aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--accounts/keystore/key.go5
-rw-r--r--core/vm/contracts.go26
-rw-r--r--crypto/crypto.go95
-rw-r--r--crypto/crypto_test.go36
-rw-r--r--crypto/ecies/asn1.go6
-rw-r--r--crypto/ecies/ecies_test.go41
-rw-r--r--crypto/ecies/params.go6
-rw-r--r--crypto/encrypt_decrypt_test.go56
-rw-r--r--crypto/secp256k1/secp256.go10
-rw-r--r--crypto/signature_cgo.go64
-rw-r--r--crypto/signature_nocgo.go77
-rw-r--r--crypto/signature_test.go (renamed from p2p/discv5/crypto.go)25
-rw-r--r--p2p/discover/node.go2
-rw-r--r--p2p/discv5/node.go2
-rw-r--r--p2p/rlpx.go4
-rw-r--r--vendor/github.com/btcsuite/btcd/LICENSE16
-rw-r--r--vendor/github.com/btcsuite/btcd/btcec/README.md74
-rw-r--r--vendor/github.com/btcsuite/btcd/btcec/btcec.go956
-rw-r--r--vendor/github.com/btcsuite/btcd/btcec/ciphering.go216
-rw-r--r--vendor/github.com/btcsuite/btcd/btcec/doc.go21
-rw-r--r--vendor/github.com/btcsuite/btcd/btcec/field.go1262
-rw-r--r--vendor/github.com/btcsuite/btcd/btcec/genprecomps.go63
-rw-r--r--vendor/github.com/btcsuite/btcd/btcec/gensecp256k1.go203
-rw-r--r--vendor/github.com/btcsuite/btcd/btcec/precompute.go67
-rw-r--r--vendor/github.com/btcsuite/btcd/btcec/privkey.go73
-rw-r--r--vendor/github.com/btcsuite/btcd/btcec/pubkey.go172
-rw-r--r--vendor/github.com/btcsuite/btcd/btcec/secp256k1.go10
-rw-r--r--vendor/github.com/btcsuite/btcd/btcec/signature.go539
-rw-r--r--vendor/vendor.json6
-rw-r--r--whisper/whisperv2/message.go6
-rw-r--r--whisper/whisperv2/message_test.go9
-rw-r--r--whisper/whisperv5/message.go5
32 files changed, 3929 insertions, 224 deletions
diff --git a/accounts/keystore/key.go b/accounts/keystore/key.go
index e2bdf09fe..292b47b44 100644
--- a/accounts/keystore/key.go
+++ b/accounts/keystore/key.go
@@ -32,7 +32,6 @@ import (
"github.com/ethereum/go-ethereum/accounts"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/crypto"
- "github.com/ethereum/go-ethereum/crypto/secp256k1"
"github.com/pborman/uuid"
)
@@ -157,7 +156,7 @@ func NewKeyForDirectICAP(rand io.Reader) *Key {
panic("key generation: could not read from random source: " + err.Error())
}
reader := bytes.NewReader(randBytes)
- privateKeyECDSA, err := ecdsa.GenerateKey(secp256k1.S256(), reader)
+ privateKeyECDSA, err := ecdsa.GenerateKey(crypto.S256(), reader)
if err != nil {
panic("key generation: ecdsa.GenerateKey failed: " + err.Error())
}
@@ -169,7 +168,7 @@ func NewKeyForDirectICAP(rand io.Reader) *Key {
}
func newKey(rand io.Reader) (*Key, error) {
- privateKeyECDSA, err := ecdsa.GenerateKey(secp256k1.S256(), rand)
+ privateKeyECDSA, err := ecdsa.GenerateKey(crypto.S256(), rand)
if err != nil {
return nil, err
}
diff --git a/core/vm/contracts.go b/core/vm/contracts.go
index 593b6ca55..1447c2cad 100644
--- a/core/vm/contracts.go
+++ b/core/vm/contracts.go
@@ -17,11 +17,14 @@
package vm
import (
+ "crypto/sha256"
+
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/logger"
"github.com/ethereum/go-ethereum/logger/glog"
"github.com/ethereum/go-ethereum/params"
+ "golang.org/x/crypto/ripemd160"
)
// Precompiled contract is the basic interface for native Go contracts. The implementation
@@ -35,8 +38,8 @@ type PrecompiledContract interface {
// Precompiled contains the default set of ethereum contracts
var PrecompiledContracts = map[common.Address]PrecompiledContract{
common.BytesToAddress([]byte{1}): &ecrecover{},
- common.BytesToAddress([]byte{2}): &sha256{},
- common.BytesToAddress([]byte{3}): &ripemd160{},
+ common.BytesToAddress([]byte{2}): &sha256hash{},
+ common.BytesToAddress([]byte{3}): &ripemd160hash{},
common.BytesToAddress([]byte{4}): &dataCopy{},
}
@@ -88,31 +91,34 @@ func (c *ecrecover) Run(in []byte) []byte {
}
// SHA256 implemented as a native contract
-type sha256 struct{}
+type sha256hash struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
//
// This method does not require any overflow checking as the input size gas costs
// required for anything significant is so high it's impossible to pay for.
-func (c *sha256) RequiredGas(inputSize int) uint64 {
+func (c *sha256hash) RequiredGas(inputSize int) uint64 {
return uint64(inputSize+31)/32*params.Sha256WordGas + params.Sha256Gas
}
-func (c *sha256) Run(in []byte) []byte {
- return crypto.Sha256(in)
+func (c *sha256hash) Run(in []byte) []byte {
+ h := sha256.Sum256(in)
+ return h[:]
}
// RIPMED160 implemented as a native contract
-type ripemd160 struct{}
+type ripemd160hash struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
//
// This method does not require any overflow checking as the input size gas costs
// required for anything significant is so high it's impossible to pay for.
-func (c *ripemd160) RequiredGas(inputSize int) uint64 {
+func (c *ripemd160hash) RequiredGas(inputSize int) uint64 {
return uint64(inputSize+31)/32*params.Ripemd160WordGas + params.Ripemd160Gas
}
-func (c *ripemd160) Run(in []byte) []byte {
- return common.LeftPadBytes(crypto.Ripemd160(in), 32)
+func (c *ripemd160hash) Run(in []byte) []byte {
+ ripemd := ripemd160.New()
+ ripemd.Write(in)
+ return common.LeftPadBytes(ripemd.Sum(nil), 32)
}
// data copy implemented as a native contract
diff --git a/crypto/crypto.go b/crypto/crypto.go
index ce45ebd38..9d67d82e1 100644
--- a/crypto/crypto.go
+++ b/crypto/crypto.go
@@ -20,22 +20,21 @@ import (
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
- "crypto/sha256"
- "fmt"
+ "encoding/hex"
+ "errors"
"io"
"io/ioutil"
"math/big"
"os"
- "encoding/hex"
- "errors"
-
"github.com/ethereum/go-ethereum/common"
- "github.com/ethereum/go-ethereum/crypto/ecies"
- "github.com/ethereum/go-ethereum/crypto/secp256k1"
"github.com/ethereum/go-ethereum/crypto/sha3"
"github.com/ethereum/go-ethereum/rlp"
- "golang.org/x/crypto/ripemd160"
+)
+
+var (
+ secp256k1_N, _ = new(big.Int).SetString("fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141", 16)
+ secp256k1_halfN = new(big.Int).Div(secp256k1_N, big.NewInt(2))
)
func Keccak256(data ...[]byte) []byte {
@@ -56,7 +55,6 @@ func Keccak256Hash(data ...[]byte) (h common.Hash) {
}
// Deprecated: For backward compatibility as other packages depend on these
-func Sha3(data ...[]byte) []byte { return Keccak256(data...) }
func Sha3Hash(data ...[]byte) common.Hash { return Keccak256Hash(data...) }
// Creates an ethereum address given the bytes and the nonce
@@ -65,39 +63,16 @@ func CreateAddress(b common.Address, nonce uint64) common.Address {
return common.BytesToAddress(Keccak256(data)[12:])
}
-func Sha256(data []byte) []byte {
- hash := sha256.Sum256(data)
-
- return hash[:]
-}
-
-func Ripemd160(data []byte) []byte {
- ripemd := ripemd160.New()
- ripemd.Write(data)
-
- return ripemd.Sum(nil)
-}
-
-// Ecrecover returns the public key for the private key that was used to
-// calculate the signature.
-//
-// Note: secp256k1 expects the recover id to be either 0, 1. Ethereum
-// signatures have a recover id with an offset of 27. Callers must take
-// this into account and if "recovering" from an Ethereum signature adjust.
-func Ecrecover(hash, sig []byte) ([]byte, error) {
- return secp256k1.RecoverPubkey(hash, sig)
-}
-
-// New methods using proper ecdsa keys from the stdlib
+// ToECDSA creates a private key with the given D value.
func ToECDSA(prv []byte) *ecdsa.PrivateKey {
if len(prv) == 0 {
return nil
}
priv := new(ecdsa.PrivateKey)
- priv.PublicKey.Curve = secp256k1.S256()
+ priv.PublicKey.Curve = S256()
priv.D = common.BigD(prv)
- priv.PublicKey.X, priv.PublicKey.Y = secp256k1.S256().ScalarBaseMult(prv)
+ priv.PublicKey.X, priv.PublicKey.Y = priv.PublicKey.Curve.ScalarBaseMult(prv)
return priv
}
@@ -112,15 +87,15 @@ func ToECDSAPub(pub []byte) *ecdsa.PublicKey {
if len(pub) == 0 {
return nil
}
- x, y := elliptic.Unmarshal(secp256k1.S256(), pub)
- return &ecdsa.PublicKey{Curve: secp256k1.S256(), X: x, Y: y}
+ x, y := elliptic.Unmarshal(S256(), pub)
+ return &ecdsa.PublicKey{Curve: S256(), X: x, Y: y}
}
func FromECDSAPub(pub *ecdsa.PublicKey) []byte {
if pub == nil || pub.X == nil || pub.Y == nil {
return nil
}
- return elliptic.Marshal(secp256k1.S256(), pub.X, pub.Y)
+ return elliptic.Marshal(S256(), pub.X, pub.Y)
}
// HexToECDSA parses a secp256k1 private key.
@@ -164,7 +139,7 @@ func SaveECDSA(file string, key *ecdsa.PrivateKey) error {
}
func GenerateKey() (*ecdsa.PrivateKey, error) {
- return ecdsa.GenerateKey(secp256k1.S256(), rand.Reader)
+ return ecdsa.GenerateKey(S256(), rand.Reader)
}
// ValidateSignatureValues verifies whether the signature values are valid with
@@ -175,49 +150,11 @@ func ValidateSignatureValues(v byte, r, s *big.Int, homestead bool) bool {
}
// reject upper range of s values (ECDSA malleability)
// see discussion in secp256k1/libsecp256k1/include/secp256k1.h
- if homestead && s.Cmp(secp256k1.HalfN) > 0 {
+ if homestead && s.Cmp(secp256k1_halfN) > 0 {
return false
}
// Frontier: allow s to be in full N range
- return r.Cmp(secp256k1.N) < 0 && s.Cmp(secp256k1.N) < 0 && (v == 0 || v == 1)
-}
-
-func SigToPub(hash, sig []byte) (*ecdsa.PublicKey, error) {
- s, err := Ecrecover(hash, sig)
- if err != nil {
- return nil, err
- }
-
- x, y := elliptic.Unmarshal(secp256k1.S256(), s)
- return &ecdsa.PublicKey{Curve: secp256k1.S256(), X: x, Y: y}, nil
-}
-
-// Sign calculates an ECDSA signature.
-//
-// This function is susceptible to chosen plaintext attacks that can leak
-// information about the private key that is used for signing. Callers must
-// be aware that the given hash cannot be chosen by an adversery. Common
-// solution is to hash any input before calculating the signature.
-//
-// The produced signature is in the [R || S || V] format where V is 0 or 1.
-func Sign(data []byte, prv *ecdsa.PrivateKey) (sig []byte, err error) {
- if len(data) != 32 {
- return nil, fmt.Errorf("hash is required to be exactly 32 bytes (%d)", len(data))
- }
-
- seckey := common.LeftPadBytes(prv.D.Bytes(), prv.Params().BitSize/8)
- defer zeroBytes(seckey)
- sig, err = secp256k1.Sign(data, seckey)
- return
-}
-
-func Encrypt(pub *ecdsa.PublicKey, message []byte) ([]byte, error) {
- return ecies.Encrypt(rand.Reader, ecies.ImportECDSAPublic(pub), message, nil, nil)
-}
-
-func Decrypt(prv *ecdsa.PrivateKey, ct []byte) ([]byte, error) {
- key := ecies.ImportECDSA(prv)
- return key.Decrypt(rand.Reader, ct, nil, nil)
+ return r.Cmp(secp256k1_N) < 0 && s.Cmp(secp256k1_N) < 0 && (v == 0 || v == 1)
}
func PubkeyToAddress(p ecdsa.PublicKey) common.Address {
diff --git a/crypto/crypto_test.go b/crypto/crypto_test.go
index d4d309849..e518ac22d 100644
--- a/crypto/crypto_test.go
+++ b/crypto/crypto_test.go
@@ -28,7 +28,6 @@ import (
"time"
"github.com/ethereum/go-ethereum/common"
- "github.com/ethereum/go-ethereum/crypto/secp256k1"
)
var testAddrHex = "970e8128ab834e8eac17ab8e3812f010678cf791"
@@ -37,30 +36,12 @@ var testPrivHex = "289c2857d4598e37fb9647507e47a309d6133539bf21a8b9cb6df88fd5232
// These tests are sanity checks.
// They should ensure that we don't e.g. use Sha3-224 instead of Sha3-256
// and that the sha3 library uses keccak-f permutation.
-func TestSha3(t *testing.T) {
- msg := []byte("abc")
- exp, _ := hex.DecodeString("4e03657aea45a94fc7d47ba826c8d667c0d1e6e33a64a036ec44f58fa12d6c45")
- checkhash(t, "Sha3-256", func(in []byte) []byte { return Keccak256(in) }, msg, exp)
-}
-
func TestSha3Hash(t *testing.T) {
msg := []byte("abc")
exp, _ := hex.DecodeString("4e03657aea45a94fc7d47ba826c8d667c0d1e6e33a64a036ec44f58fa12d6c45")
checkhash(t, "Sha3-256-array", func(in []byte) []byte { h := Keccak256Hash(in); return h[:] }, msg, exp)
}
-func TestSha256(t *testing.T) {
- msg := []byte("abc")
- exp, _ := hex.DecodeString("ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad")
- checkhash(t, "Sha256", Sha256, msg, exp)
-}
-
-func TestRipemd160(t *testing.T) {
- msg := []byte("abc")
- exp, _ := hex.DecodeString("8eb208f7e05d987a9b044a8e98c6b087f15a0bfc")
- checkhash(t, "Ripemd160", Ripemd160, msg, exp)
-}
-
func BenchmarkSha3(b *testing.B) {
a := []byte("hello world")
amount := 1000000
@@ -170,7 +151,7 @@ func TestValidateSignatureValues(t *testing.T) {
minusOne := big.NewInt(-1)
one := common.Big1
zero := common.Big0
- secp256k1nMinus1 := new(big.Int).Sub(secp256k1.N, common.Big1)
+ secp256k1nMinus1 := new(big.Int).Sub(secp256k1_N, common.Big1)
// correct v,r,s
check(true, 0, one, one)
@@ -197,9 +178,9 @@ func TestValidateSignatureValues(t *testing.T) {
// correct sig with max r,s
check(true, 0, secp256k1nMinus1, secp256k1nMinus1)
// correct v, combinations of incorrect r,s at upper limit
- check(false, 0, secp256k1.N, secp256k1nMinus1)
- check(false, 0, secp256k1nMinus1, secp256k1.N)
- check(false, 0, secp256k1.N, secp256k1.N)
+ check(false, 0, secp256k1_N, secp256k1nMinus1)
+ check(false, 0, secp256k1nMinus1, secp256k1_N)
+ check(false, 0, secp256k1_N, secp256k1_N)
// current callers ensures r,s cannot be negative, but let's test for that too
// as crypto package could be used stand-alone
@@ -225,14 +206,13 @@ func checkAddr(t *testing.T, addr0, addr1 common.Address) {
func TestPythonIntegration(t *testing.T) {
kh := "289c2857d4598e37fb9647507e47a309d6133539bf21a8b9cb6df88fd5232032"
k0, _ := HexToECDSA(kh)
- k1 := FromECDSA(k0)
msg0 := Keccak256([]byte("foo"))
- sig0, _ := secp256k1.Sign(msg0, k1)
+ sig0, _ := Sign(msg0, k0)
msg1 := common.FromHex("00000000000000000000000000000000")
- sig1, _ := secp256k1.Sign(msg0, k1)
+ sig1, _ := Sign(msg0, k0)
- fmt.Printf("msg: %x, privkey: %x sig: %x\n", msg0, k1, sig0)
- fmt.Printf("msg: %x, privkey: %x sig: %x\n", msg1, k1, sig1)
+ t.Logf("msg: %x, privkey: %s sig: %x\n", msg0, kh, sig0)
+ t.Logf("msg: %x, privkey: %s sig: %x\n", msg1, kh, sig1)
}
diff --git a/crypto/ecies/asn1.go b/crypto/ecies/asn1.go
index 508a645cd..d3e77d849 100644
--- a/crypto/ecies/asn1.go
+++ b/crypto/ecies/asn1.go
@@ -42,7 +42,7 @@ import (
"hash"
"math/big"
- "github.com/ethereum/go-ethereum/crypto/secp256k1"
+ ethcrypto "github.com/ethereum/go-ethereum/crypto"
)
var (
@@ -120,7 +120,7 @@ func (curve secgNamedCurve) Equal(curve2 secgNamedCurve) bool {
func namedCurveFromOID(curve secgNamedCurve) elliptic.Curve {
switch {
case curve.Equal(secgNamedCurveS256):
- return secp256k1.S256()
+ return ethcrypto.S256()
case curve.Equal(secgNamedCurveP256):
return elliptic.P256()
case curve.Equal(secgNamedCurveP384):
@@ -139,7 +139,7 @@ func oidFromNamedCurve(curve elliptic.Curve) (secgNamedCurve, bool) {
return secgNamedCurveP384, true
case elliptic.P521():
return secgNamedCurveP521, true
- case secp256k1.S256():
+ case ethcrypto.S256():
return secgNamedCurveS256, true
}
diff --git a/crypto/ecies/ecies_test.go b/crypto/ecies/ecies_test.go
index 3b3517baf..7c454aa73 100644
--- a/crypto/ecies/ecies_test.go
+++ b/crypto/ecies/ecies_test.go
@@ -31,7 +31,6 @@ package ecies
import (
"bytes"
- "crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"crypto/sha256"
@@ -42,7 +41,7 @@ import (
"math/big"
"testing"
- "github.com/ethereum/go-ethereum/crypto/secp256k1"
+ "github.com/ethereum/go-ethereum/crypto"
)
var dumpEnc bool
@@ -150,7 +149,7 @@ func TestSharedKey(t *testing.T) {
func TestSharedKeyPadding(t *testing.T) {
// sanity checks
prv0 := hexKey("1adf5c18167d96a1f9a0b1ef63be8aa27eaf6032c233b2b38f7850cf5b859fd9")
- prv1 := hexKey("97a076fc7fcd9208240668e31c9abee952cbb6e375d1b8febc7499d6e16f1a")
+ prv1 := hexKey("0097a076fc7fcd9208240668e31c9abee952cbb6e375d1b8febc7499d6e16f1a")
x0, _ := new(big.Int).SetString("1a8ed022ff7aec59dc1b440446bdda5ff6bcb3509a8b109077282b361efffbd8", 16)
x1, _ := new(big.Int).SetString("6ab3ac374251f638d0abb3ef596d1dc67955b507c104e5f2009724812dc027b8", 16)
y0, _ := new(big.Int).SetString("e040bd480b1deccc3bc40bd5b1fdcb7bfd352500b477cb9471366dbd4493f923", 16)
@@ -354,7 +353,7 @@ func BenchmarkGenSharedKeyP256(b *testing.B) {
// Benchmark the generation of S256 shared keys.
func BenchmarkGenSharedKeyS256(b *testing.B) {
- prv, err := GenerateKey(rand.Reader, secp256k1.S256(), nil)
+ prv, err := GenerateKey(rand.Reader, crypto.S256(), nil)
if err != nil {
fmt.Println(err.Error())
b.FailNow()
@@ -597,6 +596,29 @@ func TestBasicKeyValidation(t *testing.T) {
}
}
+func TestBox(t *testing.T) {
+ prv1 := hexKey("4b50fa71f5c3eeb8fdc452224b2395af2fcc3d125e06c32c82e048c0559db03f")
+ prv2 := hexKey("d0b043b4c5d657670778242d82d68a29d25d7d711127d17b8e299f156dad361a")
+ pub2 := &prv2.PublicKey
+
+ message := []byte("Hello, world.")
