aboutsummaryrefslogtreecommitdiffstats
path: root/crypto
diff options
context:
space:
mode:
Diffstat (limited to 'crypto')
-rw-r--r--crypto/crypto.go37
-rw-r--r--crypto/crypto_test.go2
-rw-r--r--crypto/ecies/.gitignore24
-rw-r--r--crypto/ecies/LICENSE28
-rw-r--r--crypto/ecies/README94
-rw-r--r--crypto/ecies/asn1.go556
-rw-r--r--crypto/ecies/ecies.go331
-rw-r--r--crypto/ecies/ecies_test.go489
-rw-r--r--crypto/ecies/params.go181
-rw-r--r--crypto/key.go3
-rw-r--r--crypto/key_store_passphrase.go15
-rw-r--r--crypto/key_store_test.go8
-rw-r--r--crypto/randentropy/rand_entropy.go84
-rw-r--r--crypto/secp256k1/secp256.go10
-rw-r--r--crypto/secp256k1/secp256_rand.go97
-rw-r--r--crypto/secp256k1/secp256_test.go30
16 files changed, 1858 insertions, 131 deletions
diff --git a/crypto/crypto.go b/crypto/crypto.go
index d56b9112f..e59250eb2 100644
--- a/crypto/crypto.go
+++ b/crypto/crypto.go
@@ -8,6 +8,8 @@ import (
"crypto/rand"
"crypto/sha256"
"fmt"
+ "io"
+ "os"
"encoding/hex"
"encoding/json"
@@ -16,10 +18,10 @@ import (
"code.google.com/p/go-uuid/uuid"
"code.google.com/p/go.crypto/pbkdf2"
"code.google.com/p/go.crypto/ripemd160"
+ "github.com/ethereum/go-ethereum/crypto/ecies"
"github.com/ethereum/go-ethereum/crypto/secp256k1"
"github.com/ethereum/go-ethereum/crypto/sha3"
"github.com/ethereum/go-ethereum/ethutil"
- "github.com/obscuren/ecies"
)
func init() {
@@ -27,10 +29,11 @@ func init() {
ecies.AddParamsForCurve(S256(), ecies.ECIES_AES128_SHA256)
}
-func Sha3(data []byte) []byte {
+func Sha3(data ...[]byte) []byte {
d := sha3.NewKeccak256()
- d.Write(data)
-
+ for _, b := range data {
+ d.Write(b)
+ }
return d.Sum(nil)
}
@@ -98,6 +101,32 @@ func FromECDSAPub(pub *ecdsa.PublicKey) []byte {
return elliptic.Marshal(S256(), pub.X, pub.Y)
}
+// HexToECDSA parses a secp256k1 private key.
+func HexToECDSA(hexkey string) (*ecdsa.PrivateKey, error) {
+ b, err := hex.DecodeString(hexkey)
+ if err != nil {
+ return nil, errors.New("invalid hex string")
+ }
+ if len(b) != 32 {
+ return nil, errors.New("invalid length, need 256 bits")
+ }
+ return ToECDSA(b), nil
+}
+
+// LoadECDSA loads a secp256k1 private key from the given file.
+func LoadECDSA(file string) (*ecdsa.PrivateKey, error) {
+ buf := make([]byte, 32)
+ fd, err := os.Open(file)
+ if err != nil {
+ return nil, err
+ }
+ defer fd.Close()
+ if _, err := io.ReadFull(fd, buf); err != nil {
+ return nil, err
+ }
+ return ToECDSA(buf), nil
+}
+
func GenerateKey() (*ecdsa.PrivateKey, error) {
return ecdsa.GenerateKey(S256(), rand.Reader)
}
diff --git a/crypto/crypto_test.go b/crypto/crypto_test.go
index 441733f93..c68856622 100644
--- a/crypto/crypto_test.go
+++ b/crypto/crypto_test.go
@@ -18,7 +18,7 @@ import (
func TestSha3(t *testing.T) {
msg := []byte("abc")
exp, _ := hex.DecodeString("4e03657aea45a94fc7d47ba826c8d667c0d1e6e33a64a036ec44f58fa12d6c45")
- checkhash(t, "Sha3-256", Sha3, msg, exp)
+ checkhash(t, "Sha3-256", func(in []byte) []byte { return Sha3(in) }, msg, exp)
}
func TestSha256(t *testing.T) {
diff --git a/crypto/ecies/.gitignore b/crypto/ecies/.gitignore
new file mode 100644
index 000000000..802b6744a
--- /dev/null
+++ b/crypto/ecies/.gitignore
@@ -0,0 +1,24 @@
+# Compiled Object files, Static and Dynamic libs (Shared Objects)
+*.o
+*.a
+*.so
+
+# Folders
+_obj
+_test
+
+# Architecture specific extensions/prefixes
+*.[568vq]
+[568vq].out
+
+*.cgo1.go
+*.cgo2.c
+_cgo_defun.c
+_cgo_gotypes.go
+_cgo_export.*
+
+_testmain.go
+
+*.exe
+
+*~
diff --git a/crypto/ecies/LICENSE b/crypto/ecies/LICENSE
new file mode 100644
index 000000000..e1ed19a27
--- /dev/null
+++ b/crypto/ecies/LICENSE
@@ -0,0 +1,28 @@
+Copyright (c) 2013 Kyle Isom <kyle@tyrfingr.is>
+Copyright (c) 2012 The Go Authors. All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are
+met:
+
+ * Redistributions of source code must retain the above copyright
+notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+copyright notice, this list of conditions and the following disclaimer
+in the documentation and/or other materials provided with the
+distribution.
+ * Neither the name of Google Inc. nor the names of its
+contributors may be used to endorse or promote products derived from
+this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
diff --git a/crypto/ecies/README b/crypto/ecies/README
new file mode 100644
index 000000000..2650c7b9f
--- /dev/null
+++ b/crypto/ecies/README
@@ -0,0 +1,94 @@
+# NOTE
+
+This implementation is direct fork of Kylom's implementation. I claim no authorship over this code apart from some minor modifications.
+Please be aware this code **has not yet been reviewed**.
+
+ecies implements the Elliptic Curve Integrated Encryption Scheme.
+
+The package is designed to be compliant with the appropriate NIST
+standards, and therefore doesn't support the full SEC 1 algorithm set.
+
+
+STATUS:
+
+ecies should be ready for use. The ASN.1 support is only complete so
+far as to supported the listed algorithms before.
+
+
+CAVEATS
+
+1. CMAC support is currently not present.
+
+
+SUPPORTED ALGORITHMS
+
+ SYMMETRIC CIPHERS HASH FUNCTIONS
+ AES128 SHA-1
+ AES192 SHA-224
+ AES256 SHA-256
+ SHA-384
+ ELLIPTIC CURVE SHA-512
+ P256
+ P384 KEY DERIVATION FUNCTION
+ P521 NIST SP 800-65a Concatenation KDF
+
+Curve P224 isn't supported because it does not provide a minimum security
+level of AES128 with HMAC-SHA1. According to NIST SP 800-57, the security
+level of P224 is 112 bits of security. Symmetric ciphers use CTR-mode;
+message tags are computed using HMAC-<HASH> function.
+
+
+CURVE SELECTION
+
+According to NIST SP 800-57, the following curves should be selected:
+
+ +----------------+-------+
+ | SYMMETRIC SIZE | CURVE |
+ +----------------+-------+
+ | 128-bit | P256 |
+ +----------------+-------+
+ | 192-bit | P384 |
+ +----------------+-------+
+ | 256-bit | P521 |
+ +----------------+-------+
+
+
+TODO
+
+1. Look at serialising the parameters with the SEC 1 ASN.1 module.
+2. Validate ASN.1 formats with SEC 1.
+
+
+TEST VECTORS
+
+The only test vectors I've found so far date from 1993, predating AES
+and including only 163-bit curves. Therefore, there are no published
+test vectors to compare to.
+
+
+LICENSE
+
+ecies is released under the same license as the Go source code. See the
+LICENSE file for details.
+
+
+REFERENCES
+
+* SEC (Standard for Efficient Cryptography) 1, version 2.0: Elliptic
+ Curve Cryptography; Certicom, May 2009.
+ http://www.secg.org/sec1-v2.pdf
+* GEC (Guidelines for Efficient Cryptography) 2, version 0.3: Test
+ Vectors for SEC 1; Certicom, September 1999.
+ http://read.pudn.com/downloads168/doc/772358/TestVectorsforSEC%201-gec2.pdf
+* NIST SP 800-56a: Recommendation for Pair-Wise Key Establishment Schemes
+ Using Discrete Logarithm Cryptography. National Institute of Standards
+ and Technology, May 2007.
+ http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf
+* Suite B Implementer’s Guide to NIST SP 800-56A. National Security
+ Agency, July 28, 2009.
+ http://www.nsa.gov/ia/_files/SuiteB_Implementer_G-113808.pdf
+* NIST SP 800-57: Recommendation for Key Management – Part 1: General
+ (Revision 3). National Institute of Standards and Technology, July
+ 2012.
