package ethvm import ( "fmt" "math/big" "github.com/ethereum/eth-go/ethcrypto" "github.com/ethereum/eth-go/ethutil" ) type Vm struct { env Environment err error depth int } func New(env Environment, typ Type) VirtualMachine { switch typ { case DebugVmTy: return NewDebugVm(env) default: return &Vm{env: env} } } func (self *Vm) RunClosure(closure *Closure) (ret []byte, err error) { self.depth++ // Recover from any require exception defer func() { if r := recover(); r != nil { ret = closure.Return(nil) err = fmt.Errorf("%v", r) } }() // Don't bother with the execution if there's no code. if len(closure.Code) == 0 { return closure.Return(nil), nil } var ( op OpCode mem = &Memory{} stack = NewStack() pc = 0 step = 0 require = func(m int) { if stack.Len() < m { panic(fmt.Sprintf("%04v (%v) stack err size = %d, required = %d", pc, op, stack.Len(), m)) } } ) for { // The base for all big integer arithmetic base := new(big.Int) step++ // Get the memory location of pc op := closure.GetOp(pc) gas := new(big.Int) addStepGasUsage := func(amount *big.Int) { gas.Add(gas, amount) } addStepGasUsage(GasStep) var newMemSize *big.Int = ethutil.Big0 switch op { case STOP: gas.Set(ethutil.Big0) case SUICIDE: gas.Set(ethutil.Big0) case SLOAD: gas.Set(GasSLoad) case SSTORE: var mult *big.Int y, x := stack.Peekn() val := closure.GetStorage(x) if val.BigInt().Cmp(ethutil.Big0) == 0 && len(y.Bytes()) > 0 { mult = ethutil.Big2 } else if val.BigInt().Cmp(ethutil.Big0) != 0 && len(y.Bytes()) == 0 { mult = ethutil.Big0 } else { mult = ethutil.Big1 } gas = new(big.Int).Mul(mult, GasSStore) case BALANCE: gas.Set(GasBalance) case MSTORE: require(2) newMemSize = calcMemSize(stack.Peek(), u256(32)) case MLOAD: require(1) newMemSize = calcMemSize(stack.Peek(), u256(32)) case MSTORE8: require(2) newMemSize = calcMemSize(stack.Peek(), u256(1)) case RETURN: require(2) newMemSize = calcMemSize(stack.Peek(), stack.data[stack.Len()-2]) case SHA3: require(2) gas.Set(GasSha) newMemSize = calcMemSize(stack.Peek(), stack.data[stack.Len()-2]) case CALLDATACOPY: require(2) newMemSize = calcMemSize(stack.Peek(), stack.data[stack.Len()-3]) case CODECOPY: require(3) newMemSize = calcMemSize(stack.Peek(), stack.data[stack.Len()-3]) case EXTCODECOPY: require(4) newMemSize = calcMemSize(stack.data[stack.Len()-2], stack.data[stack.Len()-4]) case CALL, CALLCODE: require(7) gas.Set(GasCall) addStepGasUsage(stack.data[stack.Len()-1]) x := calcMemSize(stack.data[stack.Len()-6], stack.data[stack.Len()-7]) y := calcMemSize(stack.data[stack.Len()-4], stack.data[stack.Len()-5]) newMemSize = ethutil.BigMax(x, y) case CREATE: require(3) gas.Set(GasCreate) newMemSize = calcMemSize(stack.data[stack.Len()-2], stack.data[stack.Len()-3]) } if newMemSize.Cmp(ethutil.Big0) > 0 { newMemSize.Add(newMemSize, u256(31)) newMemSize.Div(newMemSize, u256(32)) newMemSize.Mul(newMemSize, u256(32)) if newMemSize.Cmp(u256(int64(mem.Len()))) > 0 { memGasUsage := new(big.Int).Sub(newMemSize, u256(int64(mem.Len()))) memGasUsage.Mul(GasMemory, memGasUsage) memGasUsage.Div(memGasUsage, u256(32)) addStepGasUsage(memGasUsage) } } if !closure.UseGas(gas) { err := fmt.Errorf("Insufficient gas for %v. req %v has %v", op, gas, closure.Gas) closure.UseGas(closure.Gas) return closure.Return(nil), err } mem.Resize(newMemSize.Uint64()) switch op { // 0x20 range case ADD: require(2) x, y := stack.Popn() base.Add(y, x) To256(base) // Pop result back on the stack stack.Push(base) case SUB: require(2) x, y := stack.Popn() base.Sub(y, x) To256(base) // Pop result back on the stack stack.Push(base) case MUL: require(2) x, y := stack.Popn() base.Mul(y, x) To256(base) // Pop result back on the stack stack.Push(base) case DIV: require(2) x, y := stack.Popn() if x.Cmp(ethutil.Big0) != 0 { base.Div(y, x) } To256(base) // Pop result back on the stack stack.Push(base) case SDIV: require(2) x, y := stack.Popn() if x.Cmp(ethutil.Big0) != 0 { base.Div(y, x) } To256(base) // Pop result back on the stack stack.Push(base) case MOD: require(2) x, y := stack.Popn() base.Mod(y, x) To256(base) stack.Push(base) case SMOD: require(2) x, y := stack.Popn() base.Mod(y, x) To256(base) stack.Push(base) case EXP: require(2) x, y := stack.Popn() base.Exp(y, x, Pow256) To256(base) stack.Push(base) case NEG: require(1) base.Sub(Pow256, stack.Pop()) stack.Push(base) case LT: require(2) x, y := stack.Popn() // x < y if y.Cmp(x) < 0 { stack.Push(ethutil.BigTrue) } else { stack.Push(ethutil.BigFalse) } case GT: require(2) x, y := stack.Popn() // x > y if y.Cmp(x) > 0 { stack.Push(ethutil.BigTrue) } else { stack.Push(ethutil.BigFalse) } case SLT: require(2) x, y := stack.Popn() // x < y if y.Cmp(x) < 0 { stack.Push(ethutil.BigTrue) } else { stack.Push(ethutil.BigFalse) } case SGT: require(2) x, y := stack.Popn() // x > y if y.Cmp(x) > 0 { stack.Push(ethutil.BigTrue) } else { stack.Push(ethutil.BigFalse) } case EQ: require(2) x, y := stack.Popn() // x == y if x.Cmp(y) == 0 { stack.Push(ethutil.BigTrue) } else { stack.Push(ethutil.BigFalse) } case NOT: require(1) x := stack.Pop() if x.Cmp(ethutil.BigFalse) > 0 { stack.Push(ethutil.BigFalse) } else { stack.Push(ethutil.BigTrue) } // 0x10 range case AND: require(2) x, y := stack.Popn() stack.Push(base.And(y, x)) case OR: require(2) x, y := stack.Popn() stack.Push(base.Or(y, x)) case XOR: require(2) x, y := stack.Popn() stack.Push(base.Xor(y, x)) case BYTE: require(2) val, th := stack.Popn() if th.Cmp(big.NewInt(32)) < 0 && th.Cmp(big.NewInt(int64(len(val.Bytes())))) < 0 { byt := big.NewInt(int64(ethutil.LeftPadBytes(val.Bytes(), 32)[th.Int64()])) stack.Push(byt) } else { stack.Push(ethutil.BigFalse) } case ADDMOD: require(3) x := stack.Pop() y := stack.Pop() z := stack.Pop() base.Add(x, y) base.Mod(base, z) To256(base) stack.Push(base) case MULMOD: require(3) x := stack.Pop() y := stack.Pop() z := stack.Pop() base.Mul(x, y) base.Mod(base, z) To256(base) stack.Push(base) // 0x20 range case SHA3: require(2) size, offset := stack.Popn() data := ethcrypto.Sha3(mem.Get(offset.Int64(), size.Int64())) stack.Push(ethutil.BigD(data)) // 0x30 range case ADDRESS: stack.Push(ethutil.BigD(closure.Address())) case BALANCE: require(1) addr := stack.Pop().Bytes() balance := self.env.State().GetBalance(addr) stack.Push(balance) case ORIGIN: origin := self.env.Origin() stack.Push(ethutil.BigD(origin)) case CALLER: caller := closure.caller.Address() stack.Push(ethutil.BigD(caller)) case CALLVALUE: value := self.env.Value() stack.Push(value) case CALLDATALOAD: require(1) var ( offset = stack.Pop() data = make([]byte, 32) lenData = big.NewInt(int64(len(closure.Args))) ) if lenData.Cmp(offset) >= 0 { length := new(big.Int).Add(offset, ethutil.Big32) length = ethutil.BigMin(length, lenData) copy(data, closure.Args[offset.Int64():length.Int64()]) } stack.Push(ethutil.BigD(data)) case CALLDATASIZE: l := int64(len(closure.Args)) stack.Push(big.NewInt(l)) case CALLDATACOPY: var ( size = int64(len(closure.Args)) mOff = stack.Pop().Int64() cOff = stack.Pop().Int64() l = stack.Pop().Int64() ) if cOff > size { cOff = 0 l = 0 } else if cOff+l > size { l = 0 } code := closure.Args[cOff : cOff+l] mem.Set(mOff, l, code) case CODESIZE, EXTCODESIZE: var code []byte if op == EXTCODECOPY { addr := stack.Pop().Bytes() code = self.env.State().GetCode(addr) } else { code = closure.Code } l := big.NewInt(int64(len(code))) stack.Push(l) case CODECOPY, EXTCODECOPY: var code []byte if op == EXTCODECOPY { addr := stack.Pop().Bytes() code = self.env.State().GetCode(addr) } else { code = closure.Code } var ( size = int64(len(code)) mOff = stack.Pop().Int64() cOff = stack.Pop().Int64() l = stack.Pop().Int64() ) if cOff > size { cOff = 0 l = 0 } else if cOff+l > size { l = 0 } codeCopy := code[cOff : cOff+l] mem.Set(mOff, l, codeCopy) case GASPRICE: stack.Push(closure.Price) // 0x40 range case PREVHASH: prevHash := self.env.PrevHash() stack.Push(ethutil.BigD(prevHash)) case COINBASE: coinbase := self.env.Coinbase() stack.Push(ethutil.BigD(coinbase)) case TIMESTAMP: time := self.env.Time() stack.Push(big.NewInt(time)) case NUMBER: number := self.env.BlockNumber() stack.Push(number) case DIFFICULTY: difficulty := self.env.Difficulty() stack.Push(difficulty) case GASLIMIT: // TODO stack.Push(big.NewInt(0)) // 0x50 range case PUSH1, PUSH2, PUSH3, PUSH4, PUSH5, PUSH6, PUSH7, PUSH8, PUSH9, PUSH10, PUSH11, PUSH12, PUSH13, PUSH14, PUSH15, PUSH16, PUSH17, PUSH18, PUSH19, PUSH20, PUSH21, PUSH22, PUSH23, PUSH24, PUSH25, PUSH26, PUSH27, PUSH28, PUSH29, PUSH30, PUSH31, PUSH32: a := int(op - PUSH1 + 1) val := ethutil.BigD(closure.GetBytes(int(pc+1), a)) // Push value to stack stack.Push(val) pc += a step += int(op) - int(PUSH1) + 1 case POP: require(1) stack.Pop() case DUP1, DUP2, DUP3, DUP4, DUP5, DUP6, DUP7, DUP8, DUP9, DUP10, DUP11, DUP12, DUP13, DUP14, DUP15, DUP16: n := int(op - DUP1 + 1) stack.Dupn(n) case SWAP1, SWAP2, SWAP3, SWAP4, SWAP5, SWAP6, SWAP7, SWAP8, SWAP9, SWAP10, SWAP11, SWAP12, SWAP13, SWAP14, SWAP15, SWAP16: n := int(op - SWAP1 + 2) stack.Swapn(n) case MLOAD: require(1) offset := stack.Pop() val := ethutil.BigD(mem.Get(offset.Int64(), 32)) stack.Push(val) case MSTORE: // Store the value at stack top-1 in to memory at location stack top require(2) // Pop value of the stack val, mStart := stack.Popn() mem.Set(mStart.Int64(), 32, ethutil.BigToBytes(val, 256)) case MSTORE8: require(2) off := stack.Pop() val := stack.Pop() mem.store[off.Int64()] = byte(val.Int64() & 0xff) case SLOAD: require(1) loc := stack.Pop() val := closure.GetStorage(loc) stack.Push(val.BigInt()) case SSTORE: require(2) val, loc := stack.Popn() closure.SetStorage(loc, ethutil.NewValue(val)) closure.message.AddStorageChange(loc.Bytes()) case JUMP: require(1) pc = int(stack.Pop().Int64()) // Reduce pc by one because of the increment that's at the end of this for loop continue case JUMPI: require(2) cond, pos := stack.Popn() if cond.Cmp(ethutil.BigTrue) >= 0 { pc = int(pos.Int64()) if closure.GetOp(int(pc)) != JUMPDEST { return closure.Return(nil), fmt.Errorf("JUMP missed JUMPDEST %v", pc) } continue } case JUMPDEST: case PC: stack.Push(u256(int64(pc))) case MSIZE: stack.Push(big.NewInt(int64(mem.Len()))) case GAS: stack.Push(closure.Gas) // 0x60 range case CREATE: require(3) var ( err error value = stack.Pop() size, offset = stack.Popn() input = mem.Get(offset.Int64(), size.Int64()) gas = new(big.Int).Set(closure.Gas) // Snapshot the current stack so we are able to // revert back to it later. //snapshot = self.env.State().Copy() ) // Generate a new address addr := ethcrypto.CreateAddress(closure.Address(), closure.object.Nonce) closure.object.Nonce++ closure.UseGas(closure.Gas) msg := NewExecution(self, addr, input, gas, closure.Price, value) ret, err := msg.Exec(addr, closure) if err != nil { stack.Push(ethutil.BigFalse) // Revert the state as it was before. //self.env.State().Set(snapshot) } else { msg.object.Code = ret stack.Push(ethutil.BigD(addr)) } case CALL, CALLCODE: require(7) gas := stack.Pop() // Pop gas and value of the stack. value, addr := stack.Popn() // Pop input size and offset inSize, inOffset := stack.Popn() // Pop return size and offset retSize, retOffset := stack.Popn() // Get the arguments from the memory args := mem.Get(inOffset.Int64(), inSize.Int64()) //snapshot := self.env.State().Copy() var executeAddr []byte if op == CALLCODE { executeAddr = closure.Address() } else { executeAddr = addr.Bytes() } msg := NewExecution(self, executeAddr, args, gas, closure.Price, value) ret, err := msg.Exec(addr.Bytes(), closure) if err != nil { stack.Push(ethutil.BigFalse) //self.env.State().Set(snapshot) } else { stack.Push(ethutil.BigTrue) mem.Set(retOffset.Int64(), retSize.Int64(), ret) } case RETURN: require(2) size, offset := stack.Popn() ret := mem.Get(offset.Int64(), size.Int64()) return closure.Return(ret), nil case SUICIDE: require(1) receiver := self.env.State().GetOrNewStateObject(stack.Pop().Bytes()) receiver.AddAmount(closure.object.Balance) closure.object.MarkForDeletion() fallthrough case STOP: // Stop the closure return closure.Return(nil), nil default: vmlogger.Debugf("(pc) %-3v Invalid opcode %x\n", pc, op) //panic(fmt.Sprintf("Invalid opcode %x", op)) return closure.Return(nil), fmt.Errorf("Invalid opcode %x", op) } pc++ } } func (self *Vm) Env() Environment { return self.env } func (self *Vm) Depth() int { return self.depth }