From 6eaa404187953777e8dc866e4e3db089e4ad0501 Mon Sep 17 00:00:00 2001 From: obscuren Date: Thu, 22 Jan 2015 00:25:00 +0100 Subject: Moved sha3 from `obscuren` --- crypto/sha3/keccakf.go | 171 +++++++++++++++++++++++++++++++++++++++ crypto/sha3/sha3.go | 216 +++++++++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 387 insertions(+) create mode 100644 crypto/sha3/keccakf.go create mode 100644 crypto/sha3/sha3.go (limited to 'crypto/sha3') diff --git a/crypto/sha3/keccakf.go b/crypto/sha3/keccakf.go new file mode 100644 index 000000000..3baf13ba3 --- /dev/null +++ b/crypto/sha3/keccakf.go @@ -0,0 +1,171 @@ +// Copyright 2013 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package sha3 + +// This file implements the core Keccak permutation function necessary for computing SHA3. +// This is implemented in a separate file to allow for replacement by an optimized implementation. +// Nothing in this package is exported. +// For the detailed specification, refer to the Keccak web site (http://keccak.noekeon.org/). + +// rc stores the round constants for use in the ι step. +var rc = [...]uint64{ + 0x0000000000000001, + 0x0000000000008082, + 0x800000000000808A, + 0x8000000080008000, + 0x000000000000808B, + 0x0000000080000001, + 0x8000000080008081, + 0x8000000000008009, + 0x000000000000008A, + 0x0000000000000088, + 0x0000000080008009, + 0x000000008000000A, + 0x000000008000808B, + 0x800000000000008B, + 0x8000000000008089, + 0x8000000000008003, + 0x8000000000008002, + 0x8000000000000080, + 0x000000000000800A, + 0x800000008000000A, + 0x8000000080008081, + 0x8000000000008080, + 0x0000000080000001, + 0x8000000080008008, +} + +// ro_xx represent the rotation offsets for use in the χ step. +// Defining them as const instead of in an array allows the compiler to insert constant shifts. +const ( + ro_00 = 0 + ro_01 = 36 + ro_02 = 3 + ro_03 = 41 + ro_04 = 18 + ro_05 = 1 + ro_06 = 44 + ro_07 = 10 + ro_08 = 45 + ro_09 = 2 + ro_10 = 62 + ro_11 = 6 + ro_12 = 43 + ro_13 = 15 + ro_14 = 61 + ro_15 = 28 + ro_16 = 55 + ro_17 = 25 + ro_18 = 21 + ro_19 = 56 + ro_20 = 27 + ro_21 = 20 + ro_22 = 39 + ro_23 = 8 + ro_24 = 14 +) + +// keccakF computes the complete Keccak-f function consisting of 24 rounds with a different +// constant (rc) in each round. This implementation fully unrolls the round function to avoid +// inner loops, as well as pre-calculating shift offsets. +func (d *digest) keccakF() { + for _, roundConstant := range rc { + // θ step + d.c[0] = d.a[0] ^ d.a[5] ^ d.a[10] ^ d.a[15] ^ d.a[20] + d.c[1] = d.a[1] ^ d.a[6] ^ d.a[11] ^ d.a[16] ^ d.a[21] + d.c[2] = d.a[2] ^ d.a[7] ^ d.a[12] ^ d.a[17] ^ d.a[22] + d.c[3] = d.a[3] ^ d.a[8] ^ d.a[13] ^ d.a[18] ^ d.a[23] + d.c[4] = d.a[4] ^ d.a[9] ^ d.a[14] ^ d.a[19] ^ d.a[24] + + d.d[0] = d.c[4] ^ (d.c[1]<<1 ^ d.c[1]>>63) + d.d[1] = d.c[0] ^ (d.c[2]<<1 ^ d.c[2]>>63) + d.d[2] = d.c[1] ^ (d.c[3]<<1 ^ d.c[3]>>63) + d.d[3] = d.c[2] ^ (d.c[4]<<1 ^ d.c[4]>>63) + d.d[4] = d.c[3] ^ (d.c[0]<<1 ^ d.c[0]>>63) + + d.a[0] ^= d.d[0] + d.a[1] ^= d.d[1] + d.a[2] ^= d.d[2] + d.a[3] ^= d.d[3] + d.a[4] ^= d.d[4] + d.a[5] ^= d.d[0] + d.a[6] ^= d.d[1] + d.a[7] ^= d.d[2] + d.a[8] ^= d.d[3] + d.a[9] ^= d.d[4] + d.a[10] ^= d.d[0] + d.a[11] ^= d.d[1] + d.a[12] ^= d.d[2] + d.a[13] ^= d.d[3] + d.a[14] ^= d.d[4] + d.a[15] ^= d.d[0] + d.a[16] ^= d.d[1] + d.a[17] ^= d.d[2] + d.a[18] ^= d.d[3] + d.a[19] ^= d.d[4] + d.a[20] ^= d.d[0] + d.a[21] ^= d.d[1] + d.a[22] ^= d.d[2] + d.a[23] ^= d.d[3] + d.a[24] ^= d.d[4] + + // ρ and π steps + d.b[0] = d.a[0] + d.b[1] = d.a[6]<>(64-ro_06) + d.b[2] = d.a[12]<>(64-ro_12) + d.b[3] = d.a[18]<>(64-ro_18) + d.b[4] = d.a[24]<>(64-ro_24) + d.b[5] = d.a[3]<>(64-ro_15) + d.b[6] = d.a[9]<>(64-ro_21) + d.b[7] = d.a[10]<>(64-ro_02) + d.b[8] = d.a[16]<>(64-ro_08) + d.b[9] = d.a[22]<>(64-ro_14) + d.b[10] = d.a[1]<>(64-ro_05) + d.b[11] = d.a[7]<>(64-ro_11) + d.b[12] = d.a[13]<>(64-ro_17) + d.b[13] = d.a[19]<>(64-ro_23) + d.b[14] = d.a[20]<>(64-ro_04) + d.b[15] = d.a[4]<>(64-ro_20) + d.b[16] = d.a[5]<>(64-ro_01) + d.b[17] = d.a[11]<>(64-ro_07) + d.b[18] = d.a[17]<>(64-ro_13) + d.b[19] = d.a[23]<>(64-ro_19) + d.b[20] = d.a[2]<>(64-ro_10) + d.b[21] = d.a[8]<>(64-ro_16) + d.b[22] = d.a[14]<>(64-ro_22) + d.b[23] = d.a[15]<>(64-ro_03) + d.b[24] = d.a[21]<>(64-ro_09) + + // χ step + d.a[0] = d.b[0] ^ (^d.b[1] & d.b[2]) + d.a[1] = d.b[1] ^ (^d.b[2] & d.b[3]) + d.a[2] = d.b[2] ^ (^d.b[3] & d.b[4]) + d.a[3] = d.b[3] ^ (^d.b[4] & d.b[0]) + d.a[4] = d.b[4] ^ (^d.b[0] & d.b[1]) + d.a[5] = d.b[5] ^ (^d.b[6] & d.b[7]) + d.a[6] = d.b[6] ^ (^d.b[7] & d.b[8]) + d.a[7] = d.b[7] ^ (^d.b[8] & d.b[9]) + d.a[8] = d.b[8] ^ (^d.b[9] & d.b[5]) + d.a[9] = d.b[9] ^ (^d.b[5] & d.b[6]) + d.a[10] = d.b[10] ^ (^d.b[11] & d.b[12]) + d.a[11] = d.b[11] ^ (^d.b[12] & d.b[13]) + d.a[12] = d.b[12] ^ (^d.b[13] & d.b[14]) + d.a[13] = d.b[13] ^ (^d.b[14] & d.b[10]) + d.a[14] = d.b[14] ^ (^d.b[10] & d.b[11]) + d.a[15] = d.b[15] ^ (^d.b[16] & d.b[17]) + d.a[16] = d.b[16] ^ (^d.b[17] & d.b[18]) + d.a[17] = d.b[17] ^ (^d.b[18] & d.b[19]) + d.a[18] = d.b[18] ^ (^d.b[19] & d.b[15]) + d.a[19] = d.b[19] ^ (^d.b[15] & d.b[16]) + d.a[20] = d.b[20] ^ (^d.b[21] & d.b[22]) + d.a[21] = d.b[21] ^ (^d.b[22] & d.b[23]) + d.a[22] = d.b[22] ^ (^d.b[23] & d.b[24]) + d.a[23] = d.b[23] ^ (^d.b[24] & d.b[20]) + d.a[24] = d.b[24] ^ (^d.b[20] & d.b[21]) + + // ι step + d.a[0] ^= roundConstant + } +} diff --git a/crypto/sha3/sha3.go b/crypto/sha3/sha3.go new file mode 100644 index 000000000..22df0ef11 --- /dev/null +++ b/crypto/sha3/sha3.go @@ -0,0 +1,216 @@ +// Copyright 2013 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Package sha3 implements the SHA3 hash algorithm (formerly called Keccak) chosen by NIST in 2012. +// This file provides a SHA3 implementation which implements the standard hash.Hash interface. +// Writing input data, including padding, and reading output data are computed in this file. +// Note that the current implementation can compute the hash of an integral number of bytes only. +// This is a consequence of the hash interface in which a buffer of bytes is passed in. +// The internals of the Keccak-f function are computed in keccakf.go. +// For the detailed specification, refer to the Keccak web site (http://keccak.noekeon.org/). +package sha3 + +import ( + "encoding/binary" + "hash" +) + +// laneSize is the size in bytes of each "lane" of the internal state of SHA3 (5 * 5 * 8). +// Note that changing this size would requires using a type other than uint64 to store each lane. +const laneSize = 8 + +// sliceSize represents the dimensions of the internal state, a square matrix of +// sliceSize ** 2 lanes. This is the size of both the "rows" and "columns" dimensions in the +// terminology of the SHA3 specification. +const sliceSize = 5 + +// numLanes represents the total number of lanes in the state. +const numLanes = sliceSize * sliceSize + +// stateSize is the size in bytes of the internal state of SHA3 (5 * 5 * WSize). +const stateSize = laneSize * numLanes + +// digest represents the partial evaluation of a checksum. +// Note that capacity, and not outputSize, is the critical security parameter, as SHA3 can output +// an arbitrary number of bytes for any given capacity. The Keccak proposal recommends that +// capacity = 2*outputSize to ensure that finding a collision of size outputSize requires +// O(2^{outputSize/2}) computations (the birthday lower