+ http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
+
diff --git a/crypto/ecies/asn1.go b/crypto/ecies/asn1.go
new file mode 100644
index 000000000..3ef194ea0
--- /dev/null
+++ b/crypto/ecies/asn1.go
@@ -0,0 +1,556 @@
+package ecies
+
+import (
+ "bytes"
+ "crypto"
+ "crypto/elliptic"
+ "crypto/sha1"
+ "crypto/sha256"
+ "crypto/sha512"
+ "encoding/asn1"
+ "encoding/pem"
+ "fmt"
+ "hash"
+ "math/big"
+)
+
+var (
+ secgScheme = []int{1, 3, 132, 1}
+ shaScheme = []int{2, 16, 840, 1, 101, 3, 4, 2}
+ ansiX962Scheme = []int{1, 2, 840, 10045}
+ x963Scheme = []int{1, 2, 840, 63, 0}
+)
+
+var ErrInvalidPrivateKey = fmt.Errorf("ecies: invalid private key")
+
+func doScheme(base, v []int) asn1.ObjectIdentifier {
+ var oidInts asn1.ObjectIdentifier
+ oidInts = append(oidInts, base...)
+ return append(oidInts, v...)
+}
+
+// curve OID code taken from crypto/x509, including
+// - oidNameCurve*
+// - namedCurveFromOID
+// - oidFromNamedCurve
+// RFC 5480, 2.1.1.1. Named Curve
+//
+// secp224r1 OBJECT IDENTIFIER ::= {
+// iso(1) identified-organization(3) certicom(132) curve(0) 33 }
+//
+// secp256r1 OBJECT IDENTIFIER ::= {
+// iso(1) member-body(2) us(840) ansi-X9-62(10045) curves(3)
+// prime(1) 7 }
+//
+// secp384r1 OBJECT IDENTIFIER ::= {
+// iso(1) identified-organization(3) certicom(132) curve(0) 34 }
+//
+// secp521r1 OBJECT IDENTIFIER ::= {
+// iso(1) identified-organization(3) certicom(132) curve(0) 35 }
+//
+// NB: secp256r1 is equivalent to prime256v1
+type secgNamedCurve asn1.ObjectIdentifier
+
+var (
+ secgNamedCurveP224 = secgNamedCurve{1, 3, 132, 0, 33}
+ secgNamedCurveP256 = secgNamedCurve{1, 2, 840, 10045, 3, 1, 7}
+ secgNamedCurveP384 = secgNamedCurve{1, 3, 132, 0, 34}
+ secgNamedCurveP521 = secgNamedCurve{1, 3, 132, 0, 35}
+ rawCurveP224 = []byte{6, 5, 4, 3, 1, 2, 9, 4, 0, 3, 3}
+ rawCurveP256 = []byte{6, 8, 4, 2, 1, 3, 4, 7, 2, 2, 0, 6, 6, 1, 3, 1, 7}
+ rawCurveP384 = []byte{6, 5, 4, 3, 1, 2, 9, 4, 0, 3, 4}
+ rawCurveP521 = []byte{6, 5, 4, 3, 1, 2, 9, 4, 0, 3, 5}
+)
+
+func rawCurve(curve elliptic.Curve) []byte {
+ switch curve {
+ case elliptic.P224():
+ return rawCurveP224
+ case elliptic.P256():
+ return rawCurveP256
+ case elliptic.P384():
+ return rawCurveP384
+ case elliptic.P521():
+ return rawCurveP521
+ default:
+ return nil
+ }
+}
+
+func (curve secgNamedCurve) Equal(curve2 secgNamedCurve) bool {
+ if len(curve) != len(curve2) {
+ return false
+ }
+ for i, _ := range curve {
+ if curve[i] != curve2[i] {
+ return false
+ }
+ }
+ return true
+}
+
+func namedCurveFromOID(curve secgNamedCurve) elliptic.Curve {
+ switch {
+ case curve.Equal(secgNamedCurveP224):
+ return elliptic.P224()
+ case curve.Equal(secgNamedCurveP256):
+ return elliptic.P256()
+ case curve.Equal(secgNamedCurveP384):
+ return elliptic.P384()
+ case curve.Equal(secgNamedCurveP521):
+ return elliptic.P521()
+ }
+ return nil
+}
+
+func oidFromNamedCurve(curve elliptic.Curve) (secgNamedCurve, bool) {
+ switch curve {
+ case elliptic.P224():
+ return secgNamedCurveP224, true
+ case elliptic.P256():
+ return secgNamedCurveP256, true
+ case elliptic.P384():
+ return secgNamedCurveP384, true
+ case elliptic.P521():
+ return secgNamedCurveP521, true
+ }
+
+ return nil, false
+}
+
+// asnAlgorithmIdentifier represents the ASN.1 structure of the same name. See RFC
+// 5280, section 4.1.1.2.
+type asnAlgorithmIdentifier struct {
+ Algorithm asn1.ObjectIdentifier
+ Parameters asn1.RawValue `asn1:"optional"`
+}
+
+func (a asnAlgorithmIdentifier) Cmp(b asnAlgorithmIdentifier) bool {
+ if len(a.Algorithm) != len(b.Algorithm) {
+ return false
+ }
+ for i, _ := range a.Algorithm {
+ if a.Algorithm[i] != b.Algorithm[i] {
+ return false
+ }
+ }
+ return true
+}
+
+type asnHashFunction asnAlgorithmIdentifier
+
+var (
+ oidSHA1 = asn1.ObjectIdentifier{1, 3, 14, 3, 2, 26}
+ oidSHA224 = doScheme(shaScheme, []int{4})
+ oidSHA256 = doScheme(shaScheme, []int{1})
+ oidSHA384 = doScheme(shaScheme, []int{2})
+ oidSHA512 = doScheme(shaScheme, []int{3})
+)
+
+func hashFromOID(oid asn1.ObjectIdentifier) func() hash.Hash {
+ switch {
+ case oid.Equal(oidSHA1):
+ return sha1.New
+ case oid.Equal(oidSHA224):
+ return sha256.New224
+ case oid.Equal(oidSHA256):
+ return sha256.New
+ case oid.Equal(oidSHA384):
+ return sha512.New384
+ case oid.Equal(oidSHA512):
+ return sha512.New
+ }
+ return nil
+}
+
+func oidFromHash(hash crypto.Hash) (asn1.ObjectIdentifier, bool) {
+ switch hash {
+ case crypto.SHA1:
+ return oidSHA1, true
+ case crypto.SHA224:
+ return oidSHA224, true
+ case crypto.SHA256:
+ return oidSHA256, true
+ case crypto.SHA384:
+ return oidSHA384, true
+ case crypto.SHA512:
+ return oidSHA512, true
+ default:
+ return nil, false
+ }
+}
+
+var (
+ asnAlgoSHA1 = asnHashFunction{
+ Algorithm: oidSHA1,
+ }
+ asnAlgoSHA224 = asnHashFunction{
+ Algorithm: oidSHA224,
+ }
+ asnAlgoSHA256 = asnHashFunction{
+ Algorithm: oidSHA256,
+ }
+ asnAlgoSHA384 = asnHashFunction{
+ Algorithm: oidSHA384,
+ }
+ asnAlgoSHA512 = asnHashFunction{
+ Algorithm: oidSHA512,
+ }
+)
+
+// type ASNasnSubjectPublicKeyInfo struct {
+//
+// }
+//
+
+type asnSubjectPublicKeyInfo struct {
+ Algorithm asn1.ObjectIdentifier
+ PublicKey asn1.BitString
+ Supplements ecpksSupplements `asn1:"optional"`
+}
+
+type asnECPKAlgorithms struct {
+ Type asn1.ObjectIdentifier
+}
+
+var idPublicKeyType = doScheme(ansiX962Scheme, []int{2})
+var idEcPublicKey = doScheme(idPublicKeyType, []int{1})
+var idEcPublicKeySupplemented = doScheme(idPublicKeyType, []int{0})
+
+func curveToRaw(curve elliptic.Curve) (rv asn1.RawValue, ok bool) {
+ switch curve {
+ case elliptic.P224(), elliptic.P256(), elliptic.P384(), elliptic.P521():
+ raw := rawCurve(curve)
+ return asn1.RawValue{
+ Tag: 30,
+ Bytes: raw[2:],
+ FullBytes: raw,
+ }, true
+ default:
+ return rv, false
+ }
+}
+
+func asnECPublicKeyType(curve elliptic.Curve) (algo asnAlgorithmIdentifier, ok bool) {
+ raw, ok := curveToRaw(curve)
+ if !ok {
+ return
+ } else {
+ return asnAlgorithmIdentifier{Algorithm: idEcPublicKey,
+ Parameters: raw}, true
+ }
+}
+
+type asnECPrivKeyVer int
+
+var asnECPrivKeyVer1 asnECPrivKeyVer = 1
+
+type asnPrivateKey struct {
+ Version asnECPrivKeyVer
+ Private []byte
+ Curve secgNamedCurve `asn1:"optional"`
+ Public asn1.BitString
+}
+
+var asnECDH = doScheme(secgScheme, []int{12})
+
+type asnECDHAlgorithm asnAlgorithmIdentifier
+
+var (
+ dhSinglePass_stdDH_sha1kdf = asnECDHAlgorithm{
+ Algorithm: doScheme(x963Scheme, []int{2}),
+ }
+ dhSinglePass_stdDH_sha256kdf = asnECDHAlgorithm{
+ Algorithm: doScheme(secgScheme, []int{11, 1}),
+ }
+ dhSinglePass_stdDH_sha384kdf = asnECDHAlgorithm{
+ Algorithm: doScheme(secgScheme, []int{11, 2}),
+ }
+ dhSinglePass_stdDH_sha224kdf = asnECDHAlgorithm{
+ Algorithm: doScheme(secgScheme, []int{11, 0}),
+ }
+ dhSinglePass_stdDH_sha512kdf = asnECDHAlgorithm{
+ Algorithm: doScheme(secgScheme, []int{11, 3}),
+ }
+)
+
+func (a asnECDHAlgorithm) Cmp(b asnECDHAlgorithm) bool {
+ if len(a.Algorithm) != len(b.Algorithm) {
+ return false
+ }
+ for i, _ := range a.Algorithm {
+ if a.Algorithm[i] != b.Algorithm[i] {
+ return false
+ }
+ }
+ return true
+}
+
+// asnNISTConcatenation is the only supported KDF at this time.