+ ct, err := Encrypt(rand.Reader, pub2, message, nil, nil)
+ if err != nil {
+ t.Fatal(err)
+ }
+
+ pt, err := prv2.Decrypt(rand.Reader, ct, nil, nil)
+ if err != nil {
+ t.Fatal(err)
+ }
+ if !bytes.Equal(pt, message) {
+ t.Fatal("ecies: plaintext doesn't match message")
+ }
+ if _, err = prv1.Decrypt(rand.Reader, ct, nil, nil); err == nil {
+ t.Fatal("ecies: encryption should not have succeeded")
+ }
+}
+
// Verify GenerateShared against static values - useful when
// debugging changes in underlying libs
func TestSharedKeyStatic(t *testing.T) {
@@ -628,11 +650,10 @@ func TestSharedKeyStatic(t *testing.T) {
}
}
-// TODO: remove after refactoring packages crypto and crypto/ecies
func hexKey(prv string) *PrivateKey {
- priv := new(ecdsa.PrivateKey)
- priv.PublicKey.Curve = secp256k1.S256()
- priv.D, _ = new(big.Int).SetString(prv, 16)
- priv.PublicKey.X, priv.PublicKey.Y = secp256k1.S256().ScalarBaseMult(priv.D.Bytes())
- return ImportECDSA(priv)
+ key, err := crypto.HexToECDSA(prv)
+ if err != nil {
+ panic(err)
+ }
+ return ImportECDSA(key)
}
diff --git a/crypto/ecies/params.go b/crypto/ecies/params.go
index 511c53ebc..826d90c84 100644
--- a/crypto/ecies/params.go
+++ b/crypto/ecies/params.go
@@ -42,11 +42,11 @@ import (
"fmt"
"hash"
- "github.com/ethereum/go-ethereum/crypto/secp256k1"
+ ethcrypto "github.com/ethereum/go-ethereum/crypto"
)
var (
- DefaultCurve = secp256k1.S256()
+ DefaultCurve = ethcrypto.S256()
ErrUnsupportedECDHAlgorithm = fmt.Errorf("ecies: unsupported ECDH algorithm")
ErrUnsupportedECIESParameters = fmt.Errorf("ecies: unsupported ECIES parameters")
)
@@ -100,7 +100,7 @@ var (
)
var paramsFromCurve = map[elliptic.Curve]*ECIESParams{
- secp256k1.S256(): ECIES_AES128_SHA256,
+ ethcrypto.S256(): ECIES_AES128_SHA256,
elliptic.P256(): ECIES_AES128_SHA256,
elliptic.P384(): ECIES_AES256_SHA384,
elliptic.P521(): ECIES_AES256_SHA512,
diff --git a/crypto/encrypt_decrypt_test.go b/crypto/encrypt_decrypt_test.go
deleted file mode 100644
index fcf40b70f..000000000
--- a/crypto/encrypt_decrypt_test.go
+++ /dev/null
@@ -1,56 +0,0 @@
-// Copyright 2014 The go-ethereum Authors
-// This file is part of the go-ethereum library.
-//
-// The go-ethereum library is free software: you can redistribute it and/or modify
-// it under the terms of the GNU Lesser General Public License as published by
-// the Free Software Foundation, either version 3 of the License, or
-// (at your option) any later version.
-//
-// The go-ethereum library is distributed in the hope that it will be useful,
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-// GNU Lesser General Public License for more details.
-//
-// You should have received a copy of the GNU Lesser General Public License
-// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
-
-package crypto
-
-import (
- "bytes"
- "fmt"
- "testing"
-
- "github.com/ethereum/go-ethereum/common"
-)
-
-func TestBox(t *testing.T) {
- prv1 := ToECDSA(common.Hex2Bytes("4b50fa71f5c3eeb8fdc452224b2395af2fcc3d125e06c32c82e048c0559db03f"))
- prv2 := ToECDSA(common.Hex2Bytes("d0b043b4c5d657670778242d82d68a29d25d7d711127d17b8e299f156dad361a"))
- pub2 := ToECDSAPub(common.Hex2Bytes("04bd27a63c91fe3233c5777e6d3d7b39204d398c8f92655947eb5a373d46e1688f022a1632d264725cbc7dc43ee1cfebde42fa0a86d08b55d2acfbb5e9b3b48dc5"))
-
- message := []byte("Hello, world.")
- ct, err := Encrypt(pub2, message)
- if err != nil {
- fmt.Println(err.Error())
- t.FailNow()
- }
-
- pt, err := Decrypt(prv2, ct)
- if err != nil {
- fmt.Println(err.Error())
- t.FailNow()
- }
-
- if !bytes.Equal(pt, message) {
- fmt.Println("ecies: plaintext doesn't match message")
- t.FailNow()
- }
-
- _, err = Decrypt(prv1, pt)
- if err == nil {
- fmt.Println("ecies: encryption should not have succeeded")
- t.FailNow()
- }
-
-}
diff --git a/crypto/secp256k1/secp256.go b/crypto/secp256k1/secp256.go
index 4284115e2..1a152a670 100644
--- a/crypto/secp256k1/secp256.go
+++ b/crypto/secp256k1/secp256.go
@@ -42,17 +42,9 @@ import (
"unsafe"
)
-var (
- context *C.secp256k1_context
- N *big.Int
- HalfN *big.Int
-)
+var context *C.secp256k1_context
func init() {
- N, _ = new(big.Int).SetString("fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141", 16)
- // N / 2 == 57896044618658097711785492504343953926418782139537452191302581570759080747168
- HalfN, _ = new(big.Int).SetString("7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0", 16)
-
// around 20 ms on a modern CPU.
context = C.secp256k1_context_create_sign_verify()
C.secp256k1_context_set_illegal_callback(context, C.callbackFunc(C.secp256k1GoPanicIllegal), nil)
diff --git a/crypto/signature_cgo.go b/crypto/signature_cgo.go
new file mode 100644
index 000000000..5faa6061f
--- /dev/null
+++ b/crypto/signature_cgo.go
@@ -0,0 +1,64 @@
+// Copyright 2016 The go-ethereum Authors
+// This file is part of the go-ethereum library.
+//
+// The go-ethereum library is free software: you can redistribute it and/or modify
+// it under the terms of the GNU Lesser General Public License as published by
+// the Free Software Foundation, either version 3 of the License, or
+// (at your option) any later version.
+//
+// The go-ethereum library is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// GNU Lesser General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public License
+// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
+
+// +build !nacl,!js,!nocgo
+
+package crypto
+
+import (
+ "crypto/ecdsa"
+ "crypto/elliptic"
+ "fmt"
+
+ "github.com/ethereum/go-ethereum/common"
+ "github.com/ethereum/go-ethereum/crypto/secp256k1"
+)
+
+func Ecrecover(hash, sig []byte) ([]byte, error) {
+ return secp256k1.RecoverPubkey(hash, sig)
+}
+
+func SigToPub(hash, sig []byte) (*ecdsa.PublicKey, error) {
+ s, err := Ecrecover(hash, sig)
+ if err != nil {
+ return nil, err
+ }
+
+ x, y := elliptic.Unmarshal(S256(), s)
+ return &ecdsa.PublicKey{Curve: S256(), X: x, Y: y}, nil
+}
+
+// Sign calculates an ECDSA signature.
+//
+// This function is susceptible to chosen plaintext attacks that can leak
+// information about the private key that is used for signing. Callers must
+// be aware that the given hash cannot be chosen by an adversery. Common
+// solution is to hash any input before calculating the signature.
+//
+// The produced signature is in the [R || S || V] format where V is 0 or 1.
+func Sign(hash []byte, prv *ecdsa.PrivateKey) (sig []byte, err error) {
+ if len(hash) != 32 {
+ return nil, fmt.Errorf("hash is required to be exactly 32 bytes (%d)", len(hash))
+ }
+ seckey := common.LeftPadBytes(prv.D.Bytes(), prv.Params().BitSize/8)
+ defer zeroBytes(seckey)
+ return secp256k1.Sign(hash, seckey)
+}
+
+// S256 returns an instance of the secp256k1 curve.
+func S256() elliptic.Curve {
+ return secp256k1.S256()
+}
diff --git a/crypto/signature_nocgo.go b/crypto/signature_nocgo.go
new file mode 100644
index 000000000..47880aaf4
--- /dev/null
+++ b/crypto/signature_nocgo.go
@@ -0,0 +1,77 @@
+// Copyright 2016 The go-ethereum Authors
+// This file is part of the go-ethereum library.
+//
+// The go-ethereum library is free software: you can redistribute it and/or modify
+// it under the terms of the GNU Lesser General Public License as published by
+// the Free Software Foundation, either version 3 of the License, or
+// (at your option) any later version.
+//
+// The go-ethereum library is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// GNU Lesser General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public License
+// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
+
+// +build nacl js nocgo
+
+package crypto
+
+import (
+ "crypto/ecdsa"
+ "crypto/elliptic"
+ "fmt"
+
+ "github.com/btcsuite/btcd/btcec"
+)
+
+func Ecrecover(hash, sig []byte) ([]byte, error) {
+ pub, err := SigToPub(hash, sig)
+ if err != nil {
+ return nil, err
+ }
+ bytes := (*btcec.PublicKey)(pub).SerializeUncompressed()
+ return bytes, err
+}
+
+func SigToPub(hash, sig []byte) (*ecdsa.PublicKey, error) {
+ // Convert to btcec input format with 'recovery id' v at the beginning.
+ btcsig := make([]byte, 65)
+ btcsig[0] = sig[64] + 27
+ copy(btcsig[1:], sig)
+
+ pub, _, err := btcec.RecoverCompact(btcec.S256(), btcsig, hash)
+ return (*ecdsa.PublicKey)(pub), err
+}
+
+// Sign calculates an ECDSA signature.
+//
+// This function is susceptible to chosen plaintext attacks that can leak
+// information about the private key that is used for signing. Callers must
+// be aware that the given hash cannot be chosen by an adversery. Common
+// solution is to hash any input before calculating the signature.
+//
+// The produced signature is in the [R || S || V] format where V is 0 or 1.
+func Sign(hash []byte, prv *ecdsa.PrivateKey) ([]byte, error) {
+ if len(hash) != 32 {
+ return nil, fmt.Errorf("hash is required to be exactly 32 bytes (%d)", len(hash))
+ }
+ if prv.Curve != btcec.S256() {
+ return nil, fmt.Errorf("private key curve is not secp256k1")
+ }
+ sig, err := btcec.SignCompact(btcec.S256(), (*btcec.PrivateKey)(prv), hash, false)
+ if err != nil {
+ return nil, err
+ }
+ // Convert to Ethereum signature format with 'recovery id' v at the end.
+ v := sig[0] - 27
+ copy(sig, sig[1:])
+ sig[64] = v
+ return sig, nil
+}
+
+// S256 returns an instance of the secp256k1 curve.
+func S256() elliptic.Curve {
+ return btcec.S256()
+}
diff --git a/p2p/discv5/crypto.go b/crypto/signature_test.go
index 48b2a8a72..ca7eefe99 100644
--- a/p2p/discv5/crypto.go
+++ b/crypto/signature_test.go
@@ -14,18 +14,23 @@
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
-package discv5
+package crypto
import (
- //"github.com/btcsuite/btcd/btcec"
- "github.com/ethereum/go-ethereum/crypto/secp256k1"
+ "bytes"
+ "encoding/hex"
+ "testing"
)
-func S256() *secp256k1.BitCurve {
- return secp256k1.S256()
+func TestRecoverSanity(t *testing.T) {
+ msg, _ := hex.DecodeString("ce0677bb30baa8cf067c88db9811f4333d131bf8bcf12fe7065d211dce971008")
+ sig, _ := hex.DecodeString("90f27b8b488db00b00606796d2987f6a5f59ae62ea05effe84fef5b8b0e549984a691139ad57a3f0b906637673aa2f63d1f55cb1a69199d4009eea23ceaddc9301")
+ pubkey1, _ := hex.DecodeString("04e32df42865e97135acfb65f3bae71bdc86f4d49150ad6a440b6f15878109880a0a2b2667f7e725ceea70c673093bf67663e0312623c8e091b13cf2c0f11ef652")
+ pubkey2, err := Ecrecover(msg, sig)
+ if err != nil {
+ t.Fatalf("recover error: %s", err)
+ }
+ if !bytes.Equal(pubkey1, pubkey2) {
+ t.Errorf("pubkey mismatch: want: %x have: %x", pubkey1, pubkey2)
+ }
}
-
-// This version should be used for NaCl compilation
-/*func S256() *btcec.KoblitzCurve {
- return S256()
-}*/
diff --git a/p2p/discover/node.go b/p2p/discover/node.go
index 8b1062d87..f0262762e 100644
--- a/p2p/discover/node.go
+++ b/p2p/discover/node.go
@@ -259,7 +259,7 @@ func PubkeyID(pub *ecdsa.PublicKey) NodeID {
// Pubkey returns the public key represented by the node ID.
// It returns an error if the ID is not a point on the curve.
func (id NodeID) Pubkey() (*ecdsa.PublicKey, error) {
- p := &ecdsa.PublicKey{Curve: secp256k1.S256(), X: new(big.Int), Y: new(big.Int)}
+ p := &ecdsa.PublicKey{Curve: crypto.S256(), X: new(big.Int), Y: new(big.Int)}
half := len(id) / 2
p.X.SetBytes(id[:half])
p.Y.SetBytes(id[half:])
diff --git a/p2p/discv5/node.go b/p2p/discv5/node.go
index cfc833ff5..c99b4da14 100644
--- a/p2p/discv5/node.go
+++ b/p2p/discv5/node.go
@@ -297,7 +297,7 @@ func PubkeyID(pub *ecdsa.PublicKey) NodeID {
// Pubkey returns the public key represented by the node ID.
// It returns an error if the ID is not a point on the curve.
func (id NodeID) Pubkey() (*ecdsa.PublicKey, error) {
- p := &ecdsa.PublicKey{Curve: S256(), X: new(big.Int), Y: new(big.Int)}
+ p := &ecdsa.PublicKey{Curve: crypto.S256(), X: new(big.Int), Y: new(big.Int)}
half := len(id) / 2
p.X.SetBytes(id[:half])
p.Y.SetBytes(id[half:])
diff --git a/p2p/rlpx.go b/p2p/rlpx.go
index c6fd841f7..b2775cacd 100644
--- a/p2p/rlpx.go
+++ b/p2p/rlpx.go
@@ -303,7 +303,7 @@ func (h *encHandshake) makeAuthMsg(prv *ecdsa.PrivateKey, token []byte) (*authMs
return nil, err
}
// Generate random keypair to for ECDH.
- h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, secp256k1.S256(), nil)
+ h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil)
if err != nil {
return nil, err
}
@@ -381,7 +381,7 @@ func (h *encHandshake) handleAuthMsg(msg *authMsgV4, prv *ecdsa.PrivateKey) erro
// Generate random keypair for ECDH.
// If a private key is already set, use it instead of generating one (for testing).
if h.randomPrivKey == nil {
- h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, secp256k1.S256(), nil)
+ h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil)
if err != nil {
return err
}
diff --git a/vendor/github.com/btcsuite/btcd/LICENSE b/vendor/github.com/btcsuite/btcd/LICENSE
new file mode 100644
index 000000000..53ba0c560
--- /dev/null
+++ b/vendor/github.com/btcsuite/btcd/LICENSE
@@ -0,0 +1,16 @@
+ISC License
+
+Copyright (c) 2013-2017 The btcsuite developers
+Copyright (c) 2015-2016 The Decred developers
+
+Permission to use, copy, modify, and distribute this software for any
+purpose with or without fee is hereby granted, provided that the above
+copyright notice and this permission notice appear in all copies.
+
+THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
diff --git a/vendor/github.com/btcsuite/btcd/btcec/README.md b/vendor/github.com/btcsuite/btcd/btcec/README.md
new file mode 100644
index 000000000..5875dfc91
--- /dev/null
+++ b/vendor/github.com/btcsuite/btcd/btcec/README.md
@@ -0,0 +1,74 @@
+btcec
+=====
+
+[![Build Status](https://travis-ci.org/btcsuite/btcd.png?branch=master)]
+(https://travis-ci.org/btcsuite/btcec) [![ISC License]
+(http://img.shields.io/badge/license-ISC-blue.svg)](http://copyfree.org)
+[![GoDoc](https://godoc.org/github.com/btcsuite/btcd/btcec?status.png)]
+(http://godoc.org/github.com/btcsuite/btcd/btcec)
+
+Package btcec implements elliptic curve cryptography needed for working with
+Bitcoin (secp256k1 only for now). It is designed so that it may be used with the
+standard crypto/ecdsa packages provided with go. A comprehensive suite of test
+is provided to ensure proper functionality. Package btcec was originally based
+on work from ThePiachu which is licensed under the same terms as Go, but it has
+signficantly diverged since then. The btcsuite developers original is licensed
+under the liberal ISC license.
+
+Although this package was primarily written for btcd, it has intentionally been
+designed so it can be used as a standalone package for any projects needing to
+use secp256k1 elliptic curve cryptography.
+
+## Installation and Updating
+
+```bash
+$ go get -u github.com/btcsuite/btcd/btcec
+```
+
+## Examples
+
+* [Sign Message]
+ (http://godoc.org/github.com/btcsuite/btcd/btcec#example-package--SignMessage)
+ Demonstrates signing a message with a secp256k1 private key that is first
+ parsed form raw bytes and serializing the generated signature.
+
+* [Verify Signature]
+ (http://godoc.org/github.com/btcsuite/btcd/btcec#example-package--VerifySignature)
+ Demonstrates verifying a secp256k1 signature against a public key that is
+ first parsed from raw bytes. The signature is also parsed from raw bytes.
+
+* [Encryption]
+ (http://godoc.org/github.com/btcsuite/btcd/btcec#example-package--EncryptMessage)
+ Demonstrates encrypting a message for a public key that is first parsed from
+ raw bytes, then decrypting it using the corresponding private key.
+
+* [Decryption]
+ (http://godoc.org/github.com/btcsuite/btcd/btcec#example-package--DecryptMessage)
+ Demonstrates decrypting a message using a private key that is first parsed
+ from raw bytes.
+
+## GPG Verification Key
+
+All official release tags are signed by Conformal so users can ensure the code
+has not been tampered with and is coming from the btcsuite developers. To
+verify the signature perform the following:
+
+- Download the public key from the Conformal website at
+ https://opensource.conformal.com/GIT-GPG-KEY-conformal.txt
+
+- Import the public key into your GPG keyring:
+ ```bash
+ gpg --import GIT-GPG-KEY-conformal.txt
+ ```
+
+- Verify the release tag with the following command where `TAG_NAME` is a
+ placeholder for the specific tag:
+ ```bash
+ git tag -v TAG_NAME
+ ```
+
+## License
+
+Package btcec is licensed under the [copyfree](http://copyfree.org) ISC License
+except for btcec.go and btcec_test.go which is under the same license as Go.
+
diff --git a/vendor/github.com/btcsuite/btcd/btcec/btcec.go b/vendor/github.com/btcsuite/btcd/btcec/btcec.go
new file mode 100644
index 000000000..98d7b1432
--- /dev/null
+++ b/vendor/github.com/btcsuite/btcd/btcec/btcec.go
@@ -0,0 +1,956 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Copyright 2011 ThePiachu. All rights reserved.
+// Copyright 2013-2014 The btcsuite developers
+// Use of this source code is governed by an ISC
+// license that can be found in the LICENSE file.
