aboutsummaryrefslogblamecommitdiffstats
path: root/crypto/curve.go
blob: e07a0607119fbe4c6b2110f38ac6d49e5d763d19 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16















                                                                              










































































































































































































































































































































































                                                                                                                       
// Copyright 2014 The go-ethereum Authors
// This file is part of go-ethereum.
//
// go-ethereum is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// go-ethereum is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with go-ethereum.  If not, see <http://www.gnu.org/licenses/>.

package crypto

// Copyright 2010 The Go Authors. All rights reserved.
// Copyright 2011 ThePiachu. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package bitelliptic implements several Koblitz elliptic curves over prime
// fields.

// This package operates, internally, on Jacobian coordinates. For a given
// (x, y) position on the curve, the Jacobian coordinates are (x1, y1, z1)
// where x = x1/z1² and y = y1/z1³. The greatest speedups come when the whole
// calculation can be performed within the transform (as in ScalarMult and
// ScalarBaseMult). But even for Add and Double, it's faster to apply and
// reverse the transform than to operate in affine coordinates.

import (
    "crypto/elliptic"
    "io"
    "math/big"
    "sync"
)

// A BitCurve represents a Koblitz Curve with a=0.
// See http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html
type BitCurve struct {
    P       *big.Int // the order of the underlying field
    N       *big.Int // the order of the base point
    B       *big.Int // the constant of the BitCurve equation
    Gx, Gy  *big.Int // (x,y) of the base point
    BitSize int      // the size of the underlying field
}

func (BitCurve *BitCurve) Params() *elliptic.CurveParams {
    return &elliptic.CurveParams{BitCurve.P, BitCurve.N, BitCurve.B, BitCurve.Gx, BitCurve.Gy, BitCurve.BitSize}
}

// IsOnBitCurve returns true if the given (x,y) lies on the BitCurve.
func (BitCurve *BitCurve) IsOnCurve(x, y *big.Int) bool {
    // y² = x³ + b
    y2 := new(big.Int).Mul(y, y) //y²
    y2.Mod(y2, BitCurve.P)       //y²%P

    x3 := new(big.Int).Mul(x, x) //x²
    x3.Mul(x3, x)                //x³

    x3.Add(x3, BitCurve.B) //x³+B
    x3.Mod(x3, BitCurve.P) //(x³+B)%P

    return x3.Cmp(y2) == 0
}

//TODO: double check if the function is okay
// affineFromJacobian reverses the Jacobian transform. See the comment at the
// top of the file.
func (BitCurve *BitCurve) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) {
    zinv := new(big.Int).ModInverse(z, BitCurve.P)
    zinvsq := new(big.Int).Mul(zinv, zinv)

    xOut = new(big.Int).Mul(x, zinvsq)
    xOut.Mod(xOut, BitCurve.P)
    zinvsq.Mul(zinvsq, zinv)
    yOut = new(big.Int).Mul(y, zinvsq)
    yOut.Mod(yOut, BitCurve.P)
    return
}

// Add returns the sum of (x1,y1) and (x2,y2)
func (BitCurve *BitCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
    z := new(big.Int).SetInt64(1)
    return BitCurve.affineFromJacobian(BitCurve.addJacobian(x1, y1, z, x2, y2, z))
}

// addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and
// (x2, y2, z2) and returns their sum, also in Jacobian form.
func (BitCurve *BitCurve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) {
    // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
    z1z1 := new(big.Int).Mul(z1, z1)
    z1z1.Mod(z1z1, BitCurve.P)
    z2z2 := new(big.Int).Mul(z2, z2)
    z2z2.Mod(z2z2, BitCurve.P)

    u1 := new(big.Int).Mul(x1, z2z2)
    u1.Mod(u1, BitCurve.P)
    u2 := new(big.Int).Mul(x2, z1z1)
    u2.Mod(u2, BitCurve.P)
    h := new(big.Int).Sub(u2, u1)
    if h.Sign() == -1 {
        h.Add(h, BitCurve.P)
    }
    i := new(big.Int).Lsh(h, 1)
    i.Mul(i, i)
    j := new(big.Int).Mul(h, i)

    s1 := new(big.Int).Mul(y1, z2)
    s1.Mul(s1, z2z2)
    s1.Mod(s1, BitCurve.P)
    s2 := new(big.Int).Mul(y2, z1)
    s2.Mul(s2, z1z1)
    s2.Mod(s2, BitCurve.P)
    r := new(big.Int).Sub(s2, s1)
    if r.Sign() == -1 {
        r.Add(r, BitCurve.P)
    }
    r.Lsh(r, 1)
    v := new(big.Int).Mul(u1, i)

    x3 := new(big.Int).Set(r)
    x3.Mul(x3, x3)
    x3.Sub(x3, j)
    x3.Sub(x3, v)
    x3.Sub(x3, v)
    x3.Mod(x3, BitCurve.P)

