aboutsummaryrefslogtreecommitdiffstats
path: root/crypto/secp256k1/curve.go
diff options
context:
space:
mode:
Diffstat (limited to 'crypto/secp256k1/curve.go')
-rw-r--r--crypto/secp256k1/curve.go325
1 files changed, 0 insertions, 325 deletions
diff --git a/crypto/secp256k1/curve.go b/crypto/secp256k1/curve.go
deleted file mode 100644
index 5409ee1d2..000000000
--- a/crypto/secp256k1/curve.go
+++ /dev/null
@@ -1,325 +0,0 @@
-// Copyright 2010 The Go Authors. All rights reserved.
-// Copyright 2011 ThePiachu. All rights reserved.
-// Copyright 2015 Jeffrey Wilcke, Felix Lange, Gustav Simonsson. All rights reserved.
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above
-// copyright notice, this list of conditions and the following disclaimer
-// in the documentation and/or other materials provided with the
-// distribution.
-// * Neither the name of Google Inc. nor the names of its
-// contributors may be used to endorse or promote products derived from
-// this software without specific prior written permission.
-// * The name of ThePiachu may not be used to endorse or promote products
-// derived from this software without specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-package secp256k1
-
-import (
- "crypto/elliptic"
- "math/big"
- "unsafe"
-)
-
-/*
-#include "libsecp256k1/include/secp256k1.h"
-extern int secp256k1_ext_scalar_mul(const secp256k1_context* ctx, const unsigned char *point, const unsigned char *scalar);
-*/
-import "C"
-
-const (
- // number of bits in a big.Word
- wordBits = 32 << (uint64(^big.Word(0)) >> 63)
- // number of bytes in a big.Word
- wordBytes = wordBits / 8
-)
-
-// readBits encodes the absolute value of bigint as big-endian bytes. Callers
-// must ensure that buf has enough space. If buf is too short the result will
-// be incomplete.
-func readBits(bigint *big.Int, buf []byte) {
- i := len(buf)
- for _, d := range bigint.Bits() {
- for j := 0; j < wordBytes && i > 0; j++ {
- i--
- buf[i] = byte(d)
- d >>= 8
- }
- }
-}
-
-// This code is from https://github.com/ThePiachu/GoBit and implements
-// several Koblitz elliptic curves over prime fields.
-//
-// The curve methods, internally, on Jacobian coordinates. For a given
-// (x, y) position on the curve, the Jacobian coordinates are (x1, y1,
-// z1) where x = x1/z1² and y = y1/z1³. The greatest speedups come
-// when the whole calculation can be performed within the transform
-// (as in ScalarMult and ScalarBaseMult). But even for Add and Double,
-// it's faster to apply and reverse the transform than to operate in
-// affine coordinates.
-
-// A BitCurve represents a Koblitz Curve with a=0.
-// See http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html
-type BitCurve struct {
- P *big.Int // the order of the underlying field
- N *big.Int // the order of the base point
- B *big.Int // the constant of the BitCurve equation
- Gx, Gy *big.Int // (x,y) of the base point
- BitSize int // the size of the underlying field
-}
-
-func (BitCurve *BitCurve) Params() *elliptic.CurveParams {
- return &elliptic.CurveParams{
- P: BitCurve.P,
- N: BitCurve.N,
- B: BitCurve.B,
- Gx: BitCurve.Gx,
- Gy: BitCurve.Gy,
- BitSize: BitCurve.BitSize,
- }
-}
-
-// IsOnCurve returns true if the given (x,y) lies on the BitCurve.
-func (BitCurve *BitCurve) IsOnCurve(x, y *big.Int) bool {
- // y² = x³ + b
- y2 := new(big.Int).Mul(y, y) //y²
- y2.Mod(y2, BitCurve.P) //y²%P
-
- x3 := new(big.Int).Mul(x, x) //x²
- x3.Mul(x3, x) //x³
-
- x3.Add(x3, BitCurve.B) //x³+B
- x3.Mod(x3, BitCurve.P) //(x³+B)%P
-
- return x3.Cmp(y2) == 0
-}
-
-//TODO: double check if the function is okay
-// affineFromJacobian reverses the Jacobian transform. See the comment at the
-// top of the file.
