aboutsummaryrefslogtreecommitdiffstats
path: root/bmt/bmt.go
blob: 4b65b1d94aacf3e7eef362388ed5059671c5f275 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
// Copyright 2017 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

// Package bmt provides a binary merkle tree implementation
package bmt

import (
    "fmt"
    "hash"
    "io"
    "strings"
    "sync"
    "sync/atomic"
)

/*
Binary Merkle Tree Hash is a hash function over arbitrary datachunks of limited size
It is defined as the root hash of the binary merkle tree built over fixed size segments
of the underlying chunk using any base hash function (e.g keccak 256 SHA3)

It is used as the chunk hash function in swarm which in turn is the basis for the
128 branching swarm hash http://swarm-guide.readthedocs.io/en/latest/architecture.html#swarm-hash

The BMT is optimal for providing compact inclusion proofs, i.e. prove that a
segment is a substring of a chunk starting at a particular offset
The size of the underlying segments is fixed at 32 bytes (called the resolution
of the BMT hash), the EVM word size to optimize for on-chain BMT verification
as well as the hash size optimal for inclusion proofs in the merkle tree of the swarm hash.

Two implementations are provided:

* RefHasher is optimized for code simplicity and meant as a reference implementation
* Hasher is optimized for speed taking advantage of concurrency with minimalistic
  control structure to coordinate the concurrent routines
  It implements the ChunkHash interface as well as the go standard hash.Hash interface

*/

const (
    // DefaultSegmentCount is the maximum number of segments of the underlying chunk
    DefaultSegmentCount = 128 // Should be equal to storage.DefaultBranches
    // DefaultPoolSize is the maximum number of bmt trees used by the hashers, i.e,
    // the maximum number of concurrent BMT hashing operations performed by the same hasher
    DefaultPoolSize = 8
)

// BaseHasher is a hash.Hash constructor function used for the base hash of the  BMT.
type BaseHasher func() hash.Hash

// Hasher a reusable hasher for fixed maximum size chunks representing a BMT
// implements the hash.Hash interface
// reuse pool of Tree-s for amortised memory allocation and resource control
// supports order-agnostic concurrent segment writes
// as well as sequential read and write
// can not be called concurrently on more than one chunk
// can be further appended after Sum
// Reset gives back the Tree to the pool and guaranteed to leave
// the tree and itself in a state reusable for hashing a new chunk
type Hasher struct {
    pool        *TreePool   // BMT resource pool
    bmt         *Tree       // prebuilt BMT resource for flowcontrol and proofs
    blocksize   int         // segment size (size of hash) also for hash.Hash
    count       int         // segment count
    size        int         // for hash.Hash same as hashsize
    cur         int         // cursor position for righmost currently open chunk
    segment     []byte      // the rightmost open segment (not complete)
    depth       int         // index of last level
    result      chan []byte // result channel
    hash        []byte      // to record the result
    max         int32       // max segments for SegmentWriter interface
    blockLength []byte      // The block length that needes to be added in Sum
}

// New creates a reusable Hasher
// implements the hash.Hash interface
// pulls a new Tree from a resource pool for hashing each chunk
func New(p *TreePool) *Hasher {
    return &Hasher{
        pool:      p,
        depth:     depth(p.SegmentCount),
        size:      p.SegmentSize,
        blocksize: p.SegmentSize,
        count:     p.SegmentCount,
        result:    make(chan []byte),
    }
}

// Node is a reuseable segment hasher representing a node in a BMT
// it allows for continued writes after a Sum
// and is left in completely reusable state after Reset
type Node struct {
    level, index int   // position of node for information/logging only
    initial      bool  // first and last node
    root         bool  // whether the node is root to a smaller BMT
    isLeft       bool  // whether it is left side of the parent double segment
    unbalanced   bool  // indicates if a node has only the left segment
    parent       *Node // BMT connections
    state        int32 // atomic increment impl concurrent boolean toggle
    left, right  []byte
}

