// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package downloader import ( "errors" "fmt" "math/big" "sync" "sync/atomic" "testing" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/event" "github.com/ethereum/go-ethereum/params" ) var ( testdb, _ = ethdb.NewMemDatabase() testKey, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291") testAddress = crypto.PubkeyToAddress(testKey.PublicKey) genesis = core.GenesisBlockForTesting(testdb, testAddress, big.NewInt(1000000000)) ) // makeChain creates a chain of n blocks starting at and including parent. // the returned hash chain is ordered head->parent. In addition, every 3rd block // contains a transaction and every 5th an uncle to allow testing correct block // reassembly. func makeChain(n int, seed byte, parent *types.Block) ([]common.Hash, map[common.Hash]*types.Block) { blocks := core.GenerateChain(parent, testdb, n, func(i int, block *core.BlockGen) { block.SetCoinbase(common.Address{seed}) // If the block number is multiple of 3, send a bonus transaction to the miner if parent == genesis && i%3 == 0 { tx, err := types.NewTransaction(block.TxNonce(testAddress), common.Address{seed}, big.NewInt(1000), params.TxGas, nil, nil).SignECDSA(testKey) if err != nil { panic(err) } block.AddTx(tx) } // If the block number is a multiple of 5, add a bonus uncle to the block if i%5 == 0 { block.AddUncle(&types.Header{ParentHash: block.PrevBlock(i - 1).Hash(), Number: big.NewInt(int64(i - 1))}) } }) hashes := make([]common.Hash, n+1) hashes[len(hashes)-1] = parent.Hash() blockm := make(map[common.Hash]*types.Block, n+1) blockm[parent.Hash()] = parent for i, b := range blocks { hashes[len(hashes)-i-2] = b.Hash() blockm[b.Hash()] = b } return hashes, blockm } // makeChainFork creates two chains of length n, such that h1[:f] and // h2[:f] are different but have a common suffix of length n-f. func makeChainFork(n, f int, parent *types.Block) (h1, h2 []common.Hash, b1, b2 map[common.Hash]*types.Block) { // Create the common suffix. h, b := makeChain(n-f, 0, parent) // Create the forks. h1, b1 = makeChain(f, 1, b[h[0]]) h1 = append(h1, h[1:]...) h2, b2 = makeChain(f, 2, b[h[0]]) h2 = append(h2, h[1:]...) for hash, block := range b { b1[hash] = block b2[hash] = block } return h1, h2, b1, b2 } // downloadTester is a test simulator for mocking out local block chain. type downloadTester struct { downloader *Downloader ownHashes []common.Hash // Hash chain belonging to the tester ownBlocks map[common.Hash]*types.Block // Blocks belonging to the tester ownChainTd map[common.Hash]*big.Int // Total difficulties of the blocks in the local chain peerHashes map[string][]common.Hash // Hash chain belonging to different test peers peerBlocks map[string]map[common.Hash]*types.Block // Blocks belonging to different test peers peerChainTds map[string]map[common.Hash]*big.Int // Total difficulties of the blocks in the peer chains lock sync.RWMutex } // newTester creates a new downloader test mocker. func newTester() *downloadTester { tester := &downloadTester{ ownHashes: []common.Hash{genesis.Hash()}, ownBlocks: map[common.Hash]*types.Block{genesis.Hash(): genesis}, ownChainTd: map[common.Hash]*big.Int{genesis.Hash(): genesis.Difficulty()}, peerHashes: make(map[string][]common.Hash), peerBlocks: make(map[string]map[common.Hash]*types.Block), peerChainTds: make(map[string]map[common.Hash]*big.Int), } tester.downloader = New(new(event.TypeMux), tester.hasBlock, tester.getBlock, tester.headBlock, tester.getTd, tester.insertChain, tester.dropPeer) return tester } // sync starts synchronizing with a remote peer, blocking until it completes. func (dl *downloadTester) sync(id string, td *big.Int) error { dl.lock.RLock() hash := dl.peerHashes[id][0] // If no particular TD was requested, load from the peer's blockchain if td == nil { td = big.NewInt(1) if diff, ok := dl.peerChainTds[id][hash]; ok { td = diff } } dl.lock.RUnlock() err := dl.downloader.synchronise(id, hash, td) for { // If the queue is empty and processing stopped, break hashes, blocks := dl.downloader.queue.Size() if hashes+blocks == 0 && atomic.LoadInt32(&dl.downloader.processing) == 0 { break } // Otherwise sleep a bit and retry time.Sleep(time.Millisecond) } return err } // hasBlock checks if a block is pres ent in the testers canonical chain. func (dl *downloadTester) hasBlock(hash common.Hash) bool { dl.lock.RLock() defer dl.lock.RUnlock() return dl.getBlock(hash) != nil } // getBlock retrieves a block from the testers canonical chain. func (dl *downloadTester) getBlock(hash common.Hash) *types.Block { dl.lock.RLock() defer dl.lock.RUnlock() return dl.ownBlocks[hash] } // headBlock retrieves the current head block from the canonical chain. func (dl *downloadTester) headBlock() *types.Block { dl.lock.RLock() defer dl.lock.RUnlock() return dl.getBlock(dl.ownHashes[len(dl.ownHashes)-1]) } // getTd retrieves the block's total difficulty from the canonical chain. func (dl *downloadTester) getTd(hash common.Hash) *big.Int { dl.lock.RLock() defer dl.lock.RUnlock() return dl.ownChainTd[hash] } // insertChain injects a new batch of blocks into the simulated chain. func (dl *downloadTester) insertChain(blocks types.Blocks) (int, error) { dl.lock.Lock() defer dl.lock.Unlock() for i, block := range blocks { if _, ok := dl.ownBlocks[block.ParentHash()]; !ok { return i, errors.New("unknown parent") } dl.ownHashes = append(dl.ownHashes, block.Hash()) dl.ownBlocks[block.Hash()] = block dl.ownChainTd[block.Hash()] = dl.ownChainTd[block.ParentHash()] } return len(blocks), nil } // newPeer registers a new block download source into the downloader. func (dl *downloadTester) newPeer(id string, version int, hashes []common.Hash, blocks map[common.Hash]*types.Block) error { return dl.newSlowPeer(id, version, hashes, blocks, 0) } // newSlowPeer registers a new block download source into the downloader, with a // specific delay time on processing the network packets sent to it, simulating // potentially slow network IO. func (dl *downloadTester) newSlowPeer(id string, version int, hashes []common.Hash, blocks map[common.Hash]*types.Block, delay time.Duration) error { dl.lock.Lock() defer dl.lock.Unlock() var err error switch version { case 61: err = dl.downloader.RegisterPeer(id, version, hashes[0], dl.peerGetRelHashesFn(id, delay), dl.peerGetAbsHashesFn(id, delay), dl.peerGetBlocksFn(id, delay), nil, nil, nil) case 62: err = dl.downloader.RegisterPeer(id, version, hashes[0], nil, nil, nil, dl.peerGetRelHeadersFn(id, delay), dl.peerGetAbsHeadersFn(id, delay), dl.peerGetBodiesFn(id, delay)) case 63: err = dl.downloader.RegisterPeer(id, version, hashes[0], nil, nil, nil, dl.peerGetRelHeadersFn(id, delay), dl.peerGetAbsHeadersFn(id, delay), dl.peerGetBodiesFn(id, delay)) case 64: err = dl.downloader.RegisterPeer(id, version, hashes[0], nil, nil, nil, dl.peerGetRelHeadersFn(id, delay), dl.peerGetAbsHeadersFn(id, delay), dl.peerGetBodiesFn(id, delay)) } if err == nil { // Assign the owned hashes and blocks to the peer (deep copy) dl.peerHashes[id] = make([]common.Hash, len(hashes)) copy(dl.peerHashes[id], hashes) dl.peerBlocks[id] = make(map[common.Hash]*types.Block) dl.peerChainTds[id] = make(map[common.Hash]*big.Int) for _, hash := range hashes { if block, ok := blocks[hash]; ok { dl.peerBlocks[id][hash] = block if parent, ok := dl.peerBlocks[id][block.ParentHash()]; ok { dl.peerChainTds[id][hash] = new(big.Int).Add(block.Difficulty(), dl.peerChainTds[id][parent.Hash()]) } } } } return err } // dropPeer simulates a hard peer removal from the connection pool. func (dl *downloadTester) dropPeer(id string) { dl.lock.Lock() defer dl.lock.Unlock() delete(dl.peerHashes, id) delete(dl.peerBlocks, id) delete(dl.peerChainTds, id) dl.downloader.UnregisterPeer(id) } // peerGetRelHashesFn constructs a GetHashes function associated with a specific // peer in the download tester. The returned function can be used to retrieve // batches of hashes from the particularly requested peer. func (dl *downloadTester) peerGetRelHashesFn(id string, delay time.Duration) func(head common.Hash) error { return func(head common.Hash) error { time.Sleep(delay) dl.lock.RLock() defer dl.lock.RUnlock() // Gather the next batch of hashes hashes := dl.peerHashes[id] result := make([]common.Hash, 0, MaxHashFetch) for i, hash := range hashes { if hash == head { i++ for len(result) < cap(result) && i < len(hashes) { result = append(result, hashes[i]) i++ } break } } // Delay delivery a bit to allow attacks to unfold go func() { time.Sleep(time.Millisecond) dl.downloader.DeliverHashes61(id, result) }() return nil } } // peerGetAbsHashesFn constructs a GetHashesFromNumber function associated with // a particular peer in the download tester. The returned function can be used to // retrieve batches of hashes from the particularly requested peer. func (dl *downloadTester) peerGetAbsHashesFn(id string, delay time.Duration) func(uint64, int) error { return func(head uint64, count int) error { time.Sleep(delay) dl.lock.RLock() defer dl.lock.RUnlock() // Gather the next batch of hashes hashes := dl.peerHashes[id] result := make([]common.Hash, 0, count) for i := 0; i < count && len(hashes)-int(head)-1-i >= 0; i++ { result = append(result, hashes[len(hashes)-int(head)-1-i]) } // Delay delivery a bit to allow attacks to unfold go func() { time.Sleep(time.Millisecond) dl.downloader.DeliverHashes61(id, result) }() return nil } } // peerGetBlocksFn constructs a getBlocks function associated with a particular // peer in the download tester. The returned function can be used to retrieve // batches of blocks from the particularly requested peer. func (dl *downloadTester) peerGetBlocksFn(id string, delay time.Duration) func([]common.Hash) error { return func(hashes []common.Hash) error { time.Sleep(delay) dl.lock.RLock() defer dl.lock.RUnlock() blocks := dl.peerBlocks[id] result := make([]*types.Block, 0, len(hashes)) for _, hash := range hashes { if block, ok := blocks[hash]; ok { result = append(result, block) } } go dl.downloader.DeliverBlocks61(id, result) return nil } } // peerGetRelHeadersFn constructs a GetBlockHeaders function based on a hashed // origin; associated with a particular peer in the download tester. The returned // function can be used to retrieve batches of headers from the particular peer. func (dl *downloadTester) peerGetRelHeadersFn(id string, delay time.Duration) func(common.Hash, int, int, bool) error { return func(origin common.Hash, amount int, skip int, reverse bool) error { // Find the canonical number of the hash dl.lock.RLock() number := uint64(0) for num, hash := range dl.peerHashes[id] { if hash == origin { number = uint64(len(dl.peerHashes[id]) - num - 1) break } } dl.lock.RUnlock() // Use the absolute header fetcher to satisfy the query return