aboutsummaryrefslogtreecommitdiffstats
path: root/core/block_validator.go
blob: 4d710ae3f59e9babac89a9ac64dd9414c423b599 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

package core

import (
    "fmt"
    "math/big"
    "time"

    "github.com/ethereum/go-ethereum/common"
    "github.com/ethereum/go-ethereum/core/state"
    "github.com/ethereum/go-ethereum/core/types"
    "github.com/ethereum/go-ethereum/logger/glog"
    "github.com/ethereum/go-ethereum/params"
    "github.com/ethereum/go-ethereum/pow"
    "gopkg.in/fatih/set.v0"
)

var (
    ExpDiffPeriod = big.NewInt(100000)
    big10         = big.NewInt(10)
    bigMinus99    = big.NewInt(-99)
)

// BlockValidator is responsible for validating block headers, uncles and
// processed state.
//
// BlockValidator implements Validator.
type BlockValidator struct {
    bc  *BlockChain // Canonical block chain
    Pow pow.PoW     // Proof of work used for validating
}

// NewBlockValidator returns a new block validator which is safe for re-use
func NewBlockValidator(blockchain *BlockChain, pow pow.PoW) *BlockValidator {
    validator := &BlockValidator{
        Pow: pow,
        bc:  blockchain,
    }
    return validator
}

// ValidateBlock validates the given block's header and uncles and verifies the
// the block header's transaction and uncle roots.
//
// ValidateBlock does not validate the header's pow. The pow work validated
// separately so we can process them in parallel.
//
// ValidateBlock also validates and makes sure that any previous state (or present)
// state that might or might not be present is checked to make sure that fast
// sync has done it's job proper. This prevents the block validator form accepting
// false positives where a header is present but the state is not.
func (v *BlockValidator) ValidateBlock(block *types.Block) error {
    if v.bc.HasBlock(block.Hash()) {
        if _, err := state.New(block.Root(), v.bc.chainDb); err == nil {
            return &KnownBlockError{block.Number(), block.Hash()}
        }
    }
    parent := v.bc.GetBlock(block.ParentHash())
    if parent == nil {
        return ParentError(block.ParentHash())
    }
    if _, err := state.New(parent.Root(), v.bc.chainDb); err != nil {
        return ParentError(block.ParentHash())
    }

    header := block.Header()
    // validate the block header
    if err := ValidateHeader(v.Pow, header, parent.Header(), false, false); err != nil {
        return err
    }
    // verify the uncles are correctly rewarded
    if err := v.VerifyUncles(block, parent); err != nil {
        return err
    }

    // Verify UncleHash before running other uncle validations
    unclesSha := types.CalcUncleHash(block.Uncles())
    if unclesSha != header.UncleHash {
        return fmt.Errorf("invalid uncles root hash. received=%x calculated=%x", header.UncleHash, unclesSha)
    }

    // The transactions Trie's root (R = (Tr [[i, RLP(T1)], [i, RLP(T2)], ... [n, RLP(Tn)]]))
    // can be used by light clients to make sure they've received the correct Txs
    txSha := types.DeriveSha(block.Transactions())
    if txSha != header.TxHash {
        return fmt.Errorf("invalid transaction root hash. received=%x calculated=%x", header.TxHash, txSha)
    }

    return nil
}

// ValidateState validates the various changes that happen after a state
// transition, such as amount of used gas, the receipt roots and the state root
// itself. ValidateState returns a database batch if the validation was a success
// otherwise nil and an error is returned.
func (v *BlockValidator) ValidateState(block, parent *types.Block, statedb *state.StateDB, receipts types.Receipts, usedGas *big.Int) (err error) {
    header := block.Header()
    if block.GasUsed().Cmp(usedGas) != 0 {
        return ValidationError(fmt.Sprintf("gas used error (%v / %v)", block.GasUsed(), usedGas))
    }
    // Validate the received block's bloom with the one derived from the generated receipts.
    // For valid blocks this should always validate to true.
    rbloom := types.CreateBloom(receipts)
    if rbloom != header.Bloom {
        return fmt.Errorf("unable to replicate block's bloom=%x vs calculated bloom=%x", header.Bloom, rbloom)
    }
    // Tre receipt Trie's root (R = (Tr [[H1, R1], ... [Hn, R1]]))
    receiptSha := types.DeriveSha(receipts)
    if receiptSha != header.ReceiptHash {
        return fmt.Errorf("invalid receipt root hash. received=%x calculated=%x", header.ReceiptHash, receiptSha)
    }
    // Validate the state root against the received state root and throw
    // an error if they don't match.
    if root := statedb.IntermediateRoot(); header.Root != root {
        return fmt.Errorf("invalid merkle root: header=%x computed=%x", header.Root, root)
    }
    return nil
}