-func (BitCurve *BitCurve) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) {
- zinv := new(big.Int).ModInverse(z, BitCurve.P)
- zinvsq := new(big.Int).Mul(zinv, zinv)
-
- xOut = new(big.Int).Mul(x, zinvsq)
- xOut.Mod(xOut, BitCurve.P)
- zinvsq.Mul(zinvsq, zinv)
- yOut = new(big.Int).Mul(y, zinvsq)
- yOut.Mod(yOut, BitCurve.P)
- return
-}
-
-// Add returns the sum of (x1,y1) and (x2,y2)
-func (BitCurve *BitCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
- z := new(big.Int).SetInt64(1)
- return BitCurve.affineFromJacobian(BitCurve.addJacobian(x1, y1, z, x2, y2, z))
-}
-
-// addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and
-// (x2, y2, z2) and returns their sum, also in Jacobian form.
-func (BitCurve *BitCurve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) {
- // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
- z1z1 := new(big.Int).Mul(z1, z1)
- z1z1.Mod(z1z1, BitCurve.P)
- z2z2 := new(big.Int).Mul(z2, z2)
- z2z2.Mod(z2z2, BitCurve.P)
-
- u1 := new(big.Int).Mul(x1, z2z2)
- u1.Mod(u1, BitCurve.P)
- u2 := new(big.Int).Mul(x2, z1z1)
- u2.Mod(u2, BitCurve.P)
- h := new(big.Int).Sub(u2, u1)
- if h.Sign() == -1 {
- h.Add(h, BitCurve.P)
- }
- i := new(big.Int).Lsh(h, 1)
- i.Mul(i, i)
- j := new(big.Int).Mul(h, i)
-
- s1 := new(big.Int).Mul(y1, z2)
- s1.Mul(s1, z2z2)
- s1.Mod(s1, BitCurve.P)
- s2 := new(big.Int).Mul(y2, z1)
- s2.Mul(s2, z1z1)
- s2.Mod(s2, BitCurve.P)
- r := new(big.Int).Sub(s2, s1)
- if r.Sign() == -1 {
- r.Add(r, BitCurve.P)
- }
- r.Lsh(r, 1)
- v := new(big.Int).Mul(u1, i)
-
- x3 := new(big.Int).Set(r)
- x3.Mul(x3, x3)
- x3.Sub(x3, j)
- x3.Sub(x3, v)
- x3.Sub(x3, v)
- x3.Mod(x3, BitCurve.P)
-
- y3 := new(big.Int).Set(r)
- v.Sub(v, x3)
- y3.Mul(y3, v)
- s1.Mul(s1, j)
- s1.Lsh(s1, 1)
- y3.Sub(y3, s1)
- y3.Mod(y3, BitCurve.P)
-
- z3 := new(big.Int).Add(z1, z2)
- z3.Mul(z3, z3)
- z3.Sub(z3, z1z1)
- if z3.Sign() == -1 {
- z3.Add(z3, BitCurve.P)
- }
- z3.Sub(z3, z2z2)
- if z3.Sign() == -1 {
- z3.Add(z3, BitCurve.P)
- }
- z3.Mul(z3, h)
- z3.Mod(z3, BitCurve.P)
-
- return x3, y3, z3
-}
-
-// Double returns 2*(x,y)
-func (BitCurve *BitCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
- z1 := new(big.Int).SetInt64(1)
- return BitCurve.affineFromJacobian(BitCurve.doubleJacobian(x1, y1, z1))
-}
-
-// doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and
-// returns its double, also in Jacobian form.
