// Copyright 2014 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. // Package trie implements Merkle Patricia Tries. package trie import ( "bytes" "errors" "fmt" "hash" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/crypto/sha3" "github.com/ethereum/go-ethereum/logger" "github.com/ethereum/go-ethereum/logger/glog" "github.com/ethereum/go-ethereum/rlp" ) const defaultCacheCapacity = 800 var ( // The global cache stores decoded trie nodes by hash as they get loaded. globalCache = newARC(defaultCacheCapacity) // This is the known root hash of an empty trie. emptyRoot = common.HexToHash("56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421") // This is the known hash of an empty state trie entry. emptyState = crypto.Sha3Hash(nil) ) var ErrMissingRoot = errors.New("missing root node") // Database must be implemented by backing stores for the trie. type Database interface { DatabaseWriter // Get returns the value for key from the database. Get(key []byte) (value []byte, err error) } // DatabaseWriter wraps the Put method of a backing store for the trie. type DatabaseWriter interface { // Put stores the mapping key->value in the database. // Implementations must not hold onto the value bytes, the trie // will reuse the slice across calls to Put. Put(key, value []byte) error } // Trie is a Merkle Patricia Trie. // The zero value is an empty trie with no database. // Use New to create a trie that sits on top of a database. // // Trie is not safe for concurrent use. type Trie struct { root node db Database *hasher } // New creates a trie with an existing root node from db. // // If root is the zero hash or the sha3 hash of an empty string, the // trie is initially empty and does not require a database. Otherwise, // New will panics if db is nil or root does not exist in the // database. Accessing the trie loads nodes from db on demand. func New(root common.Hash, db Database) (*Trie, error) { trie := &Trie{db: db} if (root != common.Hash{}) && root != emptyRoot { if db == nil { panic("trie.New: cannot use existing root without a database") } if v, _ := trie.db.Get(root[:]); len(v) == 0 { return nil, ErrMissingRoot } trie.root = hashNode(root.Bytes()) } return trie, nil } // Iterator returns an iterator over all mappings in the trie. func (t *Trie) Iterator() *Iterator { return NewIterator(t) } // Get returns the value for key stored in the trie. // The value bytes must not be modified by the caller. func (t *Trie) Get(key []byte) []byte { key = compactHexDecode(key) tn := t.root for len(key) > 0 { switch n := tn.(type) { case shortNode: if len(key) < len(n.Key) || !bytes.Equal(n.Key, key[:len(n.Key)]) { return nil } tn = n.Val key = key[len(n.Key):] case fullNode: tn = n[key[0]] key = key[1:] case nil: return nil case hashNode: tn = t.resolveHash(n) default: panic(fmt.Sprintf("%T: invalid node: %v", tn, tn)) } } return tn.(valueNode) } // Update associates key with value in the trie. Subsequent calls to // Get will return value. If value has length zero, any existing value // is deleted from the trie and calls to Get will return nil. // // The value bytes must not be modified by the caller while they are // stored in the trie. func (t *Trie) Update(key, value []byte) { k := compactHexDecode(key) if len(value) != 0 { t.root = t.insert(t.root, k, valueNode(value)) } else { t.root = t.delete(t.root, k) } } func (t *Trie) insert(n node, key []byte, value node) node { if len(key) == 0 { return value } switch n := n.