.(string))
pm.removePeer(id.(string))
case <-pm.quitSync:
return
}
}
}
func (pm *ProtocolManager) checkPeerInWhitelist(reportBadPeerChan chan<- interface{}) {
for {
for id, p := range pm.peers.peers {
if !pm.inWhitelist(p) {
reportBadPeerChan <- id
}
}
time.Sleep(checkPeerDuration)
}
}
func (pm *ProtocolManager) newPeer(pv int, p *p2p.Peer, rw p2p.MsgReadWriter) *peer {
return newPeer(pv, p, newMeteredMsgWriter(rw))
}
func (pm *ProtocolManager) inWhitelist(p *peer) bool {
if pm.chainconfig.Dexcon == nil || !pm.chainconfig.Dexcon.IsConsortium {
return true
}
state, err := pm.blockchain.State()
if err != nil {
p.Log().Debug("get state fail in checking whitelist", "err", err)
return false
}
govState := vm.GovernanceState{StateDB: state}
address := crypto.PubkeyToAddress(*p.Node().Pubkey())
return govState.WhitelistOffsetByAddress(address).Cmp(big.NewInt(0)) >= 0
}
// handle is the callback invoked to manage the life cycle of an eth peer. When
// this function terminates, the peer is disconnected.
func (pm *ProtocolManager) handle(p *peer) error {
if !pm.inWhitelist(p) {
p.Log().Debug("Peer disconnect: permission denied", "name", p.Name())
return p2p.DiscPermissionDenied
}
// Ignore maxPeers if this is a trusted peer
if pm.peers.Len() >= pm.maxPeers && !p.Peer.Info().Network.Trusted {
return p2p.DiscTooManyPeers
}
p.Log().Debug("Ethereum peer connected", "name", p.Name())
// Execute the Ethereum handshake
var (
genesis = pm.blockchain.Genesis()
head = pm.blockchain.CurrentBlock().Header()
hash = head.Hash()
number = head.Number.Uint64()
)
if err := p.Handshake(pm.networkID, number, hash, genesis.Hash()); err != nil {
p.Log().Debug("Ethereum handshake failed", "err", err)
return err
}
if rw, ok := p.rw.(*meteredMsgReadWriter); ok {
rw.Init(p.version)
}
// Register the peer locally
if err := pm.peers.Register(p); err != nil {
p.Log().Error("Ethereum peer registration failed", "err", err)
return err
}
defer pm.removePeer(p.id)
// Register the peer in the downloader. If the downloader considers it banned, we disconnect
if err := pm.downloader.RegisterPeer(p.id, p.version, p); err != nil {
return err
}
// Propagate existing transactions. new transactions appearing
// after this will be sent via broadcasts.
pm.syncTransactions(p)
// If we have any explicit whitelist block hashes, request them
for number := range pm.whitelist {
if err := p.RequestWhitelistHeader(number); err != nil {
return err
}
}
// Handle incoming messages until the connection is torn down
for {
if err := pm.handleMsg(p); err != nil {
p.Log().Debug("Ethereum message handling failed", "err", err)
return err
}
}
}
// handleMsg is invoked whenever an inbound message is received from a remote
// peer. The remote connection is torn down upon returning any error.
func (pm *ProtocolManager) handleMsg(p *peer) error {
ch := make(chan struct{})
defer close(ch)
go func() {
maxDelay := time.Minute
delay := 1 * time.Second
start := time.Now()
for {
select {
case <-time.After(delay):
delay *= 2
if delay > maxDelay {
delay = maxDelay
}
p.Log().Debug("no msg for a while", "t", time.Since(start))
case <-ch:
return
}
}
}()
// Read the next message from the remote peer, and ensure it's fully consumed
msg, err := p.rw.ReadMsg()
if err != nil {
return err
}
ch <- struct{}{}
if msg.Size > ProtocolMaxMsgSize {
return errResp(ErrMsgTooLarge, "%v > %v", msg.Size, ProtocolMaxMsgSize)
}
defer msg.Discard()
go func() {
start := time.Now()
for {
select {
case <-time.After(100 * time.Millisecond):
p.Log().Debug("handle msg too long", "code", msg.Code, "t", time.Since(start))
case <-ch:
return
}
}
}()
// Handle the message depending on its contents
switch {
case msg.Code == StatusMsg:
// Status messages should never arrive after the handshake
return errResp(ErrExtraStatusMsg, "uncontrolled status message")
// Block header query, collect the requested headers and reply
case msg.Code == GetBlockHeadersMsg:
// Decode the complex header query
var query getBlockHeadersData
if err := msg.Decode(&query); err != nil {
return errResp(ErrDecode, "%v: %v", msg, err)
}
hashMode := query.Origin.Hash != (common.Hash{})
first := true
maxNonCanonical := uint64(100)
