1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
|
// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// This file contains some shares testing functionality, common to multiple
// different files and modules being tested.
package dex
import (
"crypto/ecdsa"
"math/big"
"net"
"sort"
"sync"
"testing"
"github.com/dexon-foundation/dexon/common"
"github.com/dexon-foundation/dexon/consensus/ethash"
"github.com/dexon-foundation/dexon/core"
"github.com/dexon-foundation/dexon/core/types"
"github.com/dexon-foundation/dexon/core/vm"
"github.com/dexon-foundation/dexon/crypto"
"github.com/dexon-foundation/dexon/dex/downloader"
"github.com/dexon-foundation/dexon/ethdb"
"github.com/dexon-foundation/dexon/event"
"github.com/dexon-foundation/dexon/p2p"
"github.com/dexon-foundation/dexon/p2p/enode"
"github.com/dexon-foundation/dexon/params"
)
var (
testBankKey, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291")
testBank = crypto.PubkeyToAddress(testBankKey.PublicKey)
)
// testP2PServer is a fake, helper p2p server for testing purposes.
type testP2PServer struct {
mu sync.Mutex
self *enode.Node
privkey *ecdsa.PrivateKey
direct map[enode.ID]*enode.Node
group map[string][]*enode.Node
}
func newTestP2PServer(privkey *ecdsa.PrivateKey) *testP2PServer {
self := enode.NewV4(&privkey.PublicKey, net.IP{}, 0, 0)
return &testP2PServer{
self: self,
privkey: privkey,
direct: make(map[enode.ID]*enode.Node),
group: make(map[string][]*enode.Node),
}
}
func (s *testP2PServer) Self() *enode.Node {
return s.self
}
func (s *testP2PServer) GetPrivateKey() *ecdsa.PrivateKey {
return s.privkey
}
func (s *testP2PServer) AddDirectPeer(node *enode.Node) {
s.mu.Lock()
defer s.mu.Unlock()
s.direct[node.ID()] = node
}
func (s *testP2PServer) RemoveDirectPeer(node *enode.Node) {
s.mu.Lock()
defer s.mu.Unlock()
delete(s.direct, node.ID())
}
func (s *testP2PServer) AddGroup(
name string, nodes []*enode.Node, num uint64) {
s.mu.Lock()
defer s.mu.Unlock()
s.group[name] = nodes
}
func (s *testP2PServer) RemoveGroup(name string) {
s.mu.Lock()
defer s.mu.Unlock()
delete(s.group, name)
}
// newTestProtocolManager creates a new protocol manager for testing purposes,
// with the given number of blocks already known, and potential notification
// channels for different events.
func newTestProtocolManager(mode downloader.SyncMode, blocks int, generator func(int, *core.BlockGen), newtx chan<- []*types.Transaction) (*ProtocolManager, *ethdb.MemDatabase, error) {
var (
evmux = new(event.TypeMux)
engine = ethash.NewFaker()
db = ethdb.NewMemDatabase()
gspec = &core.Genesis{
Config: params.TestChainConfig,
Alloc: core.GenesisAlloc{testBank: {Balance: big.NewInt(1000000), Staked: big.NewInt(0)}},
}
genesis = gspec.MustCommit(db)
blockchain, _ = core.NewBlockChain(db, nil, gspec.Config, engine, vm.Config{}, nil)
)
chain, _ := core.GenerateChain(gspec.Config, genesis, ethash.NewFaker(), db, blocks, generator)
if _, err := blockchain.InsertChain(chain); err != nil {
panic(err)
}
tgov := &testGovernance{
numChainsFunc: func(uint64) uint32 { return 3 },
lenCRSFunc: func() uint64 { return 1 },
dkgSetFunc: func(uint64) (map[string]struct{}, error) { return nil, nil },
notarySetFunc: func(uint64, uint32) (map[string]struct{}, error) { return nil, nil },
}
pm, err := NewProtocolManager(gspec.Config, mode, DefaultConfig.NetworkId, evmux, &testTxPool{added: newtx}, engine, blockchain, db, true, tgov)
if err != nil {
return nil, nil, err
}
key, err := crypto.GenerateKey()
if err != nil {
return nil, nil, err
}
pm.Start(newTestP2PServer(key), 1000)
return pm, db, nil
}
// newTestProtocolManagerMust creates a new protocol manager for testing purposes,
// with the given number of blocks already known, and potential notification
// channels for different events. In case of an error, the constructor force-
// fails the test.
