// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package dex import ( "errors" "fmt" "math/big" "sync" "time" mapset "github.com/deckarep/golang-set" coreTypes "github.com/dexon-foundation/dexon-consensus-core/core/types" "github.com/dexon-foundation/dexon/common" "github.com/dexon-foundation/dexon/core/types" "github.com/dexon-foundation/dexon/log" "github.com/dexon-foundation/dexon/p2p" "github.com/dexon-foundation/dexon/p2p/enode" "github.com/dexon-foundation/dexon/p2p/enr" "github.com/dexon-foundation/dexon/rlp" ) var ( errClosed = errors.New("peer set is closed") errAlreadyRegistered = errors.New("peer is already registered") errNotRegistered = errors.New("peer is not registered") ) const ( maxKnownTxs = 32768 // Maximum transactions hashes to keep in the known list (prevent DOS) maxKnownMetas = 32768 // Maximum metas hashes to keep in the known list (prevent DOS) maxKnownBlocks = 1024 // Maximum block hashes to keep in the known list (prevent DOS) maxKnownLatticeBLocks = 2048 maxKnownVotes = 2048 maxKnownAgreements = 10240 maxKnownRandomnesses = 10240 maxKnownDKGPrivateShare = 1024 // this related to DKG Size maxKnownDKGPartialSignature = 1024 // this related to DKG Size // maxQueuedTxs is the maximum number of transaction lists to queue up before // dropping broadcasts. This is a sensitive number as a transaction list might // contain a single transaction, or thousands. maxQueuedTxs = 128 maxQueuedMetas = 512 // maxQueuedProps is the maximum number of block propagations to queue up before // dropping broadcasts. There's not much point in queueing stale blocks, so a few // that might cover uncles should be enough. maxQueuedProps = 4 // maxQueuedAnns is the maximum number of block announcements to queue up before // dropping broadcasts. Similarly to block propagations, there's no point to queue // above some healthy uncle limit, so use that. maxQueuedAnns = 4 maxQueuedLatticeBlocks = 16 maxQueuedVotes = 128 maxQueuedAgreements = 16 maxQueuedRandomnesses = 16 maxQueuedDKGPrivateShare = 16 maxQueuedDKGParitialSignature = 16 handshakeTimeout = 5 * time.Second groupNodeNum = 3 ) // PeerInfo represents a short summary of the Ethereum sub-protocol metadata known // about a connected peer. type PeerInfo struct { Version int `json:"version"` // Ethereum protocol version negotiated Difficulty *big.Int `json:"difficulty"` // Total difficulty of the peer's blockchain Head string `json:"head"` // SHA3 hash of the peer's best owned block } // propEvent is a block propagation, waiting for its turn in the broadcast queue. type propEvent struct { block *types.Block td *big.Int } type setType uint32 const ( dkgset = iota notaryset ) type peerLabel struct { set setType chainID uint32 round uint64 } type peer struct { id string *p2p.Peer rw p2p.MsgReadWriter version int // Protocol version negotiated head common.Hash td *big.Int lock sync.RWMutex knownTxs mapset.Set // Set of transaction hashes known to be known by this peer knownMetas mapset.Set // Set of node metas known to be known by this peer knownBlocks mapset.Set // Set of block hashes known to be known by this peer knownLatticeBlocks mapset.Set knownVotes mapset.Set knownAgreements mapset.Set knownRandomnesses mapset.Set knownDKGPrivateShares mapset.Set knownDKGPartialSignatures mapset.Set queuedTxs chan []*types.Transaction // Queue of transactions to broadcast to the peer queuedMetas chan []*NodeMeta // Queue of node metas to broadcast to the peer queuedProps chan *propEvent // Queue of blocks to broadcast to the peer queuedAnns chan *types.Block // Queue of blocks to announce to the peer queuedLatticeBlocks chan *coreTypes.Block queuedVotes chan *coreTypes.Vote queuedAgreements chan *coreTypes.AgreementResult queuedRandomnesses chan *coreTypes.BlockRandomnessResult queuedDKGPrivateShares chan *coreTypes.DKGPrivateShare queuedDKGPartialSignatures chan *coreTypes.DKGPartialSignature term chan struct{} // Termination channel to stop the broadcaster } func newPeer(version int, p *p2p.Peer, rw