aboutsummaryrefslogtreecommitdiffstats
path: root/p2p/discover/table.go
blob: 3e9353753d06820e98ed252eebd8505c4b3ec240 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

// Package discover implements the Node Discovery Protocol.
//
// The Node Discovery protocol provides a way to find RLPx nodes that
// can be connected to. It uses a Kademlia-like protocol to maintain a
// distributed database of the IDs and endpoints of all listening
// nodes.
package discover

import (
    "crypto/ecdsa"
    crand "crypto/rand"
    "encoding/binary"
    "fmt"
    mrand "math/rand"
    "net"
    "sort"
    "sync"
    "time"

    "github.com/ethereum/go-ethereum/common"
    "github.com/ethereum/go-ethereum/crypto"
    "github.com/ethereum/go-ethereum/log"
    "github.com/ethereum/go-ethereum/p2p/enode"
    "github.com/ethereum/go-ethereum/p2p/netutil"
)

const (
    alpha           = 3  // Kademlia concurrency factor
    bucketSize      = 16 // Kademlia bucket size
    maxReplacements = 10 // Size of per-bucket replacement list

    // We keep buckets for the upper 1/15 of distances because
    // it's very unlikely we'll ever encounter a node that's closer.
    hashBits          = len(common.Hash{}) * 8
    nBuckets          = hashBits / 15       // Number of buckets
    bucketMinDistance = hashBits - nBuckets // Log distance of closest bucket

    // IP address limits.
    bucketIPLimit, bucketSubnet = 2, 24 // at most 2 addresses from the same /24
    tableIPLimit, tableSubnet   = 10, 24

    maxFindnodeFailures = 5 // Nodes exceeding this limit are dropped
    refreshInterval     = 30 * time.Minute
    revalidateInterval  = 10 * time.Second
    copyNodesInterval   = 30 * time.Second
    seedMinTableTime    = 5 * time.Minute
    seedCount           = 30
    seedMaxAge          = 5 * 24 * time.Hour
)

type Table struct {
    mutex   sync.Mutex        // protects buckets, bucket content, nursery, rand
    buckets [nBuckets]*bucket // index of known nodes by distance
    nursery []*node           // bootstrap nodes
    rand    *mrand.Rand       // source of randomness, periodically reseeded
    ips     netutil.DistinctNetSet

    db         *enode.DB // database of known nodes
    net        transport
    refreshReq chan chan struct{}
    initDone   chan struct{}

    closeOnce sync.Once
    closeReq  chan struct{}
    closed    chan struct{}

    nodeAddedHook func(*node) // for testing
}

// transport is implemented by the UDP transport.
// it is an interface so we can test without opening lots of UDP
// sockets and without generating a private key.
type transport interface {
    self() *enode.Node
    ping(enode.ID, *net.UDPAddr) error
    findnode(toid enode.ID, addr *net.UDPAddr, target encPubkey) ([]*node, error)
    close()
}

// bucket contains nodes, ordered by their last activity. the entry
// that was most recently active is the first element in entries.
type bucket struct {
    entries      []*node // live entries, sorted by time of last contact
    replacements []*node // recently seen nodes to be used if revalidation fails
    ips          netutil.DistinctNetSet
}

func newTable(t transport, db *enode.DB, bootnodes []*enode.Node) (*Table, error) {
    tab := &Table{
        net:        t,
        db:         db,
        refreshReq: make(chan chan struct{}),
        initDone:   make(chan struct{}),
        closeReq:   make(chan struct{}),
        closed:     make(chan struct{}),
        rand:       mrand.New(mrand.NewSource(0)),
        ips:        netutil.DistinctNetSet{Subnet: tableSubnet, Limit: tableIPLimit},
    }
    if err := tab.setFallbackNodes(bootnodes); err != nil {
        return nil, err
    }
    for i := range tab.buckets {
        tab.buckets[i] = &bucket{
            ips: netutil.DistinctNetSet{Subnet: bucketSubnet, Limit: bucketIPLimit},
        }
    }
    tab.seedRand()
    tab.loadSeedNodes()

    go tab.loop()
    return tab, nil
}

func (tab *Table) self() *enode.Node {
    return tab.net.self()
}

func (tab *Table) seedRand() {
    var b [8]byte
    crand.Read(b[:])

    tab.mutex.Lock()
    tab.rand.Seed(int64(binary.BigEndian.Uint64(b[:])))
    tab.mutex.Unlock()
}

