diff options
Diffstat (limited to 'crypto/bn256/google/gfp2.go')
-rw-r--r-- | crypto/bn256/google/gfp2.go | 227 |
1 files changed, 227 insertions, 0 deletions
diff --git a/crypto/bn256/google/gfp2.go b/crypto/bn256/google/gfp2.go new file mode 100644 index 000000000..3981f6cb4 --- /dev/null +++ b/crypto/bn256/google/gfp2.go @@ -0,0 +1,227 @@ +// Copyright 2012 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package bn256 + +// For details of the algorithms used, see "Multiplication and Squaring on +// Pairing-Friendly Fields, Devegili et al. +// http://eprint.iacr.org/2006/471.pdf. + +import ( + "math/big" +) + +// gfP2 implements a field of size p² as a quadratic extension of the base +// field where i²=-1. +type gfP2 struct { + x, y *big.Int // value is xi+y. +} + +func newGFp2(pool *bnPool) *gfP2 { + return &gfP2{pool.Get(), pool.Get()} +} + +func (e *gfP2) String() string { + x := new(big.Int).Mod(e.x, P) + y := new(big.Int).Mod(e.y, P) + return "(" + x.String() + "," + y.String() + ")" +} + +func (e *gfP2) Put(pool *bnPool) { + pool.Put(e.x) + pool.Put(e.y) +} + +func (e *gfP2) Set(a *gfP2) *gfP2 { + e.x.Set(a.x) + e.y.Set(a.y) + return e +} + +func (e *gfP2) SetZero() *gfP2 { + e.x.SetInt64(0) + e.y.SetInt64(0) + return e +} + +func (e *gfP2) SetOne() *gfP2 { + e.x.SetInt64(0) + e.y.SetInt64(1) + return e +} + +func (e *gfP2) Minimal() { + if e.x.Sign() < 0 || e.x.Cmp(P) >= 0 { + e.x.Mod(e.x, P) + } + if e.y.Sign() < 0 || e.y.Cmp(P) >= 0 { + e.y.Mod(e.y, P) + } +} + +func (e *gfP2) IsZero() bool { + return e.x.Sign() == 0 && e.y.Sign() == 0 +} + +func (e *gfP2) IsOne() bool { + if e.x.Sign() != 0 { + return false + } + words := e.y.Bits() + return len(words) == 1 && words[0] == 1 +} + +func (e *gfP2) Conjugate(a *gfP2) *gfP2 { + e.y.Set(a.y) + e.x.Neg(a.x) + return e +} + +func (e *gfP2) Negative(a *gfP2) *gfP2 { + e.x.Neg(a.x) + e.y.Neg(a.y) + return e +} + +func (e *gfP2) Add(a, b *gfP2) *gfP2 { + e.x.Add(a.x, b.x) + e.y.Add(a.y, b.y) + return e +} + +func (e *gfP2) Sub(a, b *gfP2) *gfP2 { + e.x.Sub(a.x, b.x) + e.y.Sub(a.y, b.y) + return e +} + +func (e *gfP2) Double(a *gfP2) *gfP2 { + e.x.Lsh(a.x, 1) + e.y.Lsh(a.y, 1) + return e +} + +func (c *gfP2) Exp(a *gfP2, power *big.Int, pool *bnPool) *gfP2 { + sum := newGFp2(pool) + sum.SetOne() + t := newGFp2(pool) + + for i := power.BitLen() - 1; i >= 0; i-- { + t.Square(sum, pool) + if power.Bit(i) != 0 { + sum.Mul(t, a, pool) + } else { + sum.Set(t) + } + } + + c.Set(sum) + + sum.Put(pool) + t.Put(pool) + + return c +} + +// See "Multiplication and Squaring in Pairing-Friendly Fields", +// http://eprint.iacr.org/2006/471.pdf +func (e *gfP2) Mul(a, b *gfP2, pool *bnPool) *gfP2 { + tx := pool.Get().Mul(a.x, b.y) + t := pool.Get().Mul(b.x, a.y) + tx.Add(tx, t) + tx.Mod(tx, P) + + ty := pool.Get().Mul(a.y, b.y) + t.Mul(a.x, b.x) + ty.Sub(ty, t) + e.y.Mod(ty, P) + e.x.Set(tx) + + pool.Put(tx) + pool.Put(ty) + pool.Put(t) + + return e +} + +func (e *gfP2) MulScalar(a *gfP2, b *big.Int) *gfP2 { + e.x.Mul(a.x, b) + e.y.Mul(a.y, b) + return e +} + +// MulXi sets e=ξa where ξ=i+9 and then returns e. +func (e *gfP2) MulXi(a *gfP2, pool *bnPool) *gfP2 { + // (xi+y)(i+3) = (9x+y)i+(9y-x) + tx := pool.Get().Lsh(a.x, 3) + tx.Add(tx, a.x) + tx.Add(tx, a.y) + + ty := pool.Get().Lsh(a.y, 3) + ty.Add(ty, a.y) + ty.Sub(ty, a.x) + + e.x.Set(tx) + e.y.Set(ty) + + pool.Put(tx) + pool.Put(ty) + + return e +} + +func (e *gfP2) Square(a *gfP2, pool *bnPool) *gfP2 { + // Complex squaring algorithm: + // (xi+b)² = (x+y)(y-x) + 2*i*x*y + t1 := pool.Get().Sub(a.y, a.x) + t2 := pool.Get().Add(a.x, a.y) + ty := pool.Get().Mul(t1, t2) + ty.Mod(ty, P) + + t1.Mul(a.x, a.y) + t1.Lsh(t1, 1) + + e.x.Mod(t1, P) + e.y.Set(ty) + + pool.Put(t1) + pool.Put(t2) + pool.Put(ty) + + return e +} + +func (e *gfP2) Invert(a *gfP2, pool *bnPool) *gfP2 { + // See "Implementing cryptographic pairings", M. Scott, section 3.2. + // ftp://136.206.11.249/pub/crypto/pairings.pdf + t := pool.Get() + t.Mul(a.y, a.y) + t2 := pool.Get() + t2.Mul(a.x, a.x) + t.Add(t, t2) + + inv := pool.Get() + inv.ModInverse(t, P) + + e.x.Neg(a.x) + e.x.Mul(e.x, inv) + e.x.Mod(e.x, P) + + e.y.Mul(a.y, inv) + e.y.Mod(e.y, P) + + pool.Put(t) + pool.Put(t2) + pool.Put(inv) + + return e +} + +func (e *gfP2) Real() *big.Int { + return e.x +} + +func (e *gfP2) Imag() *big.Int { + return e.y +} |