+type asnKeyDerivationFunction asnAlgorithmIdentifier
+
+var asnNISTConcatenationKDF = asnKeyDerivationFunction{
+ Algorithm: doScheme(secgScheme, []int{17, 1}),
+}
+
+func (a asnKeyDerivationFunction) Cmp(b asnKeyDerivationFunction) bool {
+ if len(a.Algorithm) != len(b.Algorithm) {
+ return false
+ }
+ for i, _ := range a.Algorithm {
+ if a.Algorithm[i] != b.Algorithm[i] {
+ return false
+ }
+ }
+ return true
+}
+
+var eciesRecommendedParameters = doScheme(secgScheme, []int{7})
+var eciesSpecifiedParameters = doScheme(secgScheme, []int{8})
+
+type asnECIESParameters struct {
+ KDF asnKeyDerivationFunction `asn1:"optional"`
+ Sym asnSymmetricEncryption `asn1:"optional"`
+ MAC asnMessageAuthenticationCode `asn1:"optional"`
+}
+
+type asnSymmetricEncryption asnAlgorithmIdentifier
+
+var (
+ aes128CTRinECIES = asnSymmetricEncryption{
+ Algorithm: doScheme(secgScheme, []int{21, 0}),
+ }
+ aes192CTRinECIES = asnSymmetricEncryption{
+ Algorithm: doScheme(secgScheme, []int{21, 1}),
+ }
+ aes256CTRinECIES = asnSymmetricEncryption{
+ Algorithm: doScheme(secgScheme, []int{21, 2}),
+ }
+)
+
+func (a asnSymmetricEncryption) Cmp(b asnSymmetricEncryption) bool {
+ if len(a.Algorithm) != len(b.Algorithm) {
+ return false
+ }
+ for i, _ := range a.Algorithm {
+ if a.Algorithm[i] != b.Algorithm[i] {
+ return false
+ }
+ }
+ return true
+}
+
+type asnMessageAuthenticationCode asnAlgorithmIdentifier
+
+var (
+ hmacFull = asnMessageAuthenticationCode{
+ Algorithm: doScheme(secgScheme, []int{22}),
+ }
+)
+
+func (a asnMessageAuthenticationCode) Cmp(b asnMessageAuthenticationCode) bool {
+ if len(a.Algorithm) != len(b.Algorithm) {
+ return false
+ }
+ for i, _ := range a.Algorithm {
+ if a.Algorithm[i] != b.Algorithm[i] {
+ return false
+ }
+ }
+ return true
+}
+
+type ecpksSupplements struct {
+ ECDomain secgNamedCurve
+ ECCAlgorithms eccAlgorithmSet
+}
+
+type eccAlgorithmSet struct {
+ ECDH asnECDHAlgorithm `asn1:"optional"`
+ ECIES asnECIESParameters `asn1:"optional"`
+}
+
+func marshalSubjectPublicKeyInfo(pub *PublicKey) (subj asnSubjectPublicKeyInfo, err error) {
+ subj.Algorithm = idEcPublicKeySupplemented
+ curve, ok := oidFromNamedCurve(pub.Curve)
+ if !ok {
+ err = ErrInvalidPublicKey
+ return
+ }
+ subj.Supplements.ECDomain = curve
+ if pub.Params != nil {
+ subj.Supplements.ECCAlgorithms.ECDH = paramsToASNECDH(pub.Params)
+ subj.Supplements.ECCAlgorithms.ECIES = paramsToASNECIES(pub.Params)
+ }
+ pubkey := elliptic.Marshal(pub.Curve, pub.X, pub.Y)
+ subj.PublicKey = asn1.BitString{
+ BitLength: len(pubkey) * 8,
+ Bytes: pubkey,
+ }
+ return
+}
+
+// Encode a public key to DER format.
+func MarshalPublic(pub *PublicKey) ([]byte, error) {
+ subj, err := marshalSubjectPublicKeyInfo(pub)
+ if err != nil {
+ return nil, err
+ }
+ return asn1.Marshal(subj)
+}
+
+// Decode a DER-encoded public key.
+func UnmarshalPublic(in []byte) (pub *PublicKey, err error) {
+ var subj asnSubjectPublicKeyInfo
+
+ if _, err = asn1.Unmarshal(in, &subj); err != nil {
+ return
+ }
+ if !subj.Algorithm.Equal(idEcPublicKeySupplemented) {
+ err = ErrInvalidPublicKey
+ return
+ }
+ pub = new(PublicKey)
+ pub.Curve = namedCurveFromOID(subj.Supplements.ECDomain)
+ x, y := elliptic.Unmarshal(pub.Curve, subj.PublicKey.Bytes)
+ if x == nil {
+ err = ErrInvalidPublicKey
+ return
+ }
+ pub.X = x
+ pub.Y = y
+ pub.Params = new(ECIESParams)
+ asnECIEStoParams(subj.Supplements.ECCAlgorithms.ECIES, pub.Params)
+ asnECDHtoParams(subj.Supplements.ECCAlgorithms.ECDH, pub.Params)
+ if pub.Params == nil {
+ if pub.Params = ParamsFromCurve(pub.Curve); pub.Params == nil {
+ err = ErrInvalidPublicKey
+ }
+ }
+ return
+}
+
+func marshalPrivateKey(prv *PrivateKey) (ecprv asnPrivateKey, err error) {
+ ecprv.Version = asnECPrivKeyVer1
+ ecprv.Private = prv.D.Bytes()
+
+ var ok bool
+ ecprv.Curve, ok = oidFromNamedCurve(prv.PublicKey.Curve)
+ if !ok {
+ err = ErrInvalidPrivateKey
+ return
+ }
+
+ var pub []byte
+ if pub, err = MarshalPublic(&prv.PublicKey); err != nil {
+ return
+ } else {
+ ecprv.Public = asn1.BitString{
+ BitLength: len(pub) * 8,
+ Bytes: pub,
+ }
+ }
+ return
+}
+
+// Encode a private key to DER format.
+func MarshalPrivate(prv *PrivateKey) ([]byte, error) {
+ ecprv, err := marshalPrivateKey(prv)
+ if err != nil {
+ return nil, err
+ }
+ return asn1.Marshal(ecprv)
+}
+
+// Decode a private key from a DER-encoded format.
+func UnmarshalPrivate(in []byte) (prv *PrivateKey, err error) {
+ var ecprv asnPrivateKey
+
+ if _, err = asn1.Unmarshal(in, &ecprv); err != nil {
+ return
+ } else if ecprv.Version != asnECPrivKeyVer1 {
+ err = ErrInvalidPrivateKey
+ return
+ }
+
+ privateCurve := namedCurveFromOID(ecprv.Curve)
+ if privateCurve == nil {
+ err = ErrInvalidPrivateKey
+ return
+ }
+
+ prv = new(PrivateKey)
+ prv.D = new(big.Int).SetBytes(ecprv.Private)
+
+ if pub, err := UnmarshalPublic(ecprv.Public.Bytes); err != nil {
+ return nil, err
+ } else {
+ prv.PublicKey = *pub
+ }
+
+ return
+}
+
+// Export a public key to PEM format.
+func ExportPublicPEM(pub *PublicKey) (out []byte, err error) {
+ der, err := MarshalPublic(pub)
+ if err != nil {
+ return
+ }
+
+ var block pem.Block
+ block.Type = "ELLIPTIC CURVE PUBLIC KEY"
+ block.Bytes = der
+
+ buf := new(bytes.Buffer)
+ err = pem.Encode(buf, &block)
+ if err != nil {
+ return
+ } else {
+ out = buf.Bytes()
+ }
+ return
+}
+
+// Export a private key to PEM format.
+func ExportPrivatePEM(prv *PrivateKey) (out []byte, err error) {
+ der, err := MarshalPrivate(prv)
+ if err != nil {
+ return
+ }
+
+ var block pem.Block
+ block.Type = "ELLIPTIC CURVE PRIVATE KEY"
+ block.Bytes = der
+
+ buf := new(bytes.Buffer)
+ err = pem.Encode(buf, &block)
+ if err != nil {
+ return
+ } else {
+ out = buf.Bytes()
+ }
+ return
+}
+
+// Import a PEM-encoded public key.
+func ImportPublicPEM(in []byte) (pub *PublicKey, err error) {
+ p, _ := pem.Decode(in)
+ if p == nil || p.Type != "ELLIPTIC CURVE PUBLIC KEY" {
+ return nil, ErrInvalidPublicKey
+ }
+
+ pub, err = UnmarshalPublic(p.Bytes)
+ return
+}
+
+// Import a PEM-encoded private key.
