aboutsummaryrefslogtreecommitdiffstats
path: root/swarm/bmt/bmt_test.go
blob: 32443677a315c2c55e0a64f621d9e8764ce72b02 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
// Copyright 2017 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

package bmt

import (
    "bytes"
    "encoding/binary"
    "fmt"
    "math/rand"
    "sync"
    "sync/atomic"
    "testing"
    "time"

    "github.com/dexon-foundation/dexon/swarm/testutil"
    "golang.org/x/crypto/sha3"
)

// the actual data length generated (could be longer than max datalength of the BMT)
const BufferSize = 4128

const (
    // segmentCount is the maximum number of segments of the underlying chunk
    // Should be equal to max-chunk-data-size / hash-size
    // Currently set to 128 == 4096 (default chunk size) / 32 (sha3.keccak256 size)
    segmentCount = 128
)

var counts = []int{1, 2, 3, 4, 5, 8, 9, 15, 16, 17, 32, 37, 42, 53, 63, 64, 65, 111, 127, 128}

// calculates the Keccak256 SHA3 hash of the data
func sha3hash(data ...[]byte) []byte {
    h := sha3.NewLegacyKeccak256()
    return doSum(h, nil, data...)
}

// TestRefHasher tests that the RefHasher computes the expected BMT hash for
// some small data lengths
func TestRefHasher(t *testing.T) {
    // the test struct is used to specify the expected BMT hash for
    // segment counts between from and to and lengths from 1 to datalength
    type test struct {
        from     int
        to       int
        expected func([]byte) []byte
    }

    var tests []*test
    // all lengths in [0,64] should be:
    //
    //   sha3hash(data)
    //
    tests = append(tests, &test{
        from: 1,
        to:   2,
        expected: func(d []byte) []byte {
            data := make([]byte, 64)
            copy(data, d)
            return sha3hash(data)
        },
    })

    // all lengths in [3,4] should be:
    //
    //   sha3hash(
    //     sha3hash(data[:64])
    //     sha3hash(data[64:])
    //   )
    //
    tests = append(tests, &test{
        from: 3,
        to:   4,
        expected: func(d []byte) []byte {
            data := make([]byte, 128)
            copy(data, d)
            return sha3hash(sha3hash(data[:64]), sha3hash(data[64:]))
        },
    })

    // all segmentCounts in [5,8] should be:
    //
    //   sha3hash(
    //     sha3hash(
    //       sha3hash(data[:64])
    //       sha3hash(data[64:128])
    //     )
    //     sha3hash(
    //       sha3hash(data[128:192])
    //       sha3hash(data[192:])
    //     )
    //   )
    //
    tests = append(tests, &test{
        from: 5,
        to:   8,
        expected: func(d []byte) []byte {
            data := make([]byte, 256)
            copy(data, d)
            return sha3hash(sha3hash(sha3hash(data[:64]), sha3hash(data[64:128])), sha3hash(sha3hash(data[128:192]), sha3hash(data[192:])))
        },
    })

    // run the tests
    for i, x := range tests {
        for segmentCount := x.from; segmentCount <= x.to; segmentCount++ {
            for length := 1; length <= segmentCount*32; length++ {
                t.Run(fmt.Sprintf("%d_segments_%d_bytes", segmentCount, length), func(t *testing.T) {
                    data := testutil.RandomBytes(i, length)
                    expected := x.expected(data)
                    actual := NewRefHasher(sha3.NewLegacyKeccak256, segmentCount).Hash(data)
                    if !bytes.Equal(actual, expected) {
                        t.Fatalf("expected %x, got %x", expected, actual)
                    }
                })
            }
        }
    }
}

// tests if hasher responds with correct hash comparing the reference implementation return value
func TestHasherEmptyData(t *testing.T) {
    hasher := sha3.NewLegacyKeccak256
    var data []byte
    for _, count := range counts {
        t.Run(fmt.Sprintf("%d_segments", count), func(t *testing.T) {
            pool := NewTreePool(hasher, count, PoolSize)
            defer pool.Drain(0)
            bmt := New(pool)
            rbmt := NewRefHasher(hasher, count)
            refHash := rbmt.Hash(data)
            expHash := syncHash(bmt, nil, data)
            if !bytes.Equal(expHash, refHash) {
                t.Fatalf("hash mismatch with reference. expected %x, got %x", refHash, expHash)
            }
        })
    }
}

