aboutsummaryrefslogtreecommitdiffstats
path: root/crypto/bn256/cloudflare/twist.go
diff options
context:
space:
mode:
Diffstat (limited to 'crypto/bn256/cloudflare/twist.go')
-rw-r--r--crypto/bn256/cloudflare/twist.go204
1 files changed, 204 insertions, 0 deletions
diff --git a/crypto/bn256/cloudflare/twist.go b/crypto/bn256/cloudflare/twist.go
new file mode 100644
index 000000000..0c2f80d4e
--- /dev/null
+++ b/crypto/bn256/cloudflare/twist.go
@@ -0,0 +1,204 @@
+package bn256
+
+import (
+ "math/big"
+)
+
+// twistPoint implements the elliptic curve y²=x³+3/ξ over GF(p²). Points are
+// kept in Jacobian form and t=z² when valid. The group G₂ is the set of
+// n-torsion points of this curve over GF(p²) (where n = Order)
+type twistPoint struct {
+ x, y, z, t gfP2
+}
+
+var twistB = &gfP2{
+ gfP{0x38e7ecccd1dcff67, 0x65f0b37d93ce0d3e, 0xd749d0dd22ac00aa, 0x0141b9ce4a688d4d},
+ gfP{0x3bf938e377b802a8, 0x020b1b273633535d, 0x26b7edf049755260, 0x2514c6324384a86d},
+}
+
+// twistGen is the generator of group G₂.
+var twistGen = &twistPoint{
+ gfP2{
+ gfP{0xafb4737da84c6140, 0x6043dd5a5802d8c4, 0x09e950fc52a02f86, 0x14fef0833aea7b6b},
+ gfP{0x8e83b5d102bc2026, 0xdceb1935497b0172, 0xfbb8264797811adf, 0x19573841af96503b},
+ },
+ gfP2{
+ gfP{0x64095b56c71856ee, 0xdc57f922327d3cbb, 0x55f935be33351076, 0x0da4a0e693fd6482},
+ gfP{0x619dfa9d886be9f6, 0xfe7fd297f59e9b78, 0xff9e1a62231b7dfe, 0x28fd7eebae9e4206},
+ },
+ gfP2{*newGFp(0), *newGFp(1)},
+ gfP2{*newGFp(0), *newGFp(1)},
+}
+
+func (c *twistPoint) String() string {
+ c.MakeAffine()
+ x, y := gfP2Decode(&c.x), gfP2Decode(&c.y)
+ return "(" + x.String() + ", " + y.String() + ")"
+}
+
+func (c *twistPoint) Set(a *twistPoint) {
+ c.x.Set(&a.x)
+ c.y.Set(&a.y)
+ c.z.Set(&a.z)
+ c.t.Set(&a.t)
+}
+
+// IsOnCurve returns true iff c is on the curve.
+func (c *twistPoint) IsOnCurve() bool {
+ c.MakeAffine()
+ if c.IsInfinity() {
+ return true
+ }
+
+ y2, x3 := &gfP2{}, &gfP2{}
+ y2.Square(&c.y)
+ x3.Square(&c.x).Mul(x3, &c.x).Add(x3, twistB)
+
+ if *y2 != *x3 {
+ return false
+ }
+ cneg := &twistPoint{}
+ cneg.Mul(c, Order)
+ return cneg.z.IsZero()
+}
+
+func (c *twistPoint) SetInfinity() {
+ c.x.SetZero()
+ c.y.SetOne()
+ c.z.SetZero()
+ c.t.SetZero()
+}
+
+func (c *twistPoint) IsInfinity() bool {
+ return c.z.IsZero()
+}
+
+func (c *twistPoint) Add(a, b *twistPoint) {
+ // For additional comments, see the same function in curve.go.