round := map[uint64]uint64{}
// Gather headers until the fetch or network limits is reached
var (
bytes common.StorageSize
headers []*types.HeaderWithGovState
unknown bool
)
for !unknown && len(headers) < int(query.Amount) && bytes < softResponseLimit && len(headers) < downloader.MaxHeaderFetch {
// Retrieve the next header satisfying the query
var origin *types.Header
if hashMode {
if first {
first = false
origin = pm.blockchain.GetHeaderByHash(query.Origin.Hash)
if origin != nil {
query.Origin.Number = origin.Number.Uint64()
}
} else {
origin = pm.blockchain.GetHeader(query.Origin.Hash, query.Origin.Number)
}
} else {
origin = pm.blockchain.GetHeaderByNumber(query.Origin.Number)
}
if origin == nil {
break
}
headers = append(headers, &types.HeaderWithGovState{Header: origin})
if round[origin.Round] == 0 {
round[origin.Round] = origin.Number.Uint64()
}
bytes += estHeaderRlpSize
// Advance to the next header of the query
switch {
case hashMode && query.Reverse:
// Hash based traversal towards the genesis block
ancestor := query.Skip + 1
if ancestor == 0 {
unknown = true
} else {
query.Origin.Hash, query.Origin.Number = pm.blockchain.GetAncestor(query.Origin.Hash, query.Origin.Number, ancestor, &maxNonCanonical)
unknown = (query.Origin.Hash == common.Hash{})
}
case hashMode && !query.Reverse:
// Hash based traversal towards the leaf block
var (
current = origin.Number.Uint64()
next = current + query.Skip + 1
)
if next <= current {
infos, _ := json.MarshalIndent(p.Peer.Info(), "", " ")
p.Log().Warn("GetBlockHeaders skip overflow attack", "current", current, "skip", query.Skip, "next", next, "attacker", infos)
unknown = true
} else {
if header := pm.blockchain.GetHeaderByNumber(next); header != nil {
nextHash := header.Hash()
expOldHash, _ := pm.blockchain.GetAncestor(nextHash, next, query.Skip+1, &maxNonCanonical)
if expOldHash == query.Origin.Hash {
query.Origin.Hash, query.Origin.Number = nextHash, next
} else {
unknown = true
}
} else {
unknown = true
}
}
case query.Reverse:
// Number based traversal towards the genesis block
if query.Origin.Number >= query.Skip+1 {
query.Origin.Number -= query.Skip + 1
} else {
unknown = true
}
case !query.Reverse:
// Number based traversal towards the leaf block
query.Origin.Number += query.Skip + 1
}
}
if query.WithGov && len(headers) > 0 {
last := headers[len(headers)-1]
currentBlock := pm.blockchain.CurrentBlock()
// Do not reply if we don't have current gov state
if currentBlock.NumberU64() < last.Number.Uint64() {
log.Debug("Current block < last request",
"current", currentBlock.NumberU64(), "last", last.Number.Uint64())
return p.SendBlockHeaders(query.Flag, []*types.HeaderWithGovState{})
}
snapshotHeight := map[uint64]struct{}{}
for r, height := range round {
log.Trace("#Include round", "round", r)
if r == 0 {
continue
}
h := pm.gov.GetRoundHeight(r)
log.Trace("#Snapshot height", "height", h)
if h == 0 {
h = height
}
snapshotHeight[h] = struct{}{}
}
for _, header := range headers {
if _, exist := snapshotHeight[header.Number.Uint64()]; exist {
tt := time.Now()
log.Debug("Handler get gov state by hash", "t", tt)
s, err := pm.blockchain.GetGovStateByHash(header.Hash())
log.Debug("Handler get gov state by hash", "elapsed", time.Since(tt))
if err != nil {
log.Warn("Get gov state by hash fail", "number", header.Number.Uint64(), "err", err)
return p.SendBlockHeaders(query.Flag, []*types.HeaderWithGovState{})
}
header.GovState = s
}
log.Trace("Send header", "round", header.Round, "number", header.Number.Uint64(), "gov state == nil", header.GovState == nil)
}
}
return p.SendBlockHeaders(query.Flag, headers)
case msg.Code == BlockHeadersMsg:
// A batch of headers arrived to one of our previous requests
var data headersData
if err := msg.Decode(&data); err != nil {
return errResp(ErrDecode, "msg %v: %v", msg, err)
}
switch data.Flag {
case fetcherReq:
if len(data.Headers) > 0 {
pm.fetcher.FilterHeaders(p.id, []*types.Header{data.Headers[0].Header}, time.Now())
}
case downloaderReq:
err := pm.downloader.DeliverHeaders(p.id, data.Headers)
if err != nil {
log.Debug("Failed to deliver headers", "err", err)
}
case whitelistReq:
if want, ok := pm.whitelist[data.Headers[0].Number.Uint64()]; ok {
if hash := data.Headers[0].Hash(); want != hash {
p.Log().Info("Whitelist mismatch, dropping peer", "number", data.Headers[0].Number.Uint64(), "hash", hash, "want", want)
return errors.New("whitelist block mismatch")
}
p.Log().Debug("Whitelist block verified", "number", data.Headers[0].Number.Uint64(), "hash", want)
}
default:
log.Debug("Got headers with unexpected flag", "flag", data.Flag)
}
case msg.Code == GetBlockBodiesMsg:
// Decode the retrieval message
var query getBlockBodiesData
if err := msg.Decode(&query); err != nil {
return errResp(ErrDecode, "msg %v: %v", msg, err)
}
msgStream := rlp.NewStream(bytes.NewBuffer(query.Hashes), uint64(len(query.Hashes)))
if _, err := msgStream.List(); err != nil {
return err
}
// Gather blocks until the fetch or network limits is reached
var (
hash common.Hash
bytes int
bodies []rlp.RawValue
)
for bytes < softResponseLimit && len(bodies) < downloader.MaxBlockFetch {
// Retrieve the hash of the next block
if err := msgStream.Decode(&hash); err == rlp.EOL {
break
} else if err != nil {
return errResp(ErrDecode, "msg %v: %v", msg, err)
}
// Retrieve the requested block body, stopping if enough was found
if data := pm.blockchain.GetBodyRLP(hash); len(data) != 0 {
bodies = append(bodies, data)
bytes += len(data)
}
}
return p.SendBlockBodiesRLP(query.Flag, bodies)
case msg.Code == BlockBodiesMsg:
// A batch of block bodies arrived to one of our previous requests
var request blockBodiesData
if err := msg.Decode(&request); err != nil {
return errResp(ErrDecode, "msg %v: %v", msg, err)
}
// Deliver them all to the downloader for queuing
transactions := make([][]*types.Transaction, len(request.Bodies))
uncles := make([][]*types.Header, len(request.Bodies))
for i, body := range request.Bodies {
transactions[i] = body.Transactions
uncles[i] = body.Uncles
}
switch request.Flag {
case fetcherReq:
if len(transactions) > 0 || len(uncles) > 0 {
pm.fetcher.FilterBodies(p.id, transactions, uncles, time.Now())
}
case downloaderReq:
err := pm.downloader.DeliverBodies(p.id, transactions, uncles)
if err != nil {
log.Debug("Failed to deliver bodies", "err", err)
}
default:
log.Debug("Got bodies with unexpected flag", "flag", request.Flag)
}
case msg.Code == GetNodeDataMsg:
// Decode the retrieval message
msgStream := rlp.NewStream(msg.Payload, uint64(msg.Size))
if _, err := msgStream.List(); err != nil {
return err
}
// Gather state data until the fetch or network limits is reached
var (
hash common.Hash
bytes int
data [][]byte
)
for bytes < softResponseLimit && len(data) < downloader.MaxStateFetch {
// Retrieve the hash of the next state entry
if err := msgStream.Decode(&hash); err == rlp.EOL {
break
} else if err != nil {
return errResp(ErrDecode, "msg %v: %v", msg, err)
}
// Retrieve the requested state entry, stopping if enough was found
if entry, err := pm.blockchain.TrieNode(hash); err == nil {
data = append(data, entry)
bytes += len(entry)
}
}
return p.SendNodeData(data)
case msg.Code == NodeDataMsg:
// A batch of node state data arrived to one of our previous requests
var data [][]byte
if err := msg.Decode(&data); err != nil {
return errResp(ErrDecode, "msg %v: %v", msg, err)
}
// Deliver all to the downloader
if err := pm.downloader.DeliverNodeData(p.id, data); err != nil {
log.Debug("Failed to deliver node state data", "err", err)
}
case msg.Code == GetReceiptsMsg:
// Decode the retrieval message
msgStream := rlp.NewStream(msg.Payload, uint64(msg.Size))
if _, err := msgStream.List(); err != nil {
return err
}
// Gather state data until the fetch or network limits is reached
var (
hash common.Hash
bytes int
receipts []rlp.RawValue
)
for bytes < softResponseLimit && len(receipts) < downloader.MaxReceiptFetch {
// Retrieve the hash of the next block
if err := msgStream.Decode(&hash); err == rlp.EOL {
break
} else if err != nil {
return errResp(ErrDecode, "msg %v: %v", msg, err)
}
// Retrieve the requested block's receipts, skipping if unknown to us
results := pm.blockchain.GetReceiptsByHash(hash)
if results == nil {
