1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
|
// Package discover implements the Node Discovery Protocol.
//
// The Node Discovery protocol provides a way to find RLPx nodes that
// can be connected to. It uses a Kademlia-like protocol to maintain a
// distributed database of the IDs and endpoints of all listening
// nodes.
package discover
import (
"net"
"sort"
"sync"
"time"
)
const (
alpha = 3 // Kademlia concurrency factor
bucketSize = 16 // Kademlia bucket size
nBuckets = nodeIDBits + 1 // Number of buckets
maxBondingPingPongs = 10
)
type Table struct {
mutex sync.Mutex // protects buckets, their content, and nursery
buckets [nBuckets]*bucket // index of known nodes by distance
nursery []*Node // bootstrap nodes
bondmu sync.Mutex
bonding map[NodeID]*bondproc
bondslots chan struct{} // limits total number of active bonding processes
net transport
self *Node // metadata of the local node
db *nodeDB
}
type bondproc struct {
err error
n *Node
done chan struct{}
}
// transport is implemented by the UDP transport.
// it is an interface so we can test without opening lots of UDP
// sockets and without generating a private key.
type transport interface {
ping(NodeID, *net.UDPAddr) error
waitping(NodeID) error
findnode(toid NodeID, addr *net.UDPAddr, target NodeID) ([]*Node, error)
close()
}
// bucket contains nodes, ordered by their last activity.
// the entry that was most recently active is the last element
// in entries.
type bucket struct {
lastLookup time.Time
entries []*Node
}
func newTable(t transport, ourID NodeID, ourAddr *net.UDPAddr) *Table {
tab := &Table{
net: t,
db: new(nodeDB),
self: newNode(ourID, ourAddr),
bonding: make(map[NodeID]*bondproc),
bondslots: make(chan struct{}, maxBondingPingPongs),
}
for i := 0; i < cap(tab.bondslots); i++ {
tab.bondslots <- struct{}{}
}
for i := range tab.buckets {
tab.buckets[i] = new(bucket)
}
return tab
}
// Self returns the local node.
func (tab *Table) Self() *Node {
return tab.self
}
// Close terminates the network listener.
func (tab *Table) Close() {
tab.net.close()
}
// Bootstrap sets the bootstrap nodes. These nodes are used to connect
// to the network if the table is empty. Bootstrap will also attempt to
// fill the table by performing random lookup operations on the
// network.
func (tab *Table) Bootstrap(nodes []*Node) {
tab.mutex.Lock()
// TODO: maybe filter nodes with bad fields (nil, etc.) to avoid strange crashes
tab.nursery = make([]*Node, 0, len(nodes))
for _, n := range nodes {
cpy := *n
tab.nursery = append(tab.nursery, &cpy)
}
tab.mutex.Unlock()
tab.refresh()
}
// Lookup performs a network search for nodes close
// to the given target. It approaches the target by querying
// nodes that are closer to it on each iteration.
func (tab *Table) Lookup(target NodeID) []*Node {
var (
asked = make(map[NodeID]bool)
seen = make(map[NodeID]bool)
reply = make(chan []*Node, alpha)
pendingQueries = 0
)
// don't query further if we hit the target or ourself.
// unlikely to happen often in practice.
asked[target] = true
asked[tab.self.ID] = true
tab.mutex.Lock()
// update last lookup stamp (for refresh logic)
tab.buckets[logdist(tab.self.ID, target)].lastLookup = time.Now()
// generate initial result set
result := tab.closest(target, bucketSize)
tab.mutex.Unlock()
for {
// ask the alpha closest nodes that we haven't asked yet
for i := 0; i < len(result.entries) && pendingQueries < alpha; i++ {
n := result.entries[i]
if !asked[n.ID] {
asked[n.ID] = true
pendingQueries++
go func() {
r, _ := tab.net.findnode(n.ID, n.addr(), target)
reply <- tab.bondall(r)
}()
}
}
if pendingQueries == 0 {
// we have asked all closest nodes, stop the search
break
}
// wait for the next reply
for _, n := range <-reply {
if n != nil && !seen[n.ID] {
seen[n.ID] = true
result.push(n, bucketSize)
}
}
pendingQueries--
}
return result.entries
}
// refresh performs a lookup for a random target to keep buckets full.
func (tab *Table) refresh() {
ld := -1 // logdist of chosen bucket
tab.mutex.Lock()
for i, b := range tab.buckets {
if i > 0 && b.lastLookup.Before(time.Now().Add(-1*time.Hour)) {
ld = i
break
}
}
tab.mutex.Unlock()
result := tab.Lookup(randomID(tab.self.ID, ld))
if len(result) == 0 {
// bootstrap the table with a self lookup
all := tab.bondall(tab.nursery)
tab.mutex.Lock()
tab.add(all)
tab.mutex.Unlock()
tab.Lookup(tab.self.ID)
// TODO: the Kademlia paper says that we're supposed to perform
// random lookups in all buckets further away than our closest neighbor.