// tests sequential write with entire max size written in one go
func TestSyncHasherCorrectness(t *testing.T) {
    data := testutil.RandomBytes(1, BufferSize)
    hasher := sha3.NewLegacyKeccak256
    size := hasher().Size()

    var err error
    for _, count := range counts {
        t.Run(fmt.Sprintf("segments_%v", count), func(t *testing.T) {
            max := count * size
            var incr int
            capacity := 1
            pool := NewTreePool(hasher, count, capacity)
            defer pool.Drain(0)
            for n := 0; n <= max; n += incr {
                incr = 1 + rand.Intn(5)
                bmt := New(pool)
                err = testHasherCorrectness(bmt, hasher, data, n, count)
                if err != nil {
                    t.Fatal(err)
                }
            }
        })
    }
}

// tests order-neutral concurrent writes with entire max size written in one go
func TestAsyncCorrectness(t *testing.T) {
    data := testutil.RandomBytes(1, BufferSize)
    hasher := sha3.NewLegacyKeccak256
    size := hasher().Size()
    whs := []whenHash{first, last, random}

    for _, double := range []bool{false, true} {
        for _, wh := range whs {
            for _, count := range counts {
                t.Run(fmt.Sprintf("double_%v_hash_when_%v_segments_%v", double, wh, count), func(t *testing.T) {
                    max := count * size
                    var incr int
                    capacity := 1
                    pool := NewTreePool(hasher, count, capacity)
                    defer pool.Drain(0)
                    for n := 1; n <= max; n += incr {
                        incr = 1 + rand.Intn(5)
                        bmt := New(pool)
                        d := data[:n]
                        rbmt := NewRefHasher(hasher, count)
                        exp := rbmt.Hash(d)
                        got := syncHash(bmt, nil, d)
                        if !bytes.Equal(got, exp) {
                            t.Fatalf("wrong sync hash for datalength %v: expected %x (ref), got %x", n, exp, got)
                        }
                        sw := bmt.NewAsyncWriter(double)
                        got = asyncHashRandom(sw, nil, d, wh)
                        if !bytes.Equal(got, exp) {
                            t.Fatalf("wrong async hash for datalength %v: expected %x, got %x", n, exp, got)
                        }
                    }
                })
            }
        }
    }
}

// Tests that the BMT hasher can be synchronously reused with poolsizes 1 and PoolSize
func TestHasherReuse(t *testing.T) {
    t.Run(fmt.Sprintf("poolsize_%d", 1), func(t *testing.T) {
        testHasherReuse(1, t)
    })
    t.Run(fmt.Sprintf("poolsize_%d", PoolSize), func(t *testing.T) {
        testHasherReuse(PoolSize, t)
    })
}

// tests if bmt reuse is not corrupting result
func testHasherReuse(poolsize int, t *testing.T) {
    hasher := sha3.NewLegacyKeccak256
    pool := NewTreePool(hasher, segmentCount, poolsize)
    defer pool.Drain(0)
    bmt := New(pool)

    for i := 0; i < 100; i++ {
        data := testutil.RandomBytes(1, BufferSize)
        n := rand.Intn(bmt.Size())
        err := testHasherCorrectness(bmt, hasher, data, n, segmentCount)
        if err != nil {
            t.Fatal(err)
        }
    }
}

// Tests if pool can be cleanly reused even in concurrent use by several hasher
func TestBMTConcurrentUse(t *testing.T) {
    hasher := sha3.NewLegacyKeccak256
    pool := NewTreePool(hasher, segmentCount, PoolSize)
    defer pool.Drain(0)
    cycles := 100
    errc := make(chan error)

    for i := 0; i < cycles; i++ {
        go func() {
            bmt := New(pool)
            data := testutil.RandomBytes(1, BufferSize)
            n := rand.Intn(bmt.Size())
            errc <- testHasherCorrectness(bmt, hasher, data, n, 128)
        }()
    }
LOOP:
    for {
        select {
        case <-time.NewTimer(5 * time.Second).C:
            t.Fatal("timed out")
        case err := <-errc:
            if err != nil {
                t.Fatal(err)
            }
            cycles--
            if cycles == 0 {
                break LOOP
            }
        }
    }
}

// Tests BMT Hasher io.Writer interface is working correctly
// even multiple short random write buffers
func TestBMTWriterBuffers(t *testing.T) {
    hasher := sha3.NewLegacyKeccak256