dl.peerGetAbsHeadersFn(id, delay)(number, amount, skip, reverse) } } // peerGetAbsHeadersFn constructs a GetBlockHeaders function based on a numbered // origin; associated with a particular peer in the download tester. The returned // function can be used to retrieve batches of headers from the particular peer. func (dl *downloadTester) peerGetAbsHeadersFn(id string, delay time.Duration) func(uint64, int, int, bool) error { return func(origin uint64, amount int, skip int, reverse bool) error { time.Sleep(delay) dl.lock.RLock() defer dl.lock.RUnlock() // Gather the next batch of hashes hashes := dl.peerHashes[id] blocks := dl.peerBlocks[id] result := make([]*types.Header, 0, amount) for i := 0; i < amount && len(hashes)-int(origin)-1-i >= 0; i++ { if block, ok := blocks[hashes[len(hashes)-int(origin)-1-i]]; ok { result = append(result, block.Header()) } } // Delay delivery a bit to allow attacks to unfold go func() { time.Sleep(time.Millisecond) dl.downloader.DeliverHeaders(id, result) }() return nil } } // peerGetBodiesFn constructs a getBlockBodies method associated with a particular // peer in the download tester. The returned function can be used to retrieve // batches of block bodies from the particularly requested peer. func (dl *downloadTester) peerGetBodiesFn(id string, delay time.Duration) func([]common.Hash) error { return func(hashes []common.Hash) error { time.Sleep(delay) dl.lock.RLock() defer dl.lock.RUnlock() blocks := dl.peerBlocks[id] transactions := make([][]*types.Transaction, 0, len(hashes)) uncles := make([][]*types.Header, 0, len(hashes)) for _, hash := range hashes { if block, ok := blocks[hash]; ok { transactions = append(transactions, block.Transactions()) uncles = append(uncles, block.Uncles()) } } go dl.downloader.DeliverBodies(id, transactions, uncles) return nil } } // Tests that simple synchronization against a canonical chain works correctly. // In this test common ancestor lookup should be short circuited and not require // binary searching. func TestCanonicalSynchronisation61(t *testing.T) { testCanonicalSynchronisation(t, 61) } func TestCanonicalSynchronisation62(t *testing.T) { testCanonicalSynchronisation(t, 62) } func TestCanonicalSynchronisation63(t *testing.T) { testCanonicalSynchronisation(t, 63) } func TestCanonicalSynchronisation64(t *testing.T) { testCanonicalSynchronisation(t, 64) } func testCanonicalSynchronisation(t *testing.T, protocol int) { // Create a small enough block chain to download targetBlocks := blockCacheLimit - 15 hashes, blocks := makeChain(targetBlocks, 0, genesis) tester := newTester() tester.newPeer("peer", protocol, hashes, blocks) // Synchronise with the peer and make sure all blocks were retrieved if err := tester.sync("peer", nil); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } if imported := len(tester.ownBlocks); imported != targetBlocks+1 { t.Fatalf("synchronised block mismatch: have %v, want %v", imported, targetBlocks+1) } } // Tests that if a large batch of blocks are being downloaded, it is throttled // until the cached blocks are retrieved. func TestThrottling61(t *testing.T) { testThrottling(t, 61) } func TestThrottling62(t *testing.T) { testThrottling(t, 62) } func TestThrottling63(t *testing.T) { testThrottling(t, 63) } func TestThrottling64(t *testing.T) { testThrottling(t, 64) } func testThrottling(t *testing.T, protocol int) { // Create a long block chain to download and the tester targetBlocks := 8 * blockCacheLimit hashes, blocks := makeChain(targetBlocks, 0, genesis) tester := newTester() tester.newPeer("peer", protocol, hashes, blocks) // Wrap the importer to allow stepping blocked, proceed := uint32(0), make(chan struct{}) tester.downloader.chainInsertHook = func(blocks []*Block) { atomic.StoreUint32(&blocked, uint32(len(blocks))) <-proceed } // Start a synchronisation concurrently errc := make(chan error) go func() { errc <- tester.sync("peer", nil) }() // Iteratively take some blocks, always checking the retrieval count for { // Check the retrieval count synchronously (! reason for this ugly block) tester.lock.RLock() retrieved := len(tester.ownBlocks) tester.lock.RUnlock() if retrieved >= targetBlocks+1 { break } // Wait a bit for sync to throttle itself var cached int for start := time.Now(); time.Since(start) < time.Second; { time.Sleep(25 * time.Millisecond) tester.downloader.queue.lock.RLock() cached = len(tester.downloader.queue.blockPool) tester.downloader.queue.lock.RUnlock() if cached == blockCacheLimit || len(tester.ownBlocks)+cached+int(atomic.LoadUint32(&blocked)) == targetBlocks+1 { break } } // Make sure we filled up the cache, then exhaust it time.Sleep(25 * time.Millisecond) // give it a chance to screw up if cached != blockCacheLimit && len(tester.ownBlocks)+cached+int(atomic.LoadUint32(&blocked)) != targetBlocks+1 { t.Fatalf("block count mismatch: have %v, want %v (owned %v, target %v)", cached, blockCacheLimit, len(tester.ownBlocks), targetBlocks+1) } // Permit the blocked blocks to import if atomic.LoadUint32(&blocked) > 0 { atomic.StoreUint32(&blocked, uint32(0)) proceed <- struct{}{} } } // Check that we haven't pulled more blocks than available if len(tester.ownBlocks) > targetBlocks+1 { t.Fatalf("target block count mismatch: have %v, want %v", len(tester.ownBlocks), targetBlocks+1) } if err := <-errc; err != nil { t.Fatalf("block synchronization failed: %v", err) } } // Tests