p2p.MsgReadWriter) *peer { return &peer{ Peer: p, rw: rw, version: version, id: p.ID().String(), knownTxs: mapset.NewSet(), knownMetas: mapset.NewSet(), knownBlocks: mapset.NewSet(), knownLatticeBlocks: mapset.NewSet(), knownVotes: mapset.NewSet(), knownAgreements: mapset.NewSet(), knownRandomnesses: mapset.NewSet(), knownDKGPrivateShares: mapset.NewSet(), knownDKGPartialSignatures: mapset.NewSet(), queuedTxs: make(chan []*types.Transaction, maxQueuedTxs), queuedMetas: make(chan []*NodeMeta, maxQueuedMetas), queuedProps: make(chan *propEvent, maxQueuedProps), queuedAnns: make(chan *types.Block, maxQueuedAnns), queuedLatticeBlocks: make(chan *coreTypes.Block, maxQueuedLatticeBlocks), queuedVotes: make(chan *coreTypes.Vote, maxQueuedVotes), queuedAgreements: make(chan *coreTypes.AgreementResult, maxQueuedAgreements), queuedRandomnesses: make(chan *coreTypes.BlockRandomnessResult, maxQueuedRandomnesses), queuedDKGPrivateShares: make(chan *coreTypes.DKGPrivateShare, maxQueuedDKGPrivateShare), queuedDKGPartialSignatures: make(chan *coreTypes.DKGPartialSignature, maxQueuedDKGParitialSignature), term: make(chan struct{}), } } // broadcast is a write loop that multiplexes block propagations, announcements, // transaction and notary node metas broadcasts into the remote peer. // The goal is to have an async writer that does not lock up node internals. func (p *peer) broadcast() { for { select { case txs := <-p.queuedTxs: if err := p.SendTransactions(txs); err != nil { return } p.Log().Trace("Broadcast transactions", "count", len(txs)) case metas := <-p.queuedMetas: if err := p.SendNodeMetas(metas); err != nil { return } p.Log().Trace("Broadcast node metas", "count", len(metas)) case prop := <-p.queuedProps: if err := p.SendNewBlock(prop.block, prop.td); err != nil { return } p.Log().Trace("Propagated block", "number", prop.block.Number(), "hash", prop.block.Hash(), "td", prop.td) case block := <-p.queuedAnns: if err := p.SendNewBlockHashes([]common.Hash{block.Hash()}, []uint64{block.NumberU64()}); err != nil { return } p.Log().Trace("Announced block", "number", block.Number(), "hash", block.Hash()) case block := <-p.queuedLatticeBlocks: if err := p.SendLatticeBlock(block); err != nil { return } p.Log().Trace("Broadcast lattice block") case vote := <-p.queuedVotes: if err := p.SendVote(vote); err != nil { return } p.Log().Trace("Broadcast vote", "vote", vote.String(), "hash", rlpHash(vote)) case agreement := <-p.queuedAgreements: if err := p.SendAgreement(agreement); err != nil { return } p.Log().Trace("Broadcast agreement") case randomness := <-p.queuedRandomnesses: if err := p.SendRandomness(randomness); err != nil { return } p.Log().Trace("Broadcast randomness") case privateShare := <-p.queuedDKGPrivateShares: if err := p.SendDKGPrivateShare(privateShare); err != nil { return } p.Log().Trace("Broadcast DKG private share") case psig := <-p.queuedDKGPartialSignatures: if err := p.SendDKGPartialSignature(psig); err != nil { return } p.Log().Trace("Broadcast DKG partial signature") case <-p.term: return } } } // close signals the broadcast goroutine to terminate. func (p *peer) close() { close(p.term) } // Info gathers and returns a collection of metadata known about a peer. func (p *peer) Info() *PeerInfo { hash, td := p.Head() return &PeerInfo{ Version: p.version, Difficulty: td, Head: hash.Hex(), } } // Head retrieves a copy of the current head hash and total difficulty of the // peer. func (p *peer) Head() (hash common.Hash, td *big.Int) { p.lock.RLock() defer p.lock.RUnlock() copy(hash[:], p.head[:]) return hash, new(big.Int).Set(p.td) } // SetHead updates the head hash and total difficulty of the peer. func (p *peer) SetHead(hash common.Hash, td *big.Int) { p.lock.Lock() defer p.lock.Unlock() copy(p.head[:], hash[:]) p.td.Set(td) } // MarkBlock marks a block as known for the peer, ensuring that the block will // never be propagated to this particular peer. func (p *peer) MarkBlock(hash common.Hash) { // If we reached the memory allowance, drop a previously known