diff options
Diffstat (limited to 'crypto/bn256/cloudflare/gfp6.go')
-rw-r--r-- | crypto/bn256/cloudflare/gfp6.go | 213 |
1 files changed, 213 insertions, 0 deletions
diff --git a/crypto/bn256/cloudflare/gfp6.go b/crypto/bn256/cloudflare/gfp6.go new file mode 100644 index 000000000..83d61b781 --- /dev/null +++ b/crypto/bn256/cloudflare/gfp6.go @@ -0,0 +1,213 @@ +package bn256 + +// For details of the algorithms used, see "Multiplication and Squaring on +// Pairing-Friendly Fields, Devegili et al. +// http://eprint.iacr.org/2006/471.pdf. + +// gfP6 implements the field of size p⁶ as a cubic extension of gfP2 where τ³=ξ +// and ξ=i+3. +type gfP6 struct { + x, y, z gfP2 // value is xτ² + yτ + z +} + +func (e *gfP6) String() string { + return "(" + e.x.String() + ", " + e.y.String() + ", " + e.z.String() + ")" +} + +func (e *gfP6) Set(a *gfP6) *gfP6 { + e.x.Set(&a.x) + e.y.Set(&a.y) + e.z.Set(&a.z) + return e +} + +func (e *gfP6) SetZero() *gfP6 { + e.x.SetZero() + e.y.SetZero() + e.z.SetZero() + return e +} + +func (e *gfP6) SetOne() *gfP6 { + e.x.SetZero() + e.y.SetZero() + e.z.SetOne() + return e +} + +func (e *gfP6) IsZero() bool { + return e.x.IsZero() && e.y.IsZero() && e.z.IsZero() +} + +func (e *gfP6) IsOne() bool { + return e.x.IsZero() && e.y.IsZero() && e.z.IsOne() +} + +func (e *gfP6) Neg(a *gfP6) *gfP6 { + e.x.Neg(&a.x) + e.y.Neg(&a.y) + e.z.Neg(&a.z) + return e +} + +func (e *gfP6) Frobenius(a *gfP6) *gfP6 { + e.x.Conjugate(&a.x) + e.y.Conjugate(&a.y) + e.z.Conjugate(&a.z) + + e.x.Mul(&e.x, xiTo2PMinus2Over3) + e.y.Mul(&e.y, xiToPMinus1Over3) + return e +} + +// FrobeniusP2 computes (xτ²+yτ+z)^(p²) = xτ^(2p²) + yτ^(p²) + z +func (e *gfP6) FrobeniusP2(a *gfP6) *gfP6 { + // τ^(2p²) = τ²τ^(2p²-2) = τ²ξ^((2p²-2)/3) + e.x.MulScalar(&a.x, xiTo2PSquaredMinus2Over3) + // τ^(p²) = ττ^(p²-1) = τξ^((p²-1)/3) + e.y.MulScalar(&a.y, xiToPSquaredMinus1Over3) + e.z.Set(&a.z) + return e +} + +func (e *gfP6) FrobeniusP4(a *gfP6) *gfP6 { + e.x.MulScalar(&a.x, xiToPSquaredMinus1Over3) + e.y.MulScalar(&a.y, xiTo2PSquaredMinus2Over3) + e.z.Set(&a.z) + return e +} + +func (e *gfP6) Add(a, b *gfP6) *gfP6 { + e.x.Add(&a.x, &b.x) + e.y.Add(&a.y, &b.y) + e.z.Add(&a.z, &b.z) + return e +} + +func (e *gfP6) Sub(a, b *gfP6) *gfP6 { + e.x.Sub(&a.x, &b.x) + e.y.Sub(&a.y, &b.y) + e.z.Sub(&a.z, &b.z) + return e +} + +func (e *gfP6) Mul(a, b *gfP6) *gfP6 { + // "Multiplication and Squaring on Pairing-Friendly Fields" + // Section 4, Karatsuba method. + // http://eprint.iacr.org/2006/471.pdf + v0 := (&gfP2{}).Mul(&a.z, &b.z) + v1 := (&gfP2{}).Mul(&a.y, &b.y) + v2 := (&gfP2{}).Mul(&a.x, &b.x) + + t0 := (&gfP2{}).Add(&a.x, &a.y) + t1 := (&gfP2{}).Add(&b.x, &b.y) + tz := (&gfP2{}).Mul(t0, t1) + tz.Sub(tz, v1).Sub(tz, v2).MulXi(tz).Add(tz, v0) + + t0.Add(&a.y, &a.z) + t1.Add(&b.y, &b.z) + ty := (&gfP2{}).Mul(t0, t1) + t0.MulXi(v2) + ty.Sub(ty, v0).Sub(ty, v1).Add(ty, t0) + + t0.Add(&a.x, &a.z) + t1.Add(&b.x, &b.z) + tx := (&gfP2{}).Mul(t0, t1) + tx.Sub(tx, v0).Add(tx, v1).Sub(tx, v2) + + e.x.Set(tx) + e.y.Set(ty) + e.z.Set(tz) + return e +} + +func (e *gfP6) MulScalar(a *gfP6, b *gfP2) *gfP6 { + e.x.Mul(&a.x, b) + e.y.Mul(&a.y, b) + e.z.Mul(&a.z, b) + return e +} + +func (e *gfP6) MulGFP(a *gfP6, b *gfP) *gfP6 { + e.x.MulScalar(&a.x, b) + e.y.MulScalar(&a.y, b) + e.z.MulScalar(&a.z, b) + return e +} + +// MulTau computes τ·(aτ²+bτ+c) = bτ²+cτ+aξ +func (e *gfP6) MulTau(a *gfP6) *gfP6 { + tz := (&gfP2{}).MulXi(&a.x) + ty := (&gfP2{}).Set(&a.y) + + e.y.Set(&a.z) + e.x.Set(ty) + e.z.Set(tz) + return e +} + +func (e *gfP6) Square(a *gfP6) *gfP6 { + v0 := (&gfP2{}).Square(&a.z) + v1 := (&gfP2{}).Square(&a.y) + v2 := (&gfP2{}).Square(&a.x) + + c0 := (&gfP2{}).Add(&a.x, &a.y) + c0.Square(c0).Sub(c0, v1).Sub(c0, v2).MulXi(c0).Add(c0, v0) + + c1 := (&gfP2{}).Add(&a.y, &a.z) + c1.Square(c1).Sub(c1, v0).Sub(c1, v1) + xiV2 := (&gfP2{}).MulXi(v2) + c1.Add(c1, xiV2) + + c2 := (&gfP2{}).Add(&a.x, &a.z) + c2.Square(c2).Sub(c2, v0).Add(c2, v1).Sub(c2, v2) + + e.x.Set(c2) + e.y.Set(c1) + e.z.Set(c0) + return e +} + +func (e *gfP6) Invert(a *gfP6) *gfP6 { + // See "Implementing cryptographic pairings", M. Scott, section 3.2. + // ftp://136.206.11.249/pub/crypto/pairings.pdf + + // Here we can give a short explanation of how it works: let j be a cubic root of + // unity in GF(p²) so that 1+j+j²=0. + // Then (xτ² + yτ + z)(xj²τ² + yjτ + z)(xjτ² + yj²τ + z) + // = (xτ² + yτ + z)(Cτ²+Bτ+A) + // = (x³ξ²+y³ξ+z³-3ξxyz) = F is an element of the base field (the norm). + // + // On the other hand (xj²τ² + yjτ + z)(xjτ² + yj²τ + z) + // = τ²(y²-ξxz) + τ(ξx²-yz) + (z²-ξxy) + // + // So that's why A = (z²-ξxy), B = (ξx²-yz), C = (y²-ξxz) + t1 := (&gfP2{}).Mul(&a.x, &a.y) + t1.MulXi(t1) + + A := (&gfP2{}).Square(&a.z) + A.Sub(A, t1) + + B := (&gfP2{}).Square(&a.x) + B.MulXi(B) + t1.Mul(&a.y, &a.z) + B.Sub(B, t1) + + C := (&gfP2{}).Square(&a.y) + t1.Mul(&a.x, &a.z) + C.Sub(C, t1) + + F := (&gfP2{}).Mul(C, &a.y) + F.MulXi(F) + t1.Mul(A, &a.z) + F.Add(F, t1) + t1.Mul(B, &a.x).MulXi(t1) + F.Add(F, t1) + + F.Invert(F) + + e.x.Mul(C, F) + e.y.Mul(B, F) + e.z.Mul(A, F) + return e +} |