// ReadRandomNodes fills the given slice with random nodes from the table. The results
// are guaranteed to be unique for a single invocation, no node will appear twice.
func (tab *Table) ReadRandomNodes(buf []*enode.Node) (n int) {
    if !tab.isInitDone() {
        return 0
    }
    tab.mutex.Lock()
    defer tab.mutex.Unlock()

    // Find all non-empty buckets and get a fresh slice of their entries.
    var buckets [][]*node
    for _, b := range &tab.buckets {
        if len(b.entries) > 0 {
            buckets = append(buckets, b.entries)
        }
    }
    if len(buckets) == 0 {
        return 0
    }
    // Shuffle the buckets.
    for i := len(buckets) - 1; i > 0; i-- {
        j := tab.rand.Intn(len(buckets))
        buckets[i], buckets[j] = buckets[j], buckets[i]
    }
    // Move head of each bucket into buf, removing buckets that become empty.
    var i, j int
    for ; i < len(buf); i, j = i+1, (j+1)%len(buckets) {
        b := buckets[j]
        buf[i] = unwrapNode(b[0])
        buckets[j] = b[1:]
        if len(b) == 1 {
            buckets = append(buckets[:j], buckets[j+1:]...)
        }
        if len(buckets) == 0 {
            break
        }
    }
    return i + 1
}

// Close terminates the network listener and flushes the node database.
func (tab *Table) Close() {
    tab.closeOnce.Do(func() {
        if tab.net != nil {
            tab.net.close()
        }
        // Wait for loop to end.
        close(tab.closeReq)
        <-tab.closed
    })
}

// setFallbackNodes sets the initial points of contact. These nodes
// are used to connect to the network if the table is empty and there
// are no known nodes in the database.
func (tab *Table) setFallbackNodes(nodes []*enode.Node) error {
    for _, n := range nodes {
        if err := n.ValidateComplete(); err != nil {
            return fmt.Errorf("bad bootstrap node %q: %v", n, err)
        }
    }
    tab.nursery = wrapNodes(nodes)
    return nil
}

// isInitDone returns whether the table's initial seeding procedure has completed.
func (tab *Table) isInitDone() bool {
    select {
    case <-tab.initDone:
        return true
    default:
        return false
    }
}

// Resolve searches for a specific node with the given ID.
// It returns nil if the node could not be found.
func (tab *Table) Resolve(n *enode.Node) *enode.Node {
    // If the node is present in the local table, no
    // network interaction is required.
    hash := n.ID()
    tab.mutex.Lock()
    cl := tab.closest(hash, 1)
    tab.mutex.Unlock()
    if len(cl.entries) > 0 && cl.entries[0].ID() == hash {
        return unwrapNode(cl.entries[0])
    }
    // Otherwise, do a network lookup.
    result := tab.lookup(encodePubkey(n.Pubkey()), true)
    for _, n := range result {
        if n.ID() == hash {
            return unwrapNode(n)
        }
    }
    return nil
}

// LookupRandom finds random nodes in the network.
func (tab *Table) LookupRandom() []*enode.Node {
    var target encPubkey
    crand.Read(target[:])
    return unwrapNodes(tab.lookup(target, true))
}

