package eth
import (
"bytes"
"container/list"
"math"
"math/big"
"sync"
"time"
"github.com/ethereum/eth-go/ethchain"
"github.com/ethereum/eth-go/ethlog"
"github.com/ethereum/eth-go/ethutil"
"github.com/ethereum/eth-go/ethwire"
)
var poollogger = ethlog.NewLogger("[BPOOL]")
type block struct {
from *Peer
peer *Peer
block *ethchain.Block
reqAt time.Time
requested int
}
type BlockPool struct {
mut sync.Mutex
eth *Ethereum
hashPool [][]byte
pool map[string]*block
td *big.Int
quit chan bool
ChainLength, BlocksProcessed int
}
func NewBlockPool(eth *Ethereum) *BlockPool {
return &BlockPool{
eth: eth,
pool: make(map[string]*block),
td: ethutil.Big0,
quit: make(chan bool),
}
}
func (self *BlockPool) Len() int {
return len(self.hashPool)
}
func (self *BlockPool) HasLatestHash() bool {
return self.pool[string(self.eth.BlockChain().CurrentBlock.Hash())] != nil
}
func (self *BlockPool) HasCommonHash(hash []byte) bool {
return self.eth.BlockChain().GetBlock(hash) != nil
}
func (self *BlockPool) AddHash(hash []byte, peer *Peer) {
if self.pool[string(hash)] == nil {
self.pool[string(hash)] = &block{peer, nil, nil, time.Now(), 0}
self.hashPool = append([][]byte{hash}, self.hashPool...)
}
}
func (self *BlockPool) SetBlock(b *ethchain.Block, peer *Peer) {
hash := string(b.Hash())
if self.pool[hash] == nil && !self.eth.BlockChain().HasBlock(b.Hash()) {
self.hashPool = append(self.hashPool, b.Hash())
self.pool[hash] = &block{peer, peer, b, time.Now(), 0}
if !self.eth.BlockChain().HasBlock(b.PrevHash) && self.pool[string(b.PrevHash)] == nil {
peer.QueueMessage(ethwire.NewMessage(ethwire.MsgGetBlockHashesTy, []interface{}{b.PrevHash, uint32(256)}))
}
} else if self.pool[hash] != nil {
self.pool[hash].block = b
}
self.BlocksProcessed++
}
func (self *BlockPool) getParent(block *ethchain.Block) *ethchain.Block {
for _, item := range self.pool {
if item.block != nil {
if bytes.Compare(item.block.Hash(), block.PrevHash) == 0 {
return item.block
}
}
}
return nil
}
func (self *BlockPool) GetChainFromBlock(block *ethchain.Block) ethchain.Blocks {
var blocks ethchain.Blocks
for b := block; b != nil; b = self.getParent(b) {
blocks = append(ethchain.Blocks{b}, blocks...)
}
return blocks
}
func (self *BlockPool) Blocks() (blocks ethchain.Blocks) {
for _, item := range self.pool {
if item.block != nil {
blocks = append(blocks, item.block)
}
}
return
}
func (self *BlockPool) ProcessCanonical(f func(block *ethchain.Block)) (procAmount int) {
blocks := self.Blocks()
ethchain.BlockBy(ethchain.Number).Sort(blocks)
for _, block := range blocks {
if self.eth.BlockChain().HasBlock(block.PrevHash) {
procAmount++
f(block)
hash := block.Hash()
self.hashPool = ethutil.DeleteFromByteSlice(self.hashPool, hash)
delete(self.pool, string(hash))
}
}
return
}
func (self *BlockPool) DistributeHashes() {
var (
peerLen = self.eth.peers.Len()
amount = 200 * peerLen
dist = make(map[*Peer][][]byte)
)
num := int(math.Min(float64(amount), float64(len(self.pool))))
for i, j := 0, 0; i < len(self.hashPool) && j < num; i++ {
hash := self.hashPool[i]
item := self.pool[string(hash)]
if item != nil && item.block == nil {
var peer *Peer
lastFetchFailed := time.Since(item.reqAt) > 5*time.Second
// Handle failed requests
if lastFetchFailed && item.requested > 0 && item.peer != nil {
if item.requested < 100 {
// Select peer the hash was retrieved off
peer = item.from
} else {
// Remove it
self.hashPool = ethutil.DeleteFromByteSlice(self.hashPool, hash)
delete(self.pool, string(hash))
}
} else if lastFetchFailed || item.peer == nil {
// Find a suitable, available peer
eachPeer(self.eth.peers, func(p *Peer, v *list.Element) {
if peer == nil && len(dist[p]) < amount/peerLen {
peer = p
}
})
}
if peer != nil {
item.reqAt = time.Now()
item.peer = peer
item.requested++
dist[peer] = append(dist[peer], hash)
}
}
}
for peer, hashes := range dist {
peer.FetchBlocks(hashes)
}
}
func (self *BlockPool) Start() {
go self.update()
}
func (self *BlockPool) Stop() {
close(self.quit)
}
func (self *BlockPool) update() {
serviceTimer := time.NewTicker(100 * time.Millisecond)
procTimer := time.NewTicker(500 * time.Millisecond)
out:
for {
select {
case <-self.quit:
break out
case <-serviceTimer.C:
// Check if we're catching up. If not distribute the hashes to
// the peers and download the blockchain
done := true
eachPeer(self.eth.peers, func(p *Peer, v *list.Element) {
if p.statusKnown && p.FetchingHashes() {
done = false
}
})
if done && len(self.hashPool) > 0 {
self.DistributeHashes()
}
if self.ChainLength < len(self.hashPool) {
self.ChainLength = len(self.hashPool)
}
case <-procTimer.C:
// XXX We can optimize this lifting this on to a new goroutine.
// We'd need to make sure that the pools are properly protected by a mutex
// XXX This should moved in The Great Refactor(TM)
amount := self.ProcessCanonical(func(block *ethchain.Block) {
err := self.eth.StateManager().Process(block, false)
if err != nil {
poollogger.Infoln(err)
}
})
// Do not propagate to the network on catchups
if amount == 1 {
block := self.eth.BlockChain().CurrentBlock
self.eth.Broadcast(ethwire.MsgBlockTy, []interface{}{block.Value().Val})
}
}
}
}