// Copyright 2016 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package storage import ( "encoding/binary" "errors" "io" "sync" "time" ) /* The main idea of a pyramid chunker is to process the input data without knowing the entire size apriori. For this to be achieved, the chunker tree is built from the ground up until the data is exhausted. This opens up new aveneus such as easy append and other sort of modifications to the tree thereby avoiding duplication of data chunks. Below is an example of a two level chunks tree. The leaf chunks are called data chunks and all the above chunks are called tree chunks. The tree chunk above data chunks is level 0 and so on until it reaches the root tree chunk. T10 <- Tree chunk lvl1 | __________________________|_____________________________ / | | \ / | \ \ __T00__ ___T01__ ___T02__ ___T03__ <- Tree chunks lvl 0 / / \ / / \ / / \ / / \ / / \ / / \ / / \ / / \ D1 D2 ... D128 D1 D2 ... D128 D1 D2 ... D128 D1 D2 ... D128 <- Data Chunks The split function continuously read the data and creates data chunks and send them to storage. When certain no of data chunks are created (defaultBranches), a signal is sent to create a tree entry. When the level 0 tree entries reaches certain threshold (defaultBranches), another signal is sent to a tree entry one level up.. and so on... until only the data is exhausted AND only one tree entry is present in certain level. The key of tree entry is given out as the rootKey of the file. */ var ( errLoadingTreeRootChunk = errors.New("LoadTree Error: Could not load root chunk") errLoadingTreeChunk = errors.New("LoadTree Error: Could not load chunk") ) const ( ChunkProcessors = 8 DefaultBranches int64 = 128 splitTimeout = time.Minute * 5 ) const ( DataChunk = 0 TreeChunk = 1 ) type ChunkerParams struct { Branches int64 Hash string } func NewChunkerParams() *ChunkerParams { return &ChunkerParams{ Branches: DefaultBranches, Hash: SHA3Hash, } } // Entry to create a tree node type TreeEntry struct { level int branchCount int64 subtreeSize uint64 chunk []byte key []byte index int // used in append to indicate the index of existing tree entry updatePending bool // indicates if the entry is loaded from existing tree } func NewTreeEntry(pyramid *PyramidChunker) *TreeEntry { return &TreeEntry{ level: 0, branchCount: 0, subtreeSize: 0, chunk: make([]byte, pyramid.chunkSize+8), key: make([]byte, pyramid.hashSize), index: 0, updatePending: false, } } // Used by the hash processor to create a data/tree chunk and send to storage type chunkJob struct { key Key chunk []byte size int64 parentWg *sync.WaitGroup chunkType int // used to identify the tree related chunks for debugging chunkLvl int // leaf-1 is level 0 and goes upwards until it reaches root } type PyramidChunker struct { hashFunc SwarmHasher chunkSize int64 hashSize int64 branches int64 workerCount int64 workerLock sync.RWMutex } func NewPyramidChunker(params *ChunkerParams) (self *PyramidChunker) { self = &PyramidChunker{} self.hashFunc = MakeHashFunc(params.Hash) self.branches = params.Branches self.hashSize = int64(self.hashFunc().Size()) self.chunkSize = self.hashSize * self.branches self.workerCount = 0 return } func (self *PyramidChunker) Join(key Key, chunkC chan *Chunk) LazySectionReader { return &LazyChunkReader{ key: key, chunkC: chunkC, chunkSize: self.chunkSize, branches: self.branches, hashSize: self.hashSize, } } func (self *PyramidChunker) incrementWorkerCount() { self.workerLock.Lock() defer self.workerLock.Unlock() self.workerCount += 1 } func (self *PyramidChunker) getWorkerCount() int64 { self.workerLock.Lock() defer self.workerLock.Unlock() return self.workerCount } func (self *PyramidChunker) decrementWorkerCount() { self.workerLock.Lock() defer self.workerLock.Unlock() self.workerCount -= 1 } func (self *PyramidChunker) Split(data io.Reader, size int64, chunkC chan *Chunk, storageWG, processorWG *sync.WaitGroup) (Key, error) { jobC := make(chan *chunkJob, 2*ChunkProcessors) wg := &sync.WaitGroup{} errC := make(chan error) quitC := make(chan bool) rootKey := make([]byte, self.hashSize) chunkLevel := make([][]*TreeEntry, self.branches) wg.Add(1) go self.prepareChunks(false, chunkLevel, data, rootKey, quitC, wg, jobC, processorWG, chunkC, errC, storageWG) // closes internal error channel if all subprocesses in the workgroup finished go func() { // waiting for all chunks to finish wg.Wait() // if storage waitgroup is non-nil, we wait for storage to finish too if storageWG != nil { storageWG.Wait() } //We close errC here because this is passed down to 8 parallel routines underneath. // if a error happens in one of them.. that particular routine raises error... // once they all complete successfully, the control comes back and we can safely close this here. close(errC) }() defer close(quitC) select { case err := <-errC: if err != nil { return nil, err } case <-time.NewTimer(splitTimeout).C: } return rootKey, nil } func (self *PyramidChunker) Append(key Key, data io.Reader, chunkC chan *Chunk, storageWG, processorWG *sync.WaitGroup) (Key, error) { quitC := make(chan bool) rootKey := make([]byte, self.hashSize) chunkLevel := make([][]*TreeEntry, self.branches) // Load the right most unfinished tree chunks in every level self.loadTree(chunkLevel, key, chunkC, quitC) jobC := make(chan *chunkJob, 2*ChunkProcessors) wg := &sync.WaitGroup{} errC := make(chan error) wg.Add(1) go self.prepareChunks(true, chunkLevel, data, rootKey, quitC, wg, jobC, processorWG, chunkC, errC, storageWG) // closes internal error channel if all subprocesses in the workgroup finished go func() { // waiting for all chunks to finish wg.Wait() // if storage waitgroup is non-nil, we wait for storage to finish too if storageWG != nil { storageWG.Wait() } close(errC) }() defer close(quitC) select { case err := <-errC: if err != nil { return nil, err } case <-time.NewTimer(splitTimeout).C: } return rootKey, nil } func (self *PyramidChunker) processor(id int64, jobC chan *chunkJob, chunkC chan *Chunk, errC chan error, quitC chan bool, swg, wwg *sync.WaitGroup) { defer self.decrementWorkerCount() hasher := self.hashFunc() if wwg != nil { defer wwg.Done() } for { select { case job, ok := <-jobC: if !ok { return } self.processChunk(id, hasher, job, chunkC, swg) case <-quitC: return } } } func (self *PyramidChunker) processChunk(id int64, hasher SwarmHash, job *chunkJob, chunkC chan *Chunk, swg *sync.WaitGroup) { hasher.ResetWithLength(job.chunk[:8]) // 8 bytes of length hasher.Write(job.chunk[8:]) // minus 8 []byte length h := hasher.Sum(nil) newChunk := &Chunk{ Key: h, SData: job.chunk, Size: job.size, wg: swg, } // report hash of this chunk one level up (keys corresponds to the proper subslice of the parent chunk) copy(job.key, h) // send off new chunk to storage if chunkC != nil { if swg != nil { swg.Add(1) } } job.parentWg.Done() if chunkC != nil { chunkC <- newChunk } } func (self *PyramidChunker) loadTree(chunkLevel [][]*TreeEntry, key Key, chunkC chan *Chunk, quitC chan bool) error { // Get the root chunk to get the total size chunk := retrieve(key, chunkC, quitC) if chunk == nil { return errLoadingTreeRootChunk } //if data size is less than a chunk... add a parent with update as pending if chunk.Size <= self.chunkSize { newEntry := &TreeEntry{ level: 0, branchCount: 1, subtreeSize: uint64(chunk.Size), chunk: make([]byte, self.chunkSize+8), key: make([]byte, self.hashSize), index: 0, updatePending: true, } copy(newEntry.chunk[8:], chunk.Key) chunkLevel[0] = append(chunkLevel[0], newEntry) return nil } var treeSize int64 var depth int treeSize = self.chunkSize for ; treeSize < chunk.Size; treeSize *= self.branches { depth++ } // Add the root chunk entry branchCount := int64(len(chunk.SData)-8) / self.hashSize newEntry := &TreeEntry{ level: depth - 1, branchCount: branchCount, subtreeSize: uint64(chunk.Size), chunk: chunk.SData, key: key, index: 0, updatePending: true, } chunkLevel[depth-1] = append(chunkLevel[depth-1], newEntry) // Add the rest of the tree for lvl := depth - 1; lvl >= 1; lvl-- { //TODO(jmozah): instead of loading finished branches and then trim in the end, //avoid loading them in the first place for _, ent := range chunkLevel[lvl] { branchCount = int64(len(ent.chunk)-8) / self.hashSize for i := int64(0); i < branchCount; i++ { key := ent.chunk[8+(i*self.hashSize) : 8+((i+1)*self.hashSize)] newChunk := retrieve(key, chunkC, quitC) if newChunk == nil { return errLoadingTreeChunk } bewBranchCount := int64(len(newChunk.SData)-8) / self.hashSize newEntry := &TreeEntry{ level: lvl - 1, branchCount: bewBranchCount, subtreeSize: uint64(newChunk.Size), chunk: newChunk.SData, key: key, index: 0, updatePending: true, } chunkLevel[lvl-1] = append(chunkLevel[lvl-1], newEntry) } // We need to get only the right most unfinished branch.. so trim all finished branches if int64(len(chunkLevel[lvl-1])) >= self.branches { chunkLevel[lvl-1] = nil } } } return nil } func (self *PyramidChunker) prepareChunks(isAppend bool, chunkLevel [][]*TreeEntry, data io.Reader, rootKey []byte, quitC chan bool, wg *sync.WaitGroup, jobC chan *chunkJob, processorWG *sync.WaitGroup, chunkC chan *Chunk, errC chan error, storageWG *sync.WaitGroup) { defer wg.Done() chunkWG := &sync.WaitGroup{} totalDataSize := 0 // processorWG keeps track of workers spawned for hashing chunks if processorWG != nil { processorWG.Add(1) } self.incrementWorkerCount() go self.processor(self.workerCount, jobC, chunkC, errC, quitC, storageWG, processorWG) parent := NewTreeEntry(self) var unFinishedChunk *Chunk if isAppend && len(chunkLevel[0]) != 0 { lastIndex := len(chunkLevel[0]) - 1 ent := chunkLevel[0][lastIndex] if ent.branchCount < self.branches { parent = &TreeEntry{ level: 0, branchCount: ent.branchCount, subtreeSize: ent.subtreeSize, chunk: ent.chunk, key: ent.key, index: lastIndex, updatePending: true, } lastBranch := parent.branchCount - 1 lastKey := parent.chunk[8+lastBranch*self.hashSize : 8+(lastBranch+1)*self.hashSize] unFinishedChunk = retrieve(lastKey, chunkC, quitC) if unFinishedChunk.Size < self.chunkSize { parent.subtreeSize = parent.subtreeSize - uint64(unFinishedChunk.Size) parent.branchCount = parent.branchCount - 1 } else { unFinishedChunk = nil } } } for index := 0; ; index++ { var n int var err error chunkData := make([]byte, self.chunkSize+8) if unFinishedChunk != nil { copy(chunkData, unFinishedChunk.SData) n, err = data.Read(chunkData[8+unFinishedChunk.Size:]) n += int(unFinishedChunk.Size) unFinishedChunk = nil } else { n, err = data.Read(chunkData[8:]) } totalDataSize += n if err != nil { if err == io.EOF || err == io.ErrUnexpectedEOF { if parent.branchCount == 1 { // Data is exactly one chunk.. pick the last chunk key as root chunkWG.Wait() lastChunksKey := parent.chunk[8 : 8+self.hashSize] copy(rootKey, lastChunksKey) break } } else { close(quitC) break } } // Data ended in chunk boundary.. just signal to start bulding tree if n == 0 { self.buildTree(isAppend, chunkLevel, parent, chunkWG, jobC, quitC, true, rootKey) break } else { pkey := self.enqueueDataChunk(chunkData, uint64(n), parent, chunkWG, jobC, quitC) // update tree related parent data structures parent.subtreeSize += uint64(n) parent.branchCount++ // Data got exhausted... signal to send any parent tree related chunks if int64(n) < self.chunkSize { // only one data chunk .. so dont add any parent chunk if parent.branchCount <= 1 { chunkWG.Wait() copy(rootKey, pkey) break } self.buildTree(isAppend, chunkLevel, parent, chunkWG, jobC, quitC, true, rootKey) break } if parent.branchCount == self.branches { self.buildTree(isAppend, chunkLevel, parent, chunkWG, jobC, quitC, false, rootKey) parent = NewTreeEntry(self) } } workers := self.getWorkerCount() if int64(len(jobC)) > workers && workers < ChunkProcessors { if processorWG != nil { processorWG.Add(1) } self.incrementWorkerCount() go self.processor(self.workerCount, jobC, chunkC, errC, quitC, storageWG, processorWG) } } } func (self *PyramidChunker) buildTree(isAppend bool, chunkLevel [][]*TreeEntry, ent *TreeEntry, chunkWG *sync.WaitGroup, jobC chan *chunkJob, quitC chan bool, last bool, rootKey []byte) { chunkWG.Wait() self.enqueueTreeChunk(chunkLevel, ent, chunkWG, jobC, quitC, last) compress := false endLvl := self.branches for lvl := int64(0); lvl < self.branches; lvl++ { lvlCount := int64(len(chunkLevel[lvl])) if lvlCount >= self.branches { endLvl = lvl + 1 compress = true break } } if !compress && !last { return } // Wait for all the keys to be processed before compressing the tree chunkWG.Wait() for lvl := int64(ent.level); lvl < endLvl; lvl++ { lvlCount := int64(len(chunkLevel[lvl])) if lvlCount == 1 && last { copy(rootKey, chunkLevel[lvl][0].key) return } for startCount := int64(0); startCount < lvlCount; startCount += self.branches { endCount := startCount + self.branches if endCount > lvlCount { endCount = lvlCount } var nextLvlCount int64 var tempEntry *TreeEntry if len(chunkLevel[lvl+1]) > 0 { nextLvlCount = int64(len(chunkLevel[lvl+1]) - 1) tempEntry = chunkLevel[lvl+1][nextLvlCount] } if isAppend && tempEntry != nil && tempEntry.updatePending { updateEntry := &TreeEntry{ level: int(lvl + 1), branchCount: 0, subtreeSize: 0, chunk: make([]byte, self.chunkSize+8), key: make([]byte, self.hashSize), index: int(nextLvlCount), updatePending: true, } for index := int64(0); index < lvlCount; index++ { updateEntry.branchCount++ updateEntry.subtreeSize += chunkLevel[lvl][index].subtreeSize copy(updateEntry.chunk[8+(index*self.hashSize):8+((index+1)*self.hashSize)], chunkLevel[lvl][index].key[:self.hashSize]) } self.enqueueTreeChunk(chunkLevel, updateEntry, chunkWG, jobC, quitC, last) } else { noOfBranches := endCount - startCount newEntry := &TreeEntry{ level: int(lvl + 1), branchCount: noOfBranches, subtreeSize: 0, chunk: make([]byte, (noOfBranches*self.hashSize)+8), key: make([]byte, self.hashSize), index: int(nextLvlCount), updatePending: false, } index := int64(0) for i := startCount; i < endCount; i++ { entry := chunkLevel[lvl][i] newEntry.subtreeSize += entry.subtreeSize copy(newEntry.chunk[8+(index*self.hashSize):8+((index+1)*self.hashSize)], entry.key[:self.hashSize]) index++ } self.enqueueTreeChunk(chunkLevel, newEntry, chunkWG, jobC, quitC, last) } } if !isAppend { chunkWG.Wait() if compress { chunkLevel[lvl] = nil } } } } func (self *PyramidChunker) enqueueTreeChunk(chunkLevel [][]*TreeEntry, ent *TreeEntry, chunkWG *sync.WaitGroup, jobC chan *chunkJob, quitC chan bool, last bool) { if ent != nil { // wait for data chunks to get over before processing the tree chunk if last { chunkWG.Wait() } binary.LittleEndian.PutUint64(ent.chunk[:8], ent.subtreeSize) ent.key = make([]byte, self.hashSize) chunkWG.Add(1) select { case jobC <- &chunkJob{ent.key, ent.chunk[:ent.branchCount*self.hashSize+8], int64(ent.subtreeSize), chunkWG, TreeChunk, 0}: case <-quitC: } // Update or append based on weather it is a new entry or being reused if ent.updatePending { chunkWG.Wait() chunkLevel[ent.level][ent.index] = ent } else { chunkLevel[ent.level] = append(chunkLevel[ent.level], ent) } } } func (self *PyramidChunker) enqueueDataChunk(chunkData []byte, size uint64, parent *TreeEntry, chunkWG *sync.WaitGroup, jobC chan *chunkJob, quitC chan bool) Key { binary.LittleEndian.PutUint64(chunkData[:8], size) pkey := parent.chunk[8+parent.branchCount*self.hashSize : 8+(parent.branchCount+1)*self.hashSize] chunkWG.Add(1) select { case jobC <- &chunkJob{pkey, chunkData[:size+8], int64(size), chunkWG, DataChunk, -1}: case <-quitC: } return pkey }