that simple synchronization against a forked chain works correctly. In // this test common ancestor lookup should *not* be short circuited, and a full // binary search should be executed. func TestForkedSynchronisation61(t *testing.T) { testForkedSynchronisation(t, 61) } func TestForkedSynchronisation62(t *testing.T) { testForkedSynchronisation(t, 62) } func TestForkedSynchronisation63(t *testing.T) { testForkedSynchronisation(t, 63) } func TestForkedSynchronisation64(t *testing.T) { testForkedSynchronisation(t, 64) } func testForkedSynchronisation(t *testing.T, protocol int) { // Create a long enough forked chain common, fork := MaxHashFetch, 2*MaxHashFetch hashesA, hashesB, blocksA, blocksB := makeChainFork(common+fork, fork, genesis) tester := newTester() tester.newPeer("fork A", protocol, hashesA, blocksA) tester.newPeer("fork B", protocol, hashesB, blocksB) // Synchronise with the peer and make sure all blocks were retrieved if err := tester.sync("fork A", nil); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } if imported := len(tester.ownBlocks); imported != common+fork+1 { t.Fatalf("synchronised block mismatch: have %v, want %v", imported, common+fork+1) } // Synchronise with the second peer and make sure that fork is pulled too if err := tester.sync("fork B", nil); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } if imported := len(tester.ownBlocks); imported != common+2*fork+1 { t.Fatalf("synchronised block mismatch: have %v, want %v", imported, common+2*fork+1) } } // Tests that an inactive downloader will not accept incoming hashes and blocks. func TestInactiveDownloader61(t *testing.T) { tester := newTester() // Check that neither hashes nor blocks are accepted if err := tester.downloader.DeliverHashes61("bad peer", []common.Hash{}); err != errNoSyncActive { t.Errorf("error mismatch: have %v, want %v", err, errNoSyncActive) } if err := tester.downloader.DeliverBlocks61("bad peer", []*types.Block{}); err != errNoSyncActive { t.Errorf("error mismatch: have %v, want %v", err, errNoSyncActive) } } // Tests that an inactive downloader will not accept incoming block headers and bodies. func TestInactiveDownloader62(t *testing.T) { tester := newTester() // Check that neither block headers nor bodies are accepted if err := tester.downloader.DeliverHeaders("bad peer", []*types.Header{}); err != errNoSyncActive { t.Errorf("error mismatch: have %v, want %v", err, errNoSyncActive) } if err := tester.downloader.DeliverBodies("bad peer", [][]*types.Transaction{}, [][]*types.Header{}); err != errNoSyncActive { t.Errorf("error mismatch: have %v, want %v", err, errNoSyncActive) } } // Tests that a canceled download wipes all previously accumulated state. func TestCancel61(t *testing.T) { testCancel(t, 61) } func TestCancel62(t *testing.T) { testCancel(t, 62) } func TestCancel63(t *testing.T) { testCancel(t, 63) } func TestCancel64(t *testing.T) { testCancel(t, 64) } func testCancel(t *testing.T, protocol int) { // Create a small enough block chain to download and the tester targetBlocks := blockCacheLimit - 15 if targetBlocks >= MaxHashFetch { targetBlocks = MaxHashFetch - 15 } if targetBlocks >= MaxHeaderFetch { targetBlocks = MaxHeaderFetch - 15 } hashes, blocks := makeChain(targetBlocks, 0, genesis) tester := newTester() tester.newPeer("peer", protocol, hashes, blocks) // Make sure canceling works with a pristine downloader tester.downloader.cancel() downloading, importing := tester.downloader.queue.Size() if downloading > 0 || importing > 0 { t.Errorf("download or import count mismatch: %d downloading, %d importing, want 0", downloading, importing) } // Synchronise with the peer, but cancel afterwards if err := tester.sync("peer", nil); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } tester.downloader.cancel() downloading, importing = tester.downloader.queue.Size() if downloading > 0 || importing > 0 { t.Errorf("download or import count mismatch: %d downloading, %d importing, want 0", downloading, importing) } } // Tests that synchronisation from multiple peers works as intended (multi thread sanity test). func TestMultiSynchronisation61(t *testing.T) { testMultiSynchronisation(t, 61) } func TestMultiSynchronisation62(t *testing.T) { testMultiSynchronisation(t, 62) } func TestMultiSynchronisation63(t *testing.T) { testMultiSynchronisation(t, 63) } func TestMultiSynchronisation64(t *testing.T) { testMultiSynchronisation(t, 64) } func testMultiSynchronisation(t *testing.T, protocol int) { // Create various peers with various parts of the chain targetPeers := 8 targetBlocks := targetPeers*blockCacheLimit - 15 hashes, blocks := makeChain(targetBlocks, 0, genesis) tester := newTester() for i := 0; i < targetPeers; i++ { id := fmt.Sprintf("peer #%d", i) tester.newPeer(id, protocol, hashes[i*blockCacheLimit:], blocks) } // Synchronise with the middle peer and make sure half of the blocks were retrieved id := fmt.Sprintf("peer #%d", targetPeers/2) if err := tester.sync(id, nil); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } if imported := len(tester.ownBlocks); imported != len(tester.peerHashes[id]) { t.Fatalf("synchronised block mismatch: have %v, want %v", imported, len(tester.peerHashes[id])) } // Synchronise with the best peer and make sure everything is retrieved if err := tester.sync("peer #0", nil); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } if imported := len(tester.ownBlocks); imported != targetBlocks+1 { t.Fatalf("synchronised block mismatch: have %v, want %v", imported, targetBlocks+1) } } // Tests that synchronisations behave well in multi-version protocol environments // and not wreak havok on other nodes in the network. func TestMultiProtocolSynchronisation61(t *testing.T) { testMultiProtocolSynchronisation(t, 61) } func TestMultiProtocolSynchronisation62(t *testing.T) { testMultiProtocolSynchronisation(t, 62) } func TestMultiProtocolSynchronisation63(t *testing.T) { testMultiProtocolSynchronisation(t, 63) } func TestMultiProtocolSynchronisation64(t *testing.T) { testMultiProtocolSynchronisation(t, 64) } func testMultiProtocolSynchronisation(t *testing.T, protocol int) { // Create a small enough block chain to download targetBlocks := blockCacheLimit - 15 hashes, blocks := makeChain(targetBlocks, 0, genesis) // Create peers of every type tester := newTester() tester.newPeer("peer 61", 61, hashes, blocks) tester.newPeer("peer 62", 62, hashes, blocks) tester.newPeer("peer 63", 63, hashes, blocks) tester.newPeer("peer 64", 64, hashes, blocks) // Synchronise with the requestd peer and make sure all blocks were retrieved if err := tester.sync(fmt.Sprintf("peer %d", protocol), nil); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } if imported := len(tester.ownBlocks); imported != targetBlocks+1 { t.Fatalf("synchronised block mismatch: have %v, want %v", imported, targetBlocks+1) } // Check that no peers have been dropped off for _, version := range []int{61, 62, 63, 64} { peer := fmt.Sprintf("peer %d", version) if _, ok := tester.peerHashes[peer]; !ok { t.Errorf("%s dropped", peer) } } } // Tests that if a block is empty (i.e. header only), no body request should be // made, and instead the header should be assembled into a whole block in itself. func TestEmptyBlockShortCircuit62(t *testing.T) { testEmptyBlockShortCircuit(t, 62) } func TestEmptyBlockShortCircuit63(t *testing.T) { testEmptyBlockShortCircuit(t, 63) } func TestEmptyBlockShortCircuit64(t *testing.T) { testEmptyBlockShortCircuit(t, 64) } func testEmptyBlockShortCircuit(t *testing.T, protocol int) { // Create a small enough block chain to download targetBlocks := blockCacheLimit - 15 hashes, blocks := makeChain(targetBlocks, 0, genesis) tester := newTester() tester.newPeer("peer", protocol, hashes, blocks) // Instrument the downloader to signal body requests requested := int32(0) tester.downloader.bodyFetchHook = func(headers []*types.Header) { atomic.AddInt32(&requested, int32(len(headers))) } // Synchronise with the peer and make sure all blocks were retrieved if err := tester.sync("peer", nil); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } if imported := len(tester.ownBlocks); imported != targetBlocks+1 { t.Fatalf("synchronised block mismatch: have %v, want %v", imported, targetBlocks+1) } // Validate the number of block bodies that should have been requested needed := 0 for _, block := range blocks { if block != genesis && (len(block.Transactions()) > 0 || len(block.Uncles()) > 0) { needed++ } } if int(requested) != needed { t.Fatalf("block body retrieval count mismatch: have %v, want %v", requested, needed) } } // Tests that headers are enqueued continuously, preventing malicious nodes from // stalling the downloader by feeding gapped header chains. func TestMissingHeaderAttack62(t *testing.T) { testMissingHeaderAttack(t, 62) } func TestMissingHeaderAttack63(t *testing.T) { testMissingHeaderAttack(t, 63) } func TestMissingHeaderAttack64(t *testing.T) { testMissingHeaderAttack(t, 64) } func testMissingHeaderAttack(t *testing.T, protocol int) { // Create a small enough block chain to download targetBlocks := blockCacheLimit - 15 hashes, blocks := makeChain(targetBlocks, 0, genesis) tester := newTester() // Attempt a full sync with an attacker feeding gapped headers tester.newPeer("attack", protocol, hashes, blocks) missing := targetBlocks / 2 delete(tester.peerBlocks["attack"], hashes[missing]) if err := tester.sync("attack", nil); err == nil { t.Fatalf("succeeded attacker synchronisation") } // Synchronise with the valid peer and make sure sync succeeds tester.newPeer("valid", protocol, hashes, blocks) if err := tester.sync("valid", nil); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } if imported := len(tester.ownBlocks); imported != len(hashes) { t.Fatalf("synchronised block mismatch: have %v, want %v", imported, len(hashes)) } } // Tests that if requested headers are shifted (i.e. first is missing), the queue // detects the invalid numbering. func TestShiftedHeaderAttack62(t *testing.T) { testShiftedHeaderAttack(t, 62) } func TestShiftedHeaderAttack63(t *testing.T) { testShiftedHeaderAttack(t, 63) } func TestShiftedHeaderAttack64(t *testing.T) { testShiftedHeaderAttack(t, 64) } func testShiftedHeaderAttack(t *testing.T, protocol int) { // Create a small enough block chain to download targetBlocks := blockCacheLimit - 15 hashes, blocks := makeChain(targetBlocks, 0, genesis) tester := newTester() // Attempt a full sync with an attacker feeding shifted headers tester.newPeer("attack", protocol, hashes, blocks) delete(tester.peerBlocks["attack"], hashes[len(hashes)-2]) if err := tester.sync("attack", nil); err == nil { t.Fatalf("succeeded attacker synchronisation") } // Synchronise with the valid peer and make sure sync succeeds tester.newPeer("valid", protocol, hashes, blocks) if