+func ImportPrivatePEM(in []byte) (prv *PrivateKey, err error) {
+ p, _ := pem.Decode(in)
+ if p == nil || p.Type != "ELLIPTIC CURVE PRIVATE KEY" {
+ return nil, ErrInvalidPrivateKey
+ }
+
+ prv, err = UnmarshalPrivate(p.Bytes)
+ return
+}
diff --git a/crypto/ecies/ecies.go b/crypto/ecies/ecies.go
new file mode 100644
index 000000000..18952fc0b
--- /dev/null
+++ b/crypto/ecies/ecies.go
@@ -0,0 +1,331 @@
+package ecies
+
+import (
+ "crypto/cipher"
+ "crypto/ecdsa"
+ "crypto/elliptic"
+ "crypto/hmac"
+ "crypto/subtle"
+ "fmt"
+ "hash"
+ "io"
+ "math/big"
+)
+
+var (
+ ErrImport = fmt.Errorf("ecies: failed to import key")
+ ErrInvalidCurve = fmt.Errorf("ecies: invalid elliptic curve")
+ ErrInvalidParams = fmt.Errorf("ecies: invalid ECIES parameters")
+ ErrInvalidPublicKey = fmt.Errorf("ecies: invalid public key")
+ ErrSharedKeyIsPointAtInfinity = fmt.Errorf("ecies: shared key is point at infinity")
+ ErrSharedKeyTooBig = fmt.Errorf("ecies: shared key params are too big")
+)
+
+// PublicKey is a representation of an elliptic curve public key.
+type PublicKey struct {
+ X *big.Int
+ Y *big.Int
+ elliptic.Curve
+ Params *ECIESParams
+}
+
+// Export an ECIES public key as an ECDSA public key.
+func (pub *PublicKey) ExportECDSA() *ecdsa.PublicKey {
+ return &ecdsa.PublicKey{pub.Curve, pub.X, pub.Y}
+}
+
+// Import an ECDSA public key as an ECIES public key.
+func ImportECDSAPublic(pub *ecdsa.PublicKey) *PublicKey {
+ return &PublicKey{
+ X: pub.X,
+ Y: pub.Y,
+ Curve: pub.Curve,
+ Params: ParamsFromCurve(pub.Curve),
+ }
+}
+
+// PrivateKey is a representation of an elliptic curve private key.
+type PrivateKey struct {
+ PublicKey
+ D *big.Int
+}
+
+// Export an ECIES private key as an ECDSA private key.
+func (prv *PrivateKey) ExportECDSA() *ecdsa.PrivateKey {
+ pub := &prv.PublicKey
+ pubECDSA := pub.ExportECDSA()
+ return &ecdsa.PrivateKey{*pubECDSA, prv.D}
+}
+
+// Import an ECDSA private key as an ECIES private key.
+func ImportECDSA(prv *ecdsa.PrivateKey) *PrivateKey {
+ pub := ImportECDSAPublic(&prv.PublicKey)
+ return &PrivateKey{*pub, prv.D}
+}
+
+// Generate an elliptic curve public / private keypair. If params is nil,
+// the recommended default paramters for the key will be chosen.
+func GenerateKey(rand io.Reader, curve elliptic.Curve, params *ECIESParams) (prv *PrivateKey, err error) {
+ pb, x, y, err := elliptic.GenerateKey(curve, rand)
+ if err != nil {
+ return
+ }
+ prv = new(PrivateKey)
+ prv.PublicKey.X = x
+ prv.PublicKey.Y = y
+ prv.PublicKey.Curve = curve
+ prv.D = new(big.Int).SetBytes(pb)
+ if params == nil {
+ params = ParamsFromCurve(curve)
+ }
+ prv.PublicKey.Params = params
+ return
+}
+
+// MaxSharedKeyLength returns the maximum length of the shared key the
+// public key can produce.
+func MaxSharedKeyLength(pub *PublicKey) int {
+ return (pub.Curve.Params().BitSize + 7) / 8
+}
+
+// ECDH key agreement method used to establish secret keys for encryption.
+func (prv *PrivateKey) GenerateShared(pub *PublicKey, skLen, macLen int) (sk []byte, err error) {
+ if prv.PublicKey.Curve != pub.Curve {
+ return nil, ErrInvalidCurve
+ }
+ if skLen+macLen > MaxSharedKeyLength(pub) {
+ return nil, ErrSharedKeyTooBig
+ }
+ x, _ := pub.Curve.ScalarMult(pub.X, pub.Y, prv.D.Bytes())
+ if x == nil {
+ return nil, ErrSharedKeyIsPointAtInfinity
+ }
+
+ sk = make([]byte, skLen+macLen)
+ skBytes := x.Bytes()
+ copy(sk[len(sk)-len(skBytes):], skBytes)
+ return sk, nil
+}
+
+var (
+ ErrKeyDataTooLong = fmt.Errorf("ecies: can't supply requested key data")
+ ErrSharedTooLong = fmt.Errorf("ecies: shared secret is too long")
+ ErrInvalidMessage = fmt.Errorf("ecies: invalid message")
+)
+
+var (
+ big2To32 = new(big.Int).Exp(big.NewInt(2), big.NewInt(32), nil)
+ big2To32M1 = new(big.Int).Sub(big2To32, big.NewInt(1))
+)
+
+func incCounter(ctr []byte) {
+ if ctr[3]++; ctr[3] != 0 {
+ return
+ } else if ctr[2]++; ctr[2] != 0 {
+ return
+ } else if ctr[1]++; ctr[1] != 0 {
+ return
+ } else if ctr[0]++; ctr[0] != 0 {
+ return
+ }
+ return
+}
+
+// NIST SP 800-56 Concatenation Key Derivation Function (see section 5.8.1).
+func concatKDF(hash hash.Hash, z, s1 []byte, kdLen int) (k []byte, err error) {
+ if s1 == nil {
+ s1 = make([]byte, 0)
+ }
+
+ reps := ((kdLen + 7) * 8) / (hash.BlockSize() * 8)
+ if big.NewInt(int64(reps)).Cmp(big2To32M1) > 0 {
+ fmt.Println(big2To32M1)
+ return nil, ErrKeyDataTooLong
+ }
+
+ counter := []byte{0, 0, 0, 1}
+ k = make([]byte, 0)
+
+ for i := 0; i <= reps; i++ {
+ hash.Write(counter)
+ hash.Write(z)
+ hash.Write(s1)
+ k = append(k, hash.Sum(nil)...)
+ hash.Reset()
+ incCounter(counter)
+ }
+
+ k = k[:kdLen]
+ return
+}
+
+// messageTag computes the MAC of a message (called the tag) as per
+// SEC 1, 3.5.
+func messageTag(hash func() hash.Hash, km, msg, shared []byte) []byte {
+ if shared == nil {
+ shared = make([]byte, 0)
+ }
+ mac := hmac.New(hash, km)
+ mac.Write(msg)
+ tag := mac.Sum(nil)
+ return tag
+}
+
+// Generate an initialisation vector for CTR mode.
+func generateIV(params *ECIESParams, rand io.Reader) (iv []byte, err error) {
+ iv = make([]byte, params.BlockSize)
+ _, err = io.ReadFull(rand, iv)
+ return
+}
+
+// symEncrypt carries out CTR encryption using the block cipher specified in the
+// parameters.
+func symEncrypt(rand io.Reader, params *ECIESParams, key, m []byte) (ct []byte, err error) {
+ c, err := params.Cipher(key)
+ if err != nil {
+ return
+ }
+
+ iv, err := generateIV(params, rand)
+ if err != nil {
+ return
+ }
+ ctr := cipher.NewCTR(c, iv)
+
+ ct = make([]byte, len(m)+params.BlockSize)
+ copy(ct, iv)
+ ctr.XORKeyStream(ct[params.BlockSize:], m)
+ return
+}
+
+// symDecrypt carries out CTR decryption using the block cipher specified in
+// the parameters
+func symDecrypt(rand io.Reader, params *ECIESParams, key, ct []byte) (m []byte, err error) {
+ c, err := params.Cipher(key)
+ if err != nil {
+ return
+ }
+
+ ctr := cipher.NewCTR(c, ct[:params.BlockSize])
+
+ m = make([]byte, len(ct)-params.BlockSize)
+ ctr.XORKeyStream(m, ct[params.BlockSize:])
+ return
+}
+
+// Encrypt encrypts a message using ECIES as specified in SEC 1, 5.1. If
+// the shared information parameters aren't being used, they should be
+// nil.
+func Encrypt(rand io.Reader, pub *PublicKey, m, s1, s2 []byte) (ct []byte, err error) {
+ params := pub.Params
+ if params == nil {
+ if params = ParamsFromCurve(pub.Curve); params == nil {
+ err = ErrUnsupportedECIESParameters
+ return
+ }
+ }
+ R, err := GenerateKey(rand, pub.Curve, params)
+ if err != nil {
+ return
+ }
+
+ hash := params.Hash()
+ z, err := R.GenerateShared(pub, params.KeyLen, params.KeyLen)
+ if err != nil {
+ return
+ }
+ K, err := concatKDF(hash, z, s1, params.KeyLen+params.KeyLen)
+ if err != nil {
+ return
+ }
+ Ke := K[:params.KeyLen]
+ Km := K[params.KeyLen:]
+ hash.Write(Km)
+ Km = hash.Sum(nil)
+ hash.Reset()
+
+ em, err := symEncrypt(rand, params, Ke, m)
+ if err != nil || len(em) <= params.BlockSize {
+ return
+ }
+
+ d := messageTag(params.Hash, Km, em, s2)
+
+ Rb := elliptic.Marshal(pub.Curve, R.PublicKey.X, R.PublicKey.Y)
+ ct = make([]byte, len(Rb)+len(em)+len(d))
+ copy(ct, Rb)
+ copy(ct[len(Rb):], em)
+ copy(ct[len(Rb)+len(em):], d)
+ return
+}
+
+// Decrypt decrypts an ECIES ciphertext.