}
}
// closest returns the n nodes in the table that are closest to the
// given id. The caller must hold tab.mutex.
func (tab *Table) closest(target NodeID, nresults int) *nodesByDistance {
// This is a very wasteful way to find the closest nodes but
// obviously correct. I believe that tree-based buckets would make
// this easier to implement efficiently.
close := &nodesByDistance{target: target}
for _, b := range tab.buckets {
for _, n := range b.entries {
close.push(n, nresults)
}
}
return close
}
func (tab *Table) len() (n int) {
for _, b := range tab.buckets {
n += len(b.entries)
}
return n
}
// bondall bonds with all given nodes concurrently and returns
// those nodes for which bonding has probably succeeded.
func (tab *Table) bondall(nodes []*Node) (result []*Node) {
rc := make(chan *Node, len(nodes))
for i := range nodes {
go func(n *Node) {
nn, _ := tab.bond(false, n.ID, n.addr(), uint16(n.TCPPort))
rc <- nn
}(nodes[i])
}
for _ = range nodes {
if n := <-rc; n != nil {
result = append(result, n)
}
}
return result
}
// bond ensures the local node has a bond with the given remote node.
// It also attempts to insert the node into the table if bonding succeeds.
// The caller must not hold tab.mutex.
//
// A bond is must be established before sending findnode requests.
// Both sides must have completed a ping/pong exchange for a bond to
// exist. The total number of active bonding processes is limited in
// order to restrain network use.
//
// bond is meant to operate idempotently in that bonding with a remote
// node which still remembers a previously established bond will work.
// The remote node will simply not send a ping back, causing waitping
// to time out.
//
// If pinged is true, the remote node has just pinged us and one half
// of the process can be skipped.
func (tab *Table) bond(pinged bool, id NodeID, addr *net.UDPAddr, tcpPort uint16) (*Node, error) {
var n *Node
if n = tab.db.get(id); n == nil {
tab.bondmu.Lock()
w := tab.bonding[id]
if w != nil {
// Wait for an existing bonding process to complete.
tab.bondmu.Unlock()
<-w.done
} else {
// Register a new bonding process.
w = &bondproc{done: make(chan struct{})}
tab.bonding[id] = w
tab.bondmu.Unlock()
// Do the ping/pong. The result goes into w.
tab.pingpong(w, pinged, id, addr, tcpPort)
// Unregister the process after it's done.
tab.bondmu.Lock()
delete(tab.bonding, id)
tab.bondmu.Unlock()
}
n = w.n
if w.err != nil {
return nil, w.err
}
}
tab.mutex.Lock()
defer tab.mutex.Unlock()
if b := tab.buckets[logdist(tab.self.ID, n.ID)]; !b.bump(n) {
tab.pingreplace(n, b)
}
return n, nil
}
func (tab *Table) pingpong(w *bondproc, pinged bool, id NodeID, addr *net.UDPAddr, tcpPort uint16) {
<-tab.bondslots
defer func() { tab.bondslots <- struct{}{} }()
if w.err = tab.net.ping(id, addr); w.err != nil {
close(w.done)
return
}
if !pinged {
// Give the remote node a chance to ping us before we start
// sending findnode requests. If they still remember us,
// waitping will simply time out.
tab.net.waitping(id)
}
w.n = tab.db.add(id, addr, tcpPort)
close(w.done)
}
func (tab *Table) pingreplace(new *Node, b *bucket) {
if len(b.entries) == bucketSize {
oldest := b.entries[bucketSize-1]
if err := tab.net.ping(oldest.ID, oldest.addr()); err == nil {
// The node responded, we don't need to replace it.
return
}
} else {
// Add a slot at the end so the last entry doesn't
// fall off when adding the new node.
b.entries = append(b.entries, nil)
}
copy(b.entries[1:], b.entries)
b.entries[0] = new
}
// add puts the entries into the table if their corresponding
// bucket is not full. The caller must hold tab.mutex.
func (tab *Table) add(entries []*Node) {
outer:
for _, n := range entries {
if n == nil || n.ID == tab.self.ID {
// skip bad entries. The RLP decoder returns nil for empty
// input lists.
continue
}
bucket := tab.buckets[logdist(tab.self.ID, n.ID)]
for i := range bucket.entries {
if bucket.entries[i].ID == n.ID {
// already in bucket
continue outer
}
}
if len(bucket.entries) < bucketSize {
bucket.entries = append(bucket.entries, n)
}
}
}
func (b *bucket) bump(n *Node) bool {
for i := range b.entries {
if b.entries[i].ID == n.ID {
n.bumpActive()
// move it to the front
copy(b.entries[1:], b.entries[:i+1])
b.entries[0] = n
return true
}
}
return false
}
// nodesByDistance is a list of nodes, ordered by
// distance to target.
type nodesByDistance struct {
entries []*Node
target NodeID
}
// push adds the given node to the list, keeping the total size below maxElems.
func (h *nodesByDistance) push(n *Node, maxElems int) {
ix := sort.Search(len(h.entries), func(i int) bool {
return distcmp(h.target, h.entries[i].ID, n.ID) > 0
})
if len(h.entries) < maxElems {
h.entries = append(h.entries, n)
}
if ix == len(h.entries) {
// farther away than all nodes we already have.
// if there was room for it, the node is now the last element.
} else {
// slide existing entries down to make room
// this will overwrite the entry we just appended.
copy(h.entries[ix+1:], h.entries[ix:])
h.entries[ix] = n
}
}
|