+
+package btcec
+
+// References:
+// [SECG]: Recommended Elliptic Curve Domain Parameters
+// http://www.secg.org/sec2-v2.pdf
+//
+// [GECC]: Guide to Elliptic Curve Cryptography (Hankerson, Menezes, Vanstone)
+
+// This package operates, internally, on Jacobian coordinates. For a given
+// (x, y) position on the curve, the Jacobian coordinates are (x1, y1, z1)
+// where x = x1/z1² and y = y1/z1³. The greatest speedups come when the whole
+// calculation can be performed within the transform (as in ScalarMult and
+// ScalarBaseMult). But even for Add and Double, it's faster to apply and
+// reverse the transform than to operate in affine coordinates.
+
+import (
+ "crypto/elliptic"
+ "math/big"
+ "sync"
+)
+
+var (
+ // fieldOne is simply the integer 1 in field representation. It is
+ // used to avoid needing to create it multiple times during the internal
+ // arithmetic.
+ fieldOne = new(fieldVal).SetInt(1)
+)
+
+// KoblitzCurve supports a koblitz curve implementation that fits the ECC Curve
+// interface from crypto/elliptic.
+type KoblitzCurve struct {
+ *elliptic.CurveParams
+ q *big.Int
+ H int // cofactor of the curve.
+
+ // byteSize is simply the bit size / 8 and is provided for convenience
+ // since it is calculated repeatedly.
+ byteSize int
+
+ // bytePoints
+ bytePoints *[32][256][3]fieldVal
+
+ // The next 6 values are used specifically for endomorphism
+ // optimizations in ScalarMult.
+
+ // lambda must fulfill lambda^3 = 1 mod N where N is the order of G.
+ lambda *big.Int
+
+ // beta must fulfill beta^3 = 1 mod P where P is the prime field of the
+ // curve.
+ beta *fieldVal
+
+ // See the EndomorphismVectors in gensecp256k1.go to see how these are
+ // derived.
+ a1 *big.Int
+ b1 *big.Int
+ a2 *big.Int
+ b2 *big.Int
+}
+
+// Params returns the parameters for the curve.
+func (curve *KoblitzCurve) Params() *elliptic.CurveParams {
+ return curve.CurveParams
+}
+
+// bigAffineToField takes an affine point (x, y) as big integers and converts
+// it to an affine point as field values.
+func (curve *KoblitzCurve) bigAffineToField(x, y *big.Int) (*fieldVal, *fieldVal) {
+ x3, y3 := new(fieldVal), new(fieldVal)
+ x3.SetByteSlice(x.Bytes())
+ y3.SetByteSlice(y.Bytes())
+
+ return x3, y3
+}
+
+// fieldJacobianToBigAffine takes a Jacobian point (x, y, z) as field values and
+// converts it to an affine point as big integers.
+func (curve *KoblitzCurve) fieldJacobianToBigAffine(x, y, z *fieldVal) (*big.Int, *big.Int) {
+ // Inversions are expensive and both point addition and point doubling
+ // are faster when working with points that have a z value of one. So,
+ // if the point needs to be converted to affine, go ahead and normalize
+ // the point itself at the same time as the calculation is the same.
+ var zInv, tempZ fieldVal
+ zInv.Set(z).Inverse() // zInv = Z^-1
+ tempZ.SquareVal(&zInv) // tempZ = Z^-2
+ x.Mul(&tempZ) // X = X/Z^2 (mag: 1)
+ y.Mul(tempZ.Mul(&zInv)) // Y = Y/Z^3 (mag: 1)
+ z.SetInt(1) // Z = 1 (mag: 1)
+
+ // Normalize the x and y values.
+ x.Normalize()
+ y.Normalize()
+
+ // Convert the field values for the now affine point to big.Ints.
+ x3, y3 := new(big.Int), new(big.Int)
+ x3.SetBytes(x.Bytes()[:])
+ y3.SetBytes(y.Bytes()[:])
+ return x3, y3
+}
+
+// IsOnCurve returns boolean if the point (x,y) is on the curve.
+// Part of the elliptic.Curve interface. This function differs from the
+// crypto/elliptic algorithm since a = 0 not -3.
+func (curve *KoblitzCurve) IsOnCurve(x, y *big.Int) bool {
+ // Convert big ints to field values for faster arithmetic.
+ fx, fy := curve.bigAffineToField(x, y)
+
+ // Elliptic curve equation for secp256k1 is: y^2 = x^3 + 7
+ y2 := new(fieldVal).SquareVal(fy).Normalize()
+ result := new(fieldVal).SquareVal(fx).Mul(fx).AddInt(7).Normalize()
+ return y2.Equals(result)
+}
+
+// addZ1AndZ2EqualsOne adds two Jacobian points that are already known to have
+// z values of 1 and stores the result in (x3, y3, z3). That is to say
+// (x1, y1, 1) + (x2, y2, 1) = (x3, y3, z3). It performs faster addition than
+// the generic add routine since less arithmetic is needed due to the ability to
+// avoid the z value multiplications.
+func (curve *KoblitzCurve) addZ1AndZ2EqualsOne(x1, y1, z1, x2, y2, x3, y3, z3 *fieldVal) {
+ // To compute the point addition efficiently, this implementation splits
+ // the equation into intermediate elements which are used to minimize
+ // the number of field multiplications using the method shown at:
+ // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-mmadd-2007-bl
+ //
+ // In particular it performs the calculations using the following:
+ // H = X2-X1, HH = H^2, I = 4*HH, J = H*I, r = 2*(Y2-Y1), V = X1*I
+ // X3 = r^2-J-2*V, Y3 = r*(V-X3)-2*Y1*J, Z3 = 2*H
+ //
+ // This results in a cost of 4 field multiplications, 2 field squarings,
+ // 6 field additions, and 5 integer multiplications.
+
+ // When the x coordinates are the same for two points on the curve, the
+ // y coordinates either must be the same, in which case it is point
+ // doubling, or they are opposite and the result is the point at
+ // infinity per the group law for elliptic curve cryptography.
+ x1.Normalize()
+ y1.Normalize()
+ x2.Normalize()
+ y2.Normalize()
+ if x1.Equals(x2) {
+ if y1.Equals(y2) {
+ // Since x1 == x2 and y1 == y2, point doubling must be
+ // done, otherwise the addition would end up dividing
+ // by zero.
+ curve.doubleJacobian(x1, y1, z1, x3, y3, z3)
+ return
+ }
+
+ // Since x1 == x2 and y1 == -y2, the sum is the point at
+ // infinity per the group law.
+ x3.SetInt(0)
+ y3.SetInt(0)
+ z3.SetInt(0)
+ return
+ }
+
+ // Calculate X3, Y3, and Z3 according to the intermediate elements
+ // breakdown above.
+ var h, i, j, r, v fieldVal
+ var negJ, neg2V, negX3 fieldVal
+ h.Set(x1).Negate(1).Add(x2) // H = X2-X1 (mag: 3)
+ i.SquareVal(&h).MulInt(4) // I = 4*H^2 (mag: 4)
+ j.Mul2(&h, &i) // J = H*I (mag: 1)
+ r.Set(y1).Negate(1).Add(y2).MulInt(2) // r = 2*(Y2-Y1) (mag: 6)
+ v.Mul2(x1, &i) // V = X1*I (mag: 1)
+ negJ.Set(&j).Negate(1) // negJ = -J (mag: 2)
+ neg2V.Set(&v).MulInt(2).Negate(2) // neg2V = -(2*V) (mag: 3)
+ x3.Set(&r).Square().Add(&negJ).Add(&neg2V) // X3 = r^2-J-2*V (mag: 6)
+ negX3.Set(x3).Negate(6) // negX3 = -X3 (mag: 7)
+ j.Mul(y1).MulInt(2).Negate(2) // J = -(2*Y1*J) (mag: 3)
+ y3.Set(&v).Add(&negX3).Mul(&r).Add(&j) // Y3 = r*(V-X3)-2*Y1*J (mag: 4)
+ z3.Set(&h).MulInt(2) // Z3 = 2*H (mag: 6)
+
+ // Normalize the resulting field values to a magnitude of 1 as needed.
+ x3.Normalize()
+ y3.Normalize()
+ z3.Normalize()
+}
+
+// addZ1EqualsZ2 adds two Jacobian points that are already known to have the
+// same z value and stores the result in (x3, y3, z3). That is to say
+// (x1, y1, z1) + (x2, y2, z1) = (x3, y3, z3). It performs faster addition than
+// the generic add routine since less arithmetic is needed due to the known
+// equivalence.
+func (curve *KoblitzCurve) addZ1EqualsZ2(x1, y1, z1, x2, y2, x3, y3, z3 *fieldVal) {
+ // To compute the point addition efficiently, this implementation splits
+ // the equation into intermediate elements which are used to minimize
+ // the number of field multiplications using a slightly modified version
+ // of the method shown at:
+ // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-mmadd-2007-bl
+ //
+ // In particular it performs the calculations using the following:
+ // A = X2-X1, B = A^2, C=Y2-Y1, D = C^2, E = X1*B, F = X2*B
+ // X3 = D-E-F, Y3 = C*(E-X3)-Y1*(F-E), Z3 = Z1*A
+ //
+ // This results in a cost of 5 field multiplications, 2 field squarings,
+ // 9 field additions, and 0 integer multiplications.
+
+ // When the x coordinates are the same for two points on the curve, the
+ // y coordinates either must be the same, in which case it is point
+ // doubling, or they are opposite and the result is the point at
+ // infinity per the group law for elliptic curve cryptography.
+ x1.Normalize()
+ y1.Normalize()
+ x2.Normalize()
+ y2.Normalize()
+ if x1.Equals(x2) {
+ if y1.Equals(y2) {
+ // Since x1 == x2 and y1 == y2, point doubling must be
+ // done, otherwise the addition would end up dividing
+ // by zero.
+ curve.doubleJacobian(x1, y1, z1, x3, y3, z3)
+ return
+ }
+
+ // Since x1 == x2 and y1 == -y2, the sum is the point at
+ // infinity per the group law.
+ x3.SetInt(0)
+ y3.SetInt(0)
+ z3.SetInt(0)
+ return
+ }
+
+ // Calculate X3, Y3, and Z3 according to the intermediate elements
+ // breakdown above.
+ var a, b, c, d, e, f fieldVal
+ var negX1, negY1, negE, negX3 fieldVal
+ negX1.Set(x1).Negate(1) // negX1 = -X1 (mag: 2)
+ negY1.Set(y1).Negate(1) // negY1 = -Y1 (mag: 2)
+ a.Set(&negX1).Add(x2) // A = X2-X1 (mag: 3)
+ b.SquareVal(&a) // B = A^2 (mag: 1)
+ c.Set(&negY1).Add(y2) // C = Y2-Y1 (mag: 3)
+ d.SquareVal(&c) // D = C^2 (mag: 1)
+ e.Mul2(x1, &b) // E = X1*B (mag: 1)
+ negE.Set(&e).Negate(1) // negE = -E (mag: 2)
+ f.Mul2(x2, &b) // F = X2*B (mag: 1)
+ x3.Add2(&e, &f).Negate(3).Add(&d) // X3 = D-E-F (mag: 5)
+ negX3.Set(x3).Negate(5).Normalize() // negX3 = -X3 (mag: 1)
+ y3.Set(y1).Mul(f.Add(&negE)).Negate(3) // Y3 = -(Y1*(F-E)) (mag: 4)
+ y3.Add(e.Add(&negX3).Mul(&c)) // Y3 = C*(E-X3)+Y3 (mag: 5)
+ z3.Mul2(z1, &a) // Z3 = Z1*A (mag: 1)
+
+ // Normalize the resulting field values to a magnitude of 1 as needed.
+ x3.Normalize()
+ y3.Normalize()
+}
+
+// addZ2EqualsOne adds two Jacobian points when the second point is already
+// known to have a z value of 1 (and the z value for the first point is not 1)
+// and stores the result in (x3, y3, z3). That is to say (x1, y1, z1) +
+// (x2, y2, 1) = (x3, y3, z3). It performs faster addition than the generic
+// add routine since less arithmetic is needed due to the ability to avoid
+// multiplications by the second point's z value.
+func (curve *KoblitzCurve) addZ2EqualsOne(x1, y1, z1, x2, y2, x3, y3, z3 *fieldVal) {
+ // To compute the point addition efficiently, this implementation splits
+ // the equation into intermediate elements which are used to minimize
+ // the number of field multiplications using the method shown at:
+ // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-madd-2007-bl
+ //
+ // In particular it performs the calculations using the following:
+ // Z1Z1 = Z1^2, U2 = X2*Z1Z1, S2 = Y2*Z1*Z1Z1, H = U2-X1, HH = H^2,
+ // I = 4*HH, J = H*I, r = 2*(S2-Y1), V = X1*I
+ // X3 = r^2-J-2*V, Y3 = r*(V-X3)-2*Y1*J, Z3 = (Z1+H)^2-Z1Z1-HH
+ //
+ // This results in a cost of 7 field multiplications, 4 field squarings,
+ // 9 field additions, and 4 integer multiplications.
+
+ // When the x coordinates are the same for two points on the curve, the
+ // y coordinates either must be the same, in which case it is point
+ // doubling, or they are opposite and the result is the point at
+ // infinity per the group law for elliptic curve cryptography. Since
+ // any number of Jacobian coordinates can represent the same affine
+ // point, the x and y values need to be converted to like terms. Due to
+ // the assumption made for this function that the second point has a z
+ // value of 1 (z2=1), the first point is already "converted".
+ var z1z1, u2, s2 fieldVal
+ x1.Normalize()
+ y1.Normalize()
+ z1z1.SquareVal(z1) // Z1Z1 = Z1^2 (mag: 1)
+ u2.Set(x2).Mul(&z1z1).Normalize() // U2 = X2*Z1Z1 (mag: 1)
+ s2.Set(y2).Mul(&z1z1).Mul(z1).Normalize() // S2 = Y2*Z1*Z1Z1 (mag: 1)
+ if x1.Equals(&u2) {
+ if y1.Equals(&s2) {
+ // Since x1 == x2 and y1 == y2, point doubling must be
+ // done, otherwise the addition would end up dividing
+ // by zero.
+ curve.doubleJacobian(x1, y1, z1, x3, y3, z3)
+ return
+ }
+
+ // Since x1 == x2 and y1 == -y2, the sum is the point at
+ // infinity per the group law.
+ x3.SetInt(0)
+ y3.SetInt(0)
+ z3.SetInt(0)
+ return
+ }
+
+ // Calculate X3, Y3, and Z3 according to the intermediate elements
+ // breakdown above.
+ var h, hh, i, j, r, rr, v fieldVal
+ var negX1, negY1, negX3 fieldVal
+ negX1.Set(x1).Negate(1) // negX1 = -X1 (mag: 2)
+ h.Add2(&u2, &negX1) // H = U2-X1 (mag: 3)
+ hh.SquareVal(&h) // HH = H^2 (mag: 1)
+ i.Set(&hh).MulInt(4) // I = 4 * HH (mag: 4)
+ j.Mul2(&h, &i) // J = H*I (mag: 1)
+ negY1.Set(y1).Negate(1) // negY1 = -Y1 (mag: 2)
+ r.Set(&s2).Add(&negY1).MulInt(2) // r = 2*(S2-Y1) (mag: 6)
+ rr.SquareVal(&r) // rr = r^2 (mag: 1)
+ v.Mul2(x1, &i) // V = X1*I (mag: 1)
+ x3.Set(&v).MulInt(2).Add(&j).Negate(3) // X3 = -(J+2*V) (mag: 4)
+ x3.Add(&rr) // X3 = r^2+X3 (mag: 5)
+ negX3.Set(x3).Negate(5) // negX3 = -X3 (mag: 6)
+ y3.Set(y1).Mul(&j).MulInt(2).Negate(2) // Y3 = -(2*Y1*J) (mag: 3)
+ y3.Add(v.Add(&negX3).Mul(&r)) // Y3 = r*(V-X3)+Y3 (mag: 4)
+ z3.Add2(z1, &h).Square() // Z3 = (Z1+H)^2 (mag: 1)
+ z3.Add(z1z1.Add(&hh).Negate(2)) // Z3 = Z3-(Z1Z1+HH) (mag: 4)
+
+ // Normalize the resulting field values to a magnitude of 1 as needed.
+ x3.Normalize()
+ y3.Normalize()
+ z3.Normalize()
+}
+
+// addGeneric adds two Jacobian points (x1, y1, z1) and (x2, y2, z2) without any
+// assumptions about the z values of the two points and stores the result in
+// (x3, y3, z3). That is to say (x1, y1, z1) + (x2, y2, z2) = (x3, y3, z3). It
+// is the slowest of the add routines due to requiring the most arithmetic.
+func (curve *KoblitzCurve) addGeneric(x1, y1, z1, x2, y2, z2, x3, y3, z3 *fieldVal) {
+ // To compute the point addition efficiently, this implementation splits
+ // the equation into intermediate elements which are used to minimize
+ // the number of field multiplications using the method shown at:
+ // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
+ //
+ // In particular it performs the calculations using the following:
+ // Z1Z1 = Z1^2, Z2Z2 = Z2^2, U1 = X1*Z2Z2, U2 = X2*Z1Z1, S1 = Y1*Z2*Z2Z2
+ // S2 = Y2*Z1*Z1Z1, H = U2-U1, I = (2*H)^2, J = H*I, r = 2*(S2-S1)
+ // V = U1*I
+ // X3 = r^2-J-2*V, Y3 = r*(V-X3)-2*S1*J, Z3 = ((Z1+Z2)^2-Z1Z1-Z2Z2)*H
+ //
+ // This results in a cost of 11 field multiplications, 5 field squarings,
+ // 9 field additions, and 4 integer multiplications.
+
+ // When the x coordinates are the same for two points on the curve, the
+ // y coordinates either must be the same, in which case it is point
+ // doubling, or they are opposite and the result is the point at
+ // infinity. Since any number of Jacobian coordinates can represent the
+ // same affine point, the x and y values need to be converted to like
+ // terms.
+ var z1z1, z2z2, u1, u2, s1, s2 fieldVal
+ z1z1.SquareVal(z1) // Z1Z1 = Z1^2 (mag: 1)
+ z2z2.SquareVal(z2) // Z2Z2 = Z2^2 (mag: 1)
+ u1.Set(x1).Mul(&z2z2).Normalize() // U1 = X1*Z2Z2 (mag: 1)
+ u2.Set(x2).Mul(&z1z1).Normalize() // U2 = X2*Z1Z1 (mag: 1)
+ s1.Set(y1).Mul(&z2z2).Mul(z2).Normalize() // S1 = Y1*Z2*Z2Z2 (mag: 1)
+ s2.Set(y2).Mul(&z1z1).Mul(z1).Normalize() // S2 = Y2*Z1*Z1Z1 (mag: 1)
+ if u1.Equals(&u2) {
+ if s1.Equals(&s2) {
+ // Since x1 == x2 and y1 == y2, point doubling must be
+ // done, otherwise the addition would end up dividing
+ // by zero.
+ curve.doubleJacobian(x1, y1, z1, x3, y3, z3)
+ return
+ }
+
+ // Since x1 == x2 and y1 == -y2, the sum is the point at
+ // infinity per the group law.
+ x3.SetInt(0)
+ y3.SetInt(0)
+ z3.SetInt(0)
+ return
+ }
+
+ // Calculate X3, Y3, and Z3 according to the intermediate elements
+ // breakdown above.
+ var h, i, j, r, rr, v fieldVal
+ var negU1, negS1, negX3 fieldVal
+ negU1.Set(&u1).Negate(1) // negU1 = -U1 (mag: 2)
+ h.Add2(&u2, &negU1) // H = U2-U1 (mag: 3)
+ i.Set(&h).MulInt(2).Square() // I = (2*H)^2 (mag: 2)
+ j.Mul2(&h, &i) // J = H*I (mag: 1)
+ negS1.Set(&s1).Negate(1) // negS1 = -S1 (mag: 2)
+ r.Set(&s2).Add(&negS1).MulInt(2) // r = 2*(S2-S1) (mag: 6)
+ rr.SquareVal(&r) // rr = r^2 (mag: 1)
+ v.Mul2(&u1, &i) // V = U1*I (mag: 1)
+ x3.Set(&v).MulInt(2).Add(&j).Negate(3) // X3 = -(J+2*V) (mag: 4)
+ x3.Add(&rr) // X3 = r^2+X3 (mag: 5)
+ negX3.Set(x3).Negate(5) // negX3 = -X3 (mag: 6)
+ y3.Mul2(&s1, &j).MulInt(2).Negate(2) // Y3 = -(2*S1*J) (mag: 3)
+ y3.Add(v.Add(&negX3).Mul(&r)) // Y3 = r*(V-X3)+Y3 (mag: 4)
+ z3.Add2(z1, z2).Square() // Z3 = (Z1+Z2)^2 (mag: 1)
+ z3.Add(z1z1.Add(&z2z2).Negate(2)) // Z3 = Z3-(Z1Z1+Z2Z2) (mag: 4)
+ z3.Mul(&h) // Z3 = Z3*H (mag: 1)
+
+ // Normalize the resulting field values to a magnitude of 1 as needed.