(type) { case shortNode: matchlen := prefixLen(key, n.Key) // If the whole key matches, keep this short node as is // and only update the value. if matchlen == len(n.Key) { return shortNode{n.Key, t.insert(n.Val, key[matchlen:], value)} } // Otherwise branch out at the index where they differ. var branch fullNode branch[n.Key[matchlen]] = t.insert(nil, n.Key[matchlen+1:], n.Val) branch[key[matchlen]] = t.insert(nil, key[matchlen+1:], value) // Replace this shortNode with the branch if it occurs at index 0. if matchlen == 0 { return branch } // Otherwise, replace it with a short node leading up to the branch. return shortNode{key[:matchlen], branch} case fullNode: n[key[0]] = t.insert(n[key[0]], key[1:], value) return n case nil: return shortNode{key, value} case hashNode: // We've hit a part of the trie that isn't loaded yet. Load // the node and insert into it. This leaves all child nodes on // the path to the value in the trie. // // TODO: track whether insertion changed the value and keep // n as a hash node if it didn't. return t.insert(t.resolveHash(n), key, value) default: panic(fmt.Sprintf("%T: invalid node: %v", n, n)) } } // Delete removes any existing value for key from the trie. func (t *Trie) Delete(key []byte) { k := compactHexDecode(key) t.root = t.delete(t.root, k) } // delete returns the new root of the trie with key deleted. // It reduces the trie to minimal form by simplifying // nodes on the way up after deleting recursively. func (t *Trie) delete(n node, key []byte) node { switch n := n.(type) { case shortNode: matchlen := prefixLen(key, n.Key) if matchlen < len(n.Key) { return n // don't replace n on mismatch } if matchlen == len(key) { return nil // remove n entirely for whole matches } // The key is longer than n.Key. Remove the remaining suffix // from the subtrie. Child can never be nil here since the // subtrie must contain at least two other values with keys // longer than n.Key. child := t.delete(n.Val, key[len(n.Key):]) switch child := child.(type) { case shortNode: // Deleting from the subtrie reduced it to another // short node. Merge the nodes to avoid creating a // shortNode{..., shortNode{...}}. Use concat (which // always creates a new slice) instead of append to // avoid modifying n.Key since it might be shared with // other nodes. return shortNode{concat(n.Key, child.Key...), child.Val} default: return shortNode{n.Key, child} } case fullNode: n[key[0]] = t.delete(n[key[0]], key[1:]) // Check how many non-nil entries are left after deleting and // reduce the full node to a short node if only one entry is // left. Since n must've contained at least two children // before deletion (otherwise it would not be a full node) n // can never be reduced to nil. // // When the loop is done, pos contains the index of the single // value that is left in n or -2 if n contains at least two // values. pos := -1 for i, cld := range n { if cld != nil { if pos == -1 { pos = i } else { pos = -2 break } } } if pos >= 0 { if pos != 16 { // If the remaining entry is a short node, it replaces // n and its key gets the missing nibble tacked to the // front. This avoids creating an invalid // shortNode{..., shortNode{...}}. Since the entry // might not be loaded yet, resolve it just for this // check. cnode := t.resolve(n[pos]) if cnode, ok := cnode.(shortNode); ok { k := append([]byte{byte(pos)}, cnode.Key...) return shortNode{k, cnode.Val} } } // Otherwise, n is replaced by a one-nibble short node // containing the child. return shortNode{[]byte{byte(pos)}, n[pos]} } // n still contains at least two values and cannot be reduced. return n case nil: return nil case hashNode: // We've hit a part of the trie that isn't loaded yet. Load // the node and delete from it. This leaves all child nodes on // the path to the value in the trie. // // TODO: track whether deletion actually hit a key and keep // n as a hash node if it didn't. return t.delete(t.resolveHash(n), key) default: panic(fmt.Sprintf("%T: invalid node: %v (%v)", n, n, key)) } } func concat(s1 []byte, s2 ...byte) []byte { r := make([]byte, len(s1)+len(s2)) copy(r, s1) copy(r[len(s1):], s2) return r } func (t *Trie) resolve(n node) node { if n, ok := n.