diff options
Diffstat (limited to 'crypto/secp256k1/curve.go')
-rw-r--r-- | crypto/secp256k1/curve.go | 325 |
1 files changed, 0 insertions, 325 deletions
diff --git a/crypto/secp256k1/curve.go b/crypto/secp256k1/curve.go deleted file mode 100644 index 5409ee1d2..000000000 --- a/crypto/secp256k1/curve.go +++ /dev/null @@ -1,325 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Copyright 2011 ThePiachu. All rights reserved. -// Copyright 2015 Jeffrey Wilcke, Felix Lange, Gustav Simonsson. All rights reserved. -// -// Redistribution and use in source and binary forms, with or without -// modification, are permitted provided that the following conditions are -// met: -// -// * Redistributions of source code must retain the above copyright -// notice, this list of conditions and the following disclaimer. -// * Redistributions in binary form must reproduce the above -// copyright notice, this list of conditions and the following disclaimer -// in the documentation and/or other materials provided with the -// distribution. -// * Neither the name of Google Inc. nor the names of its -// contributors may be used to endorse or promote products derived from -// this software without specific prior written permission. -// * The name of ThePiachu may not be used to endorse or promote products -// derived from this software without specific prior written permission. -// -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS -// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT -// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR -// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT -// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, -// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT -// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, -// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY -// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT -// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE -// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - -package secp256k1 - -import ( - "crypto/elliptic" - "math/big" - "unsafe" -) - -/* -#include "libsecp256k1/include/secp256k1.h" -extern int secp256k1_ext_scalar_mul(const secp256k1_context* ctx, const unsigned char *point, const unsigned char *scalar); -*/ -import "C" - -const ( - // number of bits in a big.Word - wordBits = 32 << (uint64(^big.Word(0)) >> 63) - // number of bytes in a big.Word - wordBytes = wordBits / 8 -) - -// readBits encodes the absolute value of bigint as big-endian bytes. Callers -// must ensure that buf has enough space. If buf is too short the result will -// be incomplete. -func readBits(bigint *big.Int, buf []byte) { - i := len(buf) - for _, d := range bigint.Bits() { - for j := 0; j < wordBytes && i > 0; j++ { - i-- - buf[i] = byte(d) - d >>= 8 - } - } -} - -// This code is from https://github.com/ThePiachu/GoBit and implements -// several Koblitz elliptic curves over prime fields. -// -// The curve methods, internally, on Jacobian coordinates. For a given -// (x, y) position on the curve, the Jacobian coordinates are (x1, y1, -// z1) where x = x1/z1² and y = y1/z1³. The greatest speedups come -// when the whole calculation can be performed within the transform -// (as in ScalarMult and ScalarBaseMult). But even for Add and Double, -// it's faster to apply and reverse the transform than to operate in -// affine coordinates. - -// A BitCurve represents a Koblitz Curve with a=0. -// See http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html -type BitCurve struct { - P *big.Int // the order of the underlying field - N *big.Int // the order of the base point - B *big.Int // the constant of the BitCurve equation - Gx, Gy *big.Int // (x,y) of the base point - BitSize int // the size of the underlying field -} - -func (BitCurve *BitCurve) Params() *elliptic.CurveParams { - return &elliptic.CurveParams{ - P: BitCurve.P, - N: BitCurve.N, - B: BitCurve.B, - Gx: BitCurve.Gx, - Gy: BitCurve.Gy, - BitSize: BitCurve.BitSize, - } -} - -// IsOnCurve returns true if the given (x,y) lies on the BitCurve. -func (BitCurve *BitCurve) IsOnCurve(x, y *big.Int) bool { - // y² = x³ + b - y2 := new(big.Int).Mul(y, y) //y² - y2.Mod(y2, BitCurve.P) //y²%P - - x3 := new(big.Int).Mul(x, x) //x² - x3.Mul(x3, x) //x³ - - x3.Add(x3, BitCurve.B) //x³+B - x3.Mod(x3, BitCurve.P) //(x³+B)%P - - return x3.Cmp(y2) == 0 -} - -//TODO: double check if the function is okay -// affineFromJacobian reverses the Jacobian transform. See the comment at the -// top of the file. -func (BitCurve *BitCurve) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) { - zinv := new(big.Int).ModInverse(z, BitCurve.P) - zinvsq := new(big.Int).Mul(zinv, zinv) - - xOut = new(big.Int).Mul(x, zinvsq) - xOut.Mod(xOut, BitCurve.P) - zinvsq.Mul(zinvsq, zinv) - yOut = new(big.Int).Mul(y, zinvsq) - yOut.Mod(yOut, BitCurve.P) - return -} - -// Add returns the sum of (x1,y1) and (x2,y2) -func (BitCurve *BitCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) { - z := new(big.Int).SetInt64(1) - return BitCurve.affineFromJacobian(BitCurve.addJacobian(x1, y1, z, x2, y2, z)) -} - -// addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and -// (x2, y2, z2) and returns their sum, also in Jacobian form. -func (BitCurve *BitCurve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) { - // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl - z1z1 := new(big.Int).Mul(z1, z1) - z1z1.Mod(z1z1, BitCurve.P) - z2z2 := new(big.Int).Mul(z2, z2) - z2z2.Mod(z2z2, BitCurve.P) - - u1 := new(big.Int).Mul(x1, z2z2) - u1.Mod(u1, BitCurve.P) - u2 := new(big.Int).Mul(x2, z1z1) - u2.Mod(u2, BitCurve.P) - h := new(big.Int).Sub(u2, u1) - if h.Sign() == -1 { - h.Add(h, BitCurve.P) - } - i := new(big.Int).Lsh(h, 1) - i.Mul(i, i) - j := new(big.Int).Mul(h, i) - - s1 := new(big.Int).Mul(y1, z2) - s1.Mul(s1, z2z2) - s1.Mod(s1, BitCurve.P) - s2 := new(big.Int).Mul(y2, z1) - s2.Mul(s2, z1z1) - s2.Mod(s2, BitCurve.P) - r := new(big.Int).Sub(s2, s1) - if r.Sign() == -1 { - r.Add(r, BitCurve.P) - } - r.Lsh(r, 1) - v := new(big.Int).Mul(u1, i) - - x3 := new(big.Int).Set(r) - x3.Mul(x3, x3) - x3.Sub(x3, j) - x3.Sub(x3, v) - x3.Sub(x3, v) - x3.Mod(x3, BitCurve.P) - - y3 := new(big.Int).Set(r) - v.Sub(v, x3) - y3.Mul(y3, v) - s1.Mul(s1, j) - s1.Lsh(s1, 1) - y3.Sub(y3, s1) - y3.Mod(y3, BitCurve.P) - - z3 := new(big.Int).Add(z1, z2) - z3.Mul(z3, z3) - z3.Sub(z3, z1z1) - if z3.Sign() == -1 { - z3.Add(z3, BitCurve.P) - } - z3.Sub(z3, z2z2) - if z3.Sign() == -1 { - z3.Add(z3, BitCurve.P) - } - z3.Mul(z3, h) - z3.Mod(z3, BitCurve.P) - - return x3, y3, z3 -} - -// Double returns 2*(x,y) -func (BitCurve *BitCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) { - z1 := new(big.Int).SetInt64(1) - return BitCurve.affineFromJacobian(BitCurve.doubleJacobian(x1, y1, z1)) -} - -// doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and -// returns its double, also in Jacobian form. -func (BitCurve *BitCurve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) { - // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l - - a := new(big.Int).Mul(x, x) //X1² - b := new(big.Int).Mul(y, y) //Y1² - c := new(big.Int).Mul(b, b) //B² - - d := new(big.Int).Add(x, b) //X1+B - d.Mul(d, d) //(X1+B)² - d.Sub(d, a) //(X1+B)²-A - d.Sub(d, c) //(X1+B)²-A-C - d.Mul(d, big.NewInt(2)) //2*((X1+B)²-A-C) - - e := new(big.Int).Mul(big.NewInt(3), a) //3*A - f := new(big.Int).Mul(e, e) //E² - - x3 := new(big.Int).Mul(big.NewInt(2), d) //2*D - x3.Sub(f, x3) //F-2*D - x3.Mod(x3, BitCurve.P) - - y3 := new(big.Int).Sub(d, x3) //D-X3 - y3.Mul(e, y3) //E*(D-X3) - y3.Sub(y3, new(big.Int).Mul(big.NewInt(8), c)) //E*(D-X3)-8*C - y3.Mod(y3, BitCurve.P) - - z3 := new(big.Int).Mul(y, z) //Y1*Z1 - z3.Mul(big.NewInt(2), z3) //3*Y1*Z1 - z3.Mod(z3, BitCurve.P) - - return x3, y3, z3 -} - -func (BitCurve *BitCurve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) { - // Ensure scalar is exactly 32 bytes. We pad always, even if - // scalar is 32 bytes long, to avoid a timing side channel. - if len(scalar) > 32 { - panic("can't handle scalars > 256 bits") - } - // NOTE: potential timing issue - padded := make([]byte, 32) - copy(padded[32-len(scalar):], scalar) - scalar = padded - - // Do the multiplication in C, updating point. - point := make([]byte, 64) - readBits(Bx, point[:32]) - readBits(By, point[32:]) - - pointPtr := (*C.uchar)(unsafe.Pointer(&point[0])) - scalarPtr := (*C.uchar)(unsafe.Pointer(&scalar[0])) - res := C.secp256k1_ext_scalar_mul(context, pointPtr, scalarPtr) - - // Unpack the result and clear temporaries. - x := new(big.Int).SetBytes(point[:32]) - y := new(big.Int).SetBytes(point[32:]) - for i := range point { - point[i] = 0 - } - for i := range padded { - scalar[i] = 0 - } - if res != 1 { - return nil, nil - } - return x, y -} - -// ScalarBaseMult returns k*G, where G is the base point of the group and k is -// an integer in big-endian form. -func (BitCurve *BitCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) { - return BitCurve.ScalarMult(BitCurve.Gx, BitCurve.Gy, k) -} - -// Marshal converts a point into the form specified in section 4.3.6 of ANSI -// X9.62. -func (BitCurve *BitCurve) Marshal(x, y *big.Int) []byte { - byteLen := (BitCurve.BitSize + 7) >> 3 - ret := make([]byte, 1+2*byteLen) - ret[0] = 4 // uncompressed point flag - readBits(x, ret[1:1+byteLen]) - readBits(y, ret[1+byteLen:]) - return ret -} - -// Unmarshal converts a point, serialised by Marshal, into an x, y pair. On -// error, x = nil. -func (BitCurve *BitCurve) Unmarshal(data []byte) (x, y *big.Int) { - byteLen := (BitCurve.BitSize + 7) >> 3 - if len(data) != 1+2*byteLen { - return - } - if data[0] != 4 { // uncompressed form - return - } - x = new(big.Int).SetBytes(data[1 : 1+byteLen]) - y = new(big.Int).SetBytes(data[1+byteLen:]) - return -} - -var theCurve = new(BitCurve) - -func init() { - // See SEC 2 section 2.7.1 - // curve parameters taken from: - // http://www.secg.org/sec2-v2.pdf - theCurve.P, _ = new(big.Int).SetString("0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", 0) - theCurve.N, _ = new(big.Int).SetString("0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", 0) - theCurve.B, _ = new(big.Int).SetString("0x0000000000000000000000000000000000000000000000000000000000000007", 0) - theCurve.Gx, _ = new(big.Int).SetString("0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798", 0) - theCurve.Gy, _ = new(big.Int).SetString("0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8", 0) - theCurve.BitSize = 256 -} - -// S256 returns a BitCurve which implements secp256k1. -func S256() *BitCurve { - return theCurve -} |