    for _, count := range counts {
        t.Run(fmt.Sprintf("%d_segments", count), func(t *testing.T) {
            errc := make(chan error)
            pool := NewTreePool(hasher, count, PoolSize)
            defer pool.Drain(0)
            n := count * 32
            bmt := New(pool)
            data := testutil.RandomBytes(1, n)
            rbmt := NewRefHasher(hasher, count)
            refHash := rbmt.Hash(data)
            expHash := syncHash(bmt, nil, data)
            if !bytes.Equal(expHash, refHash) {
                t.Fatalf("hash mismatch with reference. expected %x, got %x", refHash, expHash)
            }
            attempts := 10
            f := func() error {
                bmt := New(pool)
                bmt.Reset()
                var buflen int
                for offset := 0; offset < n; offset += buflen {
                    buflen = rand.Intn(n-offset) + 1
                    read, err := bmt.Write(data[offset : offset+buflen])
                    if err != nil {
                        return err
                    }
                    if read != buflen {
                        return fmt.Errorf("incorrect read. expected %v bytes, got %v", buflen, read)
                    }
                }
                hash := bmt.Sum(nil)
                if !bytes.Equal(hash, expHash) {
                    return fmt.Errorf("hash mismatch. expected %x, got %x", hash, expHash)
                }
                return nil
            }

            for j := 0; j < attempts; j++ {
                go func() {
                    errc <- f()
                }()
            }
            timeout := time.NewTimer(2 * time.Second)
            for {
                select {
                case err := <-errc:
                    if err != nil {
                        t.Fatal(err)
                    }
                    attempts--
                    if attempts == 0 {
                        return
                    }
                case <-timeout.C:
                    t.Fatalf("timeout")
                }
            }
        })
    }
}

// helper function that compares reference and optimised implementations on
// correctness
func testHasherCorrectness(bmt *Hasher, hasher BaseHasherFunc, d []byte, n, count int) (err error) {
    span := make([]byte, 8)
    if len(d) < n {
        n = len(d)
    }
    binary.BigEndian.PutUint64(span, uint64(n))
    data := d[:n]
    rbmt := NewRefHasher(hasher, count)
    exp := sha3hash(span, rbmt.Hash(data))
    got := syncHash(bmt, span, data)
    if !bytes.Equal(got, exp) {
        return fmt.Errorf("wrong hash: expected %x, got %x", exp, got)
    }
    return err
}

//
func BenchmarkBMT(t *testing.B) {
    for size := 4096; size >= 128; size /= 2 {
        t.Run(fmt.Sprintf("%v_size_%v", "SHA3", size), func(t *testing.B) {
            benchmarkSHA3(t, size)
        })
        t.Run(fmt.Sprintf("%v_size_%v", "Baseline", size), func(t *testing.B) {
            benchmarkBMTBaseline(t, size)
        })
        t.Run(fmt.Sprintf("%v_size_%v", "REF", size), func(t *testing.B) {
            benchmarkRefHasher(t, size)
        })
        t.Run(fmt.Sprintf("%v_size_%v", "BMT", size), func(t *testing.B) {
            benchmarkBMT(t, size)
        })
    }
}

type whenHash = int

const (
    first whenHash = iota
    last
    random
)

func BenchmarkBMTAsync(t *testing.B) {
    whs := []whenHash{first, last, random}
    for size := 4096; size >= 128; size /= 2 {
        for _, wh := range whs {
            for _, double := range []bool{false, true} {
                t.Run(fmt.Sprintf("double_%v_hash_when_%v_size_%v", double, wh, size), func(t *testing.B) {
                    benchmarkBMTAsync(t, size, wh, double)
                })
            }
        }
    }
}

func BenchmarkPool(t *testing.B) {
    caps := []int{1, PoolSize}
    for size := 4096; size >= 128; size /= 2 {
        for _, c := range caps {
            t.Run(fmt.Sprintf("poolsize_%v_size_%v", c, size), func(t *testing.B) {
                benchmarkPool(t, c, size)
            })
        }
    }
}

// benchmarks simple sha3 hash on chunks
func benchmarkSHA3(t *testing.B, n int) {
    data := testutil.RandomBytes(1, n)
    hasher := sha3.NewLegacyKeccak256
    h := hasher()

    t.ReportAllocs()
    t.ResetTimer()
    for i := 0; i < t.N; i++ {
        doSum(h, nil, data)
    }
}

// benchmarks the minimum hashing time for a balanced (for simplicity) BMT
// by doing count/segmentsize parallel hashings of 2*segmentsize bytes
// doing it on n PoolSize each reusing the base hasher
// the premise is that this is the minimum computation needed for a BMT
// therefore this serves as a theoretical optimum for concurrent implementations
func benchmarkBMTBaseline(t *testing.B, n int) {
    hasher := sha3.NewLegacyKeccak256
    hashSize := hasher().Size()
    data := testutil.RandomBytes(1, hashSize)

    t.ReportAllocs()
    t.ResetTimer()
    for i := 0; i < t.N; i++ {
        count := int32((n-1)/hashSize + 1)
        wg := sync.WaitGroup{}
        wg.Add(PoolSize)
        var i int32
        for j := 0; j < PoolSize; j++ {
            go func() {
                defer wg.Done()
                h := hasher()
                for atomic.AddInt32(&i, 1) < count {
                    doSum(h, nil, data)
                }
            }()
        }
        wg.Wait()
    }
}