if header := pm.blockchain.GetHeaderByHash(hash); header == nil || header.ReceiptHash != types.EmptyRootHash {
continue
}
}
// If known, encode and queue for response packet
if encoded, err := rlp.EncodeToBytes(results); err != nil {
log.Error("Failed to encode receipt", "err", err)
} else {
receipts = append(receipts, encoded)
bytes += len(encoded)
}
}
return p.SendReceiptsRLP(receipts)
case msg.Code == ReceiptsMsg:
// A batch of receipts arrived to one of our previous requests
var receipts [][]*types.Receipt
if err := msg.Decode(&receipts); err != nil {
return errResp(ErrDecode, "msg %v: %v", msg, err)
}
// Deliver all to the downloader
if err := pm.downloader.DeliverReceipts(p.id, receipts); err != nil {
log.Debug("Failed to deliver receipts", "err", err)
}
case msg.Code == NewBlockHashesMsg:
var announces newBlockHashesData
if err := msg.Decode(&announces); err != nil {
return errResp(ErrDecode, "%v: %v", msg, err)
}
// Mark the hashes as present at the remote node
for _, block := range announces {
p.MarkBlock(block.Hash)
}
// Schedule all the unknown hashes for retrieval
unknown := make(newBlockHashesData, 0, len(announces))
for _, block := range announces {
if !pm.blockchain.HasBlock(block.Hash, block.Number) {
unknown = append(unknown, block)
}
}
for _, block := range unknown {
pm.fetcher.Notify(p.id, block.Hash, block.Number, time.Now(), p.RequestOneHeader, p.FetchBodies)
}
case msg.Code == NewBlockMsg:
// Retrieve and decode the propagated block
var block types.Block
if err := msg.Decode(&block); err != nil {
return errResp(ErrDecode, "%v: %v", msg, err)
}
block.ReceivedAt = msg.ReceivedAt
block.ReceivedFrom = p
// Mark the peer as owning the block and schedule it for import
p.MarkBlock(block.Hash())
pm.fetcher.Enqueue(p.id, &block)
// Assuming the block is importable by the peer, but possibly not yet done so,
// calculate the head hash and number that the peer truly must have.
var (
trueHead = block.ParentHash()
trueNumber = block.NumberU64() - 1
)
// Update the peers number if better than the previous
if _, number := p.Head(); trueNumber > number {
p.SetHead(trueHead, trueNumber)
// Schedule a sync if above ours. Note, this will not fire a sync for a gap of
// a single block (as the true number is below the propagated block), however this
// scenario should easily be covered by the fetcher.
currentBlock := pm.blockchain.CurrentBlock()
if trueNumber > currentBlock.NumberU64() {
go pm.synchronise(p, false)
}
}
case msg.Code == TxMsg:
// Transactions arrived, make sure we have a valid and fresh chain to handle them
if atomic.LoadUint32(&pm.acceptTxs) == 0 {
break
}
// Transactions can be processed, parse all of them and deliver to the pool
var txs []*types.Transaction
if err := msg.Decode(&txs); err != nil {
return errResp(ErrDecode, "msg %v: %v", msg, err)
}
for i, tx := range txs {
// Validate and mark the remote transaction
if tx == nil {
return errResp(ErrDecode, "transaction %d is nil", i)
}
p.MarkTransaction(tx.Hash())
}
types.GlobalSigCache.Add(types.NewEIP155Signer(pm.blockchain.Config().ChainID), txs)
pm.txpool.AddRemotes(txs)
// Block proposer-only messages.
case msg.Code == CoreBlockMsg:
if atomic.LoadInt32(&pm.receiveCoreMessage) == 0 {
break
}
var blocks []*coreTypes.Block
if err := msg.Decode(&blocks); err != nil {
return errResp(ErrDecode, "msg %v: %v", msg, err)
}
pm.cache.addBlocks(blocks)
for _, block := range blocks {
pm.sendCoreMsg(&coreTypes.Msg{
PeerID: p.ID().String(),
Payload: block,
})
}
case msg.Code == VoteMsg:
if atomic.LoadInt32(&pm.receiveCoreMessage) == 0 {
break
}
var votes []*coreTypes.Vote
if err := msg.Decode(&votes); err != nil {
return errResp(ErrDecode, "msg %v: %v", msg, err)
}
for _, vote := range votes {
if vote.Type >= coreTypes.VotePreCom {
pm.cache.addVote(vote)
}
pm.sendCoreMsg(&coreTypes.Msg{
PeerID: p.ID().String(),
Payload: vote,
})
}
case msg.Code == AgreementMsg:
if atomic.LoadInt32(&pm.receiveCoreMessage) == 0 {
break
}
// DKG set is receiver
var agreement coreTypes.AgreementResult
if err := msg.Decode(&agreement); err != nil {
return errResp(ErrDecode, "msg %v: %v", msg, err)
}
p.MarkAgreement(agreement.Position)
// Update randomness field for blocks in cache.