// NewNode constructor for segment hasher nodes in the BMT
func NewNode(level, index int, parent *Node) *Node {
    return &Node{
        parent:  parent,
        level:   level,
        index:   index,
        initial: index == 0,
        isLeft:  index%2 == 0,
    }
}

// TreePool provides a pool of Trees used as resources by Hasher
// a Tree popped from the pool is guaranteed to have clean state
// for hashing a new chunk
// Hasher Reset releases the Tree to the pool
type TreePool struct {
    lock         sync.Mutex
    c            chan *Tree
    hasher       BaseHasher
    SegmentSize  int
    SegmentCount int
    Capacity     int
    count        int
}

// NewTreePool creates a Tree pool with hasher, segment size, segment count and capacity
// on GetTree it reuses free Trees or creates a new one if size is not reached
func NewTreePool(hasher BaseHasher, segmentCount, capacity int) *TreePool {
    return &TreePool{
        c:            make(chan *Tree, capacity),
        hasher:       hasher,
        SegmentSize:  hasher().Size(),
        SegmentCount: segmentCount,
        Capacity:     capacity,
    }
}

// Drain drains the pool uptil it has no more than n resources
func (self *TreePool) Drain(n int) {
    self.lock.Lock()
    defer self.lock.Unlock()
    for len(self.c) > n {
        <-self.c
        self.count--
    }
}

// Reserve is blocking until it returns an available Tree
// it reuses free Trees or creates a new one if size is not reached
func (self *TreePool) Reserve() *Tree {
    self.lock.Lock()
    defer self.lock.Unlock()
    var t *Tree
    if self.count == self.Capacity {
        return <-self.c
    }
    select {
    case t = <-self.c:
    default:
        t = NewTree(self.hasher, self.SegmentSize, self.SegmentCount)
        self.count++
    }
    return t
}

// Release gives back a Tree to the pool.
// This Tree is guaranteed to be in reusable state
// does not need locking
func (self *TreePool) Release(t *Tree) {
    self.c <- t // can never fail but...
}

// Tree is a reusable control structure representing a BMT
// organised in a binary tree
// Hasher uses a TreePool to pick one for each chunk hash
// the Tree is 'locked' while not in the pool
type Tree struct {
    leaves []*Node
}

// Draw draws the BMT (badly)
func (self *Tree) Draw(hash []byte, d int) string {
    var left, right []string
    var anc []*Node
    for i, n := range self.leaves {
        left = append(left, fmt.Sprintf("%v", hashstr(n.left)))
        if i%2 == 0 {
            anc = append(anc, n.parent)
        }
        right = append(right, fmt.Sprintf("%v", hashstr(n.right)))
    }
    anc = self.leaves
    var hashes [][]string
    for l := 0; len(anc) > 0; l++ {
        var nodes []*Node
        hash := []string{""}
        for i, n := range anc {
            hash = append(hash, fmt.Sprintf("%v|%v", hashstr(n.left), hashstr(n.right)))
            if i%2 == 0 && n.parent != nil {
                nodes = append(nodes, n.parent)
            }
        }
        hash = append(hash, "")
        hashes = append(hashes, hash)
        anc = nodes
    }
    hashes = append(hashes, []string{"", fmt.Sprintf("%v", hashstr(hash)), ""})
    total := 60
    del := "                             "
    var rows []string
    for i := len(hashes) - 1; i >= 0; i-- {
        var textlen int
        hash := hashes[i]
        for _, s := range hash {
            textlen += len(s)
        }
        if total < textlen {
            total = textlen + len(hash)
        }
        delsize := (total - textlen) / (len(hash) - 1)
        if delsize > len(del) {
            delsize = len(del)
        }
        row := fmt.Sprintf("%v: %v", len(hashes)-i-1, strings.Join(hash, del[:delsize]))
        rows = append(rows, row)

    }
    rows = append(rows, strings.Join(left, "  "))
    rows = append(rows, strings.Join(right, "  "))
    return strings.Join(rows, "\n") + "\n"
}

