aboutsummaryrefslogblamecommitdiffstats
path: root/Godeps/_workspace/src/github.com/gizak/termui/chart.go
blob: d6fb8bc7df0bf2fc2fc1ba34f76cb150d0362d3e (plain) (tree)















































































































































































































































































































































                                                                                                    
// Copyright 2015 Zack Guo <gizak@icloud.com>. All rights reserved.
// Use of this source code is governed by a MIT license that can
// be found in the LICENSE file.

package termui

import (
    "fmt"
    "math"
)

// only 16 possible combinations, why bother
var braillePatterns = map[[2]int]rune{
    [2]int{0, 0}: '⣀',
    [2]int{0, 1}: '⡠',
    [2]int{0, 2}: '⡐',
    [2]int{0, 3}: '⡈',

    [2]int{1, 0}: '⢄',
    [2]int{1, 1}: '⠤',
    [2]int{1, 2}: '⠔',
    [2]int{1, 3}: '⠌',

    [2]int{2, 0}: '⢂',
    [2]int{2, 1}: '⠢',
    [2]int{2, 2}: '⠒',
    [2]int{2, 3}: '⠊',

    [2]int{3, 0}: '⢁',
    [2]int{3, 1}: '⠡',
    [2]int{3, 2}: '⠑',
    [2]int{3, 3}: '⠉',
}

var lSingleBraille = [4]rune{'\u2840', '⠄', '⠂', '⠁'}
var rSingleBraille = [4]rune{'\u2880', '⠠', '⠐', '⠈'}

// LineChart has two modes: braille(default) and dot. Using braille gives 2x capicity as dot mode,
// because one braille char can represent two data points.
/*
  lc := termui.NewLineChart()
  lc.Border.Label = "braille-mode Line Chart"
  lc.Data = [1.2, 1.3, 1.5, 1.7, 1.5, 1.6, 1.8, 2.0]
  lc.Width = 50
  lc.Height = 12
  lc.AxesColor = termui.ColorWhite
  lc.LineColor = termui.ColorGreen | termui.AttrBold
  // termui.Render(lc)...
*/
type LineChart struct {
    Block
    Data          []float64
    DataLabels    []string // if unset, the data indices will be used
    Mode          string   // braille | dot
    DotStyle      rune
    LineColor     Attribute
    scale         float64 // data span per cell on y-axis
    AxesColor     Attribute
    drawingX      int
    drawingY      int
    axisYHeight   int
    axisXWidth    int
    axisYLebelGap int
    axisXLebelGap int
    topValue      float64
    bottomValue   float64
    labelX        [][]rune
    labelY        [][]rune
    labelYSpace   int
    maxY          float64
    minY          float64
}

// NewLineChart returns a new LineChart with current theme.
func NewLineChart() *LineChart {
    lc := &LineChart{Block: *NewBlock()}
    lc.AxesColor = theme.LineChartAxes
    lc.LineColor = theme.LineChartLine
    lc.Mode = "braille"
    lc.DotStyle = '•'
    lc.axisXLebelGap = 2
    lc.axisYLebelGap = 1
    lc.bottomValue = math.Inf(1)
    lc.topValue = math.Inf(-1)
    return lc
}

// one cell contains two data points
// so the capicity is 2x as dot-mode
func (lc *LineChart) renderBraille() []Point {
    ps := []Point{}

    // return: b -> which cell should the point be in
    //         m -> in the cell, divided into 4 equal height levels, which subcell?
    getPos := func(d float64) (b, m int) {
        cnt4 := int((d-lc.bottomValue)/(lc.scale/4) + 0.5)
        b = cnt4 / 4
        m = cnt4 % 4
        return
    }
    // plot points
    for i := 0; 2*i+1 < len(lc.Data) && i < lc.axisXWidth; i++ {
        b0, m0 := getPos(lc.Data[2*i])
        b1, m1 := getPos(lc.Data[2*i+1])

        if b0 == b1 {
            p := Point{}
            p.Ch = braillePatterns[[2]int{m0, m1}]
            p.Bg = lc.BgColor
            p.Fg = lc.LineColor
            p.Y = lc.innerY + lc.innerHeight - 3 - b0
            p.X = lc.innerX + lc.labelYSpace + 1 + i
            ps = append(ps, p)
        } else {
            p0 := newPointWithAttrs(lSingleBraille[m0],
                lc.innerX+lc.labelYSpace+1+i,
                lc.innerY+lc.innerHeight-3-b0,
                lc.LineColor,
                lc.BgColor)
            p1 := newPointWithAttrs(rSingleBraille[m1],
                lc.innerX+lc.labelYSpace+1+i,
                lc.innerY+lc.innerHeight-3-b1,
                lc.LineColor,
                lc.BgColor)
            ps = append(ps, p0, p1)
        }