// VerifyUncles verifies the given block's uncles and applies the Ethereum
// consensus rules to the various block headers included; it will return an
// error if any of the included uncle headers were invalid. It returns an error
// if the validation failed.
func (v *BlockValidator) VerifyUncles(block, parent *types.Block) error {
    // validate that there at most 2 uncles included in this block
    if len(block.Uncles()) > 2 {
        return ValidationError("Block can only contain maximum 2 uncles (contained %v)", len(block.Uncles()))
    }

    uncles := set.New()
    ancestors := make(map[common.Hash]*types.Block)
    for _, ancestor := range v.bc.GetBlocksFromHash(block.ParentHash(), 7) {
        ancestors[ancestor.Hash()] = ancestor
        // Include ancestors uncles in the uncle set. Uncles must be unique.
        for _, uncle := range ancestor.Uncles() {
            uncles.Add(uncle.Hash())
        }
    }
    ancestors[block.Hash()] = block
    uncles.Add(block.Hash())

    for i, uncle := range block.Uncles() {
        hash := uncle.Hash()
        if uncles.Has(hash) {
            // Error not unique
            return UncleError("uncle[%d](%x) not unique", i, hash[:4])
        }
        uncles.Add(hash)

        if ancestors[hash] != nil {
            branch := fmt.Sprintf("  O - %x\n  |\n", block.Hash())
            for h := range ancestors {
                branch += fmt.Sprintf("  O - %x\n  |\n", h)
            }
            glog.Infoln(branch)
            return UncleError("uncle[%d](%x) is ancestor", i, hash[:4])
        }

        if ancestors[uncle.ParentHash] == nil || uncle.ParentHash == parent.Hash() {
            return UncleError("uncle[%d](%x)'s parent is not ancestor (%x)", i, hash[:4], uncle.ParentHash[0:4])
        }

        if err := ValidateHeader(v.Pow, uncle, ancestors[uncle.ParentHash].Header(), true, true); err != nil {
            return ValidationError(fmt.Sprintf("uncle[%d](%x) header invalid: %v", i, hash[:4], err))
        }
    }

    return nil
}

// ValidateHeader validates the given header and, depending on the pow arg,
// checks the proof of work of the given header. Returns an error if the
// validation failed.
func (v *BlockValidator) ValidateHeader(header, parent *types.Header, checkPow bool) error {
    // Short circuit if the parent is missing.
    if parent == nil {
        return ParentError(header.ParentHash)
    }
    // Short circuit if the header's already known or its parent missing
    if v.bc.HasHeader(header.Hash()) {
        return nil
    }
    return ValidateHeader(v.Pow, header, parent, checkPow, false)
}

// Validates a header. Returns an error if the header is invalid.
//
// See YP section 4.3.4. "Block Header Validity"
func ValidateHeader(pow pow.PoW, header *types.Header, parent *types.Header, checkPow, uncle bool) error {
    if big.NewInt(int64(len(header.Extra))).Cmp(params.MaximumExtraDataSize) == 1 {
        return fmt.Errorf("Header extra data too long (%d)", len(header.Extra))
    }

    if uncle {
        if header.Time.Cmp(common.MaxBig) == 1 {
            return BlockTSTooBigErr
        }
    } else {
        if header.Time.Cmp(big.NewInt(time.Now().Unix())) == 1 {
            return BlockFutureErr
        }
    }
    if header.Time.Cmp(parent.Time) != 1 {
        return BlockEqualTSErr
    }

    expd := CalcDifficulty(header.Time.Uint64(), parent.Time.Uint64(), parent.Number, parent.Difficulty)
    if expd.Cmp(header.Difficulty) != 0 {
        return fmt.Errorf("Difficulty check failed for header %v, %v", header.Difficulty, expd)
    }

    a := new(big.Int).Set(parent.GasLimit)
    a = a.Sub(a, header.GasLimit)
    a.Abs(a)
    b := new(big.Int).Set(parent.GasLimit)
    b = b.Div(b, params.GasLimitBoundDivisor)
    if !(a.Cmp(b) < 0) || (header.GasLimit.Cmp(params.MinGasLimit) == -1) {
        return fmt.Errorf("GasLimit check failed for header %v (%v > %v)", header.GasLimit, a, b)
    }

    num := new(big.Int).Set(parent.Number)
    num.Sub(header.Number, num)
    if num.Cmp(big.NewInt(1)) != 0 {
        return BlockNumberErr
    }

    if checkPow {
        // Verify the nonce of the header. Return an error if it's not valid
        if !pow.Verify(types.NewBlockWithHeader(header)) {
            return &BlockNonceErr{header.Number, header.Hash(), header.Nonce.Uint64()}
        }
    }
    return nil
}