block hash for p.knownBlocks.Cardinality() >= maxKnownBlocks { p.knownBlocks.Pop() } p.knownBlocks.Add(hash) } // MarkTransaction marks a transaction as known for the peer, ensuring that it // will never be propagated to this particular peer. func (p *peer) MarkTransaction(hash common.Hash) { // If we reached the memory allowance, drop a previously known transaction hash for p.knownTxs.Cardinality() >= maxKnownTxs { p.knownTxs.Pop() } p.knownTxs.Add(hash) } func (p *peer) MarkNodeMeta(hash common.Hash) { for p.knownMetas.Cardinality() >= maxKnownMetas { p.knownMetas.Pop() } p.knownMetas.Add(hash) } // SendTransactions sends transactions to the peer and includes the hashes // in its transaction hash set for future reference. func (p *peer) SendTransactions(txs types.Transactions) error { for _, tx := range txs { p.knownTxs.Add(tx.Hash()) } return p2p.Send(p.rw, TxMsg, txs) } // AsyncSendTransactions queues list of transactions propagation to a remote // peer. If the peer's broadcast queue is full, the event is silently dropped. func (p *peer) AsyncSendTransactions(txs []*types.Transaction) { select { case p.queuedTxs <- txs: for _, tx := range txs { p.knownTxs.Add(tx.Hash()) } default: p.Log().Debug("Dropping transaction propagation", "count", len(txs)) } } // SendNodeMetas sends the metas to the peer and includes the hashes // in its metas hash set for future reference. func (p *peer) SendNodeMetas(metas []*NodeMeta) error { for _, meta := range metas { p.knownMetas.Add(meta.Hash()) } return p2p.Send(p.rw, MetaMsg, metas) } // AsyncSendNodeMeta queues list of notary node meta propagation to a // remote peer. If the peer's broadcast queue is full, the event is silently // dropped. func (p *peer) AsyncSendNodeMetas(metas []*NodeMeta) { select { case p.queuedMetas <- metas: for _, meta := range metas { p.knownMetas.Add(meta.Hash()) } default: p.Log().Debug("Dropping node meta propagation", "count", len(metas)) } } // SendNewBlockHashes announces the availability of a number of blocks through // a hash notification. func (p *peer) SendNewBlockHashes(hashes []common.Hash, numbers []uint64) error { for _, hash := range hashes { p.knownBlocks.Add(hash) } request := make(newBlockHashesData, len(hashes)) for i := 0; i < len(hashes); i++ { request[i].Hash = hashes[i] request[i].Number = numbers[i] } return p2p.Send(p.rw, NewBlockHashesMsg, request) } // AsyncSendNewBlockHash queues the availability of a block for propagation to a // remote peer. If the peer's broadcast queue is full, the event is silently // dropped. func (p *peer) AsyncSendNewBlockHash(block *types.Block) { select { case p.queuedAnns <- block: p.knownBlocks.Add(block.Hash()) default: p.Log().Debug("Dropping block announcement", "number", block.NumberU64(), "hash", block.Hash()) } } // SendNewBlock propagates an entire block to a remote peer. func (p *peer) SendNewBlock(block *types.Block, td *big.Int) error { p.knownBlocks.Add(block.Hash()) return p2p.Send(p.rw, NewBlockMsg, []interface{}{block, td}) } // AsyncSendNewBlock queues an entire block for propagation to a remote peer. If // the peer's broadcast queue is full, the event is silently dropped. func (p *peer) AsyncSendNewBlock(block *types.Block, td *big.Int) { select { case p.queuedProps <- &propEvent{block: block, td: td}: p.knownBlocks.Add(block.Hash()) default: p.Log().Debug("Dropping block propagation", "number", block.NumberU64(), "hash", block.Hash()) } } func (p *peer) SendLatticeBlock(block *coreTypes.Block) error { r := toRLPLatticeBlock(block) p.knownLatticeBlocks.Add(rlpHash(r)) return p2p.Send(p.rw, LatticeBlockMsg, toRLPLatticeBlock(block)) } func (p *peer) AsyncSendLatticeBlock(block *coreTypes.Block) { select { case p.queuedLatticeBlocks <- block: r := toRLPLatticeBlock(block) p.knownLatticeBlocks.Add(rlpHash(r)) default: p.Log().Debug("Dropping lattice block propagation") } } func (p *peer) SendVote(vote *coreTypes.Vote) error { p.knownVotes.Add(rlpHash(vote)) return p2p.Send(p.rw, VoteMsg, vote) } func (p *peer) AsyncSendVote(vote *coreTypes.Vote) { select { case p.queuedVotes <- vote: p.knownVotes.Add(rlpHash(vote)) default: p.Log().Debug("Dropping vote propagation") } } func (p *peer) SendAgreement(agreement *coreTypes.AgreementResult) error { p.knownAgreements.Add(rlpHash(agreement)) return p2p.Send(p.rw, AgreementMsg, agreement) } func (p *peer) AsyncSendAgreement(agreement *coreTypes.AgreementResult) { select { case p.queuedAgreements <- agreement: p.knownAgreements.Add(rlpHash(agreement)) default: p.Log().Debug("Dropping agreement result") } } func (p *peer) SendRandomness(randomness *coreTypes.BlockRandomnessResult) error { p.knownRandomnesses.Add(rlpHash(randomness)) return p2p.Send(p.rw, RandomnessMsg, randomness) } func (p *peer) AsyncSendRandomness(randomness *coreTypes.BlockRandomnessResult) { select { case p.queuedRandomnesses <- randomness: p.knownRandomnesses.Add(rlpHash(randomness)) default: p.Log().Debug("Dropping randomness result") } } func (p *peer) SendDKGPrivateShare(privateShare *coreTypes.DKGPrivateShare) error { r := toRLPDKGPrivateShare(privateShare) p.knownDKGPrivateShares.Add(rlpHash(r)) return p2p.Send(p.rw, DKGPrivateShareMsg, toRLPDKGPrivateShare(privateShare)) } func (p *peer) AsyncSendDKGPrivateShare(privateShare *coreTypes.DKGPrivateShare) { select { case p.queuedDKGPrivateShares <- privateShare: r := toRLPDKGPrivateShare(privateShare) p.knownDKGPrivateShares.Add(rlpHash(r)) default: p.Log().Debug("Dropping DKG private share") } } func (p *peer) SendDKGPartialSignature(psig *coreTypes.DKGPartialSignature) error { p.knownDKGPartialSignatures.Add(rlpHash(psig)) return p2p.Send(p.rw, DKGPartialSignatureMsg, psig) } func (p *peer) AsyncSendDKGPartialSignature(psig *coreTypes.DKGPartialSignature) { select { case p.queuedDKGPartialSignatures <- psig: p.knownDKGPartialSignatures.Add(rlpHash(psig)) default: p.Log().Debug("Dropping DKG partial signature") } } // SendBlockHeaders sends a batch of block headers to the remote peer. func (p *peer) SendBlockHeaders(headers []*types.Header) error { return p2p.Send(p.rw, BlockHeadersMsg, headers) } // SendBlockBodies sends a batch of block contents to the remote peer. func (p *peer) SendBlockBodies(bodies []*blockBody) error { return p2p.Send(p.rw, BlockBodiesMsg, blockBodiesData(bodies)) } // SendBlockBodiesRLP sends a batch of block contents to the remote peer from // an already RLP encoded format. func (p *peer) SendBlockBodiesRLP(bodies []rlp.RawValue) error { return p2p.Send(p.rw, BlockBodiesMsg, bodies) } // SendNodeDataRLP sends a batch of arbitrary internal data, corresponding to the // hashes requested. func (p *peer) SendNodeData(data [][]byte) error { return p2p.Send(p.rw, NodeDataMsg, data) } // SendReceiptsRLP sends a batch of transaction receipts, corresponding to the // ones requested from an already RLP encoded format. func (p *peer) SendReceiptsRLP(receipts []rlp.RawValue) error { return p2p.Send(p.rw, ReceiptsMsg, receipts) } // RequestOneHeader is a wrapper around the header query functions to fetch a // single header. It is used solely by the fetcher. func (p *peer) RequestOneHeader(hash common.Hash) error { p.Log().Debug("Fetching single header", "hash", hash) return p2p.Send(p.rw, GetBlockHeadersMsg, &getBlockHeadersData{Origin: hashOrNumber{Hash: hash}, Amount: uint64(1), Skip: uint64(0), Reverse: false}) } // RequestHeadersByHash fetches a batch of blocks' headers corresponding to the // specified header query, based on the hash of an origin block. func (p *peer) RequestHeadersByHash(origin common.Hash, amount int, skip int, reverse bool) error { p.Log().Debug("Fetching batch of headers", "count", amount, "fromhash", origin, "skip", skip, "reverse", reverse) return p2p.Send(p.rw, GetBlockHeadersMsg, &getBlockHeadersData{Origin: hashOrNumber{Hash: origin}, Amount: uint64(amount), Skip: uint64(skip), Reverse: reverse}) } // RequestHeadersByNumber fetches a batch of blocks' headers corresponding to the // specified header query, based on the number of an origin block. func (p *peer) RequestHeadersByNumber(origin uint64, amount int, skip int, reverse bool) error { p.Log().Debug("Fetching batch of headers", "count", amount, "fromnum", origin, "skip", skip, "reverse", reverse) return p2p.Send(p.rw, GetBlockHeadersMsg, &getBlockHeadersData{Origin: hashOrNumber{Number: origin}, Amount: uint64(amount), Skip: uint64(skip), Reverse: reverse}) } // RequestBodies fetches a batch of blocks' bodies corresponding to the hashes // specified. func (p *peer) RequestBodies(hashes []common.Hash) error { p.Log().Debug("Fetching batch of block bodies", "count", len(hashes)) return p2p.Send(p.rw, GetBlockBodiesMsg, hashes) } // RequestNodeData fetches a batch of arbitrary data from a node's known state // data, corresponding to the specified hashes. func (p *peer) RequestNodeData(hashes []common.Hash) error { p.Log().Debug("Fetching batch of state data", "count", len(hashes)) return p2p.Send(p.rw, GetNodeDataMsg, hashes) } // RequestReceipts fetches a batch of transaction receipts from a remote node. func (p *peer) RequestReceipts(hashes []common.Hash) error { p.Log().Debug("Fetching batch of receipts", "count", len(hashes)) return p2p.Send(p.rw, GetReceiptsMsg, hashes) } // Handshake executes the eth protocol handshake, negotiating version number, // network IDs, difficulties, head and genesis blocks. func (p *peer) Handshake(network uint64, td *big.Int, head common.Hash, genesis common.Hash) error { // Send out own handshake in a new thread errc := make(chan error, 2) var status statusData // safe to read after two values have been received from errc go func() { errc <- p2p.Send(p.rw, StatusMsg, &statusData{ ProtocolVersion: uint32(p.version), NetworkId: network, TD: td, CurrentBlock: head, GenesisBlock: genesis, }) }() go func() { errc <- p.readStatus(network, &status, genesis) }() timeout := time.NewTimer(handshakeTimeout) defer timeout.Stop() for i := 0; i < 2; i++ { select { case err := <-errc: if err != nil { return err } case <-timeout.C: return p2p.DiscReadTimeout } } p.td, p.head = status.TD, status.CurrentBlock return nil } func (p *peer) readStatus(network uint64, status *statusData, genesis common.Hash) (err error) { msg, err := p.rw.ReadMsg() if err != nil { return err } if msg.Code != StatusMsg { return errResp(ErrNoStatusMsg, "first msg has code %x (!= %x)", msg.Code, StatusMsg) } if msg.Size > ProtocolMaxMsgSize { return errResp(ErrMsgTooLarge, "%v > %v", msg.Size, ProtocolMaxMsgSize) } // Decode the handshake and make sure everything matches if err := msg.Decode(&status); err != nil { return errResp(ErrDecode, "msg %v: %v", msg, err) } if status.GenesisBlock != genesis { return errResp(ErrGenesisBlockMismatch, "%x (!= %x)", status.GenesisBlock[:8], genesis[:8]) } if status.NetworkId != network { return errResp(ErrNetworkIdMismatch, "%d (!= %d)", status.NetworkId, network) } if int(status.ProtocolVersion) != p.version { return errResp(ErrProtocolVersionMismatch, "%d (!= %d)", status.ProtocolVersion, p.version) } return nil } // String implements fmt.Stringer. func (p *peer) String() string { return fmt.Sprintf("Peer %s [%s]", p.id, fmt.Sprintf("dex/%2d", p.version), ) } // peerSet represents the collection of active peers currently participating in // the Ethereum sub-protocol. type peerSet struct { peers map[string]*peer lock sync.RWMutex closed bool tab *nodeTable srvr p2pServer gov governance peer2Labels map[string]map[peerLabel]struct{} label2Peers map[peerLabel]map[string]struct{} history map[uint64]struct{} notaryHistory map[uint64]struct{} dkgHistory map[uint64]struct{} } // newPeerSet creates a new peer set to track the active participants. func newPeerSet(gov governance, srvr p2pServer, tab *nodeTable) *peerSet { return &peerSet{ peers: make(map[string]*peer), gov: gov, srvr: srvr, tab: tab, peer2Labels: make(map[string]map[peerLabel]struct{}), label2Peers: make(map[peerLabel]map[string]struct{}), history: make(map[uint64]struct{}), notaryHistory: make(map[uint64]struct{}), dkgHistory: make(map[uint64]struct{}), } } // Register