func newTestProtocolManagerMust(t *testing.T, mode downloader.SyncMode, blocks int, generator func(int, *core.BlockGen), newtx chan<- []*types.Transaction) (*ProtocolManager, *ethdb.MemDatabase) {
pm, db, err := newTestProtocolManager(mode, blocks, generator, newtx)
if err != nil {
t.Fatalf("Failed to create protocol manager: %v", err)
}
return pm, db
}
// testTxPool is a fake, helper transaction pool for testing purposes
type testTxPool struct {
txFeed event.Feed
pool []*types.Transaction // Collection of all transactions
added chan<- []*types.Transaction // Notification channel for new transactions
lock sync.RWMutex // Protects the transaction pool
}
// AddRemotes appends a batch of transactions to the pool, and notifies any
// listeners if the addition channel is non nil
func (p *testTxPool) AddRemotes(txs []*types.Transaction) []error {
p.lock.Lock()
defer p.lock.Unlock()
p.pool = append(p.pool, txs...)
if p.added != nil {
p.added <- txs
}
return make([]error, len(txs))
}
// Pending returns all the transactions known to the pool
func (p *testTxPool) Pending() (map[common.Address]types.Transactions, error) {
p.lock.RLock()
defer p.lock.RUnlock()
batches := make(map[common.Address]types.Transactions)
for _, tx := range p.pool {
from, _ := types.Sender(types.HomesteadSigner{}, tx)
batches[from] = append(batches[from], tx)
}
for _, batch := range batches {
sort.Sort(types.TxByNonce(batch))
}
return batches, nil
}
func (p *testTxPool) SubscribeNewTxsEvent(ch chan<- core.NewTxsEvent) event.Subscription {
return p.txFeed.Subscribe(ch)
}
// newTestTransaction create a new dummy transaction.
func newTestTransaction(from *ecdsa.PrivateKey, nonce uint64, datasize int) *types.Transaction {
tx := types.NewTransaction(nonce, common.Address{}, big.NewInt(0), 100000, big.NewInt(0), make([]byte, datasize))
tx, _ = types.SignTx(tx, types.HomesteadSigner{}, from)
return tx
}
// testGovernance is a fake, helper governance for testing purposes
type testGovernance struct {
numChainsFunc func(uint64) uint32
lenCRSFunc func() uint64
notarySetFunc func(uint64, uint32) (map[string]struct{}, error)
dkgSetFunc func(uint64) (map[string]struct{}, error)
}
func (g *testGovernance) GetNumChains(round uint64) uint32 {
return g.numChainsFunc(round)
}
func (g *testGovernance) LenCRS() uint64 {
return g.lenCRSFunc()
}
func (g *testGovernance) NotarySet(
round uint64, chainID uint32) (map[string]struct{}, error) {
return g.notarySetFunc(round, chainID)
}
func (g *testGovernance) DKGSet(round uint64) (map[string]struct{}, error) {
return g.dkgSetFunc(round)
}
func (g *testGovernance) GetRoundHeight(round uint64) uint64 {
return 0
}
// testPeer is a simulated peer to allow testing direct network calls.
type testPeer struct {
net p2p.MsgReadWriter // Network layer reader/writer to simulate remote messaging
app *p2p.MsgPipeRW // Application layer reader/writer to simulate the local side
*peer
}
// newTestPeer creates a new peer registered at the given protocol manager.
func newTestPeer(name string, version int, pm *ProtocolManager, shake bool) (*testPeer, <-chan error) {
// Create a message pipe to communicate through
app, pipenet := p2p.MsgPipe()
// Generate a random key and create the peer
key, err := crypto.GenerateKey()
if err != nil {
panic(err)
}
node := enode.NewV4(&key.PublicKey, net.IP{}, 0, 0)
peer := pm.newPeer(version, p2p.NewPeerWithEnode(node, name, nil), pipenet)
// Start the peer on a new thread
errc := make(chan error, 1)
go func() {
select {
case pm.newPeerCh <- peer:
errc <- pm.handle(peer)
case <-pm.quitSync:
errc <- p2p.DiscQuitting
}
}()
tp := &testPeer{app: app, net: pipenet, peer: peer}
// Execute any implicitly requested handshakes and return
if shake {
var (
genesis = pm.blockchain.Genesis()
head = pm.blockchain.CurrentHeader()
number = head.Number.Uint64()
)
tp.handshake(nil, number, head.Hash(), genesis.Hash())
}
return tp, errc
}
// handshake simulates a trivial handshake that expects the same state from the
// remote side as we are simulating locally.
func (p *testPeer) handshake(t *testing.T, number uint64, head common.Hash, genesis common.Hash) {
msg := &statusData{
ProtocolVersion: uint32(p.version),
NetworkId: DefaultConfig.NetworkId,
Number: number,
CurrentBlock: head,
GenesisBlock: genesis,
}
if err := p2p.ExpectMsg(p.app, StatusMsg, msg); err != nil {
t.Fatalf("status recv: %v", err)
}
if err := p2p.Send(p.app, StatusMsg, msg); err != nil {
t.Fatalf("status send: %v", err)
}
}
// close terminates the local side of the peer, notifying the remote protocol
// manager of termination.
func (p *testPeer) close() {
p.app.Close()
}
|