err := tester.sync("valid", nil); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } if imported := len(tester.ownBlocks); imported != len(hashes) { t.Fatalf("synchronised block mismatch: have %v, want %v", imported, len(hashes)) } } // Tests that if a peer sends an invalid body for a requested block, it gets // dropped immediately by the downloader. func TestInvalidBlockBodyAttack62(t *testing.T) { testInvalidBlockBodyAttack(t, 62) } func TestInvalidBlockBodyAttack63(t *testing.T) { testInvalidBlockBodyAttack(t, 63) } func TestInvalidBlockBodyAttack64(t *testing.T) { testInvalidBlockBodyAttack(t, 64) } func testInvalidBlockBodyAttack(t *testing.T, protocol int) { // Create two peers, one feeding invalid block bodies targetBlocks := 4*blockCacheLimit - 15 hashes, validBlocks := makeChain(targetBlocks, 0, genesis) invalidBlocks := make(map[common.Hash]*types.Block) for hash, block := range validBlocks { invalidBlocks[hash] = types.NewBlockWithHeader(block.Header()) } tester := newTester() tester.newPeer("valid", protocol, hashes, validBlocks) tester.newPeer("attack", protocol, hashes, invalidBlocks) // Synchronise with the valid peer (will pull contents from the attacker too) if err := tester.sync("valid", nil); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } if imported := len(tester.ownBlocks); imported != len(hashes) { t.Fatalf("synchronised block mismatch: have %v, want %v", imported, len(hashes)) } // Make sure the attacker was detected and dropped in the mean time if _, ok := tester.peerHashes["attack"]; ok { t.Fatalf("block body attacker not detected/dropped") } } // Tests that a peer advertising an high TD doesn't get to stall the downloader // afterwards by not sending any useful hashes. func TestHighTDStarvationAttack61(t *testing.T) { testHighTDStarvationAttack(t, 61) } func TestHighTDStarvationAttack62(t *testing.T) { testHighTDStarvationAttack(t, 62) } func TestHighTDStarvationAttack63(t *testing.T) { testHighTDStarvationAttack(t, 63) } func TestHighTDStarvationAttack64(t *testing.T) { testHighTDStarvationAttack(t, 64) } func testHighTDStarvationAttack(t *testing.T, protocol int) { tester := newTester() hashes, blocks := makeChain(0, 0, genesis) tester.newPeer("attack", protocol, []common.Hash{hashes[0]}, blocks) if err := tester.sync("attack", big.NewInt(1000000)); err != errStallingPeer { t.Fatalf("synchronisation error mismatch: have %v, want %v", err, errStallingPeer) } } // Tests that misbehaving peers are disconnected, whilst behaving ones are not. func TestBlockHeaderAttackerDropping61(t *testing.T) { testBlockHeaderAttackerDropping(t, 61) } func TestBlockHeaderAttackerDropping62(t *testing.T) { testBlockHeaderAttackerDropping(t, 62) } func TestBlockHeaderAttackerDropping63(t *testing.T) { testBlockHeaderAttackerDropping(t, 63) } func TestBlockHeaderAttackerDropping64(t *testing.T) { testBlockHeaderAttackerDropping(t, 64) } func testBlockHeaderAttackerDropping(t *testing.T, protocol int) { // Define the disconnection requirement for individual hash fetch errors tests := []struct { result error drop bool }{ {nil, false}, // Sync succeeded, all is well {errBusy, false}, // Sync is already in progress, no problem {errUnknownPeer, false}, // Peer is unknown, was already dropped, don't double drop {errBadPeer, true}, // Peer was deemed bad for some reason, drop it {errStallingPeer, true}, // Peer was detected to be stalling, drop it {errNoPeers, false}, // No peers to download from, soft race, no issue {errPendingQueue, false}, // There are blocks still cached, wait to exhaust, no issue {errTimeout, true}, // No hashes received in due time, drop the peer {errEmptyHashSet, true}, // No hashes were returned as a response, drop as it's a dead end {errEmptyHeaderSet, true}, // No headers were returned as a response, drop as it's a dead end {errPeersUnavailable, true}, // Nobody had the advertised blocks, drop the advertiser {errInvalidChain, true}, // Hash chain was detected as invalid, definitely drop {errInvalidBody, false}, // A bad peer was detected, but not the sync origin {errCancelHashFetch, false}, // Synchronisation was canceled, origin may be innocent, don't drop {errCancelBlockFetch, false}, // Synchronisation was canceled, origin may be innocent, don't drop {errCancelHeaderFetch, false}, // Synchronisation was canceled, origin may be innocent, don't drop {errCancelBodyFetch, false}, // Synchronisation was canceled, origin may be innocent, don't drop } // Run the tests and check disconnection status tester := newTester() for i, tt := range tests { // Register a new peer and ensure it's presence id := fmt.Sprintf("test %d", i) if err := tester.newPeer(id, protocol, []common.Hash{genesis.Hash()}, nil); err != nil { t.Fatalf("test %d: failed to register new peer: %v", i, err) } if _, ok := tester.peerHashes[id]; !ok { t.Fatalf("test %d: registered peer not found", i) } // Simulate a synchronisation and check the required result tester.downloader.synchroniseMock = func(string, common.Hash) error { return tt.result } tester.downloader.Synchronise(id, genesis.Hash(), big.NewInt(1000)) if _, ok := tester.peerHashes[id]; !ok != tt.drop { t.Errorf("test %d: peer drop mismatch for %v: have %v, want %v", i, tt.result, !ok, tt.drop) } } } // Tests that feeding bad blocks will result in a peer drop. func TestBlockBodyAttackerDropping61(t *testing.T) { testBlockBodyAttackerDropping(t, 