// benchmarks BMT Hasher
func benchmarkBMT(t *testing.B, n int) {
    data := testutil.RandomBytes(1, n)
    hasher := sha3.NewLegacyKeccak256
    pool := NewTreePool(hasher, segmentCount, PoolSize)
    bmt := New(pool)

    t.ReportAllocs()
    t.ResetTimer()
    for i := 0; i < t.N; i++ {
        syncHash(bmt, nil, data)
    }
}

// benchmarks BMT hasher with asynchronous concurrent segment/section writes
func benchmarkBMTAsync(t *testing.B, n int, wh whenHash, double bool) {
    data := testutil.RandomBytes(1, n)
    hasher := sha3.NewLegacyKeccak256
    pool := NewTreePool(hasher, segmentCount, PoolSize)
    bmt := New(pool).NewAsyncWriter(double)
    idxs, segments := splitAndShuffle(bmt.SectionSize(), data)
    rand.Shuffle(len(idxs), func(i int, j int) {
        idxs[i], idxs[j] = idxs[j], idxs[i]
    })

    t.ReportAllocs()
    t.ResetTimer()
    for i := 0; i < t.N; i++ {
        asyncHash(bmt, nil, n, wh, idxs, segments)
    }
}

// benchmarks 100 concurrent bmt hashes with pool capacity
func benchmarkPool(t *testing.B, poolsize, n int) {
    data := testutil.RandomBytes(1, n)
    hasher := sha3.NewLegacyKeccak256
    pool := NewTreePool(hasher, segmentCount, poolsize)
    cycles := 100

    t.ReportAllocs()
    t.ResetTimer()
    wg := sync.WaitGroup{}
    for i := 0; i < t.N; i++ {
        wg.Add(cycles)
        for j := 0; j < cycles; j++ {
            go func() {
                defer wg.Done()
                bmt := New(pool)
                syncHash(bmt, nil, data)
            }()
        }
        wg.Wait()
    }
}

// benchmarks the reference hasher
func benchmarkRefHasher(t *testing.B, n int) {
    data := testutil.RandomBytes(1, n)
    hasher := sha3.NewLegacyKeccak256
    rbmt := NewRefHasher(hasher, 128)

    t.ReportAllocs()
    t.ResetTimer()
    for i := 0; i < t.N; i++ {
        rbmt.Hash(data)
    }
}

// Hash hashes the data and the span using the bmt hasher
func syncHash(h *Hasher, span, data []byte) []byte {
    h.ResetWithLength(span)
    h.Write(data)
    return h.Sum(nil)
}

func splitAndShuffle(secsize int, data []byte) (idxs []int, segments [][]byte) {
    l := len(data)
    n := l / secsize
    if l%secsize > 0 {
        n++
    }
    for i := 0; i < n; i++ {
        idxs = append(idxs, i)
        end := (i + 1) * secsize
        if end > l {
            end = l
        }
        section := data[i*secsize : end]
        segments = append(segments, section)
    }
    rand.Shuffle(n, func(i int, j int) {
        idxs[i], idxs[j] = idxs[j], idxs[i]
    })
    return idxs, segments
}

// splits the input data performs a random shuffle to mock async section writes
func asyncHashRandom(bmt SectionWriter, span []byte, data []byte, wh whenHash) (s []byte) {
    idxs, segments := splitAndShuffle(bmt.SectionSize(), data)
    return asyncHash(bmt, span, len(data), wh, idxs, segments)
}

// mock for async section writes for BMT SectionWriter
// requires a permutation (a random shuffle) of list of all indexes of segments
// and writes them in order to the appropriate section
// the Sum function is called according to the wh parameter (first, last, random [relative to segment writes])
func asyncHash(bmt SectionWriter, span []byte, l int, wh whenHash, idxs []int, segments [][]byte) (s []byte) {
    bmt.Reset()
    if l == 0 {
        return bmt.Sum(nil, l, span)
    }
    c := make(chan []byte, 1)
    hashf := func() {
        c <- bmt.Sum(nil, l, span)
    }
    maxsize := len(idxs)
    var r int
    if wh == random {
        r = rand.Intn(maxsize)
    }
    for i, idx := range idxs {
        bmt.Write(idx, segments[idx])
        if (wh == first || wh == random) && i == r {
            go hashf()
        }
    }
    if wh == last {
        return bmt.Sum(nil, l, span)
    }
    return <-c
}