block := pm.cache.blocks(coreCommon.Hashes{agreement.BlockHash}, false)
if len(block) != 0 {
block[0].Randomness = agreement.Randomness
pm.cache.addFinalizedBlock(block[0])
}
pm.sendCoreMsg(&coreTypes.Msg{
PeerID: p.ID().String(),
Payload: &agreement,
})
case msg.Code == DKGPrivateShareMsg:
if atomic.LoadInt32(&pm.receiveCoreMessage) == 0 {
break
}
// Do not relay this msg
var ps dkgTypes.PrivateShare
if err := msg.Decode(&ps); err != nil {
return errResp(ErrDecode, "msg %v: %v", msg, err)
}
p.MarkDKGPrivateShares(rlpHash(ps))
pm.sendCoreMsg(&coreTypes.Msg{
PeerID: p.ID().String(),
Payload: &ps,
})
case msg.Code == DKGPartialSignatureMsg:
if atomic.LoadInt32(&pm.receiveCoreMessage) == 0 {
break
}
// broadcast in DKG set
var psig dkgTypes.PartialSignature
if err := msg.Decode(&psig); err != nil {
return errResp(ErrDecode, "msg %v: %v", msg, err)
}
pm.sendCoreMsg(&coreTypes.Msg{
PeerID: p.ID().String(),
Payload: &psig,
})
case msg.Code == PullBlocksMsg:
if atomic.LoadInt32(&pm.receiveCoreMessage) == 0 {
break
}
next, ok := pm.nextPullBlock.Load(p.ID())
if ok {
nextTime := next.(time.Time)
if nextTime.After(time.Now()) {
break
}
}
pm.nextPullBlock.Store(p.ID(), time.Now().Add(pullBlockRateLimit))
var hashes coreCommon.Hashes
if err := msg.Decode(&hashes); err != nil {
return errResp(ErrDecode, "msg %v: %v", msg, err)
}
blocks := pm.cache.blocks(hashes, true)
log.Debug("Push blocks", "blocks", blocks)
return p.SendCoreBlocks(blocks)
case msg.Code == PullVotesMsg:
if atomic.LoadInt32(&pm.receiveCoreMessage) == 0 {
break
}
next, ok := pm.nextPullVote.Load(p.ID())
if ok {
nextTime := next.(time.Time)
if nextTime.After(time.Now()) {
break
}
}
pm.nextPullVote.Store(p.ID(), time.Now().Add(pullVoteRateLimit))
var pos coreTypes.Position
if err := msg.Decode(&pos); err != nil {
return errResp(ErrDecode, "msg %v: %v", msg, err)
}
if block := pm.cache.finalizedBlock(pos); block != nil {
log.Debug("Push finalized block as votes", "block", block)
return p.SendCoreBlocks([]*coreTypes.Block{block})
}
votes := pm.cache.votes(pos)
log.Debug("Push votes", "votes", votes)
return p.SendVotes(votes)
case msg.Code == GetGovStateMsg:
var hash common.Hash
if err := msg.Decode(&hash); err != nil {
return errResp(ErrDecode, "msg %v: %v", msg, err)
}
govState, err := pm.blockchain.GetGovStateByHash(hash)
if err != nil {
p.Log().Debug("Invalid gov state msg", "hash", hash.String(), "err", err)
return errResp(ErrInvalidGovStateMsg, "hash=%v", hash.String())
}
return p.SendGovState(govState)
case msg.Code == GovStateMsg:
var govState types.GovState
if err := msg.Decode(&govState); err != nil {
return errResp(ErrDecode, "msg %v: %v", msg, err)
}
if err := pm.downloader.DeliverGovState(p.id, &govState); err != nil {
log.Debug("Failed to deliver govstates", "err", err)
}
default:
return errResp(ErrInvalidMsgCode, "%v", msg.Code)
}
return nil
}
// BroadcastBlock will either propagate a block to a subset of it's peers, or
// will only announce it's availability (depending what's requested).