61) } func TestBlockBodyAttackerDropping62(t *testing.T) { testBlockBodyAttackerDropping(t, 62) } func TestBlockBodyAttackerDropping63(t *testing.T) { testBlockBodyAttackerDropping(t, 63) } func TestBlockBodyAttackerDropping64(t *testing.T) { testBlockBodyAttackerDropping(t, 64) } func testBlockBodyAttackerDropping(t *testing.T, protocol int) { // Define the disconnection requirement for individual block import errors tests := []struct { failure bool drop bool }{ {true, true}, {false, false}, } // Run the tests and check disconnection status tester := newTester() for i, tt := range tests { // Register a new peer and ensure it's presence id := fmt.Sprintf("test %d", i) if err := tester.newPeer(id, protocol, []common.Hash{common.Hash{}}, nil); err != nil { t.Fatalf("test %d: failed to register new peer: %v", i, err) } if _, ok := tester.peerHashes[id]; !ok { t.Fatalf("test %d: registered peer not found", i) } // Assemble a good or bad block, depending of the test raw := core.GenerateChain(genesis, testdb, 1, nil)[0] if tt.failure { parent := types.NewBlock(&types.Header{}, nil, nil, nil) raw = core.GenerateChain(parent, testdb, 1, nil)[0] } block := &Block{OriginPeer: id, RawBlock: raw} // Simulate block processing and check the result tester.downloader.queue.blockCache[0] = block tester.downloader.process() if _, ok := tester.peerHashes[id]; !ok != tt.drop { t.Errorf("test %d: peer drop mismatch for %v: have %v, want %v", i, tt.failure, !ok, tt.drop) } } } // Tests that synchronisation boundaries (origin block number and highest block // number) is tracked and updated correctly. func TestSyncBoundaries61(t *testing.T) { testSyncBoundaries(t, 61) } func TestSyncBoundaries62(t *testing.T) { testSyncBoundaries(t, 62) } func TestSyncBoundaries63(t *testing.T) { testSyncBoundaries(t, 63) } func TestSyncBoundaries64(t *testing.T) { testSyncBoundaries(t, 64) } func testSyncBoundaries(t *testing.T, protocol int) { // Create a small enough block chain to download targetBlocks := blockCacheLimit - 15 hashes, blocks := makeChain(targetBlocks, 0, genesis) // Set a sync init hook to catch boundary changes starting := make(chan struct{}) progress := make(chan struct{}) tester := newTester() tester.downloader.syncInitHook = func(origin, latest uint64) { starting <- struct{}{} <-progress } // Retrieve the sync boundaries and ensure they are zero (pristine sync) if origin, latest := tester.downloader.Boundaries(); origin != 0 || latest != 0 { t.Fatalf("Pristine boundary mismatch: have %v/%v, want %v/%v", origin, latest, 0, 0) } // Synchronise half the blocks and check initial boundaries tester.newPeer("peer-half", protocol, hashes[targetBlocks/2:], blocks) pending := new(sync.WaitGroup) pending.Add(1) go func() { defer pending.Done() if err := tester.sync("peer-half", nil); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } }() <-starting if origin, latest := tester.downloader.Boundaries(); origin != 0 || latest != uint64(targetBlocks/2+1) { t.Fatalf("Initial boundary mismatch: have %v/%v, want %v/%v", origin, latest, 0, targetBlocks/2+1) } progress <- struct{}{} pending.Wait() // Synchronise all the blocks and check continuation boundaries tester.newPeer("peer-full", protocol, hashes, blocks) pending.Add(1) go func() { defer pending.Done() if err := tester.sync("peer-full", nil); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } }() <-starting if origin, latest := tester.downloader.Boundaries(); origin != uint64(targetBlocks/2+1) || latest != uint64(targetBlocks) { t.Fatalf("Completing boundary mismatch: have %v/%v, want %v/%v", origin, latest, targetBlocks/2+1, targetBlocks) } progress <- struct{}{} pending.Wait() } // Tests that synchronisation boundaries (origin block number and highest block // number) is tracked and updated correctly in case of a fork (or manual head // revertal). func TestForkedSyncBoundaries61(t *testing.T) { testForkedSyncBoundaries(t, 61) } func TestForkedSyncBoundaries62(t *testing.T) { testForkedSyncBoundaries(t, 62) } func TestForkedSyncBoundaries63(t *testing.T) { testForkedSyncBoundaries(t, 63) } func TestForkedSyncBoundaries64(t *testing.T) { testForkedSyncBoundaries(t, 64) } func testForkedSyncBoundaries(t *testing.T, protocol int) { // Create a forked chain to simulate origin revertal common, fork := MaxHashFetch, 2*MaxHashFetch hashesA, hashesB, blocksA, blocksB := makeChainFork(common+fork, fork, genesis) // Set a sync init hook to catch boundary changes starting := make(chan struct{}) progress := make(chan struct{}) tester := newTester() tester.downloader.syncInitHook = func(origin, latest uint64) { starting <- struct{}{} <-progress } // Retrieve the sync boundaries and ensure they are zero (pristine sync) if origin, latest := tester.downloader.Boundaries(); origin != 0 || latest != 0 { t.Fatalf("Pristine boundary mismatch: have %v/%v, want %v/%v", origin, latest, 0, 0) } // Synchronise with one of the forks and check boundaries tester.newPeer("fork A", protocol, hashesA, blocksA) pending := new(sync.WaitGroup) pending.Add(1) go func() { defer pending.Done() if err := tester.sync("fork A", nil); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } }() <-starting if origin, latest := tester.downloader.Boundaries(); origin != 0 || latest != uint64(len(hashesA)-1) { t.Fatalf("Initial boundary mismatch: have %v/%v, want %v/%v", origin, latest, 