// lookup performs a network search for nodes close to the given target. It approaches the
// target by querying nodes that are closer to it on each iteration. The given target does
// not need to be an actual node identifier.
func (tab *Table) lookup(targetKey encPubkey, refreshIfEmpty bool) []*node {
    var (
        target         = enode.ID(crypto.Keccak256Hash(targetKey[:]))
        asked          = make(map[enode.ID]bool)
        seen           = make(map[enode.ID]bool)
        reply          = make(chan []*node, alpha)
        pendingQueries = 0
        result         *nodesByDistance
    )
    // don't query further if we hit ourself.
    // unlikely to happen often in practice.
    asked[tab.self().ID()] = true

    for {
        tab.mutex.Lock()
        // generate initial result set
        result = tab.closest(target, bucketSize)
        tab.mutex.Unlock()
        if len(result.entries) > 0 || !refreshIfEmpty {
            break
        }
        // The result set is empty, all nodes were dropped, refresh.
        // We actually wait for the refresh to complete here. The very
        // first query will hit this case and run the bootstrapping
        // logic.
        <-tab.refresh()
        refreshIfEmpty = false
    }

    for {
        // ask the alpha closest nodes that we haven't asked yet
        for i := 0; i < len(result.entries) && pendingQueries < alpha; i++ {
            n := result.entries[i]
            if !asked[n.ID()] {
                asked[n.ID()] = true
                pendingQueries++
                go tab.findnode(n, targetKey, reply)
            }
        }
        if pendingQueries == 0 {
            // we have asked all closest nodes, stop the search
            break
        }
        select {
        case nodes := <-reply:
            for _, n := range nodes {
                if n != nil && !seen[n.ID()] {
                    seen[n.ID()] = true
                    result.push(n, bucketSize)
                }
            }
        case <-tab.closeReq:
            return nil // shutdown, no need to continue.
        }
        pendingQueries--
    }
    return result.entries
}

func (tab *Table) findnode(n *node, targetKey encPubkey, reply chan<- []*node) {
    fails := tab.db.FindFails(n.ID(), n.IP())
    r, err := tab.net.findnode(n.ID(), n.addr(), targetKey)
    if err == errClosed {
        // Avoid recording failures on shutdown.
        reply <- nil
        return
    } else if len(r) == 0 {
        fails++
        tab.db.UpdateFindFails(n.ID(), n.IP(), fails)
        log.Trace("Findnode failed", "id", n.ID(), "failcount", fails, "err", err)
        if fails >= maxFindnodeFailures {
            log.Trace("Too many findnode failures, dropping", "id", n.ID(), "failcount", fails)
            tab.delete(n)
        }
    } else if fails > 0 {
        tab.db.UpdateFindFails(n.ID(), n.IP(), fails-1)
    }

    // Grab as many nodes as possible. Some of them might not be alive anymore, but we'll
    // just remove those again during revalidation.
    for _, n := range r {
        tab.addSeenNode(n)
    }
    reply <- r
}

func (tab *Table) refresh() <-chan struct{} {
    done := make(chan struct{})
    select {
    case tab.refreshReq <- done:
    case <-tab.closeReq:
        close(done)
    }
    return done
}

// loop schedules refresh, revalidate runs and coordinates shutdown.
func (tab *Table) loop() {
    var (
        revalidate     = time.NewTimer(tab.nextRevalidateTime())
        refresh        = time.NewTicker(refreshInterval)
        copyNodes      = time.NewTicker(copyNodesInterval)
        refreshDone    = make(chan struct{})           // where doRefresh reports completion
        revalidateDone chan struct{}                   // where doRevalidate reports completion
        waiting        = []chan struct{}{tab.initDone} // holds waiting callers while doRefresh runs
    )
    defer refresh.Stop()
    defer revalidate.Stop()
    defer copyNodes.Stop()

    // Start initial refresh.
    go tab.doRefresh(refreshDone)

loop:
    for {
        select {
        case <-refresh.C:
            tab.seedRand()
            if refreshDone == nil {
                refreshDone = make(chan struct{})
                go tab.doRefresh(refreshDone)
            }
        case req := <-tab.refreshReq:
            waiting = append(waiting, req)
            if refreshDone == nil {
                refreshDone = make(chan struct{})
                go tab.doRefresh(refreshDone)
            }
        case <-refreshDone:
            for _, ch := range waiting {
                close(ch)
            }
            waiting, refreshDone = nil, nil
        case <-revalidate.C:
            revalidateDone = make(chan struct{})
            go tab.doRevalidate(revalidateDone)
        case <-revalidateDone:
            revalidate.Reset(tab.nextRevalidateTime())
            revalidateDone = nil
        case <-copyNodes.C:
            go tab.copyLiveNodes()
        case <-tab.closeReq:
            break loop
        }
    }

    if refreshDone != nil {
        <-refreshDone
    }
    for _, ch := range waiting {
        close(ch)
    }
    if revalidateDone != nil {
        <-revalidateDone
    }
    close(tab.closed)
}