+func (prv *PrivateKey) Decrypt(rand io.Reader, c, s1, s2 []byte) (m []byte, err error) {
+ if c == nil || len(c) == 0 {
+ err = ErrInvalidMessage
+ return
+ }
+ params := prv.PublicKey.Params
+ if params == nil {
+ if params = ParamsFromCurve(prv.PublicKey.Curve); params == nil {
+ err = ErrUnsupportedECIESParameters
+ return
+ }
+ }
+ hash := params.Hash()
+
+ var (
+ rLen int
+ hLen int = hash.Size()
+ mStart int
+ mEnd int
+ )
+
+ switch c[0] {
+ case 2, 3, 4:
+ rLen = ((prv.PublicKey.Curve.Params().BitSize + 7) / 4)
+ if len(c) < (rLen + hLen + 1) {
+ err = ErrInvalidMessage
+ return
+ }
+ default:
+ err = ErrInvalidPublicKey
+ return
+ }
+
+ mStart = rLen
+ mEnd = len(c) - hLen
+
+ R := new(PublicKey)
+ R.Curve = prv.PublicKey.Curve
+ R.X, R.Y = elliptic.Unmarshal(R.Curve, c[:rLen])
+ if R.X == nil {
+ err = ErrInvalidPublicKey
+ return
+ }
+
+ z, err := prv.GenerateShared(R, params.KeyLen, params.KeyLen)
+ if err != nil {
+ return
+ }
+
+ K, err := concatKDF(hash, z, s1, params.KeyLen+params.KeyLen)
+ if err != nil {
+ return
+ }
+
+ Ke := K[:params.KeyLen]
+ Km := K[params.KeyLen:]
+ hash.Write(Km)
+ Km = hash.Sum(nil)
+ hash.Reset()
+
+ d := messageTag(params.Hash, Km, c[mStart:mEnd], s2)
+ if subtle.ConstantTimeCompare(c[mEnd:], d) != 1 {
+ err = ErrInvalidMessage
+ return
+ }
+
+ m, err = symDecrypt(rand, params, Ke, c[mStart:mEnd])
+ return
+}
diff --git a/crypto/ecies/ecies_test.go b/crypto/ecies/ecies_test.go
new file mode 100644
index 000000000..943e4488e
--- /dev/null
+++ b/crypto/ecies/ecies_test.go
@@ -0,0 +1,489 @@
+package ecies
+
+import (
+ "bytes"
+ "crypto/elliptic"
+ "crypto/rand"
+ "crypto/sha256"
+ "flag"
+ "fmt"
+ "io/ioutil"
+ "testing"
+)
+
+var dumpEnc bool
+
+func init() {
+ flDump := flag.Bool("dump", false, "write encrypted test message to file")
+ flag.Parse()
+ dumpEnc = *flDump
+}
+
+// Ensure the KDF generates appropriately sized keys.
+func TestKDF(t *testing.T) {
+ msg := []byte("Hello, world")
+ h := sha256.New()
+
+ k, err := concatKDF(h, msg, nil, 64)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+ if len(k) != 64 {
+ fmt.Printf("KDF: generated key is the wrong size (%d instead of 64\n",
+ len(k))
+ t.FailNow()
+ }
+}
+
+var skLen int
+var ErrBadSharedKeys = fmt.Errorf("ecies: shared keys don't match")
+
+// cmpParams compares a set of ECIES parameters. We assume, as per the
+// docs, that AES is the only supported symmetric encryption algorithm.
+func cmpParams(p1, p2 *ECIESParams) bool {
+ if p1.hashAlgo != p2.hashAlgo {
+ return false
+ } else if p1.KeyLen != p2.KeyLen {
+ return false
+ } else if p1.BlockSize != p2.BlockSize {
+ return false
+ }
+ return true
+}
+
+// cmpPublic returns true if the two public keys represent the same pojnt.
+func cmpPublic(pub1, pub2 PublicKey) bool {
+ if pub1.X == nil || pub1.Y == nil {
+ fmt.Println(ErrInvalidPublicKey.Error())
+ return false
+ }
+ if pub2.X == nil || pub2.Y == nil {
+ fmt.Println(ErrInvalidPublicKey.Error())
+ return false
+ }
+ pub1Out := elliptic.Marshal(pub1.Curve, pub1.X, pub1.Y)
+ pub2Out := elliptic.Marshal(pub2.Curve, pub2.X, pub2.Y)
+
+ return bytes.Equal(pub1Out, pub2Out)
+}
+
+// cmpPrivate returns true if the two private keys are the same.
+func cmpPrivate(prv1, prv2 *PrivateKey) bool {
+ if prv1 == nil || prv1.D == nil {
+ return false
+ } else if prv2 == nil || prv2.D == nil {
+ return false
+ } else if prv1.D.Cmp(prv2.D) != 0 {
+ return false
+ } else {
+ return cmpPublic(prv1.PublicKey, prv2.PublicKey)
+ }
+}
+
+// Validate the ECDH component.
+func TestSharedKey(t *testing.T) {
+ prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+ skLen = MaxSharedKeyLength(&prv1.PublicKey) / 2
+
+ prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ sk1, err := prv1.GenerateShared(&prv2.PublicKey, skLen, skLen)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ sk2, err := prv2.GenerateShared(&prv1.PublicKey, skLen, skLen)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ if !bytes.Equal(sk1, sk2) {
+ fmt.Println(ErrBadSharedKeys.Error())
+ t.FailNow()
+ }
+}
+
+// Verify that the key generation code fails when too much key data is
+// requested.
+func TestTooBigSharedKey(t *testing.T) {
+ prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ _, err = prv1.GenerateShared(&prv2.PublicKey, skLen*2, skLen*2)
+ if err != ErrSharedKeyTooBig {
+ fmt.Println("ecdh: shared key should be too large for curve")
+ t.FailNow()
+ }
+
+ _, err = prv2.GenerateShared(&prv1.PublicKey, skLen*2, skLen*2)
+ if err != ErrSharedKeyTooBig {
+ fmt.Println("ecdh: shared key should be too large for curve")
+ t.FailNow()
+ }
+}
+
+// Ensure a public key can be successfully marshalled and unmarshalled, and
+// that the decoded key is the same as the original.
+func TestMarshalPublic(t *testing.T) {
+ prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ out, err := MarshalPublic(&prv.PublicKey)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ pub, err := UnmarshalPublic(out)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ if !cmpPublic(prv.PublicKey, *pub) {
+ fmt.Println("ecies: failed to unmarshal public key")
+ t.FailNow()
+ }
+}
+
+// Ensure that a private key can be encoded into DER format, and that
+// the resulting key is properly parsed back into a public key.
+func TestMarshalPrivate(t *testing.T) {
+ prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ out, err := MarshalPrivate(prv)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ if dumpEnc {
+ ioutil.WriteFile("test.out", out, 0644)
+ }
+
+ prv2, err := UnmarshalPrivate(out)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ if !cmpPrivate(prv, prv2) {
+ fmt.Println("ecdh: private key import failed")
+ t.FailNow()
+ }
+}
+
+// Ensure that a private key can be successfully encoded to PEM format, and
+// the resulting key is properly parsed back in.
+func TestPrivatePEM(t *testing.T) {
+ prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ out, err := ExportPrivatePEM(prv)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ if dumpEnc {
+ ioutil.WriteFile("test.key", out, 0644)
+ }
+
+ prv2, err := ImportPrivatePEM(out)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ } else if !cmpPrivate(prv, prv2) {
+ fmt.Println("ecdh: import from PEM failed")
+ t.FailNow()
+ }
+}
+
+// Ensure that a public key can be successfully encoded to PEM format, and
+// the resulting key is properly parsed back in.
+func TestPublicPEM(t *testing.T) {
+ prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ out, err := ExportPublicPEM(&prv.PublicKey)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ if dumpEnc {
+ ioutil.WriteFile("test.pem", out, 0644)
+ }
+
+ pub2, err := ImportPublicPEM(out)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ } else if !cmpPublic(prv.PublicKey, *pub2) {
+ fmt.Println("ecdh: import from PEM failed")
+ t.FailNow()
+ }
+}
+
+// Benchmark the generation of P256 keys.
+func BenchmarkGenerateKeyP256(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ if _, err := GenerateKey(rand.Reader, elliptic.P256(), nil); err != nil {
+ fmt.Println(err.Error())
+ b.FailNow()
+ }
+ }
+}
+
+// Benchmark the generation of P256 shared keys.
