aboutsummaryrefslogtreecommitdiffstats
path: root/p2p/discv5/ntp.go
blob: f78d5dc43cff37add1aca64fa178d2ad4860d89d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
// Copyright 2016 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

// Contains the NTP time drift detection via the SNTP protocol:
//   https://tools.ietf.org/html/rfc4330

package discv5

import (
    "fmt"
    "net"
    "sort"
    "strings"
    "time"

    "github.com/ethereum/go-ethereum/log"
)

const (
    ntpPool   = "pool.ntp.org" // ntpPool is the NTP server to query for the current time
    ntpChecks = 3              // Number of measurements to do against the NTP server
)

// durationSlice attaches the methods of sort.Interface to []time.Duration,
// sorting in increasing order.
type durationSlice []time.Duration

func (s durationSlice) Len() int           { return len(s) }
func (s durationSlice) Less(i, j int) bool { return s[i] < s[j] }
func (s durationSlice) Swap(i, j int)      { s[i], s[j] = s[j], s[i] }

// checkClockDrift queries an NTP server for clock drifts and warns the user if
// one large enough is detected.
func checkClockDrift() {
    drift, err := sntpDrift(ntpChecks)
    if err != nil {
        return
    }
    if drift < -driftThreshold || drift > driftThreshold {
        warning := fmt.Sprintf("System clock seems off by %v, which can prevent network connectivity", drift)
        howtofix := fmt.Sprintf("Please enable network time synchronisation in system settings")
        separator := strings.Repeat("-", len(warning))

        log.Warn(fmt.Sprint(separator))
        log.Warn(fmt.Sprint(warning))
        log.Warn(fmt.Sprint(howtofix))
        log.Warn(fmt.Sprint(separator))
    } else {
        log.Debug(fmt.Sprintf("Sanity NTP check reported %v drift, all ok", drift))
    }
}

// sntpDrift does a naive time resolution against an NTP server and returns the
// measured drift. This method uses the simple version of NTP. It's not precise
// but should be fine for these purposes.
//
// Note, it executes two extra measurements compared to the number of requested
// ones to be able to discard the two extremes as outliers.
func sntpDrift(measurements int) (time.Duration, error) {
    // Resolve the address of the NTP server
    addr, err := net.ResolveUDPAddr("udp", ntpPool+":123")
    if err != nil {
        return 0, err
    }
    // Construct the time request (empty package with only 2 fields set):
    //   Bits 3-5: Protocol version, 3
    //   Bits 6-8: Mode of operation, client, 3
    request := make([]byte, 48)
    request[0] = 3<<3 | 3

    // Execute each of the measurements
    drifts := []time.Duration{}
    for i := 0; i < measurements+2; i++ {
        // Dial the NTP server and send the time retrieval request
        conn, err := net.DialUDP("udp", nil, addr)
        if err != nil {
            return 0, err
        }
        defer conn.Close()

        sent := time.Now()
        if _, err = conn.Write(request); err != nil {
            return 0, err
        }
        // Retrieve the reply and calculate the elapsed time
        conn.SetDeadline(time.Now().Add(5 * time.Second))

        reply := make([]byte, 48)
        if _, err = conn.Read(reply); err != nil {
            return 0, err
        }
        elapsed := time.Since(sent)

        // Reconstruct the time from the reply data
        sec := uint64(reply[43]) | uint64(reply[42])<<8 | uint64(reply[41])<<16 | uint64(reply[40])<<24
        frac := uint64(reply[47]) | uint64(reply[46])<<8 | uint64(reply[45])<<16 | uint64(reply[44])<<24

        nanosec := sec*1e9 + (frac*1e9)>>32

        t := time.Date(1900, 1, 1, 0, 0, 0, 0, time.UTC).Add(time.Duration(nanosec)).Local()

        // Calculate the drift based on an assumed answer time of RRT/2
        drifts = append(drifts, sent.Sub(t)+elapsed/2)
    }
    // Calculate average drif (drop two extremities to avoid outliers)
    sort.Sort(durationSlice(drifts))

    drift := time.Duration(0)
    for i := 1; i < len(drifts)-1; i++ {
        drift += drifts[i]
    }
    return drift / time.Duration(measurements), nil
}