bound). Future standards may modify the +// capacity/outputSize ratio to allow for more output with lower cryptographic security. +type digest struct { + a [numLanes]uint64 // main state of the hash + b [numLanes]uint64 // intermediate states + c [sliceSize]uint64 // intermediate states + d [sliceSize]uint64 // intermediate states + outputSize int // desired output size in bytes + capacity int // number of bytes to leave untouched during squeeze/absorb + absorbed int // number of bytes absorbed thus far +} + +// minInt returns the lesser of two integer arguments, to simplify the absorption routine. +func minInt(v1, v2 int) int { + if v1 <= v2 { + return v1 + } + return v2 +} + +// rate returns the number of bytes of the internal state which can be absorbed or squeezed +// in between calls to the permutation function. +func (d *digest) rate() int { + return stateSize - d.capacity +} + +// Reset clears the internal state by zeroing bytes in the state buffer. +// This can be skipped for a newly-created hash state; the default zero-allocated state is correct. +func (d *digest) Reset() { + d.absorbed = 0 + for i := range d.a { + d.a[i] = 0 + } +} + +// BlockSize, required by the hash.Hash interface, does not have a standard intepretation +// for a sponge-based construction like SHA3. We return the data rate: the number of bytes which +// can be absorbed per invocation of the permutation function. For Merkle-Damgård based hashes +// (ie SHA1, SHA2, MD5) the output size of the internal compression function is returned. +// We consider this to be roughly equivalent because it represents the number of bytes of output +// produced per cryptographic operation. +func (d *digest) BlockSize() int { return d.rate() } + +// Size returns the output size of the hash function in bytes. +func (d *digest) Size() int { + return d.outputSize +} + +// unalignedAbsorb is a helper function for Write, which absorbs data that isn't aligned with an +// 8-byte lane. This requires shifting the individual bytes into position in a uint64. +func (d *digest) unalignedAbsorb(p []byte) { + var t uint64 + for i := len(p) - 1; i >= 0; i-- { + t <<= 8 + t |= uint64(p[i]) + } + offset := (d.absorbed) % d.rate() + t <<= 8 * uint(offset%laneSize) + d.a[offset/laneSize] ^= t + d.absorbed += len(p) +} + +// Write "absorbs" bytes into the state of the SHA3 hash, updating as needed when the sponge +// "fills up" with rate() bytes. Since lanes are stored internally as type uint64, this requires +// converting the incoming bytes into uint64s using a little endian interpretation. This +// implementation is optimized for large, aligned writes of multiples of 8 bytes (laneSize). +// Non-aligned or uneven numbers of bytes require shifting and are slower. +func (d *digest) Write(p []byte) (int, error) { + // An initial offset is needed if the we aren't absorbing to the first lane initially. + offset := d.absorbed % d.rate() + toWrite := len(p) + + // The first lane may need to absorb unaligned and/or incomplete data. + if (offset%laneSize != 0 || len(p) < 8) && len(p) > 0 { + toAbsorb := minInt(laneSize-(offset%laneSize), len(p)) + d.unalignedAbsorb(p[:toAbsorb]) + p = p[toAbsorb:] + offset = (d.absorbed) % d.rate() + + // For every rate() bytes absorbed, the state must be permuted via the F Function. + if (d.absorbed)%d.rate() == 0 { + d.keccakF() + } + } + + // This loop should absorb the bulk of the data into full, aligned lanes. + // It will call the update function as necessary. + for len(p) > 7 { + firstLane := offset / laneSize + lastLane := minInt(d.rate()/laneSize, firstLane+len(p)/laneSize) + + // This inner loop absorbs input bytes into the state in groups of 8, converted