    y3 := new(big.Int).Set(r)
    v.Sub(v, x3)
    y3.Mul(y3, v)
    s1.Mul(s1, j)
    s1.Lsh(s1, 1)
    y3.Sub(y3, s1)
    y3.Mod(y3, BitCurve.P)

    z3 := new(big.Int).Add(z1, z2)
    z3.Mul(z3, z3)
    z3.Sub(z3, z1z1)
    if z3.Sign() == -1 {
        z3.Add(z3, BitCurve.P)
    }
    z3.Sub(z3, z2z2)
    if z3.Sign() == -1 {
        z3.Add(z3, BitCurve.P)
    }
    z3.Mul(z3, h)
    z3.Mod(z3, BitCurve.P)

    return x3, y3, z3
}

// Double returns 2*(x,y)
func (BitCurve *BitCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
    z1 := new(big.Int).SetInt64(1)
    return BitCurve.affineFromJacobian(BitCurve.doubleJacobian(x1, y1, z1))
}

// doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and
// returns its double, also in Jacobian form.
func (BitCurve *BitCurve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) {
    // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l

    a := new(big.Int).Mul(x, x) //X1²
    b := new(big.Int).Mul(y, y) //Y1²
    c := new(big.Int).Mul(b, b) //B²

    d := new(big.Int).Add(x, b) //X1+B
    d.Mul(d, d)                 //(X1+B)²
    d.Sub(d, a)                 //(X1+B)²-A
    d.Sub(d, c)                 //(X1+B)²-A-C
    d.Mul(d, big.NewInt(2))     //2*((X1+B)²-A-C)

    e := new(big.Int).Mul(big.NewInt(3), a) //3*A
    f := new(big.Int).Mul(e, e)             //E²

    x3 := new(big.Int).Mul(big.NewInt(2), d) //2*D
    x3.Sub(f, x3)                            //F-2*D
    x3.Mod(x3, BitCurve.P)

    y3 := new(big.Int).Sub(d, x3)                  //D-X3
    y3.Mul(e, y3)                                  //E*(D-X3)
    y3.Sub(y3, new(big.Int).Mul(big.NewInt(8), c)) //E*(D-X3)-8*C
    y3.Mod(y3, BitCurve.P)

    z3 := new(big.Int).Mul(y, z) //Y1*Z1
    z3.Mul(big.NewInt(2), z3)    //3*Y1*Z1
    z3.Mod(z3, BitCurve.P)

    return x3, y3, z3
}

//TODO: double check if it is okay
// ScalarMult returns k*(Bx,By) where k is a number in big-endian form.
func (BitCurve *BitCurve) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) {
    // We have a slight problem in that the identity of the group (the
    // point at infinity) cannot be represented in (x, y) form on a finite
    // machine. Thus the standard add/double algorithm has to be tweaked
    // slightly: our initial state is not the identity, but x, and we
    // ignore the first true bit in |k|.  If we don't find any true bits in
    // |k|, then we return nil, nil, because we cannot return the identity
    // element.

    Bz := new(big.Int).SetInt64(1)
    x := Bx
    y := By
    z := Bz

    seenFirstTrue := false
    for _, byte := range k {
        for bitNum := 0; bitNum < 8; bitNum++ {
            if seenFirstTrue {
                x, y, z = BitCurve.doubleJacobian(x, y, z)
            }
            if byte&0x80 == 0x80 {
                if !seenFirstTrue {
                    seenFirstTrue = true
                } else {
                    x, y, z = BitCurve.addJacobian(Bx, By, Bz, x, y, z)
                }
            }
            byte <<= 1
        }
    }

    if !seenFirstTrue {
        return nil, nil
    }

    return BitCurve.affineFromJacobian(x, y, z)
}

// ScalarBaseMult returns k*G, where G is the base point of the group and k is
// an integer in big-endian form.
func (BitCurve *BitCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
    return BitCurve.ScalarMult(BitCurve.Gx, BitCurve.Gy, k)
}

var mask = []byte{0xff, 0x1, 0x3, 0x7, 0xf, 0x1f, 0x3f, 0x7f}

//TODO: double check if it is okay
// GenerateKey returns a public/private key pair. The private key is generated
// using the given reader, which must return random data.
func (BitCurve *BitCurve) GenerateKey(rand io.Reader) (priv []byte, x, y *big.Int, err error) {
    byteLen := (BitCurve.BitSize + 7) >> 3
    priv = make([]byte, byteLen)

    for x == nil {
        _, err = io.ReadFull(rand, priv)
        if err != nil {
            return
        }
        // We have to mask off any excess bits in the case that the size of the
        // underlying field is not a whole number of bytes.
        priv[0] &= mask[BitCurve.BitSize%8]
        // This is because, in tests, rand will return all zeros and we don't
        // want to get the point at infinity and loop forever.
        priv[1] ^= 0x42
        x, y = BitCurve.ScalarBaseMult(priv)
    }
    return
}

