aboutsummaryrefslogtreecommitdiffstats
path: root/vendor/github.com/ethereum/ethash/src/libethash/internal.c
blob: 0a830fc824dc244d9765076366cbd343e252a6e0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
/*
  This file is part of ethash.

  ethash is free software: you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation, either version 3 of the License, or
  (at your option) any later version.

  ethash is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with cpp-ethereum.  If not, see <http://www.gnu.org/licenses/>.
*/
/** @file internal.c
* @author Tim Hughes <tim@twistedfury.com>
* @author Matthew Wampler-Doty
* @date 2015
*/

#include <assert.h>
#include <inttypes.h>
#include <stddef.h>
#include <errno.h>
#include <math.h>
#include "mmap.h"
#include "ethash.h"
#include "fnv.h"
#include "endian.h"
#include "internal.h"
#include "data_sizes.h"
#include "io.h"

#ifdef WITH_CRYPTOPP

#include "sha3_cryptopp.h"

#else
#include "sha3.h"
#endif // WITH_CRYPTOPP

uint64_t ethash_get_datasize(uint64_t const block_number)
{
    assert(block_number / ETHASH_EPOCH_LENGTH < 2048);
    return dag_sizes[block_number / ETHASH_EPOCH_LENGTH];
}

uint64_t ethash_get_cachesize(uint64_t const block_number)
{
    assert(block_number / ETHASH_EPOCH_LENGTH < 2048);
    return cache_sizes[block_number / ETHASH_EPOCH_LENGTH];
}

// Follows Sergio's "STRICT MEMORY HARD HASHING FUNCTIONS" (2014)
// https://bitslog.files.wordpress.com/2013/12/memohash-v0-3.pdf
// SeqMemoHash(s, R, N)
bool static ethash_compute_cache_nodes(
    node* const nodes,
    uint64_t cache_size,
    ethash_h256_t const* seed
)
{
    if (cache_size % sizeof(node) != 0) {
        return false;
    }
    uint32_t const num_nodes = (uint32_t) (cache_size / sizeof(node));

    SHA3_512(nodes[0].bytes, (uint8_t*)seed, 32);

    for (uint32_t i = 1; i != num_nodes; ++i) {
        SHA3_512(nodes[i].bytes, nodes[i - 1].bytes, 64);
    }

    for (uint32_t j = 0; j != ETHASH_CACHE_ROUNDS; j++) {
        for (uint32_t i = 0; i != num_nodes; i++) {
            uint32_t const idx = nodes[i].words[0] % num_nodes;
            node data;
            data = nodes[(num_nodes - 1 + i) % num_nodes];
            for (uint32_t w = 0; w != NODE_WORDS; ++w) {
                data.words[w] ^= nodes[idx].words[w];
            }
            SHA3_512(nodes[i].bytes, data.bytes, sizeof(data));
        }
    }

    // now perform endian conversion
    fix_endian_arr32(nodes->words, num_nodes * NODE_WORDS);
    return true;
}

void ethash_calculate_dag_item(
    node* const ret,
    uint32_t node_index,
    ethash_light_t const light
)
{
    uint32_t num_parent_nodes = (uint32_t) (light->cache_size / sizeof(node));
    node const* cache_nodes = (node const *) light->cache;
    node const* init = &cache_nodes[node_index % num_parent_nodes];
    memcpy(ret, init, sizeof(node));
    ret->words[0] ^= node_index;
    SHA3_512(ret->bytes, ret->bytes, sizeof(node));
#if defined(_M_X64) && ENABLE_SSE
    __m128i const fnv_prime = _mm_set1_epi32(FNV_PRIME);
    __m128i xmm0 = ret->xmm[0];
    __m128i xmm1 = ret->xmm[1];
    __m128i xmm2 = ret->xmm[2];
    __m128i xmm3 = ret->xmm[3];
#endif

    for (uint32_t i = 0; i != ETHASH_DATASET_PARENTS; ++i) {
        uint32_t parent_index = fnv_hash(node_index ^ i, ret->words[i % NODE_WORDS]) % num_parent_nodes;
        node const *parent = &cache_nodes[parent_index];