// NewTree initialises the Tree by building up the nodes of a BMT
// segment size is stipulated to be the size of the hash
// segmentCount needs to be positive integer and does not need to be
// a power of two and can even be an odd number
// segmentSize * segmentCount determines the maximum chunk size
// hashed using the tree
func NewTree(hasher BaseHasher, segmentSize, segmentCount int) *Tree {
    n := NewNode(0, 0, nil)
    n.root = true
    prevlevel := []*Node{n}
    // iterate over levels and creates 2^level nodes
    level := 1
    count := 2
    for d := 1; d <= depth(segmentCount); d++ {
        nodes := make([]*Node, count)
        for i := 0; i < len(nodes); i++ {
            parent := prevlevel[i/2]
            t := NewNode(level, i, parent)
            nodes[i] = t
        }
        prevlevel = nodes
        level++
        count *= 2
    }
    // the datanode level is the nodes on the last level where
    return &Tree{
        leaves: prevlevel,
    }
}

// methods needed by hash.Hash

// Size returns the size
func (self *Hasher) Size() int {
    return self.size
}

// BlockSize returns the block size
func (self *Hasher) BlockSize() int {
    return self.blocksize
}

// Sum returns the hash of the buffer
// hash.Hash interface Sum method appends the byte slice to the underlying
// data before it calculates and returns the hash of the chunk
func (self *Hasher) Sum(b []byte) (r []byte) {
    t := self.bmt
    i := self.cur
    n := t.leaves[i]
    j := i
    // must run strictly before all nodes calculate
    // datanodes are guaranteed to have a parent
    if len(self.segment) > self.size && i > 0 && n.parent != nil {
        n = n.parent
    } else {
        i *= 2
    }
    d := self.finalise(n, i)
    self.writeSegment(j, self.segment, d)
    c := <-self.result
    self.releaseTree()

    // sha3(length + BMT(pure_chunk))
    if self.blockLength == nil {
        return c
    }
    res := self.pool.hasher()
    res.Reset()
    res.Write(self.blockLength)
    res.Write(c)
    return res.Sum(nil)
}

// Hasher implements the SwarmHash interface

// Hash waits for the hasher result and returns it
// caller must call this on a BMT Hasher being written to
func (self *Hasher) Hash() []byte {
    return <-self.result
}

// Hasher implements the io.Writer interface

// Write fills the buffer to hash
// with every full segment complete launches a hasher go routine
// that shoots up the BMT
func (self *Hasher) Write(b []byte) (int, error) {
    l := len(b)
    if l <= 0 {
        return 0, nil
    }
    s := self.segment
    i := self.cur
    count := (self.count + 1) / 2
    need := self.count*self.size - self.cur*2*self.size
    size := self.size
    if need > size {
        size *= 2
    }
    if l < need {
        need = l
    }
    // calculate missing bit to complete current open segment
    rest := size - len(s)
    if need < rest {
        rest = need
    }
    s = append(s, b[:rest]...)
    need -= rest
    // read full segments and the last possibly partial segment
    for need > 0 && i < count-1 {
        // push all finished chunks we read
        self.writeSegment(i, s, self.depth)
        need -= size
        if need < 0 {
            size += need
        }
        s = b[rest : rest+size]
        rest += size
        i++
    }
    self.segment = s
    self.cur = i
    // otherwise, we can assume len(s) == 0, so all buffer is read and chunk is not yet full
    return l, nil
}

// Hasher implements the io.ReaderFrom interface

// ReadFrom reads from io.Reader and appends to the data to hash using Write
// it reads so that chunk to hash is maximum length or reader reaches EOF
// caller must Reset the hasher prior to call
func (self *Hasher) ReadFrom(r io.Reader) (m int64, err error) {
    bufsize := self.size*self.count - self.size*self.cur - len(self.segment)
    buf := make([]byte, bufsize)
    var read int
    for {
        var n int
        n, err = r.Read(buf)
        read += n
        if err == io.EOF || read == len(buf) {
            hash := self.Sum(buf[:n])
            if read == len(buf) {
                err = NewEOC(hash)
            }
            break
        }
        if err != nil {
            break
        }
        n, err = self.Write(buf[:n])
        if err != nil {
            break
        }
    }
    return int64(read), err
}

