aboutsummaryrefslogtreecommitdiffstats
path: root/crypto/crypto_test.go
blob: fa85212487478dcdb948ecd501ffb508a12de386 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

package crypto

import (
    "bytes"
    "crypto/ecdsa"
    "encoding/hex"
    "io/ioutil"
    "math/big"
    "os"
    "reflect"
    "testing"

    "github.com/dexon-foundation/dexon/common"
    "github.com/dexon-foundation/dexon/common/hexutil"
)

var testAddrHex = "970e8128ab834e8eac17ab8e3812f010678cf791"
var testPrivHex = "289c2857d4598e37fb9647507e47a309d6133539bf21a8b9cb6df88fd5232032"

// These tests are sanity checks.
// They should ensure that we don't e.g. use Sha3-224 instead of Sha3-256
// and that the sha3 library uses keccak-f permutation.
func TestKeccak256Hash(t *testing.T) {
    msg := []byte("abc")
    exp, _ := hex.DecodeString("4e03657aea45a94fc7d47ba826c8d667c0d1e6e33a64a036ec44f58fa12d6c45")
    checkhash(t, "Sha3-256-array", func(in []byte) []byte { h := Keccak256Hash(in); return h[:] }, msg, exp)
}

func TestToECDSAErrors(t *testing.T) {
    if _, err := HexToECDSA("0000000000000000000000000000000000000000000000000000000000000000"); err == nil {
        t.Fatal("HexToECDSA should've returned error")
    }
    if _, err := HexToECDSA("ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"); err == nil {
        t.Fatal("HexToECDSA should've returned error")
    }
}

func BenchmarkSha3(b *testing.B) {
    a := []byte("hello world")
    for i := 0; i < b.N; i++ {
        Keccak256(a)
    }
}

func TestUnmarshalPubkey(t *testing.T) {
    key, err := UnmarshalPubkey(nil)
    if err != errInvalidPubkey || key != nil {
        t.Fatalf("expected error, got %v, %v", err, key)
    }
    key, err = UnmarshalPubkey([]byte{1, 2, 3})
    if err != errInvalidPubkey || key != nil {
        t.Fatalf("expected error, got %v, %v", err, key)
    }

    var (
        enc, _ = hex.DecodeString("04760c4460e5336ac9bbd87952a3c7ec4363fc0a97bd31c86430806e287b437fd1b01abc6e1db640cf3106b520344af1d58b00b57823db3e1407cbc433e1b6d04d")
        dec    = &ecdsa.PublicKey{
            Curve: S256(),
            X:     hexutil.MustDecodeBig("0x760c4460e5336ac9bbd87952a3c7ec4363fc0a97bd31c86430806e287b437fd1"),
            Y:     hexutil.MustDecodeBig("0xb01abc6e1db640cf3106b520344af1d58b00b57823db3e1407cbc433e1b6d04d"),
        }
    )
    key, err = UnmarshalPubkey(enc)
    if err != nil {
        t.Fatalf("expected no error, got %v", err)
    }
    if !reflect.DeepEqual(key, dec) {
        t.Fatal("wrong result")
    }
}

func TestSign(t *testing.T) {
    key, _ := HexToECDSA(testPrivHex)
    addr := common.HexToAddress(testAddrHex)

    msg := Keccak256([]byte("foo"))
    sig, err := Sign(msg, key)
    if err != nil {
        t.Errorf("Sign error: %s", err)
    }
    recoveredPub, err := Ecrecover(msg, sig)
    if err != nil {
        t.Errorf("ECRecover error: %s", err)
    }
    pubKey, _ := UnmarshalPubkey(recoveredPub)
    recoveredAddr := PubkeyToAddress(*pubKey)
    if addr != recoveredAddr {
        t.Errorf("Address mismatch: want: %x have: %x", addr, recoveredAddr)
    }

    // should be equal to SigToPub
    recoveredPub2, err := SigToPub(msg, sig)
    if err != nil {
        t.Errorf("ECRecover error: %s", err)
    }
    recoveredAddr2 := PubkeyToAddress(*recoveredPub2)
    if addr != recoveredAddr2 {
        t.Errorf("Address mismatch: want: %x have: %x", addr, recoveredAddr2)
    }
}

func TestInvalidSign(t *testing.T) {
    if _, err := Sign(make([]byte, 1), nil); err == nil {
        t.Errorf("expected sign with hash 1 byte to error")
    }
    if _, err := Sign(make([]byte, 33), nil); err == nil {
        t.Errorf("expected sign with hash 33 byte to error")
    }
}

func TestNewContractAddress(t *testing.T) {
    key, _ := HexToECDSA(testPrivHex)
    addr := common.HexToAddress(testAddrHex)
    genAddr := PubkeyToAddress(key.PublicKey)
    // sanity check before using addr to create contract address
    checkAddr(t, genAddr, addr)