+ x3.Normalize()
+ y3.Normalize()
+}
+
+// addJacobian adds the passed Jacobian points (x1, y1, z1) and (x2, y2, z2)
+// together and stores the result in (x3, y3, z3).
+func (curve *KoblitzCurve) addJacobian(x1, y1, z1, x2, y2, z2, x3, y3, z3 *fieldVal) {
+ // A point at infinity is the identity according to the group law for
+ // elliptic curve cryptography. Thus, ∞ + P = P and P + ∞ = P.
+ if (x1.IsZero() && y1.IsZero()) || z1.IsZero() {
+ x3.Set(x2)
+ y3.Set(y2)
+ z3.Set(z2)
+ return
+ }
+ if (x2.IsZero() && y2.IsZero()) || z2.IsZero() {
+ x3.Set(x1)
+ y3.Set(y1)
+ z3.Set(z1)
+ return
+ }
+
+ // Faster point addition can be achieved when certain assumptions are
+ // met. For example, when both points have the same z value, arithmetic
+ // on the z values can be avoided. This section thus checks for these
+ // conditions and calls an appropriate add function which is accelerated
+ // by using those assumptions.
+ z1.Normalize()
+ z2.Normalize()
+ isZ1One := z1.Equals(fieldOne)
+ isZ2One := z2.Equals(fieldOne)
+ switch {
+ case isZ1One && isZ2One:
+ curve.addZ1AndZ2EqualsOne(x1, y1, z1, x2, y2, x3, y3, z3)
+ return
+ case z1.Equals(z2):
+ curve.addZ1EqualsZ2(x1, y1, z1, x2, y2, x3, y3, z3)
+ return
+ case isZ2One:
+ curve.addZ2EqualsOne(x1, y1, z1, x2, y2, x3, y3, z3)
+ return
+ }
+
+ // None of the above assumptions are true, so fall back to generic
+ // point addition.
+ curve.addGeneric(x1, y1, z1, x2, y2, z2, x3, y3, z3)
+}
+
+// Add returns the sum of (x1,y1) and (x2,y2). Part of the elliptic.Curve
+// interface.
+func (curve *KoblitzCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
+ // A point at infinity is the identity according to the group law for
+ // elliptic curve cryptography. Thus, ∞ + P = P and P + ∞ = P.
+ if x1.Sign() == 0 && y1.Sign() == 0 {
+ return x2, y2
+ }
+ if x2.Sign() == 0 && y2.Sign() == 0 {
+ return x1, y1
+ }
+
+ // Convert the affine coordinates from big integers to field values
+ // and do the point addition in Jacobian projective space.
+ fx1, fy1 := curve.bigAffineToField(x1, y1)
+ fx2, fy2 := curve.bigAffineToField(x2, y2)
+ fx3, fy3, fz3 := new(fieldVal), new(fieldVal), new(fieldVal)
+ fOne := new(fieldVal).SetInt(1)
+ curve.addJacobian(fx1, fy1, fOne, fx2, fy2, fOne, fx3, fy3, fz3)
+
+ // Convert the Jacobian coordinate field values back to affine big
+ // integers.
+ return curve.fieldJacobianToBigAffine(fx3, fy3, fz3)
+}
+
+// doubleZ1EqualsOne performs point doubling on the passed Jacobian point
+// when the point is already known to have a z value of 1 and stores
+// the result in (x3, y3, z3). That is to say (x3, y3, z3) = 2*(x1, y1, 1). It
+// performs faster point doubling than the generic routine since less arithmetic
+// is needed due to the ability to avoid multiplication by the z value.
+func (curve *KoblitzCurve) doubleZ1EqualsOne(x1, y1, x3, y3, z3 *fieldVal) {
+ // This function uses the assumptions that z1 is 1, thus the point
+ // doubling formulas reduce to:
+ //
+ // X3 = (3*X1^2)^2 - 8*X1*Y1^2
+ // Y3 = (3*X1^2)*(4*X1*Y1^2 - X3) - 8*Y1^4
+ // Z3 = 2*Y1
+ //
+ // To compute the above efficiently, this implementation splits the
+ // equation into intermediate elements which are used to minimize the
+ // number of field multiplications in favor of field squarings which
+ // are roughly 35% faster than field multiplications with the current
+ // implementation at the time this was written.
+ //
+ // This uses a slightly modified version of the method shown at:
+ // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-mdbl-2007-bl
+ //
+ // In particular it performs the calculations using the following:
+ // A = X1^2, B = Y1^2, C = B^2, D = 2*((X1+B)^2-A-C)
+ // E = 3*A, F = E^2, X3 = F-2*D, Y3 = E*(D-X3)-8*C
+ // Z3 = 2*Y1
+ //
+ // This results in a cost of 1 field multiplication, 5 field squarings,
+ // 6 field additions, and 5 integer multiplications.
+ var a, b, c, d, e, f fieldVal
+ z3.Set(y1).MulInt(2) // Z3 = 2*Y1 (mag: 2)
+ a.SquareVal(x1) // A = X1^2 (mag: 1)
+ b.SquareVal(y1) // B = Y1^2 (mag: 1)
+ c.SquareVal(&b) // C = B^2 (mag: 1)
+ b.Add(x1).Square() // B = (X1+B)^2 (mag: 1)
+ d.Set(&a).Add(&c).Negate(2) // D = -(A+C) (mag: 3)
+ d.Add(&b).MulInt(2) // D = 2*(B+D)(mag: 8)
+ e.Set(&a).MulInt(3) // E = 3*A (mag: 3)
+ f.SquareVal(&e) // F = E^2 (mag: 1)
+ x3.Set(&d).MulInt(2).Negate(16) // X3 = -(2*D) (mag: 17)
+ x3.Add(&f) // X3 = F+X3 (mag: 18)
+ f.Set(x3).Negate(18).Add(&d).Normalize() // F = D-X3 (mag: 1)
+ y3.Set(&c).MulInt(8).Negate(8) // Y3 = -(8*C) (mag: 9)
+ y3.Add(f.Mul(&e)) // Y3 = E*F+Y3 (mag: 10)
+
+ // Normalize the field values back to a magnitude of 1.
+ x3.Normalize()
+ y3.Normalize()
+ z3.Normalize()
+}
+
+// doubleGeneric performs point doubling on the passed Jacobian point without
+// any assumptions about the z value and stores the result in (x3, y3, z3).
+// That is to say (x3, y3, z3) = 2*(x1, y1, z1). It is the slowest of the point
+// doubling routines due to requiring the most arithmetic.
+func (curve *KoblitzCurve) doubleGeneric(x1, y1, z1, x3, y3, z3 *fieldVal) {
+ // Point doubling formula for Jacobian coordinates for the secp256k1
+ // curve:
+ // X3 = (3*X1^2)^2 - 8*X1*Y1^2
+ // Y3 = (3*X1^2)*(4*X1*Y1^2 - X3) - 8*Y1^4
+ // Z3 = 2*Y1*Z1
+ //
+ // To compute the above efficiently, this implementation splits the
+ // equation into intermediate elements which are used to minimize the
+ // number of field multiplications in favor of field squarings which
+ // are roughly 35% faster than field multiplications with the current
+ // implementation at the time this was written.
+ //
+ // This uses a slightly modified version of the method shown at:
+ // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
+ //
+ // In particular it performs the calculations using the following:
+ // A = X1^2, B = Y1^2, C = B^2, D = 2*((X1+B)^2-A-C)
+ // E = 3*A, F = E^2, X3 = F-2*D, Y3 = E*(D-X3)-8*C
+ // Z3 = 2*Y1*Z1
+ //
+ // This results in a cost of 1 field multiplication, 5 field squarings,
+ // 6 field additions, and 5 integer multiplications.
+ var a, b, c, d, e, f fieldVal
+ z3.Mul2(y1, z1).MulInt(2) // Z3 = 2*Y1*Z1 (mag: 2)
+ a.SquareVal(x1) // A = X1^2 (mag: 1)
+ b.SquareVal(y1) // B = Y1^2 (mag: 1)
+ c.SquareVal(&b) // C = B^2 (mag: 1)
+ b.Add(x1).Square() // B = (X1+B)^2 (mag: 1)
+ d.Set(&a).Add(&c).Negate(2) // D = -(A+C) (mag: 3)
+ d.Add(&b).MulInt(2) // D = 2*(B+D)(mag: 8)
+ e.Set(&a).MulInt(3) // E = 3*A (mag: 3)
+ f.SquareVal(&e) // F = E^2 (mag: 1)
+ x3.Set(&d).MulInt(2).Negate(16) // X3 = -(2*D) (mag: 17)
+ x3.Add(&f) // X3 = F+X3 (mag: 18)
+ f.Set(x3).Negate(18).Add(&d).Normalize() // F = D-X3 (mag: 1)
+ y3.Set(&c).MulInt(8).Negate(8) // Y3 = -(8*C) (mag: 9)
+ y3.Add(f.Mul(&e)) // Y3 = E*F+Y3 (mag: 10)
+
+ // Normalize the field values back to a magnitude of 1.
+ x3.Normalize()
+ y3.Normalize()
+ z3.Normalize()
+}
+
+// doubleJacobian doubles the passed Jacobian point (x1, y1, z1) and stores the
+// result in (x3, y3, z3).
+func (curve *KoblitzCurve) doubleJacobian(x1, y1, z1, x3, y3, z3 *fieldVal) {
+ // Doubling a point at infinity is still infinity.
+ if y1.IsZero() || z1.IsZero() {
+ x3.SetInt(0)
+ y3.SetInt(0)
+ z3.SetInt(0)
+ return
+ }
+
+ // Slightly faster point doubling can be achieved when the z value is 1
+ // by avoiding the multiplication on the z value. This section calls
+ // a point doubling function which is accelerated by using that
+ // assumption when possible.
+ if z1.Normalize().Equals(fieldOne) {
+ curve.doubleZ1EqualsOne(x1, y1, x3, y3, z3)
+ return
+ }
+
+ // Fall back to generic point doubling which works with arbitrary z
+ // values.
+ curve.doubleGeneric(x1, y1, z1, x3, y3, z3)
+}
+
+// Double returns 2*(x1,y1). Part of the elliptic.Curve interface.
+func (curve *KoblitzCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
+ if y1.Sign() == 0 {
+ return new(big.Int), new(big.Int)
+ }
+
+ // Convert the affine coordinates from big integers to field values
+ // and do the point doubling in Jacobian projective space.
+ fx1, fy1 := curve.bigAffineToField(x1, y1)
+ fx3, fy3, fz3 := new(fieldVal), new(fieldVal), new(fieldVal)
+ fOne := new(fieldVal).SetInt(1)
+ curve.doubleJacobian(fx1, fy1, fOne, fx3, fy3, fz3)
+
+ // Convert the Jacobian coordinate field values back to affine big
+ // integers.
+ return curve.fieldJacobianToBigAffine(fx3, fy3, fz3)
+}
+
+// splitK returns a balanced length-two representation of k and their signs.
+// This is algorithm 3.74 from [GECC].
+//
+// One thing of note about this algorithm is that no matter what c1 and c2 are,
+// the final equation of k = k1 + k2 * lambda (mod n) will hold. This is
+// provable mathematically due to how a1/b1/a2/b2 are computed.
+//
+// c1 and c2 are chosen to minimize the max(k1,k2).
+func (curve *KoblitzCurve) splitK(k []byte) ([]byte, []byte, int, int) {
+ // All math here is done with big.Int, which is slow.
+ // At some point, it might be useful to write something similar to
+ // fieldVal but for N instead of P as the prime field if this ends up
+ // being a bottleneck.
+ bigIntK := new(big.Int)
+ c1, c2 := new(big.Int), new(big.Int)
+ tmp1, tmp2 := new(big.Int), new(big.Int)
+ k1, k2 := new(big.Int), new(big.Int)
+
+ bigIntK.SetBytes(k)
+ // c1 = round(b2 * k / n) from step 4.
+ // Rounding isn't really necessary and costs too much, hence skipped
+ c1.Mul(curve.b2, bigIntK)
+ c1.Div(c1, curve.N)
+ // c2 = round(b1 * k / n) from step 4 (sign reversed to optimize one step)
+ // Rounding isn't really necessary and costs too much, hence skipped
+ c2.Mul(curve.b1, bigIntK)
+ c2.Div(c2, curve.N)
+ // k1 = k - c1 * a1 - c2 * a2 from step 5 (note c2's sign is reversed)
+ tmp1.Mul(c1, curve.a1)
+ tmp2.Mul(c2, curve.a2)
+ k1.Sub(bigIntK, tmp1)
+ k1.Add(k1, tmp2)
+ // k2 = - c1 * b1 - c2 * b2 from step 5 (note c2's sign is reversed)
+ tmp1.Mul(c1, curve.b1)
+ tmp2.Mul(c2, curve.b2)
+ k2.Sub(tmp2, tmp1)
+
+ // Note Bytes() throws out the sign of k1 and k2. This matters
+ // since k1 and/or k2 can be negative. Hence, we pass that
+ // back separately.
+ return k1.Bytes(), k2.Bytes(), k1.Sign(), k2.Sign()
+}
+
+// moduloReduce reduces k from more than 32 bytes to 32 bytes and under. This
+// is done by doing a simple modulo curve.N. We can do this since G^N = 1 and
+// thus any other valid point on the elliptic curve has the same order.
+func (curve *KoblitzCurve) moduloReduce(k []byte) []byte {
+ // Since the order of G is curve.N, we can use a much smaller number
+ // by doing modulo curve.N
+ if len(k) > curve.byteSize {
+ // Reduce k by performing modulo curve.N.
+ tmpK := new(big.Int).SetBytes(k)
+ tmpK.Mod(tmpK, curve.N)
+ return tmpK.Bytes()
+ }
+
+ return k
+}
+
+// NAF takes a positive integer k and returns the Non-Adjacent Form (NAF) as two
+// byte slices. The first is where 1s will be. The second is where -1s will
+// be. NAF is convenient in that on average, only 1/3rd of its values are
+// non-zero. This is algorithm 3.30 from [GECC].
+//
+// Essentially, this makes it possible to minimize the number of operations
+// since the resulting ints returned will be at least 50% 0s.
+func NAF(k []byte) ([]byte, []byte) {
+ // The essence of this algorithm is that whenever we have consecutive 1s
+ // in the binary, we want to put a -1 in the lowest bit and get a bunch
+ // of 0s up to the highest bit of consecutive 1s. This is due to this
+ // identity:
+ // 2^n + 2^(n-1) + 2^(n-2) + ... + 2^(n-k) = 2^(n+1) - 2^(n-k)
+ //
+ // The algorithm thus may need to go 1 more bit than the length of the
+ // bits we actually have, hence bits being 1 bit longer than was
+ // necessary. Since we need to know whether adding will cause a carry,
+ // we go from right-to-left in this addition.
+ var carry, curIsOne, nextIsOne bool
+ // these default to zero
+ retPos := make([]byte, len(k)+1)
+ retNeg := make([]byte, len(k)+1)
+ for i := len(k) - 1; i >= 0; i-- {
+ curByte := k[i]
+ for j := uint(0); j < 8; j++ {
+ curIsOne = curByte&1 == 1
+ if j == 7 {
+ if i == 0 {
+ nextIsOne = false
+ } else {
+ nextIsOne = k[i-1]&1 == 1
+ }
+ } else {
+ nextIsOne = curByte&2 == 2
+ }
+ if carry {
+ if curIsOne {
+ // This bit is 1, so continue to carry
+ // and don't need to do anything.
+ } else {
+ // We've hit a 0 after some number of
+ // 1s.
+ if nextIsOne {
+ // Start carrying again since
+ // a new sequence of 1s is
+ // starting.
+ retNeg[i+1] += 1 << j
+ } else {
+ // Stop carrying since 1s have
+ // stopped.
+ carry = false
+ retPos[i+1] += 1 << j
+ }
+ }
+ } else if curIsOne {
+ if nextIsOne {
+ // If this is the start of at least 2
+ // consecutive 1s, set the current one
+ // to -1 and start carrying.
+ retNeg[i+1] += 1 << j
+ carry = true
+ } else {
+ // This is a singleton, not consecutive
+ // 1s.
+ retPos[i+1] += 1 << j
+ }
+ }
+ curByte >>= 1
+ }
+ }
+ if carry {
+ retPos[0] = 1
+ }
+
+ return retPos, retNeg
+}
+
+// ScalarMult returns k*(Bx, By) where k is a big endian integer.
+// Part of the elliptic.Curve interface.
+func (curve *KoblitzCurve) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) {
+ // Point Q = ∞ (point at infinity).
+ qx, qy, qz := new(fieldVal), new(fieldVal), new(fieldVal)
+
+ // Decompose K into k1 and k2 in order to halve the number of EC ops.
+ // See Algorithm 3.74 in [GECC].
+ k1, k2, signK1, signK2 := curve.splitK(curve.moduloReduce(k))
+
+ // The main equation here to remember is:
+ // k * P = k1 * P + k2 * Ï•(P)
+ //
+ // P1 below is P in the equation, P2 below is Ï•(P) in the equation
+ p1x, p1y := curve.bigAffineToField(Bx, By)
+ p1yNeg := new(fieldVal).NegateVal(p1y, 1)
+ p1z := new(fieldVal).SetInt(1)
+
+ // NOTE: ϕ(x,y) = (βx,y). The Jacobian z coordinate is 1, so this math
+ // goes through.
+ p2x := new(fieldVal).Mul2(p1x, curve.beta)
+ p2y := new(fieldVal).Set(p1y)
+ p2yNeg := new(fieldVal).NegateVal(p2y, 1)
+ p2z := new(fieldVal).SetInt(1)
+
+ // Flip the positive and negative values of the points as needed
+ // depending on the signs of k1 and k2. As mentioned in the equation
+ // above, each of k1 and k2 are multiplied by the respective point.
+ // Since -k * P is the same thing as k * -P, and the group law for
+ // elliptic curves states that P(x, y) = -P(x, -y), it's faster and
+ // simplifies the code to just make the point negative.
+ if signK1 == -1 {
+ p1y, p1yNeg = p1yNeg, p1y
+ }
+ if signK2 == -1 {
+ p2y, p2yNeg = p2yNeg, p2y
+ }
+
+ // NAF versions of k1 and k2 should have a lot more zeros.
+ //
+ // The Pos version of the bytes contain the +1s and the Neg versions
+ // contain the -1s.
+ k1PosNAF, k1NegNAF := NAF(k1)
+ k2PosNAF, k2NegNAF := NAF(k2)
+ k1Len := len(k1PosNAF)
+ k2Len := len(k2PosNAF)
+
+ m := k1Len
+ if m < k2Len {
+ m = k2Len
+ }
+
+ // Add left-to-right using the NAF optimization. See algorithm 3.77
+ // from [GECC]. This should be faster overall since there will be a lot
+ // more instances of 0, hence reducing the number of Jacobian additions
+ // at the cost of 1 possible extra doubling.
+ var k1BytePos, k1ByteNeg, k2BytePos, k2ByteNeg byte
+ for i := 0; i < m; i++ {
+ // Since we're going left-to-right, pad the front with 0s.