func (pm *ProtocolManager) BroadcastBlock(block *types.Block, propagate bool) {
hash := block.Hash()
peers := pm.peers.PeersWithoutBlock(hash)
// If propagation is requested, send to a subset of the peer
if propagate {
if parent := pm.blockchain.GetBlock(block.ParentHash(), block.NumberU64()-1); parent == nil {
log.Error("Propagating dangling block", "number", block.Number(), "hash", hash)
return
}
// Send the block to a subset of our peers
transfer := peers[:int(math.Sqrt(float64(len(peers))))]
for _, peer := range transfer {
peer.AsyncSendNewBlock(block)
}
log.Trace("Propagated block", "hash", hash, "recipients", len(transfer), "duration", common.PrettyDuration(time.Since(block.ReceivedAt)))
return
}
// Otherwise if the block is indeed in out own chain, announce it
if pm.blockchain.HasBlock(hash, block.NumberU64()) {
for _, peer := range peers {
peer.AsyncSendNewBlockHash(block)
}
log.Trace("Announced block", "hash", hash, "recipients", len(peers), "duration", common.PrettyDuration(time.Since(block.ReceivedAt)))
}
}
// BroadcastTxs will propagate a batch of transactions to all peers which are not known to
// already have the given transaction.
func (pm *ProtocolManager) BroadcastTxs(txs types.Transactions) {
round := pm.blockchain.CurrentBlock().Round()
label := peerLabel{
set: notaryset,
round: round,
}
// Send to at most `notaryReceiverNum`.
// If we don't have many notary peers,
// send to at least `minTxReceiver` notary peers. (set notaryReceiverNum = minTxReceiver)
notaryPeers := pm.peers.PeersWithLabel(label)
notaryReceiverNum := int(math.Sqrt(float64(len(notaryPeers))))
if notaryReceiverNum < minTxReceiver {
notaryReceiverNum = minTxReceiver
}
// Send to at most `maxReceiver` peers (including notary peers).
// If we don't have many peers,
// send to a least `minTxReceiver` peers. (set maxReceiver = minTxReceiver)
peers := pm.peers.Peers()
maxReceiver := int(math.Sqrt(float64(len(peers))))
if maxReceiver < minTxReceiver {
maxReceiver = minTxReceiver
}
var txset = make(map[*peer]types.Transactions)
// Broadcast transactions to a batch of peers not knowing about it
for _, tx := range txs {
receivers := make(map[*peer]struct{})
// notary peers first
for _, peer := range notaryPeers {
if !peer.knownTxs.Contains(tx.Hash()) {
receivers[peer] = struct{}{}
}
if len(receivers) >= notaryReceiverNum {
break
}
}
for _, peer := range peers {
if len(receivers) >= maxReceiver {
break
}
// not add to receivers yet and not known the tx
if _, ok := receivers[peer]; !ok && !peer.knownTxs.Contains(tx.Hash()) {
receivers[peer] = struct{}{}
}
}
for peer := range receivers {
txset[peer] = append(txset[peer], tx)
}
log.Trace("Broadcast transaction", "hash", tx.Hash(), "recipients", len(receivers))
}
for peer, txs := range txset {
peer.AsyncSendTransactions(txs)
}
}
// BroadcastFinalizedBlock broadcasts the finalized core block to some of its peers.
func (pm *ProtocolManager) BroadcastFinalizedBlock(block *coreTypes.Block) {
if len(block.Randomness) == 0 {
log.Warn("Ignore broadcast finalized block without randomness", "block", block)
return
}
pm.cache.addFinalizedBlock(block)
// send to notary nodes first (direct)
label := peerLabel{
set: notaryset,
round: block.Position.Round,
}
peers := pm.peers.PeersWithLabel(label)
count := maxFinalizedBlockBroadcast
for _, peer := range peers {
if count <= 0 {
break
} else {
count--
peer.AsyncSendCoreBlocks([]*coreTypes.Block{block})
}
}
}
// BroadcastCoreBlock broadcasts the core block to all its peers.
func (pm *ProtocolManager) BroadcastCoreBlock(block *coreTypes.Block) {
pm.cache.addBlock(block)
// send to notary nodes only.
