diff options
Diffstat (limited to 'crypto/bn256/cloudflare/curve.go')
-rw-r--r-- | crypto/bn256/cloudflare/curve.go | 229 |
1 files changed, 229 insertions, 0 deletions
diff --git a/crypto/bn256/cloudflare/curve.go b/crypto/bn256/cloudflare/curve.go new file mode 100644 index 000000000..b6aecc0a6 --- /dev/null +++ b/crypto/bn256/cloudflare/curve.go @@ -0,0 +1,229 @@ +package bn256 + +import ( + "math/big" +) + +// curvePoint implements the elliptic curve y²=x³+3. Points are kept in Jacobian +// form and t=z² when valid. G₁ is the set of points of this curve on GF(p). +type curvePoint struct { + x, y, z, t gfP +} + +var curveB = newGFp(3) + +// curveGen is the generator of G₁. +var curveGen = &curvePoint{ + x: *newGFp(1), + y: *newGFp(2), + z: *newGFp(1), + t: *newGFp(1), +} + +func (c *curvePoint) String() string { + c.MakeAffine() + x, y := &gfP{}, &gfP{} + montDecode(x, &c.x) + montDecode(y, &c.y) + return "(" + x.String() + ", " + y.String() + ")" +} + +func (c *curvePoint) Set(a *curvePoint) { + c.x.Set(&a.x) + c.y.Set(&a.y) + c.z.Set(&a.z) + c.t.Set(&a.t) +} + +// IsOnCurve returns true iff c is on the curve. +func (c *curvePoint) IsOnCurve() bool { + c.MakeAffine() + if c.IsInfinity() { + return true + } + + y2, x3 := &gfP{}, &gfP{} + gfpMul(y2, &c.y, &c.y) + gfpMul(x3, &c.x, &c.x) + gfpMul(x3, x3, &c.x) + gfpAdd(x3, x3, curveB) + + return *y2 == *x3 +} + +func (c *curvePoint) SetInfinity() { + c.x = gfP{0} + c.y = *newGFp(1) + c.z = gfP{0} + c.t = gfP{0} +} + +func (c *curvePoint) IsInfinity() bool { + return c.z == gfP{0} +} + +func (c *curvePoint) Add(a, b *curvePoint) { + if a.IsInfinity() { + c.Set(b) + return + } + if b.IsInfinity() { + c.Set(a) + return + } + + // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3 + + // Normalize the points by replacing a = [x1:y1:z1] and b = [x2:y2:z2] + // by [u1:s1:z1·z2] and [u2:s2:z1·z2] + // where u1 = x1·z2², s1 = y1·z2³ and u1 = x2·z1², s2 = y2·z1³ + z12, z22 := &gfP{}, &gfP{} + gfpMul(z12, &a.z, &a.z) + gfpMul(z22, &b.z, &b.z) + + u1, u2 := &gfP{}, &gfP{} + gfpMul(u1, &a.x, z22) + gfpMul(u2, &b.x, z12) + + t, s1 := &gfP{}, &gfP{} + gfpMul(t, &b.z, z22) + gfpMul(s1, &a.y, t) + + s2 := &gfP{} + gfpMul(t, &a.z, z12) + gfpMul(s2, &b.y, t) + + // Compute x = (2h)²(s²-u1-u2) + // where s = (s2-s1)/(u2-u1) is the slope of the line through + // (u1,s1) and (u2,s2). The extra factor 2h = 2(u2-u1) comes from the value of z below. + // This is also: + // 4(s2-s1)² - 4h²(u1+u2) = 4(s2-s1)² - 4h³ - 4h²(2u1) + // = r² - j - 2v + // with the notations below. + h := &gfP{} + gfpSub(h, u2, u1) + xEqual := *h == gfP{0} + + gfpAdd(t, h, h) + // i = 4h² + i := &gfP{} + gfpMul(i, t, t) + // j = 4h³ + j := &gfP{} + gfpMul(j, h, i) + + gfpSub(t, s2, s1) + yEqual := *t == gfP{0} + if xEqual && yEqual { + c.Double(a) + return + } + r := &gfP{} + gfpAdd(r, t, t) + + v := &gfP{} + gfpMul(v, u1, i) + + // t4 = 4(s2-s1)² + t4, t6 := &gfP{}, &gfP{} + gfpMul(t4, r, r) + gfpAdd(t, v, v) + gfpSub(t6, t4, j) + + gfpSub(&c.x, t6, t) + + // Set y = -(2h)³(s1 + s*(x/4h²-u1)) + // This is also + // y = - 2·s1·j - (s2-s1)(2x - 2i·u1) = r(v-x) - 2·s1·j + gfpSub(t, v, &c.x) // t7 + gfpMul(t4, s1, j) // t8 + gfpAdd(t6, t4, t4) // t9 + gfpMul(t4, r, t) // t10 + gfpSub(&c.y, t4, t6) + + // Set z = 2(u2-u1)·z1·z2 = 2h·z1·z2 + gfpAdd(t, &a.z, &b.z) // t11 + gfpMul(t4, t, t) // t12 + gfpSub(t, t4, z12) // t13 + gfpSub(t4, t, z22) // t14 + gfpMul(&c.z, t4, h) +} + +func (c *curvePoint) Double(a *curvePoint) { + // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3 + A, B, C := &gfP{}, &gfP{}, &gfP{} + gfpMul(A, &a.x, &a.x) + gfpMul(B, &a.y, &a.y) + gfpMul(C, B, B) + + t, t2 := &gfP{}, &gfP{} + gfpAdd(t, &a.x, B) + gfpMul(t2, t, t) + gfpSub(t, t2, A) + gfpSub(t2, t, C) + + d, e, f := &gfP{}, &gfP{}, &gfP{} + gfpAdd(d, t2, t2) + gfpAdd(t, A, A) + gfpAdd(e, t, A) + gfpMul(f, e, e) + + gfpAdd(t, d, d) + gfpSub(&c.x, f, t) + + gfpAdd(t, C, C) + gfpAdd(t2, t, t) + gfpAdd(t, t2, t2) + gfpSub(&c.y, d, &c.x) + gfpMul(t2, e, &c.y) + gfpSub(&c.y, t2, t) + + gfpMul(t, &a.y, &a.z) + gfpAdd(&c.z, t, t) +} + +func (c *curvePoint) Mul(a *curvePoint, scalar *big.Int) { + sum, t := &curvePoint{}, &curvePoint{} + sum.SetInfinity() + + for i := scalar.BitLen(); i >= 0; i-- { + t.Double(sum) + if scalar.Bit(i) != 0 { + sum.Add(t, a) + } else { + sum.Set(t) + } + } + c.Set(sum) +} + +func (c *curvePoint) MakeAffine() { + if c.z == *newGFp(1) { + return + } else if c.z == *newGFp(0) { + c.x = gfP{0} + c.y = *newGFp(1) + c.t = gfP{0} + return + } + + zInv := &gfP{} + zInv.Invert(&c.z) + + t, zInv2 := &gfP{}, &gfP{} + gfpMul(t, &c.y, zInv) + gfpMul(zInv2, zInv, zInv) + + gfpMul(&c.x, &c.x, zInv2) + gfpMul(&c.y, t, zInv2) + + c.z = *newGFp(1) + c.t = *newGFp(1) +} + +func (c *curvePoint) Neg(a *curvePoint) { + c.x.Set(&a.x) + gfpNeg(&c.y, &a.y) + c.z.Set(&a.z) + c.t = gfP{0} +} |