+func BenchmarkGenSharedKeyP256(b *testing.B) {
+ prv, err := GenerateKey(rand.Reader, elliptic.P256(), nil)
+ if err != nil {
+ fmt.Println(err.Error())
+ b.FailNow()
+ }
+
+ for i := 0; i < b.N; i++ {
+ _, err := prv.GenerateShared(&prv.PublicKey, skLen, skLen)
+ if err != nil {
+ fmt.Println(err.Error())
+ b.FailNow()
+ }
+ }
+}
+
+// Verify that an encrypted message can be successfully decrypted.
+func TestEncryptDecrypt(t *testing.T) {
+ prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ message := []byte("Hello, world.")
+ ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ pt, err := prv2.Decrypt(rand.Reader, ct, nil, nil)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ if !bytes.Equal(pt, message) {
+ fmt.Println("ecies: plaintext doesn't match message")
+ t.FailNow()
+ }
+
+ _, err = prv1.Decrypt(rand.Reader, ct, nil, nil)
+ if err == nil {
+ fmt.Println("ecies: encryption should not have succeeded")
+ t.FailNow()
+ }
+}
+
+// TestMarshalEncryption validates the encode/decode produces a valid
+// ECIES encryption key.
+func TestMarshalEncryption(t *testing.T) {
+ prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ out, err := MarshalPrivate(prv1)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ prv2, err := UnmarshalPrivate(out)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ message := []byte("Hello, world.")
+ ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ pt, err := prv2.Decrypt(rand.Reader, ct, nil, nil)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ if !bytes.Equal(pt, message) {
+ fmt.Println("ecies: plaintext doesn't match message")
+ t.FailNow()
+ }
+
+ _, err = prv1.Decrypt(rand.Reader, ct, nil, nil)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+}
+
+type testCase struct {
+ Curve elliptic.Curve
+ Name string
+ Expected bool
+}
+
+var testCases = []testCase{
+ testCase{
+ Curve: elliptic.P224(),
+ Name: "P224",
+ Expected: false,
+ },
+ testCase{
+ Curve: elliptic.P256(),
+ Name: "P256",
+ Expected: true,
+ },
+ testCase{
+ Curve: elliptic.P384(),
+ Name: "P384",
+ Expected: true,
+ },
+ testCase{
+ Curve: elliptic.P521(),
+ Name: "P521",
+ Expected: true,
+ },
+}
+
+// Test parameter selection for each curve, and that P224 fails automatic
+// parameter selection (see README for a discussion of P224). Ensures that
+// selecting a set of parameters automatically for the given curve works.
+func TestParamSelection(t *testing.T) {
+ for _, c := range testCases {
+ testParamSelection(t, c)
+ }
+}
+
+func testParamSelection(t *testing.T, c testCase) {
+ params := ParamsFromCurve(c.Curve)
+ if params == nil && c.Expected {
+ fmt.Printf("%s (%s)\n", ErrInvalidParams.Error(), c.Name)
+ t.FailNow()
+ } else if params != nil && !c.Expected {
+ fmt.Printf("ecies: parameters should be invalid (%s)\n",
+ c.Name)
+ t.FailNow()
+ }
+
+ prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
+ if err != nil {
+ fmt.Printf("%s (%s)\n", err.Error(), c.Name)
+ t.FailNow()
+ }
+
+ prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil)
+ if err != nil {
+ fmt.Printf("%s (%s)\n", err.Error(), c.Name)
+ t.FailNow()
+ }
+
+ message := []byte("Hello, world.")
+ ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil)
+ if err != nil {
+ fmt.Printf("%s (%s)\n", err.Error(), c.Name)
+ t.FailNow()
+ }
+
+ pt, err := prv2.Decrypt(rand.Reader, ct, nil, nil)
+ if err != nil {
+ fmt.Printf("%s (%s)\n", err.Error(), c.Name)
+ t.FailNow()
+ }
+
+ if !bytes.Equal(pt, message) {
+ fmt.Printf("ecies: plaintext doesn't match message (%s)\n",
+ c.Name)
+ t.FailNow()
+ }
+
+ _, err = prv1.Decrypt(rand.Reader, ct, nil, nil)
+ if err == nil {
+ fmt.Printf("ecies: encryption should not have succeeded (%s)\n",
+ c.Name)
+ t.FailNow()
+ }
+
+}
+
+// Ensure that the basic public key validation in the decryption operation
+// works.
+func TestBasicKeyValidation(t *testing.T) {
+ badBytes := []byte{0, 1, 5, 6, 7, 8, 9}
+
+ prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ message := []byte("Hello, world.")
+ ct, err := Encrypt(rand.Reader, &prv.PublicKey, message, nil, nil)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ for _, b := range badBytes {
+ ct[0] = b
+ _, err := prv.Decrypt(rand.Reader, ct, nil, nil)
+ if err != ErrInvalidPublicKey {
+ fmt.Println("ecies: validated an invalid key")
+ t.FailNow()
+ }
+ }
+}
diff --git a/crypto/ecies/params.go b/crypto/ecies/params.go
new file mode 100644
index 000000000..fd1ceedd0
--- /dev/null
+++ b/crypto/ecies/params.go
@@ -0,0 +1,181 @@
+package ecies
+
+// This file contains parameters for ECIES encryption, specifying the
+// symmetric encryption and HMAC parameters.
+
+import (
+ "crypto"
+ "crypto/aes"
+ "crypto/cipher"
+ "crypto/elliptic"
+ "crypto/sha256"
+ "crypto/sha512"
+ "fmt"
+ "hash"
+)
+
+// The default curve for this package is the NIST P256 curve, which
+// provides security equivalent to AES-128.
+var DefaultCurve = elliptic.P256()
+
+var (
+ ErrUnsupportedECDHAlgorithm = fmt.Errorf("ecies: unsupported ECDH algorithm")
+ ErrUnsupportedECIESParameters = fmt.Errorf("ecies: unsupported ECIES parameters")
+)
+
+type ECIESParams struct {
+ Hash func() hash.Hash // hash function
+ hashAlgo crypto.Hash
+ Cipher func([]byte) (cipher.Block, error) // symmetric cipher
+ BlockSize int // block size of symmetric cipher
+ KeyLen int // length of symmetric key
+}
+
+// Standard ECIES parameters:
+// * ECIES using AES128 and HMAC-SHA-256-16
+// * ECIES using AES256 and HMAC-SHA-256-32
+// * ECIES using AES256 and HMAC-SHA-384-48
+// * ECIES using AES256 and HMAC-SHA-512-64
+
+var (
+ ECIES_AES128_SHA256 = &ECIESParams{
+ Hash: sha256.New,
+ hashAlgo: crypto.SHA256,
+ Cipher: aes.NewCipher,
+ BlockSize: aes.BlockSize,
+ KeyLen: 16,
+ }
+
+ ECIES_AES256_SHA256 = &ECIESParams{
+ Hash: sha256.New,
+ hashAlgo: crypto.SHA256,
+ Cipher: aes.NewCipher,
+ BlockSize: aes.BlockSize,
+ KeyLen: 32,
+ }
+
+ ECIES_AES256_SHA384 = &ECIESParams{
+ Hash: sha512.New384,
+ hashAlgo: crypto.SHA384,
+ Cipher: aes.NewCipher,
+ BlockSize: aes.BlockSize,
+ KeyLen: 32,
+ }
+
+ ECIES_AES256_SHA512 = &ECIESParams{
+ Hash: sha512.New,
+ hashAlgo: crypto.SHA512,
+ Cipher: aes.NewCipher,
+ BlockSize: aes.BlockSize,
+ KeyLen: 32,
+ }
+)
+
+var paramsFromCurve = map[elliptic.Curve]*ECIESParams{
+ elliptic.P256(): ECIES_AES128_SHA256,
+ elliptic.P384(): ECIES_AES256_SHA384,
+ elliptic.P521(): ECIES_AES256_SHA512,
+}
+
+func AddParamsForCurve(curve elliptic.Curve, params *ECIESParams) {
+ paramsFromCurve[curve] = params
+}
+
+// ParamsFromCurve selects parameters optimal for the selected elliptic curve.
+// Only the curves P256, P384, and P512 are supported.
+func ParamsFromCurve(curve elliptic.Curve) (params *ECIESParams) {
+ return paramsFromCurve[curve]
+
+ /*
+ switch curve {
+ case elliptic.P256():
+ return ECIES_AES128_SHA256
+ case elliptic.P384():
+ return ECIES_AES256_SHA384
+ case elliptic.P521():
+ return ECIES_AES256_SHA512
+ default:
+ return nil
+ }
+ */
+}
+
+// ASN.1 encode the ECIES parameters relevant to the encryption operations.
+func paramsToASNECIES(params *ECIESParams) (asnParams asnECIESParameters) {
+ if nil == params {
+ return
+ }
+ asnParams.KDF = asnNISTConcatenationKDF
+ asnParams.MAC = hmacFull
+ switch params.KeyLen {
+ case 16:
+ asnParams.Sym = aes128CTRinECIES
+ case 24:
+ asnParams.Sym = aes192CTRinECIES
+ case 32:
+ asnParams.Sym = aes256CTRinECIES
+ }
+ return
+}
+
+// ASN.1 encode the ECIES parameters relevant to ECDH.