// CalcDifficulty is the difficulty adjustment algorithm. It returns
// the difficulty that a new block should have when created at time
// given the parent block's time and difficulty.
func CalcDifficulty(time, parentTime uint64, parentNumber, parentDiff *big.Int) *big.Int {
    if params.IsHomestead(new(big.Int).Add(parentNumber, common.Big1)) {
        return calcDifficultyHomestead(time, parentTime, parentNumber, parentDiff)
    } else {
        return calcDifficultyFrontier(time, parentTime, parentNumber, parentDiff)
    }
}

func calcDifficultyHomestead(time, parentTime uint64, parentNumber, parentDiff *big.Int) *big.Int {
    // https://github.com/ethereum/EIPs/blob/master/EIPS/eip-2.mediawiki
    // algorithm:
    // diff = (parent_diff +
    //         (parent_diff / 2048 * max(1 - (block_timestamp - parent_timestamp) // 10, -99))
    //        ) + 2^(periodCount - 2)

    bigTime := new(big.Int).SetUint64(time)
    bigParentTime := new(big.Int).SetUint64(parentTime)

    // holds intermediate values to make the algo easier to read & audit
    x := new(big.Int)
    y := new(big.Int)

    // 1 - (block_timestamp -parent_timestamp) // 10
    x.Sub(bigTime, bigParentTime)
    x.Div(x, big10)
    x.Sub(common.Big1, x)

    // max(1 - (block_timestamp - parent_timestamp) // 10, -99)))
    if x.Cmp(bigMinus99) < 0 {
        x.Set(bigMinus99)
    }

    // (parent_diff + parent_diff // 2048 * max(1 - (block_timestamp - parent_timestamp) // 10, -99))
    y.Div(parentDiff, params.DifficultyBoundDivisor)
    x.Mul(y, x)
    x.Add(parentDiff, x)

    // minimum difficulty can ever be (before exponential factor)
    if x.Cmp(params.MinimumDifficulty) < 0 {
        x = params.MinimumDifficulty
    }

    // for the exponential factor
    periodCount := new(big.Int).Add(parentNumber, common.Big1)
    periodCount.Div(periodCount, ExpDiffPeriod)

    // the exponential factor, commonly referred to as "the bomb"
    // diff = diff + 2^(periodCount - 2)
    if periodCount.Cmp(common.Big1) > 0 {
        y.Sub(periodCount, common.Big2)
        y.Exp(common.Big2, y, nil)
        x.Add(x, y)
    }

    return x
}

func calcDifficultyFrontier(time, parentTime uint64, parentNumber, parentDiff *big.Int) *big.Int {
    diff := new(big.Int)
    adjust := new(big.Int).Div(parentDiff, params.DifficultyBoundDivisor)
    bigTime := new(big.Int)
    bigParentTime := new(big.Int)

    bigTime.SetUint64(time)
    bigParentTime.SetUint64(parentTime)

    if bigTime.Sub(bigTime, bigParentTime).Cmp(params.DurationLimit) < 0 {
        diff.Add(parentDiff, adjust)
    } else {
        diff.Sub(parentDiff, adjust)
    }
    if diff.Cmp(params.MinimumDifficulty) < 0 {
        diff = params.MinimumDifficulty
    }

    periodCount := new(big.Int).Add(parentNumber, common.Big1)
    periodCount.Div(periodCount, ExpDiffPeriod)
    if periodCount.Cmp(common.Big1) > 0 {
        // diff = diff + 2^(periodCount - 2)
        expDiff := periodCount.Sub(periodCount, common.Big2)
        expDiff.Exp(common.Big2, expDiff, nil)
        diff.Add(diff, expDiff)
        diff = common.BigMax(diff, params.MinimumDifficulty)
    }

    return diff
}

// CalcGasLimit computes the gas limit of the next block after parent.
// The result may be modified by the caller.
// This is miner strategy, not consensus protocol.
func CalcGasLimit(parent *types.Block) *big.Int {
    // contrib = (parentGasUsed * 3 / 2) / 1024
    contrib := new(big.Int).Mul(parent.GasUsed(), big.NewInt(3))
    contrib = contrib.Div(contrib, big.NewInt(2))
    contrib = contrib.Div(contrib, params.GasLimitBoundDivisor)

    // decay = parentGasLimit / 1024 -1
    decay := new(big.Int).Div(parent.GasLimit(), params.GasLimitBoundDivisor)
    decay.Sub(decay, big.NewInt(1))

    /*
        strategy: gasLimit of block-to-mine is set based on parent's
        gasUsed value.  if parentGasUsed > parentGasLimit * (2/3) then we
        increase it, otherwise lower it (or leave it unchanged if it's right
        at that usage) the amount increased/decreased depends on how far away
        from parentGasLimit * (2/3) parentGasUsed is.
    */
    gl := new(big.Int).Sub(parent.GasLimit(), decay)
    gl = gl.Add(gl, contrib)
    gl.Set(common.BigMax(gl, params.MinGasLimit))

    // however, if we're now below the target (GenesisGasLimit) we increase the
    // limit as much as we can (parentGasLimit / 1024 -1)
    if gl.Cmp(params.GenesisGasLimit) < 0 {
        gl.Add(parent.GasLimit(), decay)
        gl.Set(common.BigMin(gl, params.GenesisGasLimit))
    }
    return gl
}