+ if i < m-k1Len {
+ k1BytePos = 0
+ k1ByteNeg = 0
+ } else {
+ k1BytePos = k1PosNAF[i-(m-k1Len)]
+ k1ByteNeg = k1NegNAF[i-(m-k1Len)]
+ }
+ if i < m-k2Len {
+ k2BytePos = 0
+ k2ByteNeg = 0
+ } else {
+ k2BytePos = k2PosNAF[i-(m-k2Len)]
+ k2ByteNeg = k2NegNAF[i-(m-k2Len)]
+ }
+
+ for j := 7; j >= 0; j-- {
+ // Q = 2 * Q
+ curve.doubleJacobian(qx, qy, qz, qx, qy, qz)
+
+ if k1BytePos&0x80 == 0x80 {
+ curve.addJacobian(qx, qy, qz, p1x, p1y, p1z,
+ qx, qy, qz)
+ } else if k1ByteNeg&0x80 == 0x80 {
+ curve.addJacobian(qx, qy, qz, p1x, p1yNeg, p1z,
+ qx, qy, qz)
+ }
+
+ if k2BytePos&0x80 == 0x80 {
+ curve.addJacobian(qx, qy, qz, p2x, p2y, p2z,
+ qx, qy, qz)
+ } else if k2ByteNeg&0x80 == 0x80 {
+ curve.addJacobian(qx, qy, qz, p2x, p2yNeg, p2z,
+ qx, qy, qz)
+ }
+ k1BytePos <<= 1
+ k1ByteNeg <<= 1
+ k2BytePos <<= 1
+ k2ByteNeg <<= 1
+ }
+ }
+
+ // Convert the Jacobian coordinate field values back to affine big.Ints.
+ return curve.fieldJacobianToBigAffine(qx, qy, qz)
+}
+
+// ScalarBaseMult returns k*G where G is the base point of the group and k is a
+// big endian integer.
+// Part of the elliptic.Curve interface.
+func (curve *KoblitzCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
+ newK := curve.moduloReduce(k)
+ diff := len(curve.bytePoints) - len(newK)
+
+ // Point Q = ∞ (point at infinity).
+ qx, qy, qz := new(fieldVal), new(fieldVal), new(fieldVal)
+
+ // curve.bytePoints has all 256 byte points for each 8-bit window. The
+ // strategy is to add up the byte points. This is best understood by
+ // expressing k in base-256 which it already sort of is.
+ // Each "digit" in the 8-bit window can be looked up using bytePoints
+ // and added together.
+ for i, byteVal := range newK {
+ p := curve.bytePoints[diff+i][byteVal]
+ curve.addJacobian(qx, qy, qz, &p[0], &p[1], &p[2], qx, qy, qz)
+ }
+ return curve.fieldJacobianToBigAffine(qx, qy, qz)
+}
+
+// QPlus1Div4 returns the Q+1/4 constant for the curve for use in calculating
+// square roots via exponention.
+func (curve *KoblitzCurve) QPlus1Div4() *big.Int {
+ return curve.q
+}
+
+var initonce sync.Once
+var secp256k1 KoblitzCurve
+
+func initAll() {
+ initS256()
+}
+
+// fromHex converts the passed hex string into a big integer pointer and will
+// panic is there is an error. This is only provided for the hard-coded
+// constants so errors in the source code can bet detected. It will only (and
+// must only) be called for initialization purposes.
+func fromHex(s string) *big.Int {
+ r, ok := new(big.Int).SetString(s, 16)
+ if !ok {
+ panic("invalid hex in source file: " + s)
+ }
+ return r
+}
+
+func initS256() {
+ // Curve parameters taken from [SECG] section 2.4.1.
+ secp256k1.CurveParams = new(elliptic.CurveParams)
+ secp256k1.P = fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F")
+ secp256k1.N = fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141")
+ secp256k1.B = fromHex("0000000000000000000000000000000000000000000000000000000000000007")
+ secp256k1.Gx = fromHex("79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798")
+ secp256k1.Gy = fromHex("483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8")
+ secp256k1.BitSize = 256
+ secp256k1.H = 1
+ secp256k1.q = new(big.Int).Div(new(big.Int).Add(secp256k1.P,
+ big.NewInt(1)), big.NewInt(4))
+
+ // Provided for convenience since this gets computed repeatedly.
+ secp256k1.byteSize = secp256k1.BitSize / 8
+
+ // Deserialize and set the pre-computed table used to accelerate scalar
+ // base multiplication. This is hard-coded data, so any errors are
+ // panics because it means something is wrong in the source code.
+ if err := loadS256BytePoints(); err != nil {
+ panic(err)
+ }
+
+ // Next 6 constants are from Hal Finney's bitcointalk.org post:
+ // https://bitcointalk.org/index.php?topic=3238.msg45565#msg45565
+ // May he rest in peace.
+ //
+ // They have also been independently derived from the code in the
+ // EndomorphismVectors function in gensecp256k1.go.
+ secp256k1.lambda = fromHex("5363AD4CC05C30E0A5261C028812645A122E22EA20816678DF02967C1B23BD72")
+ secp256k1.beta = new(fieldVal).SetHex("7AE96A2B657C07106E64479EAC3434E99CF0497512F58995C1396C28719501EE")
+ secp256k1.a1 = fromHex("3086D221A7D46BCDE86C90E49284EB15")
+ secp256k1.b1 = fromHex("-E4437ED6010E88286F547FA90ABFE4C3")
+ secp256k1.a2 = fromHex("114CA50F7A8E2F3F657C1108D9D44CFD8")
+ secp256k1.b2 = fromHex("3086D221A7D46BCDE86C90E49284EB15")
+
+ // Alternatively, we can use the parameters below, however, they seem
+ // to be about 8% slower.
+ // secp256k1.lambda = fromHex("AC9C52B33FA3CF1F5AD9E3FD77ED9BA4A880B9FC8EC739C2E0CFC810B51283CE")
+ // secp256k1.beta = new(fieldVal).SetHex("851695D49A83F8EF919BB86153CBCB16630FB68AED0A766A3EC693D68E6AFA40")
+ // secp256k1.a1 = fromHex("E4437ED6010E88286F547FA90ABFE4C3")
+ // secp256k1.b1 = fromHex("-3086D221A7D46BCDE86C90E49284EB15")
+ // secp256k1.a2 = fromHex("3086D221A7D46BCDE86C90E49284EB15")
+ // secp256k1.b2 = fromHex("114CA50F7A8E2F3F657C1108D9D44CFD8")
+}
+
+// S256 returns a Curve which implements secp256k1.
+func S256() *KoblitzCurve {
+ initonce.Do(initAll)
+ return &secp256k1
+}
diff --git a/vendor/github.com/btcsuite/btcd/btcec/ciphering.go b/vendor/github.com/btcsuite/btcd/btcec/ciphering.go
new file mode 100644
index 000000000..b18c9b7a3
--- /dev/null
+++ b/vendor/github.com/btcsuite/btcd/btcec/ciphering.go
@@ -0,0 +1,216 @@
+// Copyright (c) 2015-2016 The btcsuite developers
+// Use of this source code is governed by an ISC
+// license that can be found in the LICENSE file.
+
+package btcec
+
+import (
+ "bytes"
+ "crypto/aes"
+ "crypto/cipher"
+ "crypto/hmac"
+ "crypto/rand"
+ "crypto/sha256"
+ "crypto/sha512"
+ "errors"
+ "io"
+)
+
+var (
+ // ErrInvalidMAC occurs when Message Authentication Check (MAC) fails
+ // during decryption. This happens because of either invalid private key or
+ // corrupt ciphertext.
+ ErrInvalidMAC = errors.New("invalid mac hash")
+
+ // errInputTooShort occurs when the input ciphertext to the Decrypt
+ // function is less than 134 bytes long.
+ errInputTooShort = errors.New("ciphertext too short")
+
+ // errUnsupportedCurve occurs when the first two bytes of the encrypted
+ // text aren't 0x02CA (= 712 = secp256k1, from OpenSSL).
+ errUnsupportedCurve = errors.New("unsupported curve")
+
+ errInvalidXLength = errors.New("invalid X length, must be 32")
+ errInvalidYLength = errors.New("invalid Y length, must be 32")
+ errInvalidPadding = errors.New("invalid PKCS#7 padding")
+
+ // 0x02CA = 714
+ ciphCurveBytes = [2]byte{0x02, 0xCA}
+ // 0x20 = 32
+ ciphCoordLength = [2]byte{0x00, 0x20}
+)
+
+// GenerateSharedSecret generates a shared secret based on a private key and a
+// public key using Diffie-Hellman key exchange (ECDH) (RFC 4753).
+// RFC5903 Section 9 states we should only return x.
+func GenerateSharedSecret(privkey *PrivateKey, pubkey *PublicKey) []byte {
+ x, _ := pubkey.Curve.ScalarMult(pubkey.X, pubkey.Y, privkey.D.Bytes())
+ return x.Bytes()
+}
+
+// Encrypt encrypts data for the target public key using AES-256-CBC. It also
+// generates a private key (the pubkey of which is also in the output). The only
+// supported curve is secp256k1. The `structure' that it encodes everything into
+// is:
+//
+// struct {
+// // Initialization Vector used for AES-256-CBC
+// IV [16]byte
+// // Public Key: curve(2) + len_of_pubkeyX(2) + pubkeyX +
+// // len_of_pubkeyY(2) + pubkeyY (curve = 714)
+// PublicKey [70]byte
+// // Cipher text
+// Data []byte
+// // HMAC-SHA-256 Message Authentication Code
+// HMAC [32]byte
+// }
+//
+// The primary aim is to ensure byte compatibility with Pyelliptic. Also, refer
+// to section 5.8.1 of ANSI X9.63 for rationale on this format.
+func Encrypt(pubkey *PublicKey, in []byte) ([]byte, error) {
+ ephemeral, err := NewPrivateKey(S256())
+ if err != nil {
+ return nil, err
+ }
+ ecdhKey := GenerateSharedSecret(ephemeral, pubkey)
+ derivedKey := sha512.Sum512(ecdhKey)
+ keyE := derivedKey[:32]
+ keyM := derivedKey[32:]
+
+ paddedIn := addPKCSPadding(in)
+ // IV + Curve params/X/Y + padded plaintext/ciphertext + HMAC-256
+ out := make([]byte, aes.BlockSize+70+len(paddedIn)+sha256.Size)
+ iv := out[:aes.BlockSize]
+ if _, err = io.ReadFull(rand.Reader, iv); err != nil {
+ return nil, err
+ }
+ // start writing public key
+ pb := ephemeral.PubKey().SerializeUncompressed()
+ offset := aes.BlockSize
+
+ // curve and X length
+ copy(out[offset:offset+4], append(ciphCurveBytes[:], ciphCoordLength[:]...))
+ offset += 4
+ // X
+ copy(out[offset:offset+32], pb[1:33])
+ offset += 32
+ // Y length
+ copy(out[offset:offset+2], ciphCoordLength[:])
+ offset += 2
+ // Y
+ copy(out[offset:offset+32], pb[33:])
+ offset += 32
+
+ // start encryption
+ block, err := aes.NewCipher(keyE)
+ if err != nil {
+ return nil, err
+ }
+ mode := cipher.NewCBCEncrypter(block, iv)
+ mode.CryptBlocks(out[offset:len(out)-sha256.Size], paddedIn)
+
+ // start HMAC-SHA-256
+ hm := hmac.New(sha256.New, keyM)
+ hm.Write(out[:len(out)-sha256.Size]) // everything is hashed
+ copy(out[len(out)-sha256.Size:], hm.Sum(nil)) // write checksum
+
+ return out, nil
+}
+
+// Decrypt decrypts data that was encrypted using the Encrypt function.
+func Decrypt(priv *PrivateKey, in []byte) ([]byte, error) {
+ // IV + Curve params/X/Y + 1 block + HMAC-256
+ if len(in) < aes.BlockSize+70+aes.BlockSize+sha256.Size {
+ return nil, errInputTooShort
+ }
+
+ // read iv
+ iv := in[:aes.BlockSize]
+ offset := aes.BlockSize
+
+ // start reading pubkey
+ if !bytes.Equal(in[offset:offset+2], ciphCurveBytes[:]) {
+ return nil, errUnsupportedCurve
+ }
+ offset += 2
+
+ if !bytes.Equal(in[offset:offset+2], ciphCoordLength[:]) {
+ return nil, errInvalidXLength
+ }
+ offset += 2
+
+ xBytes := in[offset : offset+32]
+ offset += 32
+
+ if !bytes.Equal(in[offset:offset+2], ciphCoordLength[:]) {
+ return nil, errInvalidYLength
+ }
+ offset += 2
+
+ yBytes := in[offset : offset+32]
+ offset += 32
+
+ pb := make([]byte, 65)
+ pb[0] = byte(0x04) // uncompressed
+ copy(pb[1:33], xBytes)
+ copy(pb[33:], yBytes)
+ // check if (X, Y) lies on the curve and create a Pubkey if it does
+ pubkey, err := ParsePubKey(pb, S256())
+ if err != nil {
+ return nil, err
+ }
+
+ // check for cipher text length
+ if (len(in)-aes.BlockSize-offset-sha256.Size)%aes.BlockSize != 0 {
+ return nil, errInvalidPadding // not padded to 16 bytes
+ }
+
+ // read hmac
+ messageMAC := in[len(in)-sha256.Size:]
+
+ // generate shared secret
+ ecdhKey := GenerateSharedSecret(priv, pubkey)
+ derivedKey := sha512.Sum512(ecdhKey)
+ keyE := derivedKey[:32]
+ keyM := derivedKey[32:]
+
+ // verify mac
+ hm := hmac.New(sha256.New, keyM)
+ hm.Write(in[:len(in)-sha256.Size]) // everything is hashed
+ expectedMAC := hm.Sum(nil)
+ if !hmac.Equal(messageMAC, expectedMAC) {
+ return nil, ErrInvalidMAC
+ }
+
+ // start decryption
+ block, err := aes.NewCipher(keyE)
+ if err != nil {
+ return nil, err
+ }
+ mode := cipher.NewCBCDecrypter(block, iv)
+ // same length as ciphertext
+ plaintext := make([]byte, len(in)-offset-sha256.Size)
+ mode.CryptBlocks(plaintext, in[offset:len(in)-sha256.Size])
+
+ return removePKCSPadding(plaintext)
+}
+
+// Implement PKCS#7 padding with block size of 16 (AES block size).
+
+// addPKCSPadding adds padding to a block of data
+func addPKCSPadding(src []byte) []byte {
+ padding := aes.BlockSize - len(src)%aes.BlockSize
+ padtext := bytes.Repeat([]byte{byte(padding)}, padding)
+ return append(src, padtext...)
+}
+
+// removePKCSPadding removes padding from data that was added with addPKCSPadding
+func removePKCSPadding(src []byte) ([]byte, error) {
+ length := len(src)
+ padLength := int(src[length-1])
+ if padLength > aes.BlockSize || length < aes.BlockSize {
+ return nil, errInvalidPadding
+ }
+
+ return src[:length-padLength], nil
+}
diff --git a/vendor/github.com/btcsuite/btcd/btcec/doc.go b/vendor/github.com/btcsuite/btcd/btcec/doc.go
new file mode 100644
index 000000000..fa8346ab0
--- /dev/null
+++ b/vendor/github.com/btcsuite/btcd/btcec/doc.go
@@ -0,0 +1,21 @@
+// Copyright (c) 2013-2014 The btcsuite developers
+// Use of this source code is governed by an ISC
+// license that can be found in the LICENSE file.
+
+/*
+Package btcec implements support for the elliptic curves needed for bitcoin.
+
+Bitcoin uses elliptic curve cryptography using koblitz curves
+(specifically secp256k1) for cryptographic functions. See
+http://www.secg.org/collateral/sec2_final.pdf for details on the
+standard.
+
+This package provides the data structures and functions implementing the
+crypto/elliptic Curve interface in order to permit using these curves
+with the standard crypto/ecdsa package provided with go. Helper
+functionality is provided to parse signatures and public keys from
+standard formats. It was designed for use with btcd, but should be
+general enough for other uses of elliptic curve crypto. It was originally based
+on some initial work by ThePiachu, but has significantly diverged since then.
+*/
+package btcec
diff --git a/vendor/github.com/btcsuite/btcd/btcec/field.go b/vendor/github.com/btcsuite/btcd/btcec/field.go
new file mode 100644
index 000000000..c2c6a645d
--- /dev/null
+++ b/vendor/github.com/btcsuite/btcd/btcec/field.go
@@ -0,0 +1,1262 @@
+// Copyright (c) 2013-2016 The btcsuite developers
+// Copyright (c) 2013-2016 Dave Collins
+// Use of this source code is governed by an ISC
+// license that can be found in the LICENSE file.
+
+package btcec
+
+// References:
+// [HAC]: Handbook of Applied Cryptography Menezes, van Oorschot, Vanstone.
+// http://cacr.uwaterloo.ca/hac/
+
+// All elliptic curve operations for secp256k1 are done in a finite field
+// characterized by a 256-bit prime. Given this precision is larger than the
+// biggest available native type, obviously some form of bignum math is needed.
+// This package implements specialized fixed-precision field arithmetic rather
+// than relying on an arbitrary-precision arithmetic package such as math/big
+// for dealing with the field math since the size is known. As a result, rather
+// large performance gains are achieved by taking advantage of many
+// optimizations not available to arbitrary-precision arithmetic and generic
+// modular arithmetic algorithms.
+//
+// There are various ways to internally represent each finite field element.
+// For example, the most obvious representation would be to use an array of 4
+// uint64s (64 bits * 4 = 256 bits). However, that representation suffers from
+// a couple of issues. First, there is no native Go type large enough to handle
+// the intermediate results while adding or multiplying two 64-bit numbers, and
+// second there is no space left for overflows when performing the intermediate
+// arithmetic between each array element which would lead to expensive carry
+// propagation.
+//
+// Given the above, this implementation represents the the field elements as
+// 10 uint32s with each word (array entry) treated as base 2^26. This was
+// chosen for the following reasons:
+// 1) Most systems at the current time are 64-bit (or at least have 64-bit
+// registers available for specialized purposes such as MMX) so the
+// intermediate results can typically be done using a native register (and
+// using uint64s to avoid the need for additional half-word arithmetic)
+// 2) In order to allow addition of the internal words without having to
+// propagate the the carry, the max normalized value for each register must
+// be less than the number of bits available in the register
+// 3) Since we're dealing with 32-bit values, 64-bits of overflow is a
+// reasonable choice for #2
+// 4) Given the need for 256-bits of precision and the properties stated in #1,
+// #2, and #3, the representation which best accommodates this is 10 uint32s
+// with base 2^26 (26 bits * 10 = 260 bits, so the final word only needs 22
+// bits) which leaves the desired 64 bits (32 * 10 = 320, 320 - 256 = 64) for
+// overflow
+//
+// Since it is so important that the field arithmetic is extremely fast for
+// high performance crypto, this package does not perform any validation where
+// it ordinarily would. For example, some functions only give the correct
+// result is the field is normalized and there is no checking to ensure it is.
+// While I typically prefer to ensure all state and input is valid for most
+// packages, this code is really only used internally and every extra check
+// counts.
+
+import (
+ "encoding/hex"
+)
+
+// Constants used to make the code more readable.
+const (
+ twoBitsMask = 0x3
+ fourBitsMask = 0xf
+ sixBitsMask = 0x3f
+ eightBitsMask = 0xff
+)
+
+// Constants related to the field representation.
+const (
+ // fieldWords is the number of words used to internally represent the
+ // 256-bit value.
+ fieldWords = 10
+
+ // fieldBase is the exponent used to form the numeric base of each word.
+ // 2^(fieldBase*i) where i is the word position.
+ fieldBase = 26
+
+ // fieldOverflowBits is the minimum number of "overflow" bits for each
+ // word in the field value.
+ fieldOverflowBits = 32 - fieldBase
+
+ // fieldBaseMask is the mask for the bits in each word needed to
+ // represent the numeric base of each word (except the most significant
+ // word).
+ fieldBaseMask = (1 << fieldBase) - 1
+
+ // fieldMSBBits is the number of bits in the most significant word used
+ // to represent the value.
+ fieldMSBBits = 256 - (fieldBase * (fieldWords - 1))
+
+ // fieldMSBMask is the mask for the bits in the most significant word
+ // needed to represent the value.
+ fieldMSBMask = (1 << fieldMSBBits) - 1
+
+ // fieldPrimeWordZero is word zero of the secp256k1 prime in the
+ // internal field representation. It is used during negation.
+ fieldPrimeWordZero = 0x3fffc2f
+
+ // fieldPrimeWordOne is word one of the secp256k1 prime in the
+ // internal field representation. It is used during negation.
+ fieldPrimeWordOne = 0x3ffffbf
+
+ // primeLowBits is the lower 2*fieldBase bits of the secp256k1 prime in
+ // its standard normalized form. It is used during modular reduction.