// doRefresh performs a lookup for a random target to keep buckets
// full. seed nodes are inserted if the table is empty (initial
// bootstrap or discarded faulty peers).
func (tab *Table) doRefresh(done chan struct{}) {
    defer close(done)

    // Load nodes from the database and insert
    // them. This should yield a few previously seen nodes that are
    // (hopefully) still alive.
    tab.loadSeedNodes()

    // Run self lookup to discover new neighbor nodes.
    // We can only do this if we have a secp256k1 identity.
    var key ecdsa.PublicKey
    if err := tab.self().Load((*enode.Secp256k1)(&key)); err == nil {
        tab.lookup(encodePubkey(&key), false)
    }

    // The Kademlia paper specifies that the bucket refresh should
    // perform a lookup in the least recently used bucket. We cannot
    // adhere to this because the findnode target is a 512bit value
    // (not hash-sized) and it is not easily possible to generate a
    // sha3 preimage that falls into a chosen bucket.
    // We perform a few lookups with a random target instead.
    for i := 0; i < 3; i++ {
        var target encPubkey
        crand.Read(target[:])
        tab.lookup(target, false)
    }
}

func (tab *Table) loadSeedNodes() {
    seeds := wrapNodes(tab.db.QuerySeeds(seedCount, seedMaxAge))
    seeds = append(seeds, tab.nursery...)
    for i := range seeds {
        seed := seeds[i]
        age := log.Lazy{Fn: func() interface{} { return time.Since(tab.db.LastPongReceived(seed.ID(), seed.IP())) }}
        log.Trace("Found seed node in database", "id", seed.ID(), "addr", seed.addr(), "age", age)
        tab.addSeenNode(seed)
    }
}

// doRevalidate checks that the last node in a random bucket is still live
// and replaces or deletes the node if it isn't.
func (tab *Table) doRevalidate(done chan<- struct{}) {
    defer func() { done <- struct{}{} }()

    last, bi := tab.nodeToRevalidate()
    if last == nil {
        // No non-empty bucket found.
        return
    }

    // Ping the selected node and wait for a pong.
    err := tab.net.ping(last.ID(), last.addr())

    tab.mutex.Lock()
    defer tab.mutex.Unlock()
    b := tab.buckets[bi]
    if err == nil {
        // The node responded, move it to the front.
        last.livenessChecks++
        log.Debug("Revalidated node", "b", bi, "id", last.ID(), "checks", last.livenessChecks)
        tab.bumpInBucket(b, last)
        return
    }
    // No reply received, pick a replacement or delete the node if there aren't
    // any replacements.
    if r := tab.replace(b, last); r != nil {
        log.Debug("Replaced dead node", "b", bi, "id", last.ID(), "ip", last.IP(), "checks", last.livenessChecks, "r", r.ID(), "rip", r.IP())
    } else {
        log.Debug("Removed dead node", "b", bi, "id", last.ID(), "ip", last.IP(), "checks", last.livenessChecks)
    }
}

// nodeToRevalidate returns the last node in a random, non-empty bucket.
func (tab *Table) nodeToRevalidate() (n *node, bi int) {
    tab.mutex.Lock()
    defer tab.mutex.Unlock()

    for _, bi = range tab.rand.Perm(len(tab.buckets)) {
        b := tab.buckets[bi]
        if len(b.entries) > 0 {
            last := b.entries[len(b.entries)-1]
            return last, bi
        }
    }
    return nil, 0
}

func (tab *Table) nextRevalidateTime() time.Duration {
    tab.mutex.Lock()
    defer tab.mutex.Unlock()

    return time.Duration(tab.rand.Int63n(int64(revalidateInterval)))
}

// copyLiveNodes adds nodes from the table to the database if they have been in the table
// longer then minTableTime.
func (tab *Table) copyLiveNodes() {
    tab.mutex.Lock()
    defer tab.mutex.Unlock()

    now := time.Now()
    for _, b := range &tab.buckets {
        for _, n := range b.entries {
            if n.livenessChecks > 0 && now.Sub(n.addedAt) >= seedMinTableTime {
                tab.db.UpdateNode(unwrapNode(n))
            }
        }
    }
}