label := peerLabel{
set: notaryset,
round: block.Position.Round,
}
for _, peer := range pm.peers.PeersWithLabel(label) {
peer.AsyncSendCoreBlocks([]*coreTypes.Block{block})
}
}
// BroadcastVote broadcasts the given vote to all peers in same notary set
func (pm *ProtocolManager) BroadcastVote(vote *coreTypes.Vote) {
if vote.Type >= coreTypes.VotePreCom {
pm.cache.addVote(vote)
}
label := peerLabel{
set: notaryset,
round: vote.Position.Round,
}
for _, peer := range pm.peers.PeersWithLabel(label) {
peer.AsyncSendVotes([]*coreTypes.Vote{vote})
}
}
func (pm *ProtocolManager) BroadcastAgreementResult(
agreement *coreTypes.AgreementResult) {
block := pm.cache.blocks(coreCommon.Hashes{agreement.BlockHash}, false)
if len(block) != 0 {
block[0].Randomness = agreement.Randomness
pm.cache.addFinalizedBlock(block[0])
}
// send to notary nodes first (direct)
label := peerLabel{
set: notaryset,
round: agreement.Position.Round,
}
peers := pm.peers.PeersWithLabel(label)
count := maxAgreementResultBroadcast
for _, peer := range peers {
if peer.MarkAgreement(agreement.Position) {
if count <= 0 {
continue
}
count--
peer.AsyncSendAgreement(agreement)
}
}
for _, peer := range pm.peers.PeersWithoutAgreement(agreement.Position) {
peer.MarkAgreement(agreement.Position)
peer.AsyncSendAgreement(agreement)
}
}
func (pm *ProtocolManager) SendDKGPrivateShare(
pub coreCrypto.PublicKey, privateShare *dkgTypes.PrivateShare) {
pk, err := crypto.UnmarshalPubkey(pub.Bytes())
if err != nil {
panic(err)
}
id := enode.PubkeyToIDV4(pk)
if p := pm.peers.Peer(id.String()); p != nil {
p.AsyncSendDKGPrivateShare(privateShare)
} else {
log.Error("Failed to send DKG private share", "publicKey", id.String())
}
}
func (pm *ProtocolManager) BroadcastDKGPrivateShare(
privateShare *dkgTypes.PrivateShare) {
label := peerLabel{set: notaryset, round: privateShare.Round}
for _, peer := range pm.peers.PeersWithLabel(label) {
if !peer.knownDKGPrivateShares.Contains(rlpHash(privateShare)) {
peer.AsyncSendDKGPrivateShare(privateShare)
}
}
}
func (pm *ProtocolManager) BroadcastDKGPartialSignature(
psig *dkgTypes.PartialSignature) {
label := peerLabel{set: notaryset, round: psig.Round}
for _, peer := range pm.peers.PeersWithLabel(label) {
peer.AsyncSendDKGPartialSignature(psig)
}
}
func (pm *ProtocolManager) BroadcastPullBlocks(
hashes coreCommon.Hashes) {
// TODO(jimmy-dexon): pull from notary set only.
for idx, peer := range pm.peers.Peers() {
if idx >= maxPullPeers {
break
}
peer.AsyncSendPullBlocks(hashes)
}
}
func (pm *ProtocolManager) BroadcastPullVotes(
pos coreTypes.Position) {
label := peerLabel{
set: notaryset,
round: pos.Round,
}
for idx, peer := range pm.peers.PeersWithLabel(label) {
if idx >= maxPullVotePeers {
break
}
peer.AsyncSendPullVotes(pos)
}
}
func (pm *ProtocolManager) txBroadcastLoop() {
queueSizeMax := common.StorageSize(100 * 1024) // 100 KB
currentSize := common.StorageSize(0)
txs := make(types.Transactions, 0)
for {
select {
case <-time.After(100 * time.Millisecond):
pm.BroadcastTxs(txs)
txs = txs[:0]
currentSize = 0
case event := <-pm.txsCh:
txs = append(txs, event.Txs...)
for _, tx := range event.Txs {
currentSize += tx.Size()
}
if currentSize >= queueSizeMax {
pm.BroadcastTxs(txs)
txs = txs[:0]
currentSize = 0
}
// Err() channel will be closed when unsubscribing.
case <-pm.txsSub.Err():
return
}
}
}
func (pm *ProtocolManager) finalizedBlockBroadcastLoop() {
for {
select {
case event := <-pm.finalizedBlockCh:
pm.BroadcastBlock(event.Block, true)
pm.BroadcastBlock(event.Block, false)
// Err() channel will be closed when unsubscribing.
case <-pm.finalizedBlockSub.Err():
return
}
}
}
func (pm *ProtocolManager) SetReceiveCoreMessage(enabled bool) {
if enabled {
atomic.StoreInt32(&pm.receiveCoreMessage, 1)
} else {
atomic.StoreInt32(&pm.receiveCoreMessage, 0)
}
}
// a loop keep building and maintaining peers in notary set.