    caddr0 := CreateAddress(addr, 0)
    caddr1 := CreateAddress(addr, 1)
    caddr2 := CreateAddress(addr, 2)
    checkAddr(t, common.HexToAddress("333c3310824b7c685133f2bedb2ca4b8b4df633d"), caddr0)
    checkAddr(t, common.HexToAddress("8bda78331c916a08481428e4b07c96d3e916d165"), caddr1)
    checkAddr(t, common.HexToAddress("c9ddedf451bc62ce88bf9292afb13df35b670699"), caddr2)
}

func TestLoadECDSAFile(t *testing.T) {
    keyBytes := common.FromHex(testPrivHex)
    fileName0 := "test_key0"
    fileName1 := "test_key1"
    checkKey := func(k *ecdsa.PrivateKey) {
        checkAddr(t, PubkeyToAddress(k.PublicKey), common.HexToAddress(testAddrHex))
        loadedKeyBytes := FromECDSA(k)
        if !bytes.Equal(loadedKeyBytes, keyBytes) {
            t.Fatalf("private key mismatch: want: %x have: %x", keyBytes, loadedKeyBytes)
        }
    }

    ioutil.WriteFile(fileName0, []byte(testPrivHex), 0600)
    defer os.Remove(fileName0)

    key0, err := LoadECDSA(fileName0)
    if err != nil {
        t.Fatal(err)
    }
    checkKey(key0)

    // again, this time with SaveECDSA instead of manual save:
    err = SaveECDSA(fileName1, key0)
    if err != nil {
        t.Fatal(err)
    }
    defer os.Remove(fileName1)

    key1, err := LoadECDSA(fileName1)
    if err != nil {
        t.Fatal(err)
    }
    checkKey(key1)
}

func TestValidateSignatureValues(t *testing.T) {
    check := func(expected bool, v byte, r, s *big.Int) {
        if ValidateSignatureValues(v, r, s, false) != expected {
            t.Errorf("mismatch for v: %d r: %d s: %d want: %v", v, r, s, expected)
        }
    }
    minusOne := big.NewInt(-1)
    one := common.Big1
    zero := common.Big0
    secp256k1nMinus1 := new(big.Int).Sub(secp256k1N, common.Big1)

    // correct v,r,s
    check(true, 0, one, one)
    check(true, 1, one, one)
    // incorrect v, correct r,s,
    check(false, 2, one, one)
    check(false, 3, one, one)

    // incorrect v, combinations of incorrect/correct r,s at lower limit
    check(false, 2, zero, zero)
    check(false, 2, zero, one)
    check(false, 2, one, zero)
    check(false, 2, one, one)

    // correct v for any combination of incorrect r,s
    check(false, 0, zero, zero)
    check(false, 0, zero, one)
    check(false, 0, one, zero)

    check(false, 1, zero, zero)
    check(false, 1, zero, one)
    check(false, 1, one, zero)

    // correct sig with max r,s
    check(true, 0, secp256k1nMinus1, secp256k1nMinus1)
    // correct v, combinations of incorrect r,s at upper limit
    check(false, 0, secp256k1N, secp256k1nMinus1)
    check(false, 0, secp256k1nMinus1, secp256k1N)
    check(false, 0, secp256k1N, secp256k1N)

    // current callers ensures r,s cannot be negative, but let's test for that too
    // as crypto package could be used stand-alone
    check(false, 0, minusOne, one)
    check(false, 0, one, minusOne)
}

func checkhash(t *testing.T, name string, f func([]byte) []byte, msg, exp []byte) {
    sum := f(msg)
    if !bytes.Equal(exp, sum) {
        t.Fatalf("hash %s mismatch: want: %x have: %x", name, exp, sum)
    }
}

func checkAddr(t *testing.T, addr0, addr1 common.Address) {
    if addr0 != addr1 {
        t.Fatalf("address mismatch: want: %x have: %x", addr0, addr1)
    }
}

// test to help Python team with integration of libsecp256k1
// skip but keep it after they are done
func TestPythonIntegration(t *testing.T) {
    kh := "289c2857d4598e37fb9647507e47a309d6133539bf21a8b9cb6df88fd5232032"
    k0, _ := HexToECDSA(kh)

    msg0 := Keccak256([]byte("foo"))
    sig0, _ := Sign(msg0, k0)

    msg1 := common.FromHex("00000000000000000000000000000000")
    sig1, _ := Sign(msg0, k0)

    t.Logf("msg: %x, privkey: %s sig: %x\n", msg0, kh, sig0)
    t.Logf("msg: %x, privkey: %s sig: %x\n", msg1, kh, sig1)
}