// closest returns the n nodes in the table that are closest to the
// given id. The caller must hold tab.mutex.
func (tab *Table) closest(target enode.ID, nresults int) *nodesByDistance {
    // This is a very wasteful way to find the closest nodes but
    // obviously correct. I believe that tree-based buckets would make
    // this easier to implement efficiently.
    close := &nodesByDistance{target: target}
    for _, b := range &tab.buckets {
        for _, n := range b.entries {
            if n.livenessChecks > 0 {
                close.push(n, nresults)
            }
        }
    }
    return close
}

func (tab *Table) len() (n int) {
    for _, b := range &tab.buckets {
        n += len(b.entries)
    }
    return n
}

// bucket returns the bucket for the given node ID hash.
func (tab *Table) bucket(id enode.ID) *bucket {
    d := enode.LogDist(tab.self().ID(), id)
    if d <= bucketMinDistance {
        return tab.buckets[0]
    }
    return tab.buckets[d-bucketMinDistance-1]
}

// addSeenNode adds a node which may or may not be live to the end of a bucket. If the
// bucket has space available, adding the node succeeds immediately. Otherwise, the node is
// added to the replacements list.
//
// The caller must not hold tab.mutex.
func (tab *Table) addSeenNode(n *node) {
    if n.ID() == tab.self().ID() {
        return
    }

    tab.mutex.Lock()
    defer tab.mutex.Unlock()
    b := tab.bucket(n.ID())
    if contains(b.entries, n.ID()) {
        // Already in bucket, don't add.
        return
    }
    if len(b.entries) >= bucketSize {
        // Bucket full, maybe add as replacement.
        tab.addReplacement(b, n)
        return
    }
    if !tab.addIP(b, n.IP()) {
        // Can't add: IP limit reached.
        return
    }
    // Add to end of bucket:
    b.entries = append(b.entries, n)
    b.replacements = deleteNode(b.replacements, n)
    n.addedAt = time.Now()
    if tab.nodeAddedHook != nil {
        tab.nodeAddedHook(n)
    }
}

// addVerifiedNode adds a node whose existence has been verified recently to the front of a
// bucket. If the node is already in the bucket, it is moved to the front. If the bucket
// has no space, the node is added to the replacements list.
//
// There is an additional safety measure: if the table is still initializing the node
// is not added. This prevents an attack where the table could be filled by just sending
// ping repeatedly.
//
// The caller must not hold tab.mutex.
func (tab *Table) addVerifiedNode(n *node) {
    if !tab.isInitDone() {
        return
    }
    if n.ID() == tab.self().ID() {
        return
    }

    tab.mutex.Lock()
    defer tab.mutex.Unlock()
    b := tab.bucket(n.ID())
    if tab.bumpInBucket(b, n) {
        // Already in bucket, moved to front.
        return
    }
    if len(b.entries) >= bucketSize {
        // Bucket full, maybe add as replacement.
        tab.addReplacement(b, n)
        return
    }
    if !tab.addIP(b, n.IP()) {
        // Can't add: IP limit reached.
        return
    }
    // Add to front of bucket.
    b.entries, _ = pushNode(b.entries, n, bucketSize)
    b.replacements = deleteNode(b.replacements, n)
    n.addedAt = time.Now()
    if tab.nodeAddedHook != nil {
        tab.nodeAddedHook(n)
    }
}