+ primeLowBits = 0xffffefffffc2f
+)
+
+// fieldVal implements optimized fixed-precision arithmetic over the
+// secp256k1 finite field. This means all arithmetic is performed modulo
+// 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f. It
+// represents each 256-bit value as 10 32-bit integers in base 2^26. This
+// provides 6 bits of overflow in each word (10 bits in the most significant
+// word) for a total of 64 bits of overflow (9*6 + 10 = 64). It only implements
+// the arithmetic needed for elliptic curve operations.
+//
+// The following depicts the internal representation:
+// -----------------------------------------------------------------
+// | n[9] | n[8] | ... | n[0] |
+// | 32 bits available | 32 bits available | ... | 32 bits available |
+// | 22 bits for value | 26 bits for value | ... | 26 bits for value |
+// | 10 bits overflow | 6 bits overflow | ... | 6 bits overflow |
+// | Mult: 2^(26*9) | Mult: 2^(26*8) | ... | Mult: 2^(26*0) |
+// -----------------------------------------------------------------
+//
+// For example, consider the number 2^49 + 1. It would be represented as:
+// n[0] = 1
+// n[1] = 2^23
+// n[2..9] = 0
+//
+// The full 256-bit value is then calculated by looping i from 9..0 and
+// doing sum(n[i] * 2^(26i)) like so:
+// n[9] * 2^(26*9) = 0 * 2^234 = 0
+// n[8] * 2^(26*8) = 0 * 2^208 = 0
+// ...
+// n[1] * 2^(26*1) = 2^23 * 2^26 = 2^49
+// n[0] * 2^(26*0) = 1 * 2^0 = 1
+// Sum: 0 + 0 + ... + 2^49 + 1 = 2^49 + 1
+type fieldVal struct {
+ n [10]uint32
+}
+
+// String returns the field value as a human-readable hex string.
+func (f fieldVal) String() string {
+ t := new(fieldVal).Set(&f).Normalize()
+ return hex.EncodeToString(t.Bytes()[:])
+}
+
+// Zero sets the field value to zero. A newly created field value is already
+// set to zero. This function can be useful to clear an existing field value
+// for reuse.
+func (f *fieldVal) Zero() {
+ f.n[0] = 0
+ f.n[1] = 0
+ f.n[2] = 0
+ f.n[3] = 0
+ f.n[4] = 0
+ f.n[5] = 0
+ f.n[6] = 0
+ f.n[7] = 0
+ f.n[8] = 0
+ f.n[9] = 0
+}
+
+// Set sets the field value equal to the passed value.
+//
+// The field value is returned to support chaining. This enables syntax like:
+// f := new(fieldVal).Set(f2).Add(1) so that f = f2 + 1 where f2 is not
+// modified.
+func (f *fieldVal) Set(val *fieldVal) *fieldVal {
+ *f = *val
+ return f
+}
+
+// SetInt sets the field value to the passed integer. This is a convenience
+// function since it is fairly common to perform some arithemetic with small
+// native integers.
+//
+// The field value is returned to support chaining. This enables syntax such
+// as f := new(fieldVal).SetInt(2).Mul(f2) so that f = 2 * f2.
+func (f *fieldVal) SetInt(ui uint) *fieldVal {
+ f.Zero()
+ f.n[0] = uint32(ui)
+ return f
+}
+
+// SetBytes packs the passed 32-byte big-endian value into the internal field
+// value representation.
+//
+// The field value is returned to support chaining. This enables syntax like:
+// f := new(fieldVal).SetBytes(byteArray).Mul(f2) so that f = ba * f2.
+func (f *fieldVal) SetBytes(b *[32]byte) *fieldVal {
+ // Pack the 256 total bits across the 10 uint32 words with a max of
+ // 26-bits per word. This could be done with a couple of for loops,
+ // but this unrolled version is significantly faster. Benchmarks show
+ // this is about 34 times faster than the variant which uses loops.
+ f.n[0] = uint32(b[31]) | uint32(b[30])<<8 | uint32(b[29])<<16 |
+ (uint32(b[28])&twoBitsMask)<<24
+ f.n[1] = uint32(b[28])>>2 | uint32(b[27])<<6 | uint32(b[26])<<14 |
+ (uint32(b[25])&fourBitsMask)<<22
+ f.n[2] = uint32(b[25])>>4 | uint32(b[24])<<4 | uint32(b[23])<<12 |
+ (uint32(b[22])&sixBitsMask)<<20
+ f.n[3] = uint32(b[22])>>6 | uint32(b[21])<<2 | uint32(b[20])<<10 |
+ uint32(b[19])<<18
+ f.n[4] = uint32(b[18]) | uint32(b[17])<<8 | uint32(b[16])<<16 |
+ (uint32(b[15])&twoBitsMask)<<24
+ f.n[5] = uint32(b[15])>>2 | uint32(b[14])<<6 | uint32(b[13])<<14 |
+ (uint32(b[12])&fourBitsMask)<<22
+ f.n[6] = uint32(b[12])>>4 | uint32(b[11])<<4 | uint32(b[10])<<12 |
+ (uint32(b[9])&sixBitsMask)<<20
+ f.n[7] = uint32(b[9])>>6 | uint32(b[8])<<2 | uint32(b[7])<<10 |
+ uint32(b[6])<<18
+ f.n[8] = uint32(b[5]) | uint32(b[4])<<8 | uint32(b[3])<<16 |
+ (uint32(b[2])&twoBitsMask)<<24
+ f.n[9] = uint32(b[2])>>2 | uint32(b[1])<<6 | uint32(b[0])<<14
+ return f
+}
+
+// SetByteSlice packs the passed big-endian value into the internal field value
+// representation. Only the first 32-bytes are used. As a result, it is up to
+// the caller to ensure numbers of the appropriate size are used or the value
+// will be truncated.
+//
+// The field value is returned to support chaining. This enables syntax like:
+// f := new(fieldVal).SetByteSlice(byteSlice)
+func (f *fieldVal) SetByteSlice(b []byte) *fieldVal {
+ var b32 [32]byte
+ for i := 0; i < len(b); i++ {
+ if i < 32 {
+ b32[i+(32-len(b))] = b[i]
+ }
+ }
+ return f.SetBytes(&b32)
+}
+
+// SetHex decodes the passed big-endian hex string into the internal field value
+// representation. Only the first 32-bytes are used.
+//
+// The field value is returned to support chaining. This enables syntax like:
+// f := new(fieldVal).SetHex("0abc").Add(1) so that f = 0x0abc + 1
+func (f *fieldVal) SetHex(hexString string) *fieldVal {
+ if len(hexString)%2 != 0 {
+ hexString = "0" + hexString
+ }
+ bytes, _ := hex.DecodeString(hexString)
+ return f.SetByteSlice(bytes)
+}
+
+// Normalize normalizes the internal field words into the desired range and
+// performs fast modular reduction over the secp256k1 prime by making use of the
+// special form of the prime.
+func (f *fieldVal) Normalize() *fieldVal {
+ // The field representation leaves 6 bits of overflow in each
+ // word so intermediate calculations can be performed without needing
+ // to propagate the carry to each higher word during the calculations.
+ // In order to normalize, first we need to "compact" the full 256-bit
+ // value to the right and treat the additional 64 leftmost bits as
+ // the magnitude.
+ m := f.n[0]
+ t0 := m & fieldBaseMask
+ m = (m >> fieldBase) + f.n[1]
+ t1 := m & fieldBaseMask
+ m = (m >> fieldBase) + f.n[2]
+ t2 := m & fieldBaseMask
+ m = (m >> fieldBase) + f.n[3]
+ t3 := m & fieldBaseMask
+ m = (m >> fieldBase) + f.n[4]
+ t4 := m & fieldBaseMask
+ m = (m >> fieldBase) + f.n[5]
+ t5 := m & fieldBaseMask
+ m = (m >> fieldBase) + f.n[6]
+ t6 := m & fieldBaseMask
+ m = (m >> fieldBase) + f.n[7]
+ t7 := m & fieldBaseMask
+ m = (m >> fieldBase) + f.n[8]
+ t8 := m & fieldBaseMask
+ m = (m >> fieldBase) + f.n[9]
+ t9 := m & fieldMSBMask
+ m = m >> fieldMSBBits
+
+ // At this point, if the magnitude is greater than 0, the overall value
+ // is greater than the max possible 256-bit value. In particular, it is
+ // "how many times larger" than the max value it is. Since this field
+ // is doing arithmetic modulo the secp256k1 prime, we need to perform
+ // modular reduction over the prime.
+ //
+ // Per [HAC] section 14.3.4: Reduction method of moduli of special form,
+ // when the modulus is of the special form m = b^t - c, highly efficient
+ // reduction can be achieved.
+ //
+ // The secp256k1 prime is equivalent to 2^256 - 4294968273, so it fits
+ // this criteria.
+ //
+ // 4294968273 in field representation (base 2^26) is:
+ // n[0] = 977
+ // n[1] = 64
+ // That is to say (2^26 * 64) + 977 = 4294968273
+ //
+ // The algorithm presented in the referenced section typically repeats
+ // until the quotient is zero. However, due to our field representation
+ // we already know at least how many times we would need to repeat as
+ // it's the value currently in m. Thus we can simply multiply the
+ // magnitude by the field representation of the prime and do a single
+ // iteration. Notice that nothing will be changed when the magnitude is
+ // zero, so we could skip this in that case, however always running
+ // regardless allows it to run in constant time.
+ r := t0 + m*977
+ t0 = r & fieldBaseMask
+ r = (r >> fieldBase) + t1 + m*64
+ t1 = r & fieldBaseMask
+ r = (r >> fieldBase) + t2
+ t2 = r & fieldBaseMask
+ r = (r >> fieldBase) + t3
+ t3 = r & fieldBaseMask
+ r = (r >> fieldBase) + t4
+ t4 = r & fieldBaseMask
+ r = (r >> fieldBase) + t5
+ t5 = r & fieldBaseMask
+ r = (r >> fieldBase) + t6
+ t6 = r & fieldBaseMask
+ r = (r >> fieldBase) + t7
+ t7 = r & fieldBaseMask
+ r = (r >> fieldBase) + t8
+ t8 = r & fieldBaseMask
+ r = (r >> fieldBase) + t9
+ t9 = r & fieldMSBMask
+
+ // At this point, the result will be in the range 0 <= result <=
+ // prime + (2^64 - c). Therefore, one more subtraction of the prime
+ // might be needed if the current result is greater than or equal to the
+ // prime. The following does the final reduction in constant time.
+ // Note that the if/else here intentionally does the bitwise OR with
+ // zero even though it won't change the value to ensure constant time
+ // between the branches.
+ var mask int32
+ lowBits := uint64(t1)<<fieldBase | uint64(t0)
+ if lowBits < primeLowBits {
+ mask |= -1
+ } else {
+ mask |= 0
+ }
+ if t2 < fieldBaseMask {
+ mask |= -1
+ } else {
+ mask |= 0
+ }
+ if t3 < fieldBaseMask {
+ mask |= -1
+ } else {
+ mask |= 0
+ }
+ if t4 < fieldBaseMask {
+ mask |= -1
+ } else {
+ mask |= 0
+ }
+ if t5 < fieldBaseMask {
+ mask |= -1
+ } else {
+ mask |= 0
+ }
+ if t6 < fieldBaseMask {
+ mask |= -1
+ } else {
+ mask |= 0
+ }
+ if t7 < fieldBaseMask {
+ mask |= -1
+ } else {
+ mask |= 0
+ }
+ if t8 < fieldBaseMask {
+ mask |= -1
+ } else {
+ mask |= 0
+ }
+ if t9 < fieldMSBMask {
+ mask |= -1
+ } else {
+ mask |= 0
+ }
+ lowBits -= ^uint64(mask) & primeLowBits
+ t0 = uint32(lowBits & fieldBaseMask)
+ t1 = uint32((lowBits >> fieldBase) & fieldBaseMask)
+ t2 = t2 & uint32(mask)
+ t3 = t3 & uint32(mask)
+ t4 = t4 & uint32(mask)
+ t5 = t5 & uint32(mask)
+ t6 = t6 & uint32(mask)
+ t7 = t7 & uint32(mask)
+ t8 = t8 & uint32(mask)
+ t9 = t9 & uint32(mask)
+
+ // Finally, set the normalized and reduced words.
+ f.n[0] = t0
+ f.n[1] = t1
+ f.n[2] = t2
+ f.n[3] = t3
+ f.n[4] = t4
+ f.n[5] = t5
+ f.n[6] = t6
+ f.n[7] = t7
+ f.n[8] = t8
+ f.n[9] = t9
+ return f
+}
+
+// PutBytes unpacks the field value to a 32-byte big-endian value using the
+// passed byte array. There is a similar function, Bytes, which unpacks the
+// field value into a new array and returns that. This version is provided
+// since it can be useful to cut down on the number of allocations by allowing
+// the caller to reuse a buffer.
+//
+// The field value must be normalized for this function to return the correct
+// result.
+func (f *fieldVal) PutBytes(b *[32]byte) {
+ // Unpack the 256 total bits from the 10 uint32 words with a max of
+ // 26-bits per word. This could be done with a couple of for loops,
+ // but this unrolled version is a bit faster. Benchmarks show this is
+ // about 10 times faster than the variant which uses loops.
+ b[31] = byte(f.n[0] & eightBitsMask)
+ b[30] = byte((f.n[0] >> 8) & eightBitsMask)
+ b[29] = byte((f.n[0] >> 16) & eightBitsMask)
+ b[28] = byte((f.n[0]>>24)&twoBitsMask | (f.n[1]&sixBitsMask)<<2)
+ b[27] = byte((f.n[1] >> 6) & eightBitsMask)
+ b[26] = byte((f.n[1] >> 14) & eightBitsMask)
+ b[25] = byte((f.n[1]>>22)&fourBitsMask | (f.n[2]&fourBitsMask)<<4)
+ b[24] = byte((f.n[2] >> 4) & eightBitsMask)
+ b[23] = byte((f.n[2] >> 12) & eightBitsMask)
+ b[22] = byte((f.n[2]>>20)&sixBitsMask | (f.n[3]&twoBitsMask)<<6)
+ b[21] = byte((f.n[3] >> 2) & eightBitsMask)
+ b[20] = byte((f.n[3] >> 10) & eightBitsMask)
+ b[19] = byte((f.n[3] >> 18) & eightBitsMask)
+ b[18] = byte(f.n[4] & eightBitsMask)
+ b[17] = byte((f.n[4] >> 8) & eightBitsMask)
+ b[16] = byte((f.n[4] >> 16) & eightBitsMask)
+ b[15] = byte((f.n[4]>>24)&twoBitsMask | (f.n[5]&sixBitsMask)<<2)
+ b[14] = byte((f.n[5] >> 6) & eightBitsMask)
+ b[13] = byte((f.n[5] >> 14) & eightBitsMask)
+ b[12] = byte((f.n[5]>>22)&fourBitsMask | (f.n[6]&fourBitsMask)<<4)
+ b[11] = byte((f.n[6] >> 4) & eightBitsMask)
+ b[10] = byte((f.n[6] >> 12) & eightBitsMask)
+ b[9] = byte((f.n[6]>>20)&sixBitsMask | (f.n[7]&twoBitsMask)<<6)
+ b[8] = byte((f.n[7] >> 2) & eightBitsMask)
+ b[7] = byte((f.n[7] >> 10) & eightBitsMask)
+ b[6] = byte((f.n[7] >> 18) & eightBitsMask)
+ b[5] = byte(f.n[8] & eightBitsMask)
+ b[4] = byte((f.n[8] >> 8) & eightBitsMask)
+ b[3] = byte((f.n[8] >> 16) & eightBitsMask)
+ b[2] = byte((f.n[8]>>24)&twoBitsMask | (f.n[9]&sixBitsMask)<<2)
+ b[1] = byte((f.n[9] >> 6) & eightBitsMask)
+ b[0] = byte((f.n[9] >> 14) & eightBitsMask)
+}
+
+// Bytes unpacks the field value to a 32-byte big-endian value. See PutBytes
+// for a variant that allows the a buffer to be passed which can be useful to
+// to cut down on the number of allocations by allowing the caller to reuse a
+// buffer.
+//
+// The field value must be normalized for this function to return correct
+// result.
+func (f *fieldVal) Bytes() *[32]byte {
+ b := new([32]byte)
+ f.PutBytes(b)
+ return b
+}
+
+// IsZero returns whether or not the field value is equal to zero.
+func (f *fieldVal) IsZero() bool {
+ // The value can only be zero if no bits are set in any of the words.
+ // This is a constant time implementation.
+ bits := f.n[0] | f.n[1] | f.n[2] | f.n[3] | f.n[4] |
+ f.n[5] | f.n[6] | f.n[7] | f.n[8] | f.n[9]
+
+ return bits == 0
+}
+
+// IsOdd returns whether or not the field value is an odd number.
+//
+// The field value must be normalized for this function to return correct
+// result.
+func (f *fieldVal) IsOdd() bool {
+ // Only odd numbers have the bottom bit set.
+ return f.n[0]&1 == 1
+}
+
+// Equals returns whether or not the two field values are the same. Both
+// field values being compared must be normalized for this function to return
+// the correct result.
+func (f *fieldVal) Equals(val *fieldVal) bool {
+ // Xor only sets bits when they are different, so the two field values
+ // can only be the same if no bits are set after xoring each word.
+ // This is a constant time implementation.
+ bits := (f.n[0] ^ val.n[0]) | (f.n[1] ^ val.n[1]) | (f.n[2] ^ val.n[2]) |
+ (f.n[3] ^ val.n[3]) | (f.n[4] ^ val.n[4]) | (f.n[5] ^ val.n[5]) |
+ (f.n[6] ^ val.n[6]) | (f.n[7] ^ val.n[7]) | (f.n[8] ^ val.n[8]) |
+ (f.n[9] ^ val.n[9])
+
+ return bits == 0
+}
+
+// NegateVal negates the passed value and stores the result in f. The caller
+// must provide the magnitude of the passed value for a correct result.
+//
+// The field value is returned to support chaining. This enables syntax like:
+// f.NegateVal(f2).AddInt(1) so that f = -f2 + 1.
+func (f *fieldVal) NegateVal(val *fieldVal, magnitude uint32) *fieldVal {
+ // Negation in the field is just the prime minus the value. However,
+ // in order to allow negation against a field value without having to
+ // normalize/reduce it first, multiply by the magnitude (that is how
+ // "far" away it is from the normalized value) to adjust. Also, since
+ // negating a value pushes it one more order of magnitude away from the
+ // normalized range, add 1 to compensate.
+ //
+ // For some intuition here, imagine you're performing mod 12 arithmetic
+ // (picture a clock) and you are negating the number 7. So you start at
+ // 12 (which is of course 0 under mod 12) and count backwards (left on
+ // the clock) 7 times to arrive at 5. Notice this is just 12-7 = 5.
+ // Now, assume you're starting with 19, which is a number that is
+ // already larger than the modulus and congruent to 7 (mod 12). When a
+ // value is already in the desired range, its magnitude is 1. Since 19
+ // is an additional "step", its magnitude (mod 12) is 2. Since any
+ // multiple of the modulus is conguent to zero (mod m), the answer can
+ // be shortcut by simply mulplying the magnitude by the modulus and
+ // subtracting. Keeping with the example, this would be (2*12)-19 = 5.
+ f.n[0] = (magnitude+1)*fieldPrimeWordZero - val.n[0]
+ f.n[1] = (magnitude+1)*fieldPrimeWordOne - val.n[1]
+ f.n[2] = (magnitude+1)*fieldBaseMask - val.n[2]
+ f.n[3] = (magnitude+1)*fieldBaseMask - val.n[3]
+ f.n[4] = (magnitude+1)*fieldBaseMask - val.n[4]
+ f.n[5] = (magnitude+1)*fieldBaseMask - val.n[5]
+ f.n[6] = (magnitude+1)*fieldBaseMask - val.n[6]
+ f.n[7] = (magnitude+1)*fieldBaseMask - val.n[7]
+ f.n[8] = (magnitude+1)*fieldBaseMask - val.n[8]
+ f.n[9] = (magnitude+1)*fieldMSBMask - val.n[9]
+
+ return f
+}
+
+// Negate negates the field value. The existing field value is modified. The
+// caller must provide the magnitude of the field value for a correct result.
