diff options
Diffstat (limited to 'crypto/bn256/optate.go')
-rw-r--r-- | crypto/bn256/optate.go | 398 |
1 files changed, 398 insertions, 0 deletions
diff --git a/crypto/bn256/optate.go b/crypto/bn256/optate.go new file mode 100644 index 000000000..68716b62b --- /dev/null +++ b/crypto/bn256/optate.go @@ -0,0 +1,398 @@ +// Copyright 2012 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package bn256 + +func lineFunctionAdd(r, p *twistPoint, q *curvePoint, r2 *gfP2, pool *bnPool) (a, b, c *gfP2, rOut *twistPoint) { + // See the mixed addition algorithm from "Faster Computation of the + // Tate Pairing", http://arxiv.org/pdf/0904.0854v3.pdf + + B := newGFp2(pool).Mul(p.x, r.t, pool) + + D := newGFp2(pool).Add(p.y, r.z) + D.Square(D, pool) + D.Sub(D, r2) + D.Sub(D, r.t) + D.Mul(D, r.t, pool) + + H := newGFp2(pool).Sub(B, r.x) + I := newGFp2(pool).Square(H, pool) + + E := newGFp2(pool).Add(I, I) + E.Add(E, E) + + J := newGFp2(pool).Mul(H, E, pool) + + L1 := newGFp2(pool).Sub(D, r.y) + L1.Sub(L1, r.y) + + V := newGFp2(pool).Mul(r.x, E, pool) + + rOut = newTwistPoint(pool) + rOut.x.Square(L1, pool) + rOut.x.Sub(rOut.x, J) + rOut.x.Sub(rOut.x, V) + rOut.x.Sub(rOut.x, V) + + rOut.z.Add(r.z, H) + rOut.z.Square(rOut.z, pool) + rOut.z.Sub(rOut.z, r.t) + rOut.z.Sub(rOut.z, I) + + t := newGFp2(pool).Sub(V, rOut.x) + t.Mul(t, L1, pool) + t2 := newGFp2(pool).Mul(r.y, J, pool) + t2.Add(t2, t2) + rOut.y.Sub(t, t2) + + rOut.t.Square(rOut.z, pool) + + t.Add(p.y, rOut.z) + t.Square(t, pool) + t.Sub(t, r2) + t.Sub(t, rOut.t) + + t2.Mul(L1, p.x, pool) + t2.Add(t2, t2) + a = newGFp2(pool) + a.Sub(t2, t) + + c = newGFp2(pool) + c.MulScalar(rOut.z, q.y) + c.Add(c, c) + + b = newGFp2(pool) + b.SetZero() + b.Sub(b, L1) + b.MulScalar(b, q.x) + b.Add(b, b) + + B.Put(pool) + D.Put(pool) + H.Put(pool) + I.Put(pool) + E.Put(pool) + J.Put(pool) + L1.Put(pool) + V.Put(pool) + t.Put(pool) + t2.Put(pool) + + return +} + +func lineFunctionDouble(r *twistPoint, q *curvePoint, pool *bnPool) (a, b, c *gfP2, rOut *twistPoint) { + // See the doubling algorithm for a=0 from "Faster Computation of the + // Tate Pairing", http://arxiv.org/pdf/0904.0854v3.pdf + + A := newGFp2(pool).Square(r.x, pool) + B := newGFp2(pool).Square(r.y, pool) + C_ := newGFp2(pool).Square(B, pool) + + D := newGFp2(pool).Add(r.x, B) + D.Square(D, pool) + D.Sub(D, A) + D.Sub(D, C_) + D.Add(D, D) + + E := newGFp2(pool).Add(A, A) + E.Add(E, A) + + G := newGFp2(pool).Square(E, pool) + + rOut = newTwistPoint(pool) + rOut.x.Sub(G, D) + rOut.x.Sub(rOut.x, D) + + rOut.z.Add(r.y, r.z) + rOut.z.Square(rOut.z, pool) + rOut.z.Sub(rOut.z, B) + rOut.z.Sub(rOut.z, r.t) + + rOut.y.Sub(D, rOut.x) + rOut.y.Mul(rOut.y, E, pool) + t := newGFp2(pool).Add(C_, C_) + t.Add(t, t) + t.Add(t, t) + rOut.y.Sub(rOut.y, t) + + rOut.t.Square(rOut.z, pool) + + t.Mul(E, r.t, pool) + t.Add(t, t) + b = newGFp2(pool) + b.SetZero() + b.Sub(b, t) + b.MulScalar(b, q.x) + + a = newGFp2(pool) + a.Add(r.x, E) + a.Square(a, pool) + a.Sub(a, A) + a.Sub(a, G) + t.Add(B, B) + t.Add(t, t) + a.Sub(a, t) + + c = newGFp2(pool) + c.Mul(rOut.z, r.t, pool) + c.Add(c, c) + c.MulScalar(c, q.y) + + A.Put(pool) + B.Put(pool) + C_.Put(pool) + D.Put(pool) + E.Put(pool) + G.Put(pool) + t.Put(pool) + + return +} + +func mulLine(ret *gfP12, a, b, c *gfP2, pool *bnPool) { + a2 := newGFp6(pool) + a2.x.SetZero() + a2.y.Set(a) + a2.z.Set(b) + a2.Mul(a2, ret.x, pool) + t3 := newGFp6(pool).MulScalar(ret.y, c, pool) + + t := newGFp2(pool) + t.Add(b, c) + t2 := newGFp6(pool) + t2.x.SetZero() + t2.y.Set(a) + t2.z.Set(t) + ret.x.Add(ret.x, ret.y) + + ret.y.Set(t3) + + ret.x.Mul(ret.x, t2, pool) + ret.x.Sub(ret.x, a2) + ret.x.Sub(ret.x, ret.y) + a2.MulTau(a2, pool) + ret.y.Add(ret.y, a2) + + a2.Put(pool) + t3.Put(pool) + t2.Put(pool) + t.Put(pool) +} + +// sixuPlus2NAF is 6u+2 in non-adjacent form. +var sixuPlus2NAF = []int8{0, 0, 0, 1, 0, 1, 0, -1, 0, 0, 1, -1, 0, 0, 1, 0, + 0, 1, 1, 0, -1, 0, 0, 1, 0, -1, 0, 0, 0, 0, 1, 1, + 1, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 1, + 1, 0, 0, -1, 0, 0, 0, 1, 1, 0, -1, 0, 0, 1, 0, 1, 1} + +// miller implements the Miller loop for calculating the Optimal Ate pairing. +// See algorithm 1 from http://cryptojedi.org/papers/dclxvi-20100714.pdf +func miller(q *twistPoint, p *curvePoint, pool *bnPool) *gfP12 { + ret := newGFp12(pool) + ret.SetOne() + + aAffine := newTwistPoint(pool) + aAffine.Set(q) + aAffine.MakeAffine(pool) + + bAffine := newCurvePoint(pool) + bAffine.Set(p) + bAffine.MakeAffine(pool) + + minusA := newTwistPoint(pool) + minusA.Negative(aAffine, pool) + + r := newTwistPoint(pool) + r.Set(aAffine) + + r2 := newGFp2(pool) + r2.Square(aAffine.y, pool) + + for i := len(sixuPlus2NAF) - 1; i > 0; i-- { + a, b, c, newR := lineFunctionDouble(r, bAffine, pool) + if i != len(sixuPlus2NAF)-1 { + ret.Square(ret, pool) + } + + mulLine(ret, a, b, c, pool) + a.Put(pool) + b.Put(pool) + c.Put(pool) + r.Put(pool) + r = newR + + switch sixuPlus2NAF[i-1] { + case 1: + a, b, c, newR = lineFunctionAdd(r, aAffine, bAffine, r2, pool) + case -1: + a, b, c, newR = lineFunctionAdd(r, minusA, bAffine, r2, pool) + default: + continue + } + + mulLine(ret, a, b, c, pool) + a.Put(pool) + b.Put(pool) + c.Put(pool) + r.Put(pool) + r = newR + } + + // In order to calculate Q1 we have to convert q from the sextic twist + // to the full GF(p^12) group, apply the Frobenius there, and convert + // back. + // + // The twist isomorphism is (x', y') -> (xω², yω³). If we consider just + // x for a moment, then after applying the Frobenius, we have x̄ω^(2p) + // where x̄ is the conjugate of x. If we are going to apply the inverse + // isomorphism we need a value with a single coefficient of ω² so we + // rewrite this as x̄ω^(2p-2)ω². ξ⁶ = ω and, due to the construction of + // p, 2p-2 is a multiple of six. Therefore we can rewrite as + // x̄ξ^((p-1)/3)ω² and applying the inverse isomorphism eliminates the + // ω². + // + // A similar argument can be made for the y value. + + q1 := newTwistPoint(pool) + q1.x.Conjugate(aAffine.x) + q1.x.Mul(q1.x, xiToPMinus1Over3, pool) + q1.y.Conjugate(aAffine.y) + q1.y.Mul(q1.y, xiToPMinus1Over2, pool) + q1.z.SetOne() + q1.t.SetOne() + + // For