to uint64s. + for lane := firstLane; lane < lastLane; lane++ { + d.a[lane] ^= binary.LittleEndian.Uint64(p[:laneSize]) + p = p[laneSize:] + } + d.absorbed += (lastLane - firstLane) * laneSize + // For every rate() bytes absorbed, the state must be permuted via the F Function. + if (d.absorbed)%d.rate() == 0 { + d.keccakF() + } + + offset = 0 + } + + // If there are insufficient bytes to fill the final lane, an unaligned absorption. + // This should always start at a correct lane boundary though, or else it would be caught + // by the uneven opening lane case above. + if len(p) > 0 { + d.unalignedAbsorb(p) + } + + return toWrite, nil +} + +// pad computes the SHA3 padding scheme based on the number of bytes absorbed. +// The padding is a 1 bit, followed by an arbitrary number of 0s and then a final 1 bit, such that +// the input bits plus padding bits are a multiple of rate(). Adding the padding simply requires +// xoring an opening and closing bit into the appropriate lanes. +func (d *digest) pad() { + offset := d.absorbed % d.rate() + // The opening pad bit must be shifted into position based on the number of bytes absorbed + padOpenLane := offset / laneSize + d.a[padOpenLane] ^= 0x0000000000000001 << uint(8*(offset%laneSize)) + // The closing padding bit is always in the last position + padCloseLane := (d.rate() / laneSize) - 1 + d.a[padCloseLane] ^= 0x8000000000000000 +} + +// finalize prepares the hash to output data by padding and one final permutation of the state. +func (d *digest) finalize() { + d.pad() + d.keccakF() +} + +// squeeze outputs an arbitrary number of bytes from the hash state. +// Squeezing can require multiple calls to the F function (one per rate() bytes squeezed), +// although this is not the case for standard SHA3 parameters. This implementation only supports +// squeezing a single time, subsequent squeezes may lose alignment. Future implementations +// may wish to support multiple squeeze calls, for example to support use as a PRNG. +func (d *digest) squeeze(in []byte, toSqueeze int) []byte { + // Because we read in blocks of laneSize, we need enough room to read + // an integral number of lanes + needed := toSqueeze + (laneSize-toSqueeze%laneSize)%laneSize + if cap(in)-len(in) < needed { + newIn := make([]byte, len(in), len(in)+needed) + copy(newIn, in) + in = newIn + } + out := in[len(in) : len(in)+needed] + + for len(out) > 0 { + for i := 0; i < d.rate() && len(out) > 0; i += laneSize { + binary.LittleEndian.PutUint64(out[:], d.a[i/laneSize]) + out = out[laneSize:] + } + if len(out) > 0 { + d.keccakF() + } + } + return in[:len(in)+toSqueeze] // Re-slice in case we wrote extra data. +} + +// Sum applies padding to the hash state and then squeezes out the desired nubmer of output bytes. +func (d *digest) Sum(in []byte) []byte { + // Make a copy of the original hash so that caller can keep writing and summing. + dup := *d + dup.finalize() + return dup.squeeze(in, dup.outputSize) +} + +// The NewKeccakX constructors enable initializing a hash in any of the four recommend sizes +// from the Keccak specification, all of which set capacity=2*outputSize. Note that the final +// NIST standard for SHA3 may specify different input/output lengths. +// The output size is indicated in bits but converted into bytes internally. +func NewKeccak224() hash.Hash { return &digest{outputSize: 224 / 8, capacity: 2 * 224 / 8} } +func NewKeccak256() hash.Hash { return &digest{outputSize: 256 / 8, capacity: 2 * 256 / 8} } +func NewKeccak384() hash.Hash { return &digest{outputSize: 384 / 8, capacity: 2 * 384 / 8} } +func NewKeccak512() hash.Hash { return &digest{outputSize: 512 / 8, capacity: 2 * 512 / 8} } -- cgit v1.2.3