aboutsummaryrefslogtreecommitdiffstats
path: root/crypto/bn256/cloudflare/gfp2.go
diff options
context:
space:
mode:
Diffstat (limited to 'crypto/bn256/cloudflare/gfp2.go')
-rw-r--r--crypto/bn256/cloudflare/gfp2.go156
1 files changed, 156 insertions, 0 deletions
diff --git a/crypto/bn256/cloudflare/gfp2.go b/crypto/bn256/cloudflare/gfp2.go
new file mode 100644
index 000000000..90a89e8b4
--- /dev/null
+++ b/crypto/bn256/cloudflare/gfp2.go
@@ -0,0 +1,156 @@
+package bn256
+
+// For details of the algorithms used, see "Multiplication and Squaring on
+// Pairing-Friendly Fields, Devegili et al.
+// http://eprint.iacr.org/2006/471.pdf.
+
+// gfP2 implements a field of size p² as a quadratic extension of the base field
+// where i²=-1.
+type gfP2 struct {
+ x, y gfP // value is xi+y.
+}
+
+func gfP2Decode(in *gfP2) *gfP2 {
+ out := &gfP2{}
+ montDecode(&out.x, &in.x)
+ montDecode(&out.y, &in.y)
+ return out
+}
+
+func (e *gfP2) String() string {
+ return "(" + e.x.String() + ", " + e.y.String() + ")"
+}
+
+func (e *gfP2) Set(a *gfP2) *gfP2 {
+ e.x.Set(&a.x)
+ e.y.Set(&a.y)
+ return e
+}
+
+func (e *gfP2) SetZero() *gfP2 {
+ e.x = gfP{0}
+ e.y = gfP{0}
+ return e
+}
+
+func (e *gfP2) SetOne() *gfP2 {
+ e.x = gfP{0}
+ e.y = *newGFp(1)
+ return e
+}
+
+func (e *gfP2) IsZero() bool {
+ zero := gfP{0}
+ return e.x == zero && e.y == zero
+}
+
+func (e *gfP2) IsOne() bool {
+ zero, one := gfP{0}, *newGFp(1)
+ return e.x == zero && e.y == one
+}
+
+func (e *gfP2) Conjugate(a *gfP2) *gfP2 {
+ e.y.Set(&a.y)
+ gfpNeg(&e.x, &a.x)
+ return e
+}
+
+func (e *gfP2) Neg(a *gfP2) *gfP2 {
+ gfpNeg(&e.x, &a.x)
+ gfpNeg(&e.y, &a.y)
+ return e
+}
+
+func (e *gfP2) Add(a, b *gfP2) *gfP2 {
+ gfpAdd(&e.x, &a.x, &b.x)
+ gfpAdd(&e.y, &a.y, &b.y)
+ return e
+}
+
+func (e *gfP2) Sub(a, b *gfP2) *gfP2 {
+ gfpSub(&e.x, &a.x, &b.x)
+ gfpSub(&e.y, &a.y, &b.y)
+ return e
+}
+
+// See "Multiplication and Squaring in Pairing-Friendly Fields",
+// http://eprint.iacr.org/2006/471.pdf
+func (e *gfP2) Mul(a, b *gfP2) *gfP2 {
+ tx, t := &gfP{}, &gfP{}
+ gfpMul(tx, &a.x, &b.y)
+ gfpMul(t, &b.x, &a.y)
+ gfpAdd(tx, tx, t)
+
+ ty := &gfP{}
+ gfpMul(ty, &a.y, &b.y)
+ gfpMul(t, &a.x, &b.x)
+ gfpSub(ty, ty, t)
+
+ e.x.Set(tx)
+ e.y.Set(ty)
+ return e
+}
+
+func (e *gfP2) MulScalar(a *gfP2, b *gfP) *gfP2 {
+ gfpMul(&e.x, &a.x, b)
+ gfpMul(&e.y, &a.y, b)
+ return e
+}
+
+// MulXi sets e=ξa where ξ=i+9 and then returns e.
+func (e *gfP2) MulXi(a *gfP2) *gfP2 {
+ // (xi+y)(i+9) = (9x+y)i+(9y-x)
+ tx := &gfP{}
+ gfpAdd(tx, &a.x, &a.x)
+ gfpAdd(tx, tx, tx)
+ gfpAdd(tx, tx, tx)
+ gfpAdd(tx, tx, &a.x)
+
+ gfpAdd(tx, tx, &a.y)
+
+ ty := &gfP{}
+ gfpAdd(ty, &a.y, &a.y)
+ gfpAdd(ty, ty, ty)
+ gfpAdd(ty, ty, ty)
+ gfpAdd(ty, ty, &a.y)
+
+ gfpSub(ty, ty, &a.x)
+
+ e.x.Set(tx)
+ e.y.Set(ty)
+ return e
+}
+
+func (e *gfP2) Square(a *gfP2) *gfP2 {
+ // Complex squaring algorithm:
+ // (xi+y)² = (x+y)(y-x) + 2*i*x*y
+ tx, ty := &gfP{}, &gfP{}
+ gfpSub(tx, &a.y, &a.x)
+ gfpAdd(ty, &a.x, &a.y)
+ gfpMul(ty, tx, ty)
+
+ gfpMul(tx, &a.x, &a.y)
+ gfpAdd(tx, tx, tx)
+
+ e.x.Set(tx)
+ e.y.Set(ty)
+ return e
+}
+
+func (e *gfP2) Invert(a *gfP2) *gfP2 {
+ // See "Implementing cryptographic pairings", M. Scott, section 3.2.
+ // ftp://136.206.11.249/pub/crypto/pairings.pdf
+ t1, t2 := &gfP{}, &gfP{}
+ gfpMul(t1, &a.x, &a.x)
+ gfpMul(t2, &a.y, &a.y)
+ gfpAdd(t1, t1, t2)
+
+ inv := &gfP{}
+ inv.Invert(t1)
+
+ gfpNeg(t1, &a.x)
+
+ gfpMul(&e.x, t1, inv)
+ gfpMul(&e.y, &a.y, inv)
+ return e
+}