0, len(hashesA)-1) } progress <- struct{}{} pending.Wait() // Simulate a successful sync above the fork tester.downloader.syncStatsOrigin = tester.downloader.syncStatsHeight // Synchronise with the second fork and check boundary resets tester.newPeer("fork B", protocol, hashesB, blocksB) pending.Add(1) go func() { defer pending.Done() if err := tester.sync("fork B", nil); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } }() <-starting if origin, latest := tester.downloader.Boundaries(); origin != uint64(common) || latest != uint64(len(hashesB)-1) { t.Fatalf("Forking boundary mismatch: have %v/%v, want %v/%v", origin, latest, common, len(hashesB)-1) } progress <- struct{}{} pending.Wait() } // Tests that if synchronisation is aborted due to some failure, then the boundary // origin is not updated in the next sync cycle, as it should be considered the // continuation of the previous sync and not a new instance. func TestFailedSyncBoundaries61(t *testing.T) { testFailedSyncBoundaries(t, 61) } func TestFailedSyncBoundaries62(t *testing.T) { testFailedSyncBoundaries(t, 62) } func TestFailedSyncBoundaries63(t *testing.T) { testFailedSyncBoundaries(t, 63) } func TestFailedSyncBoundaries64(t *testing.T) { testFailedSyncBoundaries(t, 64) } func testFailedSyncBoundaries(t *testing.T, protocol int) { // Create a small enough block chain to download targetBlocks := blockCacheLimit - 15 hashes, blocks := makeChain(targetBlocks, 0, genesis) // Set a sync init hook to catch boundary changes starting := make(chan struct{}) progress := make(chan struct{}) tester := newTester() tester.downloader.syncInitHook = func(origin, latest uint64) { starting <- struct{}{} <-progress } // Retrieve the sync boundaries and ensure they are zero (pristine sync) if origin, latest := tester.downloader.Boundaries(); origin != 0 || latest != 0 { t.Fatalf("Pristine boundary mismatch: have %v/%v, want %v/%v", origin, latest, 0, 0) } // Attempt a full sync with a faulty peer tester.newPeer("faulty", protocol, hashes, blocks) missing := targetBlocks / 2 delete(tester.peerBlocks["faulty"], hashes[missing]) pending := new(sync.WaitGroup) pending.Add(1) go func() { defer pending.Done() if err := tester.sync("faulty", nil); err == nil { t.Fatalf("succeeded faulty synchronisation") } }() <-starting if origin, latest := tester.downloader.Boundaries(); origin != 0 || latest != uint64(targetBlocks) { t.Fatalf("Initial boundary mismatch: have %v/%v, want %v/%v", origin, latest, 0, targetBlocks) } progress <- struct{}{} pending.Wait() // Synchronise with a good peer and check that the boundary origin remind the same after a failure tester.newPeer("valid", protocol, hashes, blocks) pending.Add(1) go func() { defer pending.Done() if err := tester.sync("valid", nil); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } }() <-starting if origin, latest := tester.downloader.Boundaries(); origin != 0 || latest != uint64(targetBlocks) { t.Fatalf("Completing boundary mismatch: have %v/%v, want %v/%v", origin, latest, 0, targetBlocks) } progress <- struct{}{} pending.Wait() } // Tests that if an attacker fakes a chain height, after the attack is detected, // the boundary height is successfully reduced at the next sync invocation. func TestFakedSyncBoundaries61(t *testing.T) { testFakedSyncBoundaries(t, 61) } func TestFakedSyncBoundaries62(t *testing.T) { testFakedSyncBoundaries(t, 62) } func TestFakedSyncBoundaries63(t *testing.T) { testFakedSyncBoundaries(t, 63) } func TestFakedSyncBoundaries64(t *testing.T) { testFakedSyncBoundaries(t, 64) } func testFakedSyncBoundaries(t *testing.T, protocol int) { // Create a small block chain targetBlocks := blockCacheLimit - 15 hashes, blocks := makeChain(targetBlocks+3, 0, genesis) // Set a sync init hook to catch boundary changes starting := make(chan struct{}) progress := make(chan struct{}) tester := newTester() tester.downloader.syncInitHook = func(origin, latest uint64) { starting <- struct{}{} <-progress } // Retrieve the sync boundaries and ensure they are zero (pristine sync) if origin, latest := tester.downloader.Boundaries(); origin != 0 || latest != 0 { t.Fatalf("Pristine boundary mismatch: have %v/%v, want %v/%v", origin, latest, 0, 0) } // Create and sync with an attacker that promises a higher chain than available tester.newPeer("attack", protocol, hashes, blocks) for i := 1; i < 3; i++ { delete(tester.peerBlocks["attack"], hashes[i]) } pending := new(sync.WaitGroup) pending.Add(1) go func() { defer pending.Done() if err := tester.sync("attack", nil); err == nil { t.Fatalf("succeeded attacker synchronisation") } }() <-starting if origin, latest := tester.downloader.Boundaries(); origin != 0 || latest != uint64(targetBlocks+3) { t.Fatalf("Initial boundary mismatch: have %v/%v, want %v/%v", origin, latest, 0, targetBlocks+3) } progress <- struct{}{} pending.Wait() // Synchronise with a good peer and check that the boundary height has been reduced to the true value tester.newPeer("valid", protocol, hashes[3:], blocks) pending.Add(1) go func() { defer pending.Done() if err := tester.sync("valid", nil); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } }() <-starting if origin, latest := tester.downloader.Boundaries(); origin != 0 || latest != uint64(targetBlocks) { t.Fatalf("Initial boundary mismatch: have %v/%v, want %v/%v", origin, latest, 0, targetBlocks) } progress <- struct{}{} pending.Wait() }