// Reset needs to be called before writing to the hasher
func (self *Hasher) Reset() {
    self.getTree()
    self.blockLength = nil
}

// Hasher implements the SwarmHash interface

// ResetWithLength needs to be called before writing to the hasher
// the argument is supposed to be the byte slice binary representation of
// the legth of the data subsumed under the hash
func (self *Hasher) ResetWithLength(l []byte) {
    self.Reset()
    self.blockLength = l

}

// Release gives back the Tree to the pool whereby it unlocks
// it resets tree, segment and index
func (self *Hasher) releaseTree() {
    if self.bmt != nil {
        n := self.bmt.leaves[self.cur]
        for ; n != nil; n = n.parent {
            n.unbalanced = false
            if n.parent != nil {
                n.root = false
            }
        }
        self.pool.Release(self.bmt)
        self.bmt = nil

    }
    self.cur = 0
    self.segment = nil
}

func (self *Hasher) writeSegment(i int, s []byte, d int) {
    h := self.pool.hasher()
    n := self.bmt.leaves[i]

    if len(s) > self.size && n.parent != nil {
        go func() {
            h.Reset()
            h.Write(s)
            s = h.Sum(nil)

            if n.root {
                self.result <- s
                return
            }
            self.run(n.parent, h, d, n.index, s)
        }()
        return
    }
    go self.run(n, h, d, i*2, s)
}

func (self *Hasher) run(n *Node, h hash.Hash, d int, i int, s []byte) {
    isLeft := i%2 == 0
    for {
        if isLeft {
            n.left = s
        } else {
            n.right = s
        }
        if !n.unbalanced && n.toggle() {
            return
        }
        if !n.unbalanced || !isLeft || i == 0 && d == 0 {
            h.Reset()
            h.Write(n.left)
            h.Write(n.right)
            s = h.Sum(nil)

        } else {
            s = append(n.left, n.right...)
        }

        self.hash = s
        if n.root {
            self.result <- s
            return
        }

        isLeft = n.isLeft
        n = n.parent
        i++
    }
}

// getTree obtains a BMT resource by reserving one from the pool
func (self *Hasher) getTree() *Tree {
    if self.bmt != nil {
        return self.bmt
    }
    t := self.pool.Reserve()
    self.bmt = t
    return t
}

// atomic bool toggle implementing a concurrent reusable 2-state object
// atomic addint with %2 implements atomic bool toggle
// it returns true if the toggler just put it in the active/waiting state
func (self *Node) toggle() bool {
    return atomic.AddInt32(&self.state, 1)%2 == 1
}

func hashstr(b []byte) string {
    end := len(b)
    if end > 4 {
        end = 4
    }
    return fmt.Sprintf("%x", b[:end])
}

func depth(n int) (d int) {
    for l := (n - 1) / 2; l > 0; l /= 2 {
        d++
    }
    return d
}

// finalise is following the zigzags on the tree belonging
// to the final datasegment
func (self *Hasher) finalise(n *Node, i int) (d int) {
    isLeft := i%2 == 0
    for {
        // when the final segment's path is going via left segments
        // the incoming data is pushed to the parent upon pulling the left
        // we do not need toogle the state since this condition is
        // detectable
        n.unbalanced = isLeft
        n.right = nil
        if n.initial {
            n.root = true
            return d
        }
        isLeft = n.isLeft
        n = n.parent
        d++
    }
}

// EOC (end of chunk) implements the error interface
type EOC struct {
    Hash []byte // read the hash of the chunk off the error
}

// Error returns the error string
func (self *EOC) Error() string {
    return fmt.Sprintf("hasher limit reached, chunk hash: %x", self.Hash)
}

// NewEOC creates new end of chunk error with the hash
func NewEOC(hash []byte) *EOC {
    return &EOC{hash}
}