+
+ if a.IsInfinity() {
+ c.Set(b)
+ return
+ }
+ if b.IsInfinity() {
+ c.Set(a)
+ return
+ }
+
+ // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3
+ z12 := (&gfP2{}).Square(&a.z)
+ z22 := (&gfP2{}).Square(&b.z)
+ u1 := (&gfP2{}).Mul(&a.x, z22)
+ u2 := (&gfP2{}).Mul(&b.x, z12)
+
+ t := (&gfP2{}).Mul(&b.z, z22)
+ s1 := (&gfP2{}).Mul(&a.y, t)
+
+ t.Mul(&a.z, z12)
+ s2 := (&gfP2{}).Mul(&b.y, t)
+
+ h := (&gfP2{}).Sub(u2, u1)
+ xEqual := h.IsZero()
+
+ t.Add(h, h)
+ i := (&gfP2{}).Square(t)
+ j := (&gfP2{}).Mul(h, i)
+
+ t.Sub(s2, s1)
+ yEqual := t.IsZero()
+ if xEqual && yEqual {
+ c.Double(a)
+ return
+ }
+ r := (&gfP2{}).Add(t, t)
+
+ v := (&gfP2{}).Mul(u1, i)
+
+ t4 := (&gfP2{}).Square(r)
+ t.Add(v, v)
+ t6 := (&gfP2{}).Sub(t4, j)
+ c.x.Sub(t6, t)
+
+ t.Sub(v, &c.x) // t7
+ t4.Mul(s1, j) // t8
+ t6.Add(t4, t4) // t9
+ t4.Mul(r, t) // t10
+ c.y.Sub(t4, t6)
+
+ t.Add(&a.z, &b.z) // t11
+ t4.Square(t) // t12
+ t.Sub(t4, z12) // t13
+ t4.Sub(t, z22) // t14
+ c.z.Mul(t4, h)
+}
+
+func (c *twistPoint) Double(a *twistPoint) {
+ // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
+ A := (&gfP2{}).Square(&a.x)
+ B := (&gfP2{}).Square(&a.y)
+ C := (&gfP2{}).Square(B)
+
+ t := (&gfP2{}).Add(&a.x, B)
+ t2 := (&gfP2{}).Square(t)
+ t.Sub(t2, A)
+ t2.Sub(t, C)
+ d := (&gfP2{}).Add(t2, t2)
+ t.Add(A, A)
+ e := (&gfP2{}).Add(t, A)
+ f := (&gfP2{}).Square(e)
+
+ t.Add(d, d)
+ c.x.Sub(f, t)
+
+ t.Add(C, C)
+ t2.Add(t, t)
+ t.Add(t2, t2)
+ c.y.Sub(d, &c.x)
+ t2.Mul(e, &c.y)
+ c.y.Sub(t2, t)
+
+ t.Mul(&a.y, &a.z)
+ c.z.Add(t, t)
+}
+
+func (c *twistPoint) Mul(a *twistPoint, scalar *big.Int) {
+ sum, t := &twistPoint{}, &twistPoint{}
+
+ for i := scalar.BitLen(); i >= 0; i-- {
+ t.Double(sum)
+ if scalar.Bit(i) != 0 {
+ sum.Add(t, a)
+ } else {
+ sum.Set(t)
+ }
+ }
+
+ c.Set(sum)
+}
+
+func (c *twistPoint) MakeAffine() {
+ if c.z.IsOne() {
+ return
+ } else if c.z.IsZero() {
+ c.x.SetZero()
+ c.y.SetOne()
+ c.t.SetZero()
+ return
+ }
+
+ zInv := (&gfP2{}).Invert(&c.z)
+ t := (&gfP2{}).Mul(&c.y, zInv)
+ zInv2 := (&gfP2{}).Square(zInv)
+ c.y.Mul(t, zInv2)
+ t.Mul(&c.x, zInv2)
+ c.x.Set(t)
+ c.z.SetOne()
+ c.t.SetOne()
+}
+
+func (c *twistPoint) Neg(a *twistPoint) {
+ c.x.Set(&a.x)
+ c.y.Neg(&a.y)
+ c.z.Set(&a.z)
+ c.t.SetZero()
+}