+func paramsToASNECDH(params *ECIESParams) (algo asnECDHAlgorithm) {
+ switch params.hashAlgo {
+ case crypto.SHA224:
+ algo = dhSinglePass_stdDH_sha224kdf
+ case crypto.SHA256:
+ algo = dhSinglePass_stdDH_sha256kdf
+ case crypto.SHA384:
+ algo = dhSinglePass_stdDH_sha384kdf
+ case crypto.SHA512:
+ algo = dhSinglePass_stdDH_sha512kdf
+ }
+ return
+}
+
+// ASN.1 decode the ECIES parameters relevant to the encryption stage.
+func asnECIEStoParams(asnParams asnECIESParameters, params *ECIESParams) {
+ if !asnParams.KDF.Cmp(asnNISTConcatenationKDF) {
+ params = nil
+ return
+ } else if !asnParams.MAC.Cmp(hmacFull) {
+ params = nil
+ return
+ }
+
+ switch {
+ case asnParams.Sym.Cmp(aes128CTRinECIES):
+ params.KeyLen = 16
+ params.BlockSize = 16
+ params.Cipher = aes.NewCipher
+ case asnParams.Sym.Cmp(aes192CTRinECIES):
+ params.KeyLen = 24
+ params.BlockSize = 16
+ params.Cipher = aes.NewCipher
+ case asnParams.Sym.Cmp(aes256CTRinECIES):
+ params.KeyLen = 32
+ params.BlockSize = 16
+ params.Cipher = aes.NewCipher
+ default:
+ params = nil
+ }
+}
+
+// ASN.1 decode the ECIES parameters relevant to ECDH.
+func asnECDHtoParams(asnParams asnECDHAlgorithm, params *ECIESParams) {
+ if asnParams.Cmp(dhSinglePass_stdDH_sha224kdf) {
+ params.hashAlgo = crypto.SHA224
+ params.Hash = sha256.New224
+ } else if asnParams.Cmp(dhSinglePass_stdDH_sha256kdf) {
+ params.hashAlgo = crypto.SHA256
+ params.Hash = sha256.New
+ } else if asnParams.Cmp(dhSinglePass_stdDH_sha384kdf) {
+ params.hashAlgo = crypto.SHA384
+ params.Hash = sha512.New384
+ } else if asnParams.Cmp(dhSinglePass_stdDH_sha512kdf) {
+ params.hashAlgo = crypto.SHA512
+ params.Hash = sha512.New
+ } else {
+ params = nil
+ }
+}
diff --git a/crypto/key.go b/crypto/key.go
index b9ad34f47..ec4908c30 100644
--- a/crypto/key.go
+++ b/crypto/key.go
@@ -25,11 +25,12 @@ package crypto
import (
"bytes"
- "code.google.com/p/go-uuid/uuid"
"crypto/ecdsa"
"crypto/elliptic"
"encoding/json"
"io"
+
+ "code.google.com/p/go-uuid/uuid"
)
type Key struct {
diff --git a/crypto/key_store_passphrase.go b/crypto/key_store_passphrase.go
index 0862b7886..74408f874 100644
--- a/crypto/key_store_passphrase.go
+++ b/crypto/key_store_passphrase.go
@@ -68,10 +68,10 @@ import (
"code.google.com/p/go.crypto/scrypt"
"crypto/aes"
"crypto/cipher"
- crand "crypto/rand"
"encoding/hex"
"encoding/json"
"errors"
+ "github.com/ethereum/go-ethereum/crypto/randentropy"
"io"
"os"
"path"
@@ -116,7 +116,7 @@ func (ks keyStorePassphrase) GetKeyAddresses() (addresses [][]byte, err error) {
func (ks keyStorePassphrase) StoreKey(key *Key, auth string) (err error) {
authArray := []byte(auth)
- salt := GetEntropyCSPRNG(32)
+ salt := randentropy.GetEntropyMixed(32)
derivedKey, err := scrypt.Key(authArray, salt, scryptN, scryptr, scryptp, scryptdkLen)
if err != nil {
return err
@@ -131,7 +131,7 @@ func (ks keyStorePassphrase) StoreKey(key *Key, auth string) (err error) {
return err
}
- iv := GetEntropyCSPRNG(aes.BlockSize) // 16
+ iv := randentropy.GetEntropyMixed(aes.BlockSize) // 16
AES256CBCEncrypter := cipher.NewCBCEncrypter(AES256Block, iv)
cipherText := make([]byte, len(toEncrypt))
AES256CBCEncrypter.CryptBlocks(cipherText, toEncrypt)
@@ -196,12 +196,3 @@ func DecryptKey(ks keyStorePassphrase, keyAddr []byte, auth string) (keyBytes []
}
return keyBytes, keyId, err
}
-
-func GetEntropyCSPRNG(n int) []byte {
- mainBuff := make([]byte, n)
- _, err := io.ReadFull(crand.Reader, mainBuff)
- if err != nil {
- panic("key generation: reading from crypto/rand failed: " + err.Error())
- }
- return mainBuff
-}
diff --git a/crypto/key_store_test.go b/crypto/key_store_test.go
index 0d229ab65..485d8f536 100644
--- a/crypto/key_store_test.go
+++ b/crypto/key_store_test.go
@@ -1,7 +1,7 @@
package crypto
import (
- crand "crypto/rand"
+ "github.com/ethereum/go-ethereum/crypto/randentropy"
"reflect"
"testing"
)
@@ -9,7 +9,7 @@ import (
func TestKeyStorePlain(t *testing.T) {
ks := NewKeyStorePlain(DefaultDataDir())
pass := "" // not used but required by API
- k1, err := ks.GenerateNewKey(crand.Reader, pass)
+ k1, err := ks.GenerateNewKey(randentropy.Reader, pass)
if err != nil {
t.Fatal(err)
}
@@ -37,7 +37,7 @@ func TestKeyStorePlain(t *testing.T) {
func TestKeyStorePassphrase(t *testing.T) {
ks := NewKeyStorePassphrase(DefaultDataDir())
pass := "foo"
- k1, err := ks.GenerateNewKey(crand.Reader, pass)
+ k1, err := ks.GenerateNewKey(randentropy.Reader, pass)
if err != nil {
t.Fatal(err)
}
@@ -63,7 +63,7 @@ func TestKeyStorePassphrase(t *testing.T) {
func TestKeyStorePassphraseDecryptionFail(t *testing.T) {
ks := NewKeyStorePassphrase(DefaultDataDir())
pass := "foo"
- k1, err := ks.GenerateNewKey(crand.Reader, pass)
+ k1, err := ks.GenerateNewKey(randentropy.Reader, pass)
if err != nil {
t.Fatal(err)
}
diff --git a/crypto/randentropy/rand_entropy.go b/crypto/randentropy/rand_entropy.go
new file mode 100644
index 000000000..b87fa564e
--- /dev/null
+++ b/crypto/randentropy/rand_entropy.go
@@ -0,0 +1,84 @@
+package randentropy
+
+import (
+ crand "crypto/rand"
+ "encoding/binary"
+ "github.com/ethereum/go-ethereum/crypto/sha3"
+ "io"
+ "os"
+ "strings"
+ "time"
+)
+
+var Reader io.Reader = &randEntropy{}
+
+type randEntropy struct {
+}
+
+func (*randEntropy) Read(bytes []byte) (n int, err error) {
+ readBytes := GetEntropyMixed(len(bytes))
+ copy(bytes, readBytes)
+ return len(bytes), nil
+}
+
+// TODO: copied from crypto.go , move to sha3 package?