+//
+// The field value is returned to support chaining. This enables syntax like:
+// f.Negate().AddInt(1) so that f = -f + 1.
+func (f *fieldVal) Negate(magnitude uint32) *fieldVal {
+ return f.NegateVal(f, magnitude)
+}
+
+// AddInt adds the passed integer to the existing field value and stores the
+// result in f. This is a convenience function since it is fairly common to
+// perform some arithemetic with small native integers.
+//
+// The field value is returned to support chaining. This enables syntax like:
+// f.AddInt(1).Add(f2) so that f = f + 1 + f2.
+func (f *fieldVal) AddInt(ui uint) *fieldVal {
+ // Since the field representation intentionally provides overflow bits,
+ // it's ok to use carryless addition as the carry bit is safely part of
+ // the word and will be normalized out.
+ f.n[0] += uint32(ui)
+
+ return f
+}
+
+// Add adds the passed value to the existing field value and stores the result
+// in f.
+//
+// The field value is returned to support chaining. This enables syntax like:
+// f.Add(f2).AddInt(1) so that f = f + f2 + 1.
+func (f *fieldVal) Add(val *fieldVal) *fieldVal {
+ // Since the field representation intentionally provides overflow bits,
+ // it's ok to use carryless addition as the carry bit is safely part of
+ // each word and will be normalized out. This could obviously be done
+ // in a loop, but the unrolled version is faster.
+ f.n[0] += val.n[0]
+ f.n[1] += val.n[1]
+ f.n[2] += val.n[2]
+ f.n[3] += val.n[3]
+ f.n[4] += val.n[4]
+ f.n[5] += val.n[5]
+ f.n[6] += val.n[6]
+ f.n[7] += val.n[7]
+ f.n[8] += val.n[8]
+ f.n[9] += val.n[9]
+
+ return f
+}
+
+// Add2 adds the passed two field values together and stores the result in f.
+//
+// The field value is returned to support chaining. This enables syntax like:
+// f3.Add2(f, f2).AddInt(1) so that f3 = f + f2 + 1.
+func (f *fieldVal) Add2(val *fieldVal, val2 *fieldVal) *fieldVal {
+ // Since the field representation intentionally provides overflow bits,
+ // it's ok to use carryless addition as the carry bit is safely part of
+ // each word and will be normalized out. This could obviously be done
+ // in a loop, but the unrolled version is faster.
+ f.n[0] = val.n[0] + val2.n[0]
+ f.n[1] = val.n[1] + val2.n[1]
+ f.n[2] = val.n[2] + val2.n[2]
+ f.n[3] = val.n[3] + val2.n[3]
+ f.n[4] = val.n[4] + val2.n[4]
+ f.n[5] = val.n[5] + val2.n[5]
+ f.n[6] = val.n[6] + val2.n[6]
+ f.n[7] = val.n[7] + val2.n[7]
+ f.n[8] = val.n[8] + val2.n[8]
+ f.n[9] = val.n[9] + val2.n[9]
+
+ return f
+}
+
+// MulInt multiplies the field value by the passed int and stores the result in
+// f. Note that this function can overflow if multiplying the value by any of
+// the individual words exceeds a max uint32. Therefore it is important that
+// the caller ensures no overflows will occur before using this function.
+//
+// The field value is returned to support chaining. This enables syntax like:
+// f.MulInt(2).Add(f2) so that f = 2 * f + f2.
+func (f *fieldVal) MulInt(val uint) *fieldVal {
+ // Since each word of the field representation can hold up to
+ // fieldOverflowBits extra bits which will be normalized out, it's safe
+ // to multiply each word without using a larger type or carry
+ // propagation so long as the values won't overflow a uint32. This
+ // could obviously be done in a loop, but the unrolled version is
+ // faster.
+ ui := uint32(val)
+ f.n[0] *= ui
+ f.n[1] *= ui
+ f.n[2] *= ui
+ f.n[3] *= ui
+ f.n[4] *= ui
+ f.n[5] *= ui
+ f.n[6] *= ui
+ f.n[7] *= ui
+ f.n[8] *= ui
+ f.n[9] *= ui
+
+ return f
+}
+
+// Mul multiplies the passed value to the existing field value and stores the
+// result in f. Note that this function can overflow if multiplying any
+// of the individual words exceeds a max uint32. In practice, this means the
+// magnitude of either value involved in the multiplication must be a max of
+// 8.
+//
+// The field value is returned to support chaining. This enables syntax like:
+// f.Mul(f2).AddInt(1) so that f = (f * f2) + 1.
+func (f *fieldVal) Mul(val *fieldVal) *fieldVal {
+ return f.Mul2(f, val)
+}
+
+// Mul2 multiplies the passed two field values together and stores the result
+// result in f. Note that this function can overflow if multiplying any of
+// the individual words exceeds a max uint32. In practice, this means the
+// magnitude of either value involved in the multiplication must be a max of
+// 8.
+//
+// The field value is returned to support chaining. This enables syntax like:
+// f3.Mul2(f, f2).AddInt(1) so that f3 = (f * f2) + 1.
+func (f *fieldVal) Mul2(val *fieldVal, val2 *fieldVal) *fieldVal {
+ // This could be done with a couple of for loops and an array to store
+ // the intermediate terms, but this unrolled version is significantly
+ // faster.
+
+ // Terms for 2^(fieldBase*0).
+ m := uint64(val.n[0]) * uint64(val2.n[0])
+ t0 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*1).
+ m = (m >> fieldBase) +
+ uint64(val.n[0])*uint64(val2.n[1]) +
+ uint64(val.n[1])*uint64(val2.n[0])
+ t1 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*2).
+ m = (m >> fieldBase) +
+ uint64(val.n[0])*uint64(val2.n[2]) +
+ uint64(val.n[1])*uint64(val2.n[1]) +
+ uint64(val.n[2])*uint64(val2.n[0])
+ t2 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*3).
+ m = (m >> fieldBase) +
+ uint64(val.n[0])*uint64(val2.n[3]) +
+ uint64(val.n[1])*uint64(val2.n[2]) +
+ uint64(val.n[2])*uint64(val2.n[1]) +
+ uint64(val.n[3])*uint64(val2.n[0])
+ t3 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*4).
+ m = (m >> fieldBase) +
+ uint64(val.n[0])*uint64(val2.n[4]) +
+ uint64(val.n[1])*uint64(val2.n[3]) +
+ uint64(val.n[2])*uint64(val2.n[2]) +
+ uint64(val.n[3])*uint64(val2.n[1]) +
+ uint64(val.n[4])*uint64(val2.n[0])
+ t4 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*5).
+ m = (m >> fieldBase) +
+ uint64(val.n[0])*uint64(val2.n[5]) +
+ uint64(val.n[1])*uint64(val2.n[4]) +
+ uint64(val.n[2])*uint64(val2.n[3]) +
+ uint64(val.n[3])*uint64(val2.n[2]) +
+ uint64(val.n[4])*uint64(val2.n[1]) +
+ uint64(val.n[5])*uint64(val2.n[0])
+ t5 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*6).
+ m = (m >> fieldBase) +
+ uint64(val.n[0])*uint64(val2.n[6]) +
+ uint64(val.n[1])*uint64(val2.n[5]) +
+ uint64(val.n[2])*uint64(val2.n[4]) +
+ uint64(val.n[3])*uint64(val2.n[3]) +
+ uint64(val.n[4])*uint64(val2.n[2]) +
+ uint64(val.n[5])*uint64(val2.n[1]) +
+ uint64(val.n[6])*uint64(val2.n[0])
+ t6 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*7).
+ m = (m >> fieldBase) +
+ uint64(val.n[0])*uint64(val2.n[7]) +
+ uint64(val.n[1])*uint64(val2.n[6]) +
+ uint64(val.n[2])*uint64(val2.n[5]) +
+ uint64(val.n[3])*uint64(val2.n[4]) +
+ uint64(val.n[4])*uint64(val2.n[3]) +
+ uint64(val.n[5])*uint64(val2.n[2]) +
+ uint64(val.n[6])*uint64(val2.n[1]) +
+ uint64(val.n[7])*uint64(val2.n[0])
+ t7 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*8).
+ m = (m >> fieldBase) +
+ uint64(val.n[0])*uint64(val2.n[8]) +
+ uint64(val.n[1])*uint64(val2.n[7]) +
+ uint64(val.n[2])*uint64(val2.n[6]) +
+ uint64(val.n[3])*uint64(val2.n[5]) +
+ uint64(val.n[4])*uint64(val2.n[4]) +
+ uint64(val.n[5])*uint64(val2.n[3]) +
+ uint64(val.n[6])*uint64(val2.n[2]) +
+ uint64(val.n[7])*uint64(val2.n[1]) +
+ uint64(val.n[8])*uint64(val2.n[0])
+ t8 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*9).
+ m = (m >> fieldBase) +
+ uint64(val.n[0])*uint64(val2.n[9]) +
+ uint64(val.n[1])*uint64(val2.n[8]) +
+ uint64(val.n[2])*uint64(val2.n[7]) +
+ uint64(val.n[3])*uint64(val2.n[6]) +
+ uint64(val.n[4])*uint64(val2.n[5]) +
+ uint64(val.n[5])*uint64(val2.n[4]) +
+ uint64(val.n[6])*uint64(val2.n[3]) +
+ uint64(val.n[7])*uint64(val2.n[2]) +
+ uint64(val.n[8])*uint64(val2.n[1]) +
+ uint64(val.n[9])*uint64(val2.n[0])
+ t9 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*10).
+ m = (m >> fieldBase) +
+ uint64(val.n[1])*uint64(val2.n[9]) +
+ uint64(val.n[2])*uint64(val2.n[8]) +
+ uint64(val.n[3])*uint64(val2.n[7]) +
+ uint64(val.n[4])*uint64(val2.n[6]) +
+ uint64(val.n[5])*uint64(val2.n[5]) +
+ uint64(val.n[6])*uint64(val2.n[4]) +
+ uint64(val.n[7])*uint64(val2.n[3]) +
+ uint64(val.n[8])*uint64(val2.n[2]) +
+ uint64(val.n[9])*uint64(val2.n[1])
+ t10 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*11).
+ m = (m >> fieldBase) +
+ uint64(val.n[2])*uint64(val2.n[9]) +
+ uint64(val.n[3])*uint64(val2.n[8]) +
+ uint64(val.n[4])*uint64(val2.n[7]) +
+ uint64(val.n[5])*uint64(val2.n[6]) +
+ uint64(val.n[6])*uint64(val2.n[5]) +
+ uint64(val.n[7])*uint64(val2.n[4]) +
+ uint64(val.n[8])*uint64(val2.n[3]) +
+ uint64(val.n[9])*uint64(val2.n[2])
+ t11 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*12).
+ m = (m >> fieldBase) +
+ uint64(val.n[3])*uint64(val2.n[9]) +
+ uint64(val.n[4])*uint64(val2.n[8]) +
+ uint64(val.n[5])*uint64(val2.n[7]) +
+ uint64(val.n[6])*uint64(val2.n[6]) +
+ uint64(val.n[7])*uint64(val2.n[5]) +
+ uint64(val.n[8])*uint64(val2.n[4]) +
+ uint64(val.n[9])*uint64(val2.n[3])
+ t12 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*13).
+ m = (m >> fieldBase) +
+ uint64(val.n[4])*uint64(val2.n[9]) +
+ uint64(val.n[5])*uint64(val2.n[8]) +
+ uint64(val.n[6])*uint64(val2.n[7]) +
+ uint64(val.n[7])*uint64(val2.n[6]) +
+ uint64(val.n[8])*uint64(val2.n[5]) +
+ uint64(val.n[9])*uint64(val2.n[4])
+ t13 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*14).
+ m = (m >> fieldBase) +
+ uint64(val.n[5])*uint64(val2.n[9]) +
+ uint64(val.n[6])*uint64(val2.n[8]) +
+ uint64(val.n[7])*uint64(val2.n[7]) +
+ uint64(val.n[8])*uint64(val2.n[6]) +
+ uint64(val.n[9])*uint64(val2.n[5])
+ t14 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*15).
+ m = (m >> fieldBase) +
+ uint64(val.n[6])*uint64(val2.n[9]) +
+ uint64(val.n[7])*uint64(val2.n[8]) +
+ uint64(val.n[8])*uint64(val2.n[7]) +
+ uint64(val.n[9])*uint64(val2.n[6])
+ t15 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*16).
+ m = (m >> fieldBase) +
+ uint64(val.n[7])*uint64(val2.n[9]) +
+ uint64(val.n[8])*uint64(val2.n[8]) +
+ uint64(val.n[9])*uint64(val2.n[7])
+ t16 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*17).
+ m = (m >> fieldBase) +
+ uint64(val.n[8])*uint64(val2.n[9]) +
+ uint64(val.n[9])*uint64(val2.n[8])
+ t17 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*18).
+ m = (m >> fieldBase) + uint64(val.n[9])*uint64(val2.n[9])
+ t18 := m & fieldBaseMask
+
+ // What's left is for 2^(fieldBase*19).
+ t19 := m >> fieldBase
+
+ // At this point, all of the terms are grouped into their respective
+ // base.
+ //
+ // Per [HAC] section 14.3.4: Reduction method of moduli of special form,
+ // when the modulus is of the special form m = b^t - c, highly efficient
+ // reduction can be achieved per the provided algorithm.
+ //
+ // The secp256k1 prime is equivalent to 2^256 - 4294968273, so it fits
+ // this criteria.
+ //
+ // 4294968273 in field representation (base 2^26) is:
+ // n[0] = 977
+ // n[1] = 64
+ // That is to say (2^26 * 64) + 977 = 4294968273
+ //
+ // Since each word is in base 26, the upper terms (t10 and up) start
+ // at 260 bits (versus the final desired range of 256 bits), so the
+ // field representation of 'c' from above needs to be adjusted for the
+ // extra 4 bits by multiplying it by 2^4 = 16. 4294968273 * 16 =
+ // 68719492368. Thus, the adjusted field representation of 'c' is:
+ // n[0] = 977 * 16 = 15632
+ // n[1] = 64 * 16 = 1024
+ // That is to say (2^26 * 1024) + 15632 = 68719492368
+ //
+ // To reduce the final term, t19, the entire 'c' value is needed instead
+ // of only n[0] because there are no more terms left to handle n[1].
+ // This means there might be some magnitude left in the upper bits that
+ // is handled below.
+ m = t0 + t10*15632
+ t0 = m & fieldBaseMask
+ m = (m >> fieldBase) + t1 + t10*1024 + t11*15632
+ t1 = m & fieldBaseMask
+ m = (m >> fieldBase) + t2 + t11*1024 + t12*15632
+ t2 = m & fieldBaseMask
+ m = (m >> fieldBase) + t3 + t12*1024 + t13*15632
+ t3 = m & fieldBaseMask
+ m = (m >> fieldBase) + t4 + t13*1024 + t14*15632
+ t4 = m & fieldBaseMask
+ m = (m >> fieldBase) + t5 + t14*1024 + t15*15632
+ t5 = m & fieldBaseMask
+ m = (m >> fieldBase) + t6 + t15*1024 + t16*15632
+ t6 = m & fieldBaseMask
+ m = (m >> fieldBase) + t7 + t16*1024 + t17*15632
+ t7 = m & fieldBaseMask
+ m = (m >> fieldBase) + t8 + t17*1024 + t18*15632
+ t8 = m & fieldBaseMask
+ m = (m >> fieldBase) + t9 + t18*1024 + t19*68719492368
+ t9 = m & fieldMSBMask
+ m = m >> fieldMSBBits
+
+ // At this point, if the magnitude is greater than 0, the overall value
+ // is greater than the max possible 256-bit value. In particular, it is
+ // "how many times larger" than the max value it is.
+ //
+ // The algorithm presented in [HAC] section 14.3.4 repeats until the
+ // quotient is zero. However, due to the above, we already know at
+ // least how many times we would need to repeat as it's the value
+ // currently in m. Thus we can simply multiply the magnitude by the
+ // field representation of the prime and do a single iteration. Notice
+ // that nothing will be changed when the magnitude is zero, so we could
+ // skip this in that case, however always running regardless allows it
+ // to run in constant time. The final result will be in the range
+ // 0 <= result <= prime + (2^64 - c), so it is guaranteed to have a
+ // magnitude of 1, but it is denormalized.
+ d := t0 + m*977
+ f.n[0] = uint32(d & fieldBaseMask)
+ d = (d >> fieldBase) + t1 + m*64
+ f.n[1] = uint32(d & fieldBaseMask)
+ f.n[2] = uint32((d >> fieldBase) + t2)
+ f.n[3] = uint32(t3)
+ f.n[4] = uint32(t4)
+ f.n[5] = uint32(t5)
+ f.n[6] = uint32(t6)
+ f.n[7] = uint32(t7)
+ f.n[8] = uint32(t8)
+ f.n[9] = uint32(t9)
+
+ return f
+}
+
+// Square squares the field value. The existing field value is modified. Note
+// that this function can overflow if multiplying any of the individual words
+// exceeds a max uint32. In practice, this means the magnitude of the field
+// must be a max of 8 to prevent overflow.
+//
+// The field value is returned to support chaining. This enables syntax like:
+// f.Square().Mul(f2) so that f = f^2 * f2.
+func (f *fieldVal) Square() *fieldVal {
+ return f.SquareVal(f)
+}
+
+// SquareVal squares the passed value and stores the result in f. Note that
+// this function can overflow if multiplying any of the individual words
+// exceeds a max uint32. In practice, this means the magnitude of the field
+// being squred must be a max of 8 to prevent overflow.
+//
+// The field value is returned to support chaining. This enables syntax like:
+// f3.SquareVal(f).Mul(f) so that f3 = f^2 * f = f^3.
+func (f *fieldVal) SquareVal(val *fieldVal) *fieldVal {
+ // This could be done with a couple of for loops and an array to store
+ // the intermediate terms, but this unrolled version is significantly
+ // faster.
+
+ // Terms for 2^(fieldBase*0).
+ m := uint64(val.n[0]) * uint64(val.n[0])
+ t0 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*1).
+ m = (m >> fieldBase) + 2*uint64(val.n[0])*uint64(val.n[1])
+ t1 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*2).
+ m = (m >> fieldBase) +
+ 2*uint64(val.n[0])*uint64(val.n[2]) +
+ uint64(val.n[1])*uint64(val.n[1])
+ t2 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*3).
+ m = (m >> fieldBase) +
+ 2*uint64(val.n[0])*uint64(val.n[3]) +
+ 2*uint64(val.n[1])*uint64(val.n[2])
+ t3 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*4).
+ m = (m >> fieldBase) +
+ 2*uint64(val.n[0])*uint64(val.n[4]) +
+ 2*uint64(val.n[1])*uint64(val.n[3]) +
+ uint64(val.n[2])*uint64(val.n[2])
+ t4 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*5).
+ m = (m >> fieldBase) +
+ 2*uint64(val.n[0])*uint64(val.n[5]) +
+ 2*uint64(val.n[1])*uint64(val.n[4]) +
+ 2*uint64(val.n[2])*uint64(val.n[3])
+ t5 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*6).
+ m = (m >> fieldBase) +
+ 2*uint64(val.n[0])*uint64(val.n[6]) +
+ 2*uint64(val.n[1])*uint64(val.n[5]) +
+ 2*uint64(val.n[2])*uint64(val.n[4]) +
+ uint64(val.n[3])*uint64(val.n[3])
+ t6 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*7).
+ m = (m >> fieldBase) +
+ 2*uint64(val.n[0])*uint64(val.n[7]) +
+ 2*uint64(val.n[1])*uint64(val.n[6]) +
+ 2*uint64(val.n[2])*uint64(val.n[5]) +
+ 2*uint64(val.n[3])*uint64(val.n[4])
+ t7 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*8).
+ m = (m >> fieldBase) +
+ 2*uint64(val.n[0])*uint64(val.n[8]) +
+ 2*uint64(val.n[1])*uint64(val.n[7]) +
+ 2*uint64(val.n[2])*uint64(val.n[6]) +
+ 2*uint64(val.n[3])*uint64(val.n[5]) +
+ uint64(val.n[4])*uint64(val.n[4])
+ t8 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*9).