// Marshal converts a point into the form specified in section 4.3.6 of ANSI
// X9.62.
func (BitCurve *BitCurve) Marshal(x, y *big.Int) []byte {
    byteLen := (BitCurve.BitSize + 7) >> 3

    ret := make([]byte, 1+2*byteLen)
    ret[0] = 4 // uncompressed point

    xBytes := x.Bytes()
    copy(ret[1+byteLen-len(xBytes):], xBytes)
    yBytes := y.Bytes()
    copy(ret[1+2*byteLen-len(yBytes):], yBytes)
    return ret
}

// Unmarshal converts a point, serialised by Marshal, into an x, y pair. On
// error, x = nil.
func (BitCurve *BitCurve) Unmarshal(data []byte) (x, y *big.Int) {
    byteLen := (BitCurve.BitSize + 7) >> 3
    if len(data) != 1+2*byteLen {
        return
    }
    if data[0] != 4 { // uncompressed form
        return
    }
    x = new(big.Int).SetBytes(data[1 : 1+byteLen])
    y = new(big.Int).SetBytes(data[1+byteLen:])
    return
}

//curve parameters taken from:
//http://www.secg.org/collateral/sec2_final.pdf

var initonce sync.Once
var ecp160k1 *BitCurve
var ecp192k1 *BitCurve
var ecp224k1 *BitCurve
var ecp256k1 *BitCurve

func initAll() {
    initS160()
    initS192()
    initS224()
    initS256()
}

func initS160() {
    // See SEC 2 section 2.4.1
    ecp160k1 = new(BitCurve)
    ecp160k1.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFAC73", 16)
    ecp160k1.N, _ = new(big.Int).SetString("0100000000000000000001B8FA16DFAB9ACA16B6B3", 16)
    ecp160k1.B, _ = new(big.Int).SetString("0000000000000000000000000000000000000007", 16)
    ecp160k1.Gx, _ = new(big.Int).SetString("3B4C382CE37AA192A4019E763036F4F5DD4D7EBB", 16)
    ecp160k1.Gy, _ = new(big.Int).SetString("938CF935318FDCED6BC28286531733C3F03C4FEE", 16)
    ecp160k1.BitSize = 160
}

func initS192() {
    // See SEC 2 section 2.5.1
    ecp192k1 = new(BitCurve)
    ecp192k1.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFEE37", 16)
    ecp192k1.N, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8D", 16)
    ecp192k1.B, _ = new(big.Int).SetString("000000000000000000000000000000000000000000000003", 16)
    ecp192k1.Gx, _ = new(big.Int).SetString("DB4FF10EC057E9AE26B07D0280B7F4341DA5D1B1EAE06C7D", 16)
    ecp192k1.Gy, _ = new(big.Int).SetString("9B2F2F6D9C5628A7844163D015BE86344082AA88D95E2F9D", 16)
    ecp192k1.BitSize = 192
}

func initS224() {
    // See SEC 2 section 2.6.1
    ecp224k1 = new(BitCurve)
    ecp224k1.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFE56D", 16)
    ecp224k1.N, _ = new(big.Int).SetString("010000000000000000000000000001DCE8D2EC6184CAF0A971769FB1F7", 16)
    ecp224k1.B, _ = new(big.Int).SetString("00000000000000000000000000000000000000000000000000000005", 16)
    ecp224k1.Gx, _ = new(big.Int).SetString("A1455B334DF099DF30FC28A169A467E9E47075A90F7E650EB6B7A45C", 16)
    ecp224k1.Gy, _ = new(big.Int).SetString("7E089FED7FBA344282CAFBD6F7E319F7C0B0BD59E2CA4BDB556D61A5", 16)
    ecp224k1.BitSize = 224
}

func initS256() {
    // See SEC 2 section 2.7.1
    ecp256k1 = new(BitCurve)
    ecp256k1.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", 16)
    ecp256k1.N, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", 16)
    ecp256k1.B, _ = new(big.Int).SetString("0000000000000000000000000000000000000000000000000000000000000007", 16)
    ecp256k1.Gx, _ = new(big.Int).SetString("79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798", 16)
    ecp256k1.Gy, _ = new(big.Int).SetString("483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8", 16)
    ecp256k1.BitSize = 256
}

// S160 returns a BitCurve which implements secp160k1 (see SEC 2 section 2.4.1)
func S160() *BitCurve {
    initonce.Do(initAll)
    return ecp160k1
}

// S192 returns a BitCurve which implements secp192k1 (see SEC 2 section 2.5.1)
func S192() *BitCurve {
    initonce.Do(initAll)
    return ecp192k1
}

// S224 returns a BitCurve which implements secp224k1 (see SEC 2 section 2.6.1)
func S224() *BitCurve {
    initonce.Do(initAll)
    return ecp224k1
}

// S256 returns a BitCurve which implements secp256k1 (see SEC 2 section 2.7.1)
func S256() *BitCurve {
    initonce.Do(initAll)
    return ecp256k1
}