    }
    return ps
}

func (lc *LineChart) renderDot() []Point {
    ps := []Point{}
    for i := 0; i < len(lc.Data) && i < lc.axisXWidth; i++ {
        p := Point{}
        p.Ch = lc.DotStyle
        p.Fg = lc.LineColor
        p.Bg = lc.BgColor
        p.X = lc.innerX + lc.labelYSpace + 1 + i
        p.Y = lc.innerY + lc.innerHeight - 3 - int((lc.Data[i]-lc.bottomValue)/lc.scale+0.5)
        ps = append(ps, p)
    }

    return ps
}

func (lc *LineChart) calcLabelX() {
    lc.labelX = [][]rune{}

    for i, l := 0, 0; i < len(lc.DataLabels) && l < lc.axisXWidth; i++ {
        if lc.Mode == "dot" {
            if l >= len(lc.DataLabels) {
                break
            }

            s := str2runes(lc.DataLabels[l])
            w := strWidth(lc.DataLabels[l])
            if l+w <= lc.axisXWidth {
                lc.labelX = append(lc.labelX, s)
            }
            l += w + lc.axisXLebelGap
        } else { // braille
            if 2*l >= len(lc.DataLabels) {
                break
            }

            s := str2runes(lc.DataLabels[2*l])
            w := strWidth(lc.DataLabels[2*l])
            if l+w <= lc.axisXWidth {
                lc.labelX = append(lc.labelX, s)
            }
            l += w + lc.axisXLebelGap

        }
    }
}

func shortenFloatVal(x float64) string {
    s := fmt.Sprintf("%.2f", x)
    if len(s)-3 > 3 {
        s = fmt.Sprintf("%.2e", x)
    }

    if x < 0 {
        s = fmt.Sprintf("%.2f", x)
    }
    return s
}

func (lc *LineChart) calcLabelY() {
    span := lc.topValue - lc.bottomValue
    lc.scale = span / float64(lc.axisYHeight)

    n := (1 + lc.axisYHeight) / (lc.axisYLebelGap + 1)
    lc.labelY = make([][]rune, n)
    maxLen := 0
    for i := 0; i < n; i++ {
        s := str2runes(shortenFloatVal(lc.bottomValue + float64(i)*span/float64(n)))
        if len(s) > maxLen {
            maxLen = len(s)
        }
        lc.labelY[i] = s
    }

    lc.labelYSpace = maxLen
}

func (lc *LineChart) calcLayout() {
    // set datalabels if it is not provided
    if lc.DataLabels == nil || len(lc.DataLabels) == 0 {
        lc.DataLabels = make([]string, len(lc.Data))
        for i := range lc.Data {
            lc.DataLabels[i] = fmt.Sprint(i)
        }
    }

    // lazy increase, to avoid y shaking frequently
    // update bound Y when drawing is gonna overflow
    lc.minY = lc.Data[0]
    lc.maxY = lc.Data[0]

    // valid visible range
    vrange := lc.innerWidth
    if lc.Mode == "braille" {
        vrange = 2 * lc.innerWidth
    }
    if vrange > len(lc.Data) {
        vrange = len(lc.Data)
    }

    for _, v := range lc.Data[:vrange] {
        if v > lc.maxY {
            lc.maxY = v
        }
        if v < lc.minY {
            lc.minY = v
        }
    }

    span := lc.maxY - lc.minY

    if lc.minY < lc.bottomValue {
        lc.bottomValue = lc.minY - 0.2*span
    }

    if lc.maxY > lc.topValue {
        lc.topValue = lc.maxY + 0.2*span
    }

    lc.axisYHeight = lc.innerHeight - 2
    lc.calcLabelY()

    lc.axisXWidth = lc.innerWidth - 1 - lc.labelYSpace
    lc.calcLabelX()

    lc.drawingX = lc.innerX + 1 + lc.labelYSpace
    lc.drawingY = lc.innerY
}

func (lc *LineChart) plotAxes() []Point {
    origY := lc.innerY + lc.innerHeight - 2
    origX := lc.innerX + lc.labelYSpace

    ps := []Point{newPointWithAttrs(ORIGIN, origX, origY, lc.AxesColor, lc.BgColor)}

    for x := origX + 1; x < origX+lc.axisXWidth; x++ {
        p := Point{}
        p.X = x
        p.Y = origY
        p.Bg = lc.BgColor
        p.Fg = lc.AxesColor
        p.Ch = HDASH
        ps = append(ps, p)
    }

    for dy := 1; dy <= lc.axisYHeight; dy++ {
        p := Point{}
        p.X = origX
        p.Y = origY - dy
        p.Bg = lc.BgColor
        p.Fg = lc.AxesColor
        p.Ch = VDASH
        ps = append(ps, p)
    }

    // x label
    oft := 0
    for _, rs := range lc.labelX {
        if oft+len(rs) > lc.axisXWidth {
            break
        }
        for j, r := range rs {
            p := Point{}
            p.Ch = r
            p.Fg = lc.AxesColor
            p.Bg = lc.BgColor
            p.X = origX + oft + j
            p.Y = lc.innerY + lc.innerHeight - 1
            ps = append(ps, p)
        }
        oft += len(rs) + lc.axisXLebelGap
    }

    // y labels
    for i, rs := range lc.labelY {
        for j, r := range rs {
            p := Point{}
            p.Ch = r
            p.Fg = lc.AxesColor
            p.Bg = lc.BgColor
            p.X = lc.innerX + j
            p.Y = origY - i*(lc.axisYLebelGap+1)
            ps = append(ps, p)
        }
    }

    return ps
}

// Buffer implements Bufferer interface.
func (lc *LineChart) Buffer() []Point {
    ps := lc.Block.Buffer()
    if lc.Data == nil || len(lc.Data) == 0 {
        return ps
    }
    lc.calcLayout()
    ps = append(ps, lc.plotAxes()...)

    if lc.Mode == "dot" {
        ps = append(ps, lc.renderDot()...)
    } else {
        ps = append(ps, lc.renderBraille()...)
    }

    return lc.Block.chopOverflow(ps)
}