Q2 we are applying the p² Frobenius. The two conjugations cancel + // out and we are left only with the factors from the isomorphism. In + // the case of x, we end up with a pure number which is why + // xiToPSquaredMinus1Over3 is ∈ GF(p). With y we get a factor of -1. We + // ignore this to end up with -Q2. + + minusQ2 := newTwistPoint(pool) + minusQ2.x.MulScalar(aAffine.x, xiToPSquaredMinus1Over3) + minusQ2.y.Set(aAffine.y) + minusQ2.z.SetOne() + minusQ2.t.SetOne() + + r2.Square(q1.y, pool) + a, b, c, newR := lineFunctionAdd(r, q1, bAffine, r2, pool) + mulLine(ret, a, b, c, pool) + a.Put(pool) + b.Put(pool) + c.Put(pool) + r.Put(pool) + r = newR + + r2.Square(minusQ2.y, pool) + a, b, c, newR = lineFunctionAdd(r, minusQ2, bAffine, r2, pool) + mulLine(ret, a, b, c, pool) + a.Put(pool) + b.Put(pool) + c.Put(pool) + r.Put(pool) + r = newR + + aAffine.Put(pool) + bAffine.Put(pool) + minusA.Put(pool) + r.Put(pool) + r2.Put(pool) + + return ret +} + +// finalExponentiation computes the (p¹²-1)/Order-th power of an element of +// GF(p¹²) to obtain an element of GT (steps 13-15 of algorithm 1 from +// http://cryptojedi.org/papers/dclxvi-20100714.pdf) +func finalExponentiation(in *gfP12, pool *bnPool) *gfP12 { + t1 := newGFp12(pool) + + // This is the p^6-Frobenius + t1.x.Negative(in.x) + t1.y.Set(in.y) + + inv := newGFp12(pool) + inv.Invert(in, pool) + t1.Mul(t1, inv, pool) + + t2 := newGFp12(pool).FrobeniusP2(t1, pool) + t1.Mul(t1, t2, pool) + + fp := newGFp12(pool).Frobenius(t1, pool) + fp2 := newGFp12(pool).FrobeniusP2(t1, pool) + fp3 := newGFp12(pool).Frobenius(fp2, pool) + + fu, fu2, fu3 := newGFp12(pool), newGFp12(pool), newGFp12(pool) + fu.Exp(t1, u, pool) + fu2.Exp(fu, u, pool) + fu3.Exp(fu2, u, pool) + + y3 := newGFp12(pool).Frobenius(fu, pool) + fu2p := newGFp12(pool).Frobenius(fu2, pool) + fu3p := newGFp12(pool).Frobenius(fu3, pool) + y2 := newGFp12(pool).FrobeniusP2(fu2, pool) + + y0 := newGFp12(pool) + y0.Mul(fp, fp2, pool) + y0.Mul(y0, fp3, pool) + + y1, y4, y5 := newGFp12(pool), newGFp12(pool), newGFp12(pool) + y1.Conjugate(t1) + y5.Conjugate(fu2) + y3.Conjugate(y3) + y4.Mul(fu, fu2p, pool) + y4.Conjugate(y4) + + y6 := newGFp12(pool) + y6.Mul(fu3, fu3p, pool) + y6.Conjugate(y6) + + t0 := newGFp12(pool) + t0.Square(y6, pool) + t0.Mul(t0, y4, pool) + t0.Mul(t0, y5, pool) + t1.Mul(y3, y5, pool) + t1.Mul(t1, t0, pool) + t0.Mul(t0, y2, pool) + t1.Square(t1, pool) + t1.Mul(t1, t0, pool) + t1.Square(t1, pool) + t0.Mul(t1, y1, pool) + t1.Mul(t1, y0, pool) + t0.Square(t0, pool) + t0.Mul(t0, t1, pool) + + inv.Put(pool) + t1.Put(pool) + t2.Put(pool) + fp.Put(pool) + fp2.Put(pool) + fp3.Put(pool) + fu.Put(pool) + fu2.Put(pool) + fu3.Put(pool) + fu2p.Put(pool) + fu3p.Put(pool) + y0.Put(pool) + y1.Put(pool) + y2.Put(pool) + y3.Put(pool) + y4.Put(pool) + y5.Put(pool) + y6.Put(pool) + + return t0 +} + +func optimalAte(a *twistPoint, b *curvePoint, pool *bnPool) *gfP12 { + e := miller(a, b, pool) + ret := finalExponentiation(e, pool) + e.Put(pool) + + if a.IsInfinity() || b.IsInfinity() { + ret.SetOne() + } + + return ret +} |