#if defined(_M_X64) && ENABLE_SSE
        {
            xmm0 = _mm_mullo_epi32(xmm0, fnv_prime);
            xmm1 = _mm_mullo_epi32(xmm1, fnv_prime);
            xmm2 = _mm_mullo_epi32(xmm2, fnv_prime);
            xmm3 = _mm_mullo_epi32(xmm3, fnv_prime);
            xmm0 = _mm_xor_si128(xmm0, parent->xmm[0]);
            xmm1 = _mm_xor_si128(xmm1, parent->xmm[1]);
            xmm2 = _mm_xor_si128(xmm2, parent->xmm[2]);
            xmm3 = _mm_xor_si128(xmm3, parent->xmm[3]);

            // have to write to ret as values are used to compute index
            ret->xmm[0] = xmm0;
            ret->xmm[1] = xmm1;
            ret->xmm[2] = xmm2;
            ret->xmm[3] = xmm3;
        }
        #else
        {
            for (unsigned w = 0; w != NODE_WORDS; ++w) {
                ret->words[w] = fnv_hash(ret->words[w], parent->words[w]);
            }
        }
#endif
    }
    SHA3_512(ret->bytes, ret->bytes, sizeof(node));
}

bool ethash_compute_full_data(
    void* mem,
    uint64_t full_size,
    ethash_light_t const light,
    ethash_callback_t callback
)
{
    if (full_size % (sizeof(uint32_t) * MIX_WORDS) != 0 ||
        (full_size % sizeof(node)) != 0) {
        return false;
    }
    uint32_t const max_n = (uint32_t)(full_size / sizeof(node));
    node* full_nodes = mem;
    double const progress_change = 1.0f / max_n;
    double progress = 0.0f;
    // now compute full nodes
    for (uint32_t n = 0; n != max_n; ++n) {
        if (callback &&
            n % (max_n / 100) == 0 &&
            callback((unsigned int)(ceil(progress * 100.0f))) != 0) {

            return false;
        }
        progress += progress_change;
        ethash_calculate_dag_item(&(full_nodes[n]), n, light);
    }
    return true;
}

static bool ethash_hash(
    ethash_return_value_t* ret,
    node const* full_nodes,
    ethash_light_t const light,
    uint64_t full_size,
    ethash_h256_t const header_hash,
    uint64_t const nonce
)
{
    if (full_size % MIX_WORDS != 0) {
        return false;
    }

    // pack hash and nonce together into first 40 bytes of s_mix
    assert(sizeof(node) * 8 == 512);
    node s_mix[MIX_NODES + 1];
    memcpy(s_mix[0].bytes, &header_hash, 32);
    fix_endian64(s_mix[0].double_words[4], nonce);

    // compute sha3-512 hash and replicate across mix
    SHA3_512(s_mix->bytes, s_mix->bytes, 40);
    fix_endian_arr32(s_mix[0].words, 16);

    node* const mix = s_mix + 1;
    for (uint32_t w = 0; w != MIX_WORDS; ++w) {
        mix->words[w] = s_mix[0].words[w % NODE_WORDS];
    }

    unsigned const page_size = sizeof(uint32_t) * MIX_WORDS;
    unsigned const num_full_pages = (unsigned) (full_size / page_size);

    for (unsigned i = 0; i != ETHASH_ACCESSES; ++i) {
        uint32_t const index = fnv_hash(s_mix->words[0] ^ i, mix->words[i % MIX_WORDS]) % num_full_pages;

        for (unsigned n = 0; n != MIX_NODES; ++n) {
            node const* dag_node;
            if (full_nodes) {
                dag_node = &full_nodes[MIX_NODES * index + n];
            } else {
                node tmp_node;
                ethash_calculate_dag_item(&tmp_node, index * MIX_NODES + n, light);
                dag_node = &tmp_node;
            }

#if defined(_M_X64) && ENABLE_SSE
            {
                __m128i fnv_prime = _mm_set1_epi32(FNV_PRIME);
                __m128i xmm0 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[0]);
                __m128i xmm1 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[1]);
                __m128i xmm2 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[2]);
                __m128i xmm3 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[3]);
                mix[n].xmm[0] = _mm_xor_si128(xmm0, dag_node->xmm[0]);
                mix[n].xmm[1] = _mm_xor_si128(xmm1, dag_node->xmm[1]);
                mix[n].xmm[2] = _mm_xor_si128(xmm2, dag_node->xmm[2]);
                mix[n].xmm[3] = _mm_xor_si128(xmm3, dag_node->xmm[3]);
            }
            #else
            {
                for (unsigned w = 0; w != NODE_WORDS; ++w) {
                    mix[n].words[w] = fnv_hash(mix[n].words[w], dag_node->words[w]);
                }
            }
#endif
        }