injects a new peer into the working set, or returns an error if the // peer is already known. If a new peer it registered, its broadcast loop is also // started. func (ps *peerSet) Register(p *peer) error { ps.lock.Lock() defer ps.lock.Unlock() if ps.closed { return errClosed } if _, ok := ps.peers[p.id]; ok { return errAlreadyRegistered } ps.peers[p.id] = p go p.broadcast() return nil } // Unregister removes a remote peer from the active set, disabling any further // actions to/from that particular entity. func (ps *peerSet) Unregister(id string) error { ps.lock.Lock() defer ps.lock.Unlock() p, ok := ps.peers[id] if !ok { return errNotRegistered } delete(ps.peers, id) p.close() return nil } // Peer retrieves the registered peer with the given id. func (ps *peerSet) Peer(id string) *peer { ps.lock.RLock() defer ps.lock.RUnlock() return ps.peers[id] } // Len returns if the current number of peers in the set. func (ps *peerSet) Len() int { ps.lock.RLock() defer ps.lock.RUnlock() return len(ps.peers) } // PeersWithoutBlock retrieves a list of peers that do not have a given block in // their set of known hashes. func (ps *peerSet) PeersWithoutBlock(hash common.Hash) []*peer { ps.lock.RLock() defer ps.lock.RUnlock() list := make([]*peer, 0, len(ps.peers)) for _, p := range ps.peers { if !p.knownBlocks.Contains(hash) { list = append(list, p) } } return list } // PeersWithoutTx retrieves a list of peers that do not have a given transaction // in their set of known hashes. func (ps *peerSet) PeersWithoutTx(hash common.Hash) []*peer { ps.lock.RLock() defer ps.lock.RUnlock() list := make([]*peer, 0, len(ps.peers)) for _, p := range ps.peers { if !p.knownTxs.Contains(hash) { list = append(list, p) } } return list } func (ps *peerSet) PeersWithLabel(label peerLabel) []*peer { ps.lock.RLock() defer ps.lock.RUnlock() list := make([]*peer, 0, len(ps.label2Peers[label])) for id := range ps.label2Peers[label] { if p, ok := ps.peers[id]; ok { list = append(list, p) } } return list } func (ps *peerSet) PeersWithoutVote(hash common.Hash, label peerLabel) []*peer { ps.lock.RLock() defer ps.lock.RUnlock() list := make([]*peer, 0, len(ps.label2Peers[label])) for id := range ps.label2Peers[label] { if p, ok := ps.peers[id]; ok { if !p.knownVotes.Contains(hash) { list = append(list, p) } } } return list } // PeersWithoutNodeMeta retrieves a list of peers that do not have a // given meta in their set of known hashes. func (ps *peerSet) PeersWithoutNodeMeta(hash common.Hash) []*peer { ps.lock.RLock() defer ps.lock.RUnlock() list := make([]*peer, 0, len(ps.peers)) for _, p := range ps.peers { if !p.knownMetas.Contains(hash) { list = append(list, p) } } return list } func (ps *peerSet) PeersWithoutLatticeBlock(hash common.Hash) []*peer { ps.lock.RLock() defer ps.lock.RUnlock() list := make([]*peer, 0, len(ps.peers)) for _, p := range ps.peers { if !p.knownLatticeBlocks.Contains(hash) { list = append(list, p) } } return list } func (ps *peerSet) PeersWithoutAgreement(hash common.Hash) []*peer { ps.lock.RLock() defer ps.lock.RUnlock() list := make([]*peer, 0, len(ps.peers)) for _, p := range ps.peers { if !p.knownAgreements.Contains(hash) { list = append(list, p) } } return list } func (ps *peerSet) PeersWithoutRandomness(hash common.Hash) []*peer { ps.lock.RLock() defer ps.lock.RUnlock() list := make([]*peer, 0, len(ps.peers)) for _, p := range ps.peers { if !p.knownRandomnesses.Contains(hash) { list = append(list, p) } } return list } func (ps *peerSet) PeersWithoutDKGPartialSignature(hash common.Hash) []*peer { ps.lock.RLock() defer ps.lock.RUnlock() list := make([]*peer, 0, len(ps.peers)) for _, p := range ps.peers { if !p.knownDKGPartialSignatures.Contains(hash) { list = append(list, p) } } return list } // BestPeer retrieves the known peer with the currently highest total difficulty. func (ps *peerSet) BestPeer() *peer { ps.lock.RLock() defer ps.lock.RUnlock() var ( bestPeer *peer bestTd *big.Int ) for _, p := range ps.peers { if _, td := p.Head(); bestPeer == nil || td.Cmp(bestTd) > 0 { bestPeer, bestTd = p, td } } return bestPeer } // Close disconnects all peers. // No new peers can be registered after Close has returned. func (ps *peerSet) Close() { ps.lock.Lock() defer ps.lock.Unlock() for _, p := range ps.peers { p.Disconnect(p2p.DiscQuitting) } ps.closed = true } func (ps *peerSet) BuildConnection(round uint64) { ps.lock.Lock() defer ps.lock.Unlock() defer ps.dumpPeerLabel(fmt.Sprintf("BuildConnection: %d", round)) ps.history[round] = struct{}{} selfID := ps.srvr.Self().ID().String() dkgIDs, err := ps.gov.DKGSet(round) if err != nil { log.Error("get dkg set fail", "round", round, "err", err) } // build dkg connection _, inDKGSet := dkgIDs[selfID] if inDKGSet { delete(dkgIDs, selfID) dkgLabel := peerLabel{set: dkgset, round: round} for id := range dkgIDs { ps.addDirectPeer(id, dkgLabel) } } var inOneNotarySet bool for cid := uint32(0); cid < ps.gov.GetNumChains(round); cid++ { notaryIDs, err := ps.gov.NotarySet(round, cid) if err != nil { log.Error("get notary set fail", "round", round, "chain id", cid, "err", err) continue } label := peerLabel{set: notaryset, chainID: cid, round: round} // not in notary set, add group if _, ok := notaryIDs[selfID]; !ok { var nodes []*enode.Node for id := range notaryIDs { nodes = append(nodes, ps.newNode(id)) ps.addLabel(id, label) } ps.srvr.AddGroup(notarySetName(cid, round), nodes, groupNodeNum) continue } delete(notaryIDs, selfID) for id := range notaryIDs { ps.addDirectPeer(id, label) } inOneNotarySet = true } // build some connections to DKG nodes if !inDKGSet && inOneNotarySet { var nodes []*enode.Node label := peerLabel{set: dkgset, round: round} for id := range dkgIDs { nodes = append(nodes, ps.newNode(id)) ps.addLabel(id, label) } ps.srvr.AddGroup(dkgSetName(round), nodes, groupNodeNum) } } func (ps *peerSet) ForgetConnection(round uint64) { ps.lock.Lock() defer ps.lock.Unlock() defer ps.dumpPeerLabel(fmt.Sprintf("ForgetConnection: %d", round)) for r := range ps.history { if r <= round { ps.forgetConnection(round) delete(ps.history, r) } } } func (ps *peerSet) forgetConnection(round uint64) { selfID := ps.srvr.Self().ID().String() dkgIDs, err := ps.gov.DKGSet(round) if err != nil { log.Error("get dkg set fail", "round", round, "err", err) } _, inDKGSet := dkgIDs[selfID] if inDKGSet { delete(dkgIDs, selfID) label := peerLabel{set: dkgset, round: round} for id := range dkgIDs { ps.removeDirectPeer(id, label) } } var inOneNotarySet bool for cid := uint32(0); cid < ps.gov.GetNumChains(round); cid++ { notaryIDs, err := ps.gov.NotarySet(round, cid) if err != nil { log.Error("get notary set fail", "round", round, "chain id", cid, "err", err) continue } label := peerLabel{set: notaryset, chainID: cid, round: round} // not in notary set, add group if _, ok := notaryIDs[selfID]; !ok { var nodes []*enode.Node for id := range notaryIDs { nodes = append(nodes, ps.newNode(id)) ps.removeLabel(id, label) } ps.srvr.RemoveGroup(notarySetName(cid, round)) continue } delete(notaryIDs, selfID) for id := range notaryIDs { ps.removeDirectPeer(id, label) } inOneNotarySet = true } // build some connections to DKG nodes if !inDKGSet && inOneNotarySet { var nodes []*enode.Node label := peerLabel{set: dkgset, round: round} for id := range dkgIDs { nodes = append(nodes, ps.newNode(id)) ps.removeLabel(id, label) } ps.srvr.RemoveGroup(dkgSetName(round)) } } func (ps *peerSet) BuildNotaryConn(round uint64) { ps.lock.Lock() defer ps.lock.Unlock() defer ps.dumpPeerLabel(fmt.Sprintf("BuildNotaryConn: %d", round)) if _, ok := ps.notaryHistory[round]; ok { return } ps.notaryHistory[round] = struct{}{} selfID := ps.srvr.Self().ID().String() for chainID := uint32(0); chainID < ps.gov.GetNumChains(round); chainID++ { s, err := ps.gov.NotarySet(round, chainID) if err != nil { log.Error("get notary set fail", "round", round, "chain id", chainID, "err", err) continue } // not in notary set, add group if _, ok := s[selfID]; !ok { var nodes []*enode.Node for id := range s { nodes = append(nodes, ps.newNode(id)) } ps.srvr.AddGroup(notarySetName(chainID, round), nodes, groupNodeNum) continue } label := peerLabel{ set: notaryset, chainID: chainID, round: round, } delete(s, selfID) for id := range s { ps.addDirectPeer(id, label) } } } func (ps *peerSet) dumpPeerLabel(s string) { log.Trace(s, "peer num", len(ps.peers)) for id, labels := range ps.peer2Labels { _, ok := ps.peers[id] for label := range labels { log.Trace(s, "connected", ok, "id", id[:16], "round", label.round, "cid", label.chainID, "set", label.set) } } } func (ps *peerSet) ForgetNotaryConn(round uint64) { ps.lock.Lock() defer ps.lock.Unlock() defer ps.dumpPeerLabel(fmt.Sprintf("ForgetNotaryConn: %d", round)) // forget all the rounds before the given round for r := range ps.notaryHistory { if r <= round { ps.forgetNotaryConn(r) delete(ps.notaryHistory, r) } } } func (ps *peerSet) forgetNotaryConn(round uint64) { selfID := ps.srvr.Self().ID().String() for chainID := uint32(0); chainID < ps.gov.GetNumChains(round); chainID++ { s, err := ps.gov.NotarySet(round, chainID) if err != nil { log.Error("get notary set fail", "round", round, "chain id", chainID, "err", err) continue } if _, ok := s[selfID]; !ok { ps.srvr.RemoveGroup(notarySetName(chainID, round)) continue } label := peerLabel{ set: notaryset, chainID: chainID, round: round, } delete(s, selfID) for id := range s { ps.removeDirectPeer(id, label) } } } func notarySetName(chainID uint32, round uint64) string { return fmt.Sprintf("%d-%d-notaryset", chainID, round) } func dkgSetName(round uint64) string { return fmt.Sprintf("%d-dkgset", round) } func (ps *peerSet) BuildDKGConn(round uint64) { ps.lock.Lock() defer ps.lock.Unlock() defer ps.dumpPeerLabel(fmt.Sprintf("BuildDKGConn: %d", round)) selfID := ps.srvr.Self().ID().String() s, err := ps.gov.DKGSet(round) if err != nil { log.Error("get dkg set fail", "round", round) return } if _, ok := s[selfID]; !ok { return } ps.dkgHistory[round] = struct{}{} delete(s, selfID) for id := range s { ps.addDirectPeer(id, peerLabel{ set: dkgset, round: round, }) } } func (ps *peerSet) ForgetDKGConn(round uint64) { ps.lock.Lock() defer ps.lock.Unlock() defer ps.dumpPeerLabel(fmt.Sprintf("ForgetDKGConn: %d", round)) // forget all the rounds before the given round for r := range ps.dkgHistory { if r <= round { ps.forgetDKGConn(r) delete(ps.dkgHistory, r) } } } func (ps *peerSet) forgetDKGConn(round uint64) { selfID := ps.srvr.Self().ID().String() s, err := ps.gov.DKGSet(round) if err != nil { log.Error("get dkg set fail", "round", round) return } if _, ok := s[selfID]; !ok { return } delete(s, selfID) label := peerLabel{ set: dkgset, round: round, } for id := range s { ps.removeDirectPeer(id, label) } } // make sure the ps.lock is held func (ps *peerSet) addDirectPeer(id string, label peerLabel) { ps.addLabel(id, label) ps.srvr.AddDirectPeer(ps.newNode(id)) } // make sure the ps.lock is held func (ps *peerSet) removeDirectPeer(id string, label peerLabel) { ps.removeLabel(id, label) if len(ps.peer2Labels[id]) == 0 { ps.srvr.RemoveDirectPeer(ps.newNode(id)) } } // make sure the ps.lock is held func (ps *peerSet) addLabel(id string, label peerLabel) { if _, ok := ps.peer2Labels[id]; !ok { ps.peer2Labels[id] = make(map[peerLabel]struct{}) } if _, ok := ps.label2Peers[label]; !ok { ps.label2Peers[label] = make(map[string]struct{}) } ps.peer2Labels[id][label] = struct{}{} ps.label2Peers[label][id] = struct{}{} } // make sure the ps.lock is held func (ps *peerSet) removeLabel(id string, label peerLabel) { delete(ps.peer2Labels[id], label) delete(ps.label2Peers[label], id) if len(ps.peer2Labels[id]) == 0 { delete(ps.peer2Labels, id) } if len(ps.label2Peers[label]) == 0 { delete(ps.label2Peers, label) } } func (ps *peerSet) newNode(id string) *enode.Node { nodeID := enode.HexID(id) meta := ps.tab.Get(enode.HexID(id)) var r enr.Record r.Set(enr.ID(nodeID.String())) r.Set(enr.IP(meta.IP)) r.Set(enr.TCP(meta.TCP)) r.Set(enr.UDP(meta.UDP)) n, err := enode.New(enode.ValidSchemes, &r) if err != nil { panic(err) } return n }