+func Sha3(data []byte) []byte {
+ d := sha3.NewKeccak256()
+ d.Write(data)
+
+ return d.Sum(nil)
+}
+
+// TODO: verify. this needs to be audited
+// we start with crypt/rand, then XOR in additional entropy from OS
+func GetEntropyMixed(n int) []byte {
+ startTime := time.Now().UnixNano()
+ // for each source, we take SHA3 of the source and use it as seed to math/rand
+ // then read bytes from it and XOR them onto the bytes read from crypto/rand
+ mainBuff := GetEntropyCSPRNG(n)
+ // 1. OS entropy sources
+ startTimeBytes := make([]byte, 32)
+ binary.PutVarint(startTimeBytes, startTime)
+ startTimeHash := Sha3(startTimeBytes)
+ mixBytes(mainBuff, startTimeHash)
+
+ pid := os.Getpid()
+ pidBytes := make([]byte, 32)
+ binary.PutUvarint(pidBytes, uint64(pid))
+ pidHash := Sha3(pidBytes)
+ mixBytes(mainBuff, pidHash)
+
+ osEnv := os.Environ()
+ osEnvBytes := []byte(strings.Join(osEnv, ""))
+ osEnvHash := Sha3(osEnvBytes)
+ mixBytes(mainBuff, osEnvHash)
+
+ // not all OS have hostname in env variables
+ osHostName, err := os.Hostname()
+ if err != nil {
+ osHostNameBytes := []byte(osHostName)
+ osHostNameHash := Sha3(osHostNameBytes)
+ mixBytes(mainBuff, osHostNameHash)
+ }
+ return mainBuff
+}
+
+func GetEntropyCSPRNG(n int) []byte {
+ mainBuff := make([]byte, n)
+ _, err := io.ReadFull(crand.Reader, mainBuff)
+ if err != nil {
+ panic("reading from crypto/rand failed: " + err.Error())
+ }
+ return mainBuff
+}
+
+func mixBytes(buff []byte, mixBuff []byte) []byte {
+ bytesToMix := len(buff)
+ if bytesToMix > 32 {
+ bytesToMix = 32
+ }
+ for i := 0; i < bytesToMix; i++ {
+ buff[i] ^= mixBuff[i]
+ }
+ return buff
+}
diff --git a/crypto/secp256k1/secp256.go b/crypto/secp256k1/secp256.go
index c01598b84..4864e8d09 100644
--- a/crypto/secp256k1/secp256.go
+++ b/crypto/secp256k1/secp256.go
@@ -16,6 +16,8 @@ import (
"bytes"
"errors"
"unsafe"
+
+ "github.com/ethereum/go-ethereum/crypto/randentropy"
)
//#define USE_FIELD_5X64
@@ -68,7 +70,7 @@ func GenerateKeyPair() ([]byte, []byte) {
const seckey_len = 32
var pubkey []byte = make([]byte, pubkey_len)
- var seckey []byte = RandByte(seckey_len)
+ var seckey []byte = randentropy.GetEntropyMixed(seckey_len)
var pubkey_ptr *C.uchar = (*C.uchar)(unsafe.Pointer(&pubkey[0]))
var seckey_ptr *C.uchar = (*C.uchar)(unsafe.Pointer(&seckey[0]))
@@ -84,6 +86,10 @@ func GenerateKeyPair() ([]byte, []byte) {
}
func GeneratePubKey(seckey []byte) ([]byte, error) {
+ if err := VerifySeckeyValidity(seckey); err != nil {
+ return nil, err
+ }
+
pubkey_len := C.int(65)
const seckey_len = 32
@@ -124,7 +130,7 @@ int secp256k1_ecdsa_sign_compact(const unsigned char *msg, int msglen,
*/
func Sign(msg []byte, seckey []byte) ([]byte, error) {
- nonce := RandByte(32)
+ nonce := randentropy.GetEntropyMixed(32)
var sig []byte = make([]byte, 65)
var recid C.int
diff --git a/crypto/secp256k1/secp256_rand.go b/crypto/secp256k1/secp256_rand.go
deleted file mode 100644
index bb10025fc..000000000
--- a/crypto/secp256k1/secp256_rand.go
+++ /dev/null
@@ -1,97 +0,0 @@
-package secp256k1
-
-import (
- crand "crypto/rand"
- "io"
- mrand "math/rand"
- "os"
- "strings"
- "time"
-)
-
-/*
-Note:
-
-- On windows cryto/rand uses CrytoGenRandom which uses RC4 which is insecure
-- Android random number generator is known to be insecure.
-- Linux uses /dev/urandom , which is thought to be secure and uses entropy pool
-
-Therefore the output is salted.
-*/
-
-//finalizer from MurmerHash3
-func mmh3f(key uint64) uint64 {
- key ^= key >> 33
- key *= 0xff51afd7ed558ccd
- key ^= key >> 33
- key *= 0xc4ceb9fe1a85ec53
- key ^= key >> 33
- return key
-}
-
-//knuth hash
-func knuth_hash(in []byte) uint64 {
- var acc uint64 = 3074457345618258791
- for i := 0; i < len(in); i++ {
- acc += uint64(in[i])
- acc *= 3074457345618258799
- }
- return acc
-}
-
-var _rand *mrand.Rand
-
-func init() {
- var seed1 uint64 = mmh3f(uint64(time.Now().UnixNano()))
- var seed2 uint64 = knuth_hash([]byte(strings.Join(os.Environ(), "")))
- var seed3 uint64 = mmh3f(uint64(os.Getpid()))
-
- _rand = mrand.New(mrand.NewSource(int64(seed1 ^ seed2 ^ seed3)))
-}
-
-func saltByte(n int) []byte {
- buff := make([]byte, n)
- for i := 0; i < len(buff); i++ {
- var v uint64 = uint64(_rand.Int63())
- var b byte
- for j := 0; j < 8; j++ {
- b ^= byte(v & 0xff)
- v = v >> 8
- }
- buff[i] = b
- }
- return buff
-}
-
-//On Unix-like systems, Reader reads from /dev/urandom.
-//On Windows systems, Reader uses the CryptGenRandom API.
-
-//use entropy pool etc and cryptographic random number generator
-//mix in time
-//mix in mix in cpu cycle count
-func RandByte(n int) []byte {
- buff := make([]byte, n)
- ret, err := io.ReadFull(crand.Reader, buff)
- if len(buff) != ret || err != nil {
- return nil
- }
-
- buff2 := saltByte(n)
- for i := 0; i < n; i++ {
- buff[i] ^= buff2[2]
- }
- return buff
-}
-
-/*
- On Unix-like systems, Reader reads from /dev/urandom.
- On Windows systems, Reader uses the CryptGenRandom API.
-*/
-func RandByteWeakCrypto(n int) []byte {
- buff := make([]byte, n)
- ret, err := io.ReadFull(crand.Reader, buff)
- if len(buff) != ret || err != nil {
- return nil
- }
- return buff
-}
diff --git a/crypto/secp256k1/secp256_test.go b/crypto/secp256k1/secp256_test.go
index 468c50db9..3599fde38 100644
--- a/crypto/secp256k1/secp256_test.go
+++ b/crypto/secp256k1/secp256_test.go
@@ -5,6 +5,8 @@ import (
"fmt"
"log"
"testing"
+
+ "github.com/ethereum/go-ethereum/crypto/randentropy"
)
const TESTS = 10000 // how many tests
@@ -12,7 +14,7 @@ const SigSize = 65 //64+1
func Test_Secp256_00(t *testing.T) {
- var nonce []byte = RandByte(32) //going to get bitcoins stolen!
+ var nonce []byte = randentropy.GetEntropyMixed(32) //going to get bitcoins stolen!
if len(nonce) != 32 {
t.Fatal()
@@ -50,7 +52,7 @@ func Test_Secp256_01(t *testing.T) {
//test size of messages
func Test_Secp256_02s(t *testing.T) {
pubkey, seckey := GenerateKeyPair()
- msg := RandByte(32)
+ msg := randentropy.GetEntropyMixed(32)
sig, _ := Sign(msg, seckey)
CompactSigTest(sig)
if sig == nil {
@@ -73,7 +75,7 @@ func Test_Secp256_02s(t *testing.T) {
//test signing message
func Test_Secp256_02(t *testing.T) {
pubkey1, seckey := GenerateKeyPair()
- msg := RandByte(32)
+ msg := randentropy.GetEntropyMixed(32)
sig, _ := Sign(msg, seckey)
if sig == nil {
t.Fatal("Signature nil")
@@ -96,7 +98,7 @@ func Test_Secp256_02(t *testing.T) {
//test pubkey recovery
func Test_Secp256_02a(t *testing.T) {
pubkey1, seckey1 := GenerateKeyPair()
- msg := RandByte(32)
+ msg := randentropy.GetEntropyMixed(32)
sig, _ := Sign(msg, seckey1)
if sig == nil {
@@ -125,7 +127,7 @@ func Test_Secp256_02a(t *testing.T) {
func Test_Secp256_03(t *testing.T) {
_, seckey := GenerateKeyPair()
for i := 0; i < TESTS; i++ {
- msg := RandByte(32)
+ msg := randentropy.GetEntropyMixed(32)
sig, _ := Sign(msg, seckey)
CompactSigTest(sig)
@@ -141,7 +143,7 @@ func Test_Secp256_03(t *testing.T) {
func Test_Secp256_04(t *testing.T) {
for i := 0; i < TESTS; i++ {
pubkey1, seckey := GenerateKeyPair()
- msg := RandByte(32)
+ msg := randentropy.GetEntropyMixed(32)
sig, _ := Sign(msg, seckey)
CompactSigTest(sig)
@@ -164,7 +166,7 @@ func Test_Secp256_04(t *testing.T) {
// -SIPA look at this
func randSig() []byte {
- sig := RandByte(65)
+ sig := randentropy.GetEntropyMixed(65)
sig[32] &= 0x70
sig[64] %= 4
return sig
@@ -172,7 +174,7 @@ func randSig() []byte {
func Test_Secp256_06a_alt0(t *testing.T) {
pubkey1, seckey := GenerateKeyPair()
- msg := RandByte(32)
+ msg := randentropy.GetEntropyMixed(32)
sig, _ := Sign(msg, seckey)
if sig == nil {
@@ -203,12 +205,12 @@ func Test_Secp256_06a_alt0(t *testing.T) {
func Test_Secp256_06b(t *testing.T) {
pubkey1, seckey := GenerateKeyPair()
- msg := RandByte(32)
+ msg := randentropy.GetEntropyMixed(32)
sig, _ := Sign(msg, seckey)
fail_count := 0
for i := 0; i < TESTS; i++ {
- msg = RandByte(32)
+ msg = randentropy.GetEntropyMixed(32)
pubkey2, _ := RecoverPubkey(msg, sig)
if bytes.Equal(pubkey1, pubkey2) == true {
t.Fail()
@@ -226,3 +228,11 @@ func Test_Secp256_06b(t *testing.T) {
fmt.Printf("ERROR: Accepted signature for %v of %v random messages\n", fail_count, TESTS)
}
}
+
+func TestInvalidKey(t *testing.T) {
+ p1 := make([]byte, 32)
+ err := VerifySeckeyValidity(p1)
+ if err == nil {
+ t.Errorf("pvk %x varify sec key should have returned error", p1)
+ }
+}