// delete removes an entry from the node table. It is used to evacuate dead nodes.
func (tab *Table) delete(node *node) {
    tab.mutex.Lock()
    defer tab.mutex.Unlock()

    tab.deleteInBucket(tab.bucket(node.ID()), node)
}

func (tab *Table) addIP(b *bucket, ip net.IP) bool {
    if netutil.IsLAN(ip) {
        return true
    }
    if !tab.ips.Add(ip) {
        log.Debug("IP exceeds table limit", "ip", ip)
        return false
    }
    if !b.ips.Add(ip) {
        log.Debug("IP exceeds bucket limit", "ip", ip)
        tab.ips.Remove(ip)
        return false
    }
    return true
}

func (tab *Table) removeIP(b *bucket, ip net.IP) {
    if netutil.IsLAN(ip) {
        return
    }
    tab.ips.Remove(ip)
    b.ips.Remove(ip)
}

func (tab *Table) addReplacement(b *bucket, n *node) {
    for _, e := range b.replacements {
        if e.ID() == n.ID() {
            return // already in list
        }
    }
    if !tab.addIP(b, n.IP()) {
        return
    }
    var removed *node
    b.replacements, removed = pushNode(b.replacements, n, maxReplacements)
    if removed != nil {
        tab.removeIP(b, removed.IP())
    }
}

// replace removes n from the replacement list and replaces 'last' with it if it is the
// last entry in the bucket. If 'last' isn't the last entry, it has either been replaced
// with someone else or became active.
func (tab *Table) replace(b *bucket, last *node) *node {
    if len(b.entries) == 0 || b.entries[len(b.entries)-1].ID() != last.ID() {
        // Entry has moved, don't replace it.
        return nil
    }
    // Still the last entry.
    if len(b.replacements) == 0 {
        tab.deleteInBucket(b, last)
        return nil
    }
    r := b.replacements[tab.rand.Intn(len(b.replacements))]
    b.replacements = deleteNode(b.replacements, r)
    b.entries[len(b.entries)-1] = r
    tab.removeIP(b, last.IP())
    return r
}

// bumpInBucket moves the given node to the front of the bucket entry list
// if it is contained in that list.
func (tab *Table) bumpInBucket(b *bucket, n *node) bool {
    for i := range b.entries {
        if b.entries[i].ID() == n.ID() {
            if !n.IP().Equal(b.entries[i].IP()) {
                // Endpoint has changed, ensure that the new IP fits into table limits.
                tab.removeIP(b, b.entries[i].IP())
                if !tab.addIP(b, n.IP()) {
                    // It doesn't, put the previous one back.
                    tab.addIP(b, b.entries[i].IP())
                    return false
                }
            }
            // Move it to the front.
            copy(b.entries[1:], b.entries[:i])
            b.entries[0] = n
            return true
        }
    }
    return false
}

func (tab *Table) deleteInBucket(b *bucket, n *node) {
    b.entries = deleteNode(b.entries, n)
    tab.removeIP(b, n.IP())
}

func contains(ns []*node, id enode.ID) bool {
    for _, n := range ns {
        if n.ID() == id {
            return true
        }
    }
    return false
}

// pushNode adds n to the front of list, keeping at most max items.
func pushNode(list []*node, n *node, max int) ([]*node, *node) {
    if len(list) < max {
        list = append(list, nil)
    }
    removed := list[len(list)-1]
    copy(list[1:], list)
    list[0] = n
    return list, removed
}

// deleteNode removes n from list.
func deleteNode(list []*node, n *node) []*node {
    for i := range list {
        if list[i].ID() == n.ID() {
            return append(list[:i], list[i+1:]...)
        }
    }
    return list
}

// nodesByDistance is a list of nodes, ordered by
// distance to target.
type nodesByDistance struct {
    entries []*node
    target  enode.ID
}

// push adds the given node to the list, keeping the total size below maxElems.
func (h *nodesByDistance) push(n *node, maxElems int) {
    ix := sort.Search(len(h.entries), func(i int) bool {
        return enode.DistCmp(h.target, h.entries[i].ID(), n.ID()) > 0
    })
    if len(h.entries) < maxElems {
        h.entries = append(h.entries, n)
    }
    if ix == len(h.entries) {
        // farther away than all nodes we already have.
        // if there was room for it, the node is now the last element.
    } else {
        // slide existing entries down to make room
        // this will overwrite the entry we just appended.
        copy(h.entries[ix+1:], h.entries[ix:])
        h.entries[ix] = n
    }
}