-func (BitCurve *BitCurve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) {
- // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
-
- a := new(big.Int).Mul(x, x) //X1²
- b := new(big.Int).Mul(y, y) //Y1²
- c := new(big.Int).Mul(b, b) //B²
-
- d := new(big.Int).Add(x, b) //X1+B
- d.Mul(d, d) //(X1+B)²
- d.Sub(d, a) //(X1+B)²-A
- d.Sub(d, c) //(X1+B)²-A-C
- d.Mul(d, big.NewInt(2)) //2*((X1+B)²-A-C)
-
- e := new(big.Int).Mul(big.NewInt(3), a) //3*A
- f := new(big.Int).Mul(e, e) //E²
-
- x3 := new(big.Int).Mul(big.NewInt(2), d) //2*D
- x3.Sub(f, x3) //F-2*D
- x3.Mod(x3, BitCurve.P)
-
- y3 := new(big.Int).Sub(d, x3) //D-X3
- y3.Mul(e, y3) //E*(D-X3)
- y3.Sub(y3, new(big.Int).Mul(big.NewInt(8), c)) //E*(D-X3)-8*C
- y3.Mod(y3, BitCurve.P)
-
- z3 := new(big.Int).Mul(y, z) //Y1*Z1
- z3.Mul(big.NewInt(2), z3) //3*Y1*Z1
- z3.Mod(z3, BitCurve.P)
-
- return x3, y3, z3
-}
-
-func (BitCurve *BitCurve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) {
- // Ensure scalar is exactly 32 bytes. We pad always, even if
- // scalar is 32 bytes long, to avoid a timing side channel.
- if len(scalar) > 32 {
- panic("can't handle scalars > 256 bits")
- }
- // NOTE: potential timing issue
- padded := make([]byte, 32)
- copy(padded[32-len(scalar):], scalar)
- scalar = padded
-
- // Do the multiplication in C, updating point.
- point := make([]byte, 64)
- readBits(Bx, point[:32])
- readBits(By, point[32:])
-
- pointPtr := (*C.uchar)(unsafe.Pointer(&point[0]))
- scalarPtr := (*C.uchar)(unsafe.Pointer(&scalar[0]))
- res := C.secp256k1_ext_scalar_mul(context, pointPtr, scalarPtr)
-
- // Unpack the result and clear temporaries.
- x := new(big.Int).SetBytes(point[:32])
- y := new(big.Int).SetBytes(point[32:])
- for i := range point {
- point[i] = 0
- }
- for i := range padded {
- scalar[i] = 0
- }
- if res != 1 {
- return nil, nil
- }
- return x, y
-}
-
-// ScalarBaseMult returns k*G, where G is the base point of the group and k is
-// an integer in big-endian form.
-func (BitCurve *BitCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
- return BitCurve.ScalarMult(BitCurve.Gx, BitCurve.Gy, k)
-}
-
-// Marshal converts a point into the form specified in section 4.3.6 of ANSI
-// X9.62.
-func (BitCurve *BitCurve) Marshal(x, y *big.Int) []byte {
- byteLen := (BitCurve.BitSize + 7) >> 3
- ret := make([]byte, 1+2*byteLen)
- ret[0] = 4 // uncompressed point flag
- readBits(x, ret[1:1+byteLen])
- readBits(y, ret[1+byteLen:])
- return ret
-}
-
-// Unmarshal converts a point, serialised by Marshal, into an x, y pair. On
-// error, x = nil.
-func (BitCurve *BitCurve) Unmarshal(data []byte) (x, y *big.Int) {
- byteLen := (BitCurve.BitSize + 7) >> 3
- if len(data) != 1+2*byteLen {
- return
- }
- if data[0] != 4 { // uncompressed form
- return
- }
- x = new(big.Int).SetBytes(data[1 : 1+byteLen])
- y = new(big.Int).SetBytes(data[1+byteLen:])
- return
-}
-
-var theCurve = new(BitCurve)
-
-func init() {
- // See SEC 2 section 2.7.1
- // curve parameters taken from:
- // http://www.secg.org/sec2-v2.pdf
- theCurve.P, _ = new(big.Int).SetString("0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", 0)
- theCurve.N, _ = new(big.Int).SetString("0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", 0)
- theCurve.B, _ = new(big.Int).SetString("0x0000000000000000000000000000000000000000000000000000000000000007", 0)
- theCurve.Gx, _ = new(big.Int).SetString("0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798", 0)
- theCurve.Gy, _ = new(big.Int).SetString("0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8", 0)
- theCurve.BitSize = 256
-}
-
-// S256 returns a BitCurve which implements secp256k1.
-func S256() *BitCurve {
- return theCurve
-}