(hashNode); ok { return t.resolveHash(n) } return n } func (t *Trie) resolveHash(n hashNode) node { if v, ok := globalCache.Get(n); ok { return v } enc, err := t.db.Get(n) if err != nil || enc == nil { // TODO: This needs to be improved to properly distinguish errors. // Disk I/O errors shouldn't produce nil (and cause a // consensus failure or weird crash), but it is unclear how // they could be handled because the entire stack above the trie isn't // prepared to cope with missing state nodes. if glog.V(logger.Error) { glog.Errorf("Dangling hash node ref %x: %v", n, err) } return nil } dec := mustDecodeNode(n, enc) if dec != nil { globalCache.Put(n, dec) } return dec } // Root returns the root hash of the trie. // Deprecated: use Hash instead. func (t *Trie) Root() []byte { return t.Hash().Bytes() } // Hash returns the root hash of the trie. It does not write to the // database and can be used even if the trie doesn't have one. func (t *Trie) Hash() common.Hash { root, _ := t.hashRoot(nil) return common.BytesToHash(root.(hashNode)) } // Commit writes all nodes to the trie's database. // Nodes are stored with their sha3 hash as the key. // // Committing flushes nodes from memory. // Subsequent Get calls will load nodes from the database. func (t *Trie) Commit() (root common.Hash, err error) { if t.db == nil { panic("Commit called on trie with nil database") } return t.CommitTo(t.db) } // CommitTo writes all nodes to the given database. // Nodes are stored with their sha3 hash as the key. // // Committing flushes nodes from memory. Subsequent Get calls will // load nodes from the trie's database. Calling code must ensure that // the changes made to db are written back to the trie's attached // database before using the trie. func (t *Trie) CommitTo(db DatabaseWriter) (root common.Hash, err error) { n, err := t.hashRoot(db) if err != nil { return (common.Hash{}), err } t.root = n return common.BytesToHash(n.(hashNode)), nil } func (t *Trie) hashRoot(db DatabaseWriter) (node, error) { if t.root == nil { return hashNode(emptyRoot.Bytes()), nil } if t.hasher == nil { t.hasher = newHasher() } return t.hasher.hash(t.root, db, true) } type hasher struct { tmp *bytes.Buffer sha hash.Hash } func newHasher() *hasher { return &hasher{tmp: new(bytes.Buffer), sha: sha3.NewKeccak256()} } func (h *hasher) hash(n node, db DatabaseWriter, force bool) (node, error) { hashed, err := h.replaceChildren(n, db) if err != nil { return hashNode{}, err } if n, err = h.store(hashed, db, force); err != nil { return hashNode{}, err } return n, nil } // hashChildren replaces child nodes of n with their hashes if the encoded // size of the child is larger than a hash. func (h *hasher) replaceChildren(n node, db DatabaseWriter) (node, error) { var err error switch n := n.(type) { case shortNode: n.Key = compactEncode(n.Key) if _, ok := n.Val.(valueNode); !ok { if n.Val, err = h.hash(n.Val, db, false); err != nil { return n, err } } if n.Val == nil { // Ensure that nil children are encoded as empty strings. n.Val = valueNode(nil) } return n, nil case fullNode: for i := 0; i < 16; i++ { if n[i] != nil { if n[i], err = h.hash(n[i], db, false); err != nil { return n, err } } else { // Ensure that nil children are encoded as empty strings. n[i] = valueNode(nil) } } if n[16] == nil { n[16] = valueNode(nil) } return n, nil default: return n, nil } } func (h *hasher) store(n node, db DatabaseWriter, force bool) (node, error) { // Don't store hashes or empty nodes. if _, isHash := n.(hashNode); n == nil || isHash { return n, nil } h.tmp.Reset() if err := rlp.Encode(h.tmp, n); err != nil { panic("encode error: " + err.Error()) } if h.tmp.Len() < 32 && !force { // Nodes smaller than 32 bytes are stored inside their parent. return n, nil } // Larger nodes are replaced by their hash and stored in the database. h.sha.Reset() h.sha.Write(h.tmp.Bytes()) key := hashNode(h.sha.Sum(nil)) if db != nil { err := db.Put(key, h.tmp.Bytes()) return key, err } return key, nil }