    }

    // compress mix
    for (uint32_t w = 0; w != MIX_WORDS; w += 4) {
        uint32_t reduction = mix->words[w + 0];
        reduction = reduction * FNV_PRIME ^ mix->words[w + 1];
        reduction = reduction * FNV_PRIME ^ mix->words[w + 2];
        reduction = reduction * FNV_PRIME ^ mix->words[w + 3];
        mix->words[w / 4] = reduction;
    }

    fix_endian_arr32(mix->words, MIX_WORDS / 4);
    memcpy(&ret->mix_hash, mix->bytes, 32);
    // final Keccak hash
    SHA3_256(&ret->result, s_mix->bytes, 64 + 32); // Keccak-256(s + compressed_mix)
    return true;
}

void ethash_quick_hash(
    ethash_h256_t* return_hash,
    ethash_h256_t const* header_hash,
    uint64_t nonce,
    ethash_h256_t const* mix_hash
)
{
    uint8_t buf[64 + 32];
    memcpy(buf, header_hash, 32);
    fix_endian64_same(nonce);
    memcpy(&(buf[32]), &nonce, 8);
    SHA3_512(buf, buf, 40);
    memcpy(&(buf[64]), mix_hash, 32);
    SHA3_256(return_hash, buf, 64 + 32);
}

ethash_h256_t ethash_get_seedhash(uint64_t block_number)
{
    ethash_h256_t ret;
    ethash_h256_reset(&ret);
    uint64_t const epochs = block_number / ETHASH_EPOCH_LENGTH;
    for (uint32_t i = 0; i < epochs; ++i)
        SHA3_256(&ret, (uint8_t*)&ret, 32);
    return ret;
}

bool ethash_quick_check_difficulty(
    ethash_h256_t const* header_hash,
    uint64_t const nonce,
    ethash_h256_t const* mix_hash,
    ethash_h256_t const* boundary
)
{

    ethash_h256_t return_hash;
    ethash_quick_hash(&return_hash, header_hash, nonce, mix_hash);
    return ethash_check_difficulty(&return_hash, boundary);
}

ethash_light_t ethash_light_new_internal(uint64_t cache_size, ethash_h256_t const* seed)
{
    struct ethash_light *ret;
    ret = calloc(sizeof(*ret), 1);
    if (!ret) {
        return NULL;
    }
    ret->cache = malloc((size_t)cache_size);
    if (!ret->cache) {
        goto fail_free_light;
    }
    node* nodes = (node*)ret->cache;
    if (!ethash_compute_cache_nodes(nodes, cache_size, seed)) {
        goto fail_free_cache_mem;
    }
    ret->cache_size = cache_size;
    return ret;

fail_free_cache_mem:
    free(ret->cache);
fail_free_light:
    free(ret);
    return NULL;
}

ethash_light_t ethash_light_new(uint64_t block_number)
{
    ethash_h256_t seedhash = ethash_get_seedhash(block_number);
    ethash_light_t ret;
    ret = ethash_light_new_internal(ethash_get_cachesize(block_number), &seedhash);
    ret->block_number = block_number;
    return ret;
}

void ethash_light_delete(ethash_light_t light)
{
    if (light->cache) {
        free(light->cache);
    }
    free(light);
}

ethash_return_value_t ethash_light_compute_internal(
    ethash_light_t light,
    uint64_t full_size,
    ethash_h256_t const header_hash,
    uint64_t nonce
)
{
    ethash_return_value_t ret;
    ret.success = true;
    if (!ethash_hash(&ret, NULL, light, full_size, header_hash, nonce)) {
        ret.success = false;
    }
    return ret;
}

ethash_return_value_t ethash_light_compute(
    ethash_light_t light,
    ethash_h256_t const header_hash,
    uint64_t nonce
)
{
    uint64_t full_size = ethash_get_datasize(light->block_number);
    return ethash_light_compute_internal(light, full_size, header_hash, nonce);
}

static bool ethash_mmap(struct ethash_full* ret, FILE* f)
{
    int fd;
    char* mmapped_data;
    errno = 0;
    ret->file = f;
    if ((fd = ethash_fileno(ret->file)) == -1) {
        return false;
    }
    mmapped_data= mmap(
        NULL,
        (size_t)ret->file_size + ETHASH_DAG_MAGIC_NUM_SIZE,
        PROT_READ | PROT_WRITE,
        MAP_SHARED,
        fd,
        0
    );
    if (mmapped_data == MAP_FAILED) {
        return false;
    }
    ret->data = (node*)(mmapped_data + ETHASH_DAG_MAGIC_NUM_SIZE);
    return true;
}