// TODO: finish this
func (pm *ProtocolManager) peerSetLoop() {
round := pm.gov.Round()
reset := pm.gov.DKGResetCount(round)
log.Debug("ProtocolManager: startup round",
"round", round, "reset", reset)
if round < dexCore.DKGDelayRound {
for i := round; i <= dexCore.DKGDelayRound; i++ {
pm.peers.BuildConnection(i)
}
round = dexCore.DKGDelayRound
} else {
pm.peers.BuildConnection(round)
}
CRSRound := pm.gov.CRSRound()
if CRSRound > round {
pm.peers.BuildConnection(CRSRound)
round = CRSRound
reset = pm.gov.DKGResetCount(round)
}
ctx, cancel := context.WithCancel(context.Background())
defer cancel()
go func() {
for ctx.Err() == nil {
select {
case <-time.After(time.Minute):
pm.peers.Status()
case <-ctx.Done():
return
}
}
}()
for {
select {
case event := <-pm.chainHeadCh:
pm.blockNumberGauge.Update(int64(event.Block.NumberU64()))
if !pm.isBlockProposer {
break
}
newRound := pm.gov.CRSRound()
if newRound == 0 {
break
}
newReset := pm.gov.DKGResetCount(round)
if newRound <= round && reset == newReset {
break
}
log.Info("ProtocolManager: configuration changed",
"round", newRound, "reset", newReset)
if newRound == round+1 {
pm.peers.BuildConnection(newRound)
if round >= 1 {
pm.peers.ForgetConnection(round - 1)
}
} else if newRound == round && reset+1 == newReset {
pm.peers.ForgetLabelConnection(peerLabel{set: notaryset, round: round})
pm.gov.PurgeNotarySet(newRound)
pm.peers.BuildConnection(newRound)
} else {
// just forget all network connection and rebuild.
pm.peers.ForgetConnection(round)
if newRound >= 1 {
pm.peers.BuildConnection(newRound - 1)
}
pm.peers.BuildConnection(newRound)
}
round = newRound
reset = newReset
case <-pm.chainHeadSub.Err():
return
}
}
}
// NodeInfo represents a short summary of the Ethereum sub-protocol metadata
// known about the host peer.
type NodeInfo struct {
Network uint64 `json:"network"` // Network ID (411=Mainnet, 374=Testnet)
Number uint64 `json:"number"` // Total difficulty of the host's blockchain
Genesis common.Hash `json:"genesis"` // SHA3 hash of the host's genesis block
Config *params.ChainConfig `json:"config"` // Chain configuration for the fork rules
Head common.Hash `json:"head"` // SHA3 hash of the host's best owned block
}
// NodeInfo retrieves some protocol metadata about the running host node.
func (pm *ProtocolManager) NodeInfo() *NodeInfo {
currentBlock := pm.blockchain.CurrentBlock()
return &NodeInfo{
Network: pm.networkID,
Number: currentBlock.NumberU64(),
Genesis: pm.blockchain.Genesis().Hash(),
Config: pm.blockchain.Config(),
Head: currentBlock.Hash(),
}
}
type NotaryInfo struct {
Round uint64 `json:"round"`
IsNotary bool `json:"is_notary"`
Nodes []*NotaryNodeInfo `json:"nodes"`
IsNextNotary bool `json:"is_next_notary"`
Next []*NotaryNodeInfo `json:"next"`
}
type NotaryNodeInfo struct {
ID enode.ID `json:"id"`
Number uint64 `json:"number"`
}
func (pm *ProtocolManager) NotaryInfo() (*NotaryInfo, error) {
current := pm.blockchain.CurrentBlock()
pubkeys, err := pm.gov.NotarySet(current.Round())
if err != nil {
return nil, err
}
info := &NotaryInfo{
Round: current.Round(),
}
currentNodes, in, err := pm.buildNotaryNodeInfo(pubkeys)
if err != nil {
return nil, err
}
info.Nodes = currentNodes
info.IsNotary = in
if crsRound := pm.gov.CRSRound(); crsRound != current.Round() {
pubkeys, err := pm.gov.NotarySet(crsRound)
if err != nil {
return nil, err
}
nextNodes, in, err := pm.buildNotaryNodeInfo(pubkeys)
if err != nil {
return nil, err
}
info.Next = nextNodes
info.IsNextNotary = in
}
return info, nil
}
func (pm *ProtocolManager) buildNotaryNodeInfo(
pubkeys map[string]struct{}) ([]*NotaryNodeInfo, bool, error) {
nodes := []*NotaryNodeInfo{}
for pubkey := range pubkeys {
b, err := hex.DecodeString(pubkey)
if err != nil {
return nil, false, err
}
pubkey, err := crypto.UnmarshalPubkey(b)
if err != nil {
return nil, false, err
}
nodes = append(nodes, &NotaryNodeInfo{ID: enode.PubkeyToIDV4(pubkey)})
}
var in bool
for _, n := range nodes {
if p := pm.peers.Peer(n.ID.String()); p != nil {
_, number := p.Head()
n.Number = number
}
if n.ID == pm.srvr.Self().ID() {
n.Number = pm.blockchain.CurrentBlock().NumberU64()
in = true
}
}
return nodes, in, nil
}