ethash_full_t ethash_full_new_internal(
    char const* dirname,
    ethash_h256_t const seed_hash,
    uint64_t full_size,
    ethash_light_t const light,
    ethash_callback_t callback
)
{
    struct ethash_full* ret;
    FILE *f = NULL;
    ret = calloc(sizeof(*ret), 1);
    if (!ret) {
        return NULL;
    }
    ret->file_size = (size_t)full_size;
    switch (ethash_io_prepare(dirname, seed_hash, &f, (size_t)full_size, false)) {
    case ETHASH_IO_FAIL:
        // ethash_io_prepare will do all ETHASH_CRITICAL() logging in fail case
        goto fail_free_full;
    case ETHASH_IO_MEMO_MATCH:
        if (!ethash_mmap(ret, f)) {
            ETHASH_CRITICAL("mmap failure()");
            goto fail_close_file;
        }
        return ret;
    case ETHASH_IO_MEMO_SIZE_MISMATCH:
        // if a DAG of same filename but unexpected size is found, silently force new file creation
        if (ethash_io_prepare(dirname, seed_hash, &f, (size_t)full_size, true) != ETHASH_IO_MEMO_MISMATCH) {
            ETHASH_CRITICAL("Could not recreate DAG file after finding existing DAG with unexpected size.");
            goto fail_free_full;
        }
        // fallthrough to the mismatch case here, DO NOT go through match
    case ETHASH_IO_MEMO_MISMATCH:
        if (!ethash_mmap(ret, f)) {
            ETHASH_CRITICAL("mmap failure()");
            goto fail_close_file;
        }
        break;
    }

    if (!ethash_compute_full_data(ret->data, full_size, light, callback)) {
        ETHASH_CRITICAL("Failure at computing DAG data.");
        goto fail_free_full_data;
    }

    // after the DAG has been filled then we finalize it by writting the magic number at the beginning
    if (fseek(f, 0, SEEK_SET) != 0) {
        ETHASH_CRITICAL("Could not seek to DAG file start to write magic number.");
        goto fail_free_full_data;
    }
    uint64_t const magic_num = ETHASH_DAG_MAGIC_NUM;
    if (fwrite(&magic_num, ETHASH_DAG_MAGIC_NUM_SIZE, 1, f) != 1) {
        ETHASH_CRITICAL("Could not write magic number to DAG's beginning.");
        goto fail_free_full_data;
    }
    if (fflush(f) != 0) {// make sure the magic number IS there
        ETHASH_CRITICAL("Could not flush memory mapped data to DAG file. Insufficient space?");
        goto fail_free_full_data;
    }
    return ret;

fail_free_full_data:
    // could check that munmap(..) == 0 but even if it did not can't really do anything here
    munmap(ret->data, (size_t)full_size);
fail_close_file:
    fclose(ret->file);
fail_free_full:
    free(ret);
    return NULL;
}

ethash_full_t ethash_full_new(ethash_light_t light, ethash_callback_t callback)
{
    char strbuf[256];
    if (!ethash_get_default_dirname(strbuf, 256)) {
        return NULL;
    }
    uint64_t full_size = ethash_get_datasize(light->block_number);
    ethash_h256_t seedhash = ethash_get_seedhash(light->block_number);
    return ethash_full_new_internal(strbuf, seedhash, full_size, light, callback);
}

void ethash_full_delete(ethash_full_t full)
{
    // could check that munmap(..) == 0 but even if it did not can't really do anything here
    munmap(full->data, (size_t)full->file_size);
    if (full->file) {
        fclose(full->file);
    }
    free(full);
}

ethash_return_value_t ethash_full_compute(
    ethash_full_t full,
    ethash_h256_t const header_hash,
    uint64_t nonce
)
{
    ethash_return_value_t ret;
    ret.success = true;
    if (!ethash_hash(
        &ret,
        (node const*)full->data,
        NULL,
        full->file_size,
        header_hash,
        nonce)) {
        ret.success = false;
    }
    return ret;
}

void const* ethash_full_dag(ethash_full_t full)
{
    return full->data;
}

uint64_t ethash_full_dag_size(ethash_full_t full)
{
    return full->file_size;
}