+ m = (m >> fieldBase) +
+ 2*uint64(val.n[0])*uint64(val.n[9]) +
+ 2*uint64(val.n[1])*uint64(val.n[8]) +
+ 2*uint64(val.n[2])*uint64(val.n[7]) +
+ 2*uint64(val.n[3])*uint64(val.n[6]) +
+ 2*uint64(val.n[4])*uint64(val.n[5])
+ t9 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*10).
+ m = (m >> fieldBase) +
+ 2*uint64(val.n[1])*uint64(val.n[9]) +
+ 2*uint64(val.n[2])*uint64(val.n[8]) +
+ 2*uint64(val.n[3])*uint64(val.n[7]) +
+ 2*uint64(val.n[4])*uint64(val.n[6]) +
+ uint64(val.n[5])*uint64(val.n[5])
+ t10 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*11).
+ m = (m >> fieldBase) +
+ 2*uint64(val.n[2])*uint64(val.n[9]) +
+ 2*uint64(val.n[3])*uint64(val.n[8]) +
+ 2*uint64(val.n[4])*uint64(val.n[7]) +
+ 2*uint64(val.n[5])*uint64(val.n[6])
+ t11 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*12).
+ m = (m >> fieldBase) +
+ 2*uint64(val.n[3])*uint64(val.n[9]) +
+ 2*uint64(val.n[4])*uint64(val.n[8]) +
+ 2*uint64(val.n[5])*uint64(val.n[7]) +
+ uint64(val.n[6])*uint64(val.n[6])
+ t12 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*13).
+ m = (m >> fieldBase) +
+ 2*uint64(val.n[4])*uint64(val.n[9]) +
+ 2*uint64(val.n[5])*uint64(val.n[8]) +
+ 2*uint64(val.n[6])*uint64(val.n[7])
+ t13 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*14).
+ m = (m >> fieldBase) +
+ 2*uint64(val.n[5])*uint64(val.n[9]) +
+ 2*uint64(val.n[6])*uint64(val.n[8]) +
+ uint64(val.n[7])*uint64(val.n[7])
+ t14 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*15).
+ m = (m >> fieldBase) +
+ 2*uint64(val.n[6])*uint64(val.n[9]) +
+ 2*uint64(val.n[7])*uint64(val.n[8])
+ t15 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*16).
+ m = (m >> fieldBase) +
+ 2*uint64(val.n[7])*uint64(val.n[9]) +
+ uint64(val.n[8])*uint64(val.n[8])
+ t16 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*17).
+ m = (m >> fieldBase) + 2*uint64(val.n[8])*uint64(val.n[9])
+ t17 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*18).
+ m = (m >> fieldBase) + uint64(val.n[9])*uint64(val.n[9])
+ t18 := m & fieldBaseMask
+
+ // What's left is for 2^(fieldBase*19).
+ t19 := m >> fieldBase
+
+ // At this point, all of the terms are grouped into their respective
+ // base.
+ //
+ // Per [HAC] section 14.3.4: Reduction method of moduli of special form,
+ // when the modulus is of the special form m = b^t - c, highly efficient
+ // reduction can be achieved per the provided algorithm.
+ //
+ // The secp256k1 prime is equivalent to 2^256 - 4294968273, so it fits
+ // this criteria.
+ //
+ // 4294968273 in field representation (base 2^26) is:
+ // n[0] = 977
+ // n[1] = 64
+ // That is to say (2^26 * 64) + 977 = 4294968273
+ //
+ // Since each word is in base 26, the upper terms (t10 and up) start
+ // at 260 bits (versus the final desired range of 256 bits), so the
+ // field representation of 'c' from above needs to be adjusted for the
+ // extra 4 bits by multiplying it by 2^4 = 16. 4294968273 * 16 =
+ // 68719492368. Thus, the adjusted field representation of 'c' is:
+ // n[0] = 977 * 16 = 15632
+ // n[1] = 64 * 16 = 1024
+ // That is to say (2^26 * 1024) + 15632 = 68719492368
+ //
+ // To reduce the final term, t19, the entire 'c' value is needed instead
+ // of only n[0] because there are no more terms left to handle n[1].
+ // This means there might be some magnitude left in the upper bits that
+ // is handled below.
+ m = t0 + t10*15632
+ t0 = m & fieldBaseMask
+ m = (m >> fieldBase) + t1 + t10*1024 + t11*15632
+ t1 = m & fieldBaseMask
+ m = (m >> fieldBase) + t2 + t11*1024 + t12*15632
+ t2 = m & fieldBaseMask
+ m = (m >> fieldBase) + t3 + t12*1024 + t13*15632
+ t3 = m & fieldBaseMask
+ m = (m >> fieldBase) + t4 + t13*1024 + t14*15632
+ t4 = m & fieldBaseMask
+ m = (m >> fieldBase) + t5 + t14*1024 + t15*15632
+ t5 = m & fieldBaseMask
+ m = (m >> fieldBase) + t6 + t15*1024 + t16*15632
+ t6 = m & fieldBaseMask
+ m = (m >> fieldBase) + t7 + t16*1024 + t17*15632
+ t7 = m & fieldBaseMask
+ m = (m >> fieldBase) + t8 + t17*1024 + t18*15632
+ t8 = m & fieldBaseMask
+ m = (m >> fieldBase) + t9 + t18*1024 + t19*68719492368
+ t9 = m & fieldMSBMask
+ m = m >> fieldMSBBits
+
+ // At this point, if the magnitude is greater than 0, the overall value
+ // is greater than the max possible 256-bit value. In particular, it is
+ // "how many times larger" than the max value it is.
+ //
+ // The algorithm presented in [HAC] section 14.3.4 repeats until the
+ // quotient is zero. However, due to the above, we already know at
+ // least how many times we would need to repeat as it's the value
+ // currently in m. Thus we can simply multiply the magnitude by the
+ // field representation of the prime and do a single iteration. Notice
+ // that nothing will be changed when the magnitude is zero, so we could
+ // skip this in that case, however always running regardless allows it
+ // to run in constant time. The final result will be in the range
+ // 0 <= result <= prime + (2^64 - c), so it is guaranteed to have a
+ // magnitude of 1, but it is denormalized.
+ n := t0 + m*977
+ f.n[0] = uint32(n & fieldBaseMask)
+ n = (n >> fieldBase) + t1 + m*64
+ f.n[1] = uint32(n & fieldBaseMask)
+ f.n[2] = uint32((n >> fieldBase) + t2)
+ f.n[3] = uint32(t3)
+ f.n[4] = uint32(t4)
+ f.n[5] = uint32(t5)
+ f.n[6] = uint32(t6)
+ f.n[7] = uint32(t7)
+ f.n[8] = uint32(t8)
+ f.n[9] = uint32(t9)
+
+ return f
+}
+
+// Inverse finds the modular multiplicative inverse of the field value. The
+// existing field value is modified.
+//
+// The field value is returned to support chaining. This enables syntax like:
+// f.Inverse().Mul(f2) so that f = f^-1 * f2.
+func (f *fieldVal) Inverse() *fieldVal {
+ // Fermat's little theorem states that for a nonzero number a and prime
+ // prime p, a^(p-1) = 1 (mod p). Since the multipliciative inverse is
+ // a*b = 1 (mod p), it follows that b = a*a^(p-2) = a^(p-1) = 1 (mod p).
+ // Thus, a^(p-2) is the multiplicative inverse.
+ //
+ // In order to efficiently compute a^(p-2), p-2 needs to be split into
+ // a sequence of squares and multipications that minimizes the number of
+ // multiplications needed (since they are more costly than squarings).
+ // Intermediate results are saved and reused as well.
+ //
+ // The secp256k1 prime - 2 is 2^256 - 4294968275.
+ //
+ // This has a cost of 258 field squarings and 33 field multiplications.
+ var a2, a3, a4, a10, a11, a21, a42, a45, a63, a1019, a1023 fieldVal
+ a2.SquareVal(f)
+ a3.Mul2(&a2, f)
+ a4.SquareVal(&a2)
+ a10.SquareVal(&a4).Mul(&a2)
+ a11.Mul2(&a10, f)
+ a21.Mul2(&a10, &a11)
+ a42.SquareVal(&a21)
+ a45.Mul2(&a42, &a3)
+ a63.Mul2(&a42, &a21)
+ a1019.SquareVal(&a63).Square().Square().Square().Mul(&a11)
+ a1023.Mul2(&a1019, &a4)
+ f.Set(&a63) // f = a^(2^6 - 1)
+ f.Square().Square().Square().Square().Square() // f = a^(2^11 - 32)
+ f.Square().Square().Square().Square().Square() // f = a^(2^16 - 1024)
+ f.Mul(&a1023) // f = a^(2^16 - 1)
+ f.Square().Square().Square().Square().Square() // f = a^(2^21 - 32)
+ f.Square().Square().Square().Square().Square() // f = a^(2^26 - 1024)
+ f.Mul(&a1023) // f = a^(2^26 - 1)
+ f.Square().Square().Square().Square().Square() // f = a^(2^31 - 32)
+ f.Square().Square().Square().Square().Square() // f = a^(2^36 - 1024)
+ f.Mul(&a1023) // f = a^(2^36 - 1)
+ f.Square().Square().Square().Square().Square() // f = a^(2^41 - 32)
+ f.Square().Square().Square().Square().Square() // f = a^(2^46 - 1024)
+ f.Mul(&a1023) // f = a^(2^46 - 1)
+ f.Square().Square().Square().Square().Square() // f = a^(2^51 - 32)
+ f.Square().Square().Square().Square().Square() // f = a^(2^56 - 1024)
+ f.Mul(&a1023) // f = a^(2^56 - 1)
+ f.Square().Square().Square().Square().Square() // f = a^(2^61 - 32)
+ f.Square().Square().Square().Square().Square() // f = a^(2^66 - 1024)
+ f.Mul(&a1023) // f = a^(2^66 - 1)
+ f.Square().Square().Square().Square().Square() // f = a^(2^71 - 32)
+ f.Square().Square().Square().Square().Square() // f = a^(2^76 - 1024)
+ f.Mul(&a1023) // f = a^(2^76 - 1)
+ f.Square().Square().Square().Square().Square() // f = a^(2^81 - 32)
+ f.Square().Square().Square().Square().Square() // f = a^(2^86 - 1024)
+ f.Mul(&a1023) // f = a^(2^86 - 1)
+ f.Square().Square().Square().Square().Square() // f = a^(2^91 - 32)
+ f.Square().Square().Square().Square().Square() // f = a^(2^96 - 1024)
+ f.Mul(&a1023) // f = a^(2^96 - 1)
+ f.Square().Square().Square().Square().Square() // f = a^(2^101 - 32)
+ f.Square().Square().Square().Square().Square() // f = a^(2^106 - 1024)
+ f.Mul(&a1023) // f = a^(2^106 - 1)
+ f.Square().Square().Square().Square().Square() // f = a^(2^111 - 32)
+ f.Square().Square().Square().Square().Square() // f = a^(2^116 - 1024)
+ f.Mul(&a1023) // f = a^(2^116 - 1)
+ f.Square().Square().Square().Square().Square() // f = a^(2^121 - 32)
+ f.Square().Square().Square().Square().Square() // f = a^(2^126 - 1024)
+ f.Mul(&a1023) // f = a^(2^126 - 1)
+ f.Square().Square().Square().Square().Square() // f = a^(2^131 - 32)
+ f.Square().Square().Square().Square().Square() // f = a^(2^136 - 1024)
+ f.Mul(&a1023) // f = a^(2^136 - 1)
+ f.Square().Square().Square().Square().Square() // f = a^(2^141 - 32)
+ f.Square().Square().Square().Square().Square() // f = a^(2^146 - 1024)
+ f.Mul(&a1023) // f = a^(2^146 - 1)
+ f.Square().Square().Square().Square().Square() // f = a^(2^151 - 32)
+ f.Square().Square().Square().Square().Square() // f = a^(2^156 - 1024)
+ f.Mul(&a1023) // f = a^(2^156 - 1)
+ f.Square().Square().Square().Square().Square() // f = a^(2^161 - 32)
+ f.Square().Square().Square().Square().Square() // f = a^(2^166 - 1024)
+ f.Mul(&a1023) // f = a^(2^166 - 1)
+ f.Square().Square().Square().Square().Square() // f = a^(2^171 - 32)
+ f.Square().Square().Square().Square().Square() // f = a^(2^176 - 1024)
+ f.Mul(&a1023) // f = a^(2^176 - 1)
+ f.Square().Square().Square().Square().Square() // f = a^(2^181 - 32)
+ f.Square().Square().Square().Square().Square() // f = a^(2^186 - 1024)
+ f.Mul(&a1023) // f = a^(2^186 - 1)
+ f.Square().Square().Square().Square().Square() // f = a^(2^191 - 32)
+ f.Square().Square().Square().Square().Square() // f = a^(2^196 - 1024)
+ f.Mul(&a1023) // f = a^(2^196 - 1)
+ f.Square().Square().Square().Square().Square() // f = a^(2^201 - 32)
+ f.Square().Square().Square().Square().Square() // f = a^(2^206 - 1024)
+ f.Mul(&a1023) // f = a^(2^206 - 1)
+ f.Square().Square().Square().Square().Square() // f = a^(2^211 - 32)
+ f.Square().Square().Square().Square().Square() // f = a^(2^216 - 1024)
+ f.Mul(&a1023) // f = a^(2^216 - 1)
+ f.Square().Square().Square().Square().Square() // f = a^(2^221 - 32)
+ f.Square().Square().Square().Square().Square() // f = a^(2^226 - 1024)
+ f.Mul(&a1019) // f = a^(2^226 - 5)
+ f.Square().Square().Square().Square().Square() // f = a^(2^231 - 160)
+ f.Square().Square().Square().Square().Square() // f = a^(2^236 - 5120)
+ f.Mul(&a1023) // f = a^(2^236 - 4097)
+ f.Square().Square().Square().Square().Square() // f = a^(2^241 - 131104)
+ f.Square().Square().Square().Square().Square() // f = a^(2^246 - 4195328)
+ f.Mul(&a1023) // f = a^(2^246 - 4194305)
+ f.Square().Square().Square().Square().Square() // f = a^(2^251 - 134217760)
+ f.Square().Square().Square().Square().Square() // f = a^(2^256 - 4294968320)
+ return f.Mul(&a45) // f = a^(2^256 - 4294968275) = a^(p-2)
+}
diff --git a/vendor/github.com/btcsuite/btcd/btcec/genprecomps.go b/vendor/github.com/btcsuite/btcd/btcec/genprecomps.go
new file mode 100644
index 000000000..d4a9c1b83
--- /dev/null
+++ b/vendor/github.com/btcsuite/btcd/btcec/genprecomps.go
@@ -0,0 +1,63 @@
+// Copyright 2015 The btcsuite developers
+// Use of this source code is governed by an ISC
+// license that can be found in the LICENSE file.
+
+// This file is ignored during the regular build due to the following build tag.
+// It is called by go generate and used to automatically generate pre-computed
+// tables used to accelerate operations.
+// +build ignore
+
+package main
+
+import (
+ "bytes"
+ "compress/zlib"
+ "encoding/base64"
+ "fmt"
+ "log"
+ "os"
+
+ "github.com/btcsuite/btcd/btcec"
+)
+
+func main() {
+ fi, err := os.Create("secp256k1.go")
+ if err != nil {
+ log.Fatal(err)
+ }
+ defer fi.Close()
+
+ // Compress the serialized byte points.
+ serialized := btcec.S256().SerializedBytePoints()
+ var compressed bytes.Buffer
+ w := zlib.NewWriter(&compressed)
+ if _, err := w.Write(serialized); err != nil {
+ fmt.Println(err)
+ os.Exit(1)
+ }
+ w.Close()
+
+ // Encode the compressed byte points with base64.
+ encoded := make([]byte, base64.StdEncoding.EncodedLen(compressed.Len()))
+ base64.StdEncoding.Encode(encoded, compressed.Bytes())
+
+ fmt.Fprintln(fi, "// Copyright (c) 2015 The btcsuite developers")
+ fmt.Fprintln(fi, "// Use of this source code is governed by an ISC")
+ fmt.Fprintln(fi, "// license that can be found in the LICENSE file.")
+ fmt.Fprintln(fi)
+ fmt.Fprintln(fi, "package btcec")
+ fmt.Fprintln(fi)
+ fmt.Fprintln(fi, "// Auto-generated file (see genprecomps.go)")
+ fmt.Fprintln(fi, "// DO NOT EDIT")
+ fmt.Fprintln(fi)
+ fmt.Fprintf(fi, "var secp256k1BytePoints = %q\n", string(encoded))
+
+ a1, b1, a2, b2 := btcec.S256().EndomorphismVectors()
+ fmt.Println("The following values are the computed linearly " +
+ "independent vectors needed to make use of the secp256k1 " +
+ "endomorphism:")
+ fmt.Printf("a1: %x\n", a1)
+ fmt.Printf("b1: %x\n", b1)
+ fmt.Printf("a2: %x\n", a2)
+ fmt.Printf("b2: %x\n", b2)
+}
diff --git a/vendor/github.com/btcsuite/btcd/btcec/gensecp256k1.go b/vendor/github.com/btcsuite/btcd/btcec/gensecp256k1.go
new file mode 100644
index 000000000..1928702da
--- /dev/null
+++ b/vendor/github.com/btcsuite/btcd/btcec/gensecp256k1.go
@@ -0,0 +1,203 @@
+// Copyright (c) 2014-2015 The btcsuite developers
+// Use of this source code is governed by an ISC
+// license that can be found in the LICENSE file.
+
+// This file is ignored during the regular build due to the following build tag.
+// This build tag is set during go generate.
+// +build gensecp256k1
+
+package btcec
+
+// References:
+// [GECC]: Guide to Elliptic Curve Cryptography (Hankerson, Menezes, Vanstone)
+
+import (
+ "encoding/binary"
+ "math/big"
+)
+
+// secp256k1BytePoints are dummy points used so the code which generates the
+// real values can compile.
+var secp256k1BytePoints = ""
+
+// getDoublingPoints returns all the possible G^(2^i) for i in
+// 0..n-1 where n is the curve's bit size (256 in the case of secp256k1)
+// the coordinates are recorded as Jacobian coordinates.
+func (curve *KoblitzCurve) getDoublingPoints() [][3]fieldVal {
+ doublingPoints := make([][3]fieldVal, curve.BitSize)
+
+ // initialize px, py, pz to the Jacobian coordinates for the base point
+ px, py := curve.bigAffineToField(curve.Gx, curve.Gy)
+ pz := new(fieldVal).SetInt(1)
+ for i := 0; i < curve.BitSize; i++ {
+ doublingPoints[i] = [3]fieldVal{*px, *py, *pz}
+ // P = 2*P
+ curve.doubleJacobian(px, py, pz, px, py, pz)
+ }
+ return doublingPoints
+}
+
+// SerializedBytePoints returns a serialized byte slice which contains all of
+// the possible points per 8-bit window. This is used to when generating
+// secp256k1.go.
+func (curve *KoblitzCurve) SerializedBytePoints() []byte {
+ doublingPoints := curve.getDoublingPoints()
+
+ // Segregate the bits into byte-sized windows
+ serialized := make([]byte, curve.byteSize*256*3*10*4)
+ offset := 0
+ for byteNum := 0; byteNum < curve.byteSize; byteNum++ {
+ // Grab the 8 bits that make up this byte from doublingPoints.
+ startingBit := 8 * (curve.byteSize - byteNum - 1)
+ computingPoints := doublingPoints[startingBit : startingBit+8]
+
+ // Compute all points in this window and serialize them.
+ for i := 0; i < 256; i++ {
+ px, py, pz := new(fieldVal), new(fieldVal), new(fieldVal)
+ for j := 0; j < 8; j++ {
+ if i>>uint(j)&1 == 1 {
+ curve.addJacobian(px, py, pz, &computingPoints[j][0],
+ &computingPoints[j][1], &computingPoints[j][2], px, py, pz)
+ }
+ }
+ for i := 0; i < 10; i++ {
+ binary.LittleEndian.PutUint32(serialized[offset:], px.n[i])
+ offset += 4
+ }
+ for i := 0; i < 10; i++ {
+ binary.LittleEndian.PutUint32(serialized[offset:], py.n[i])
+ offset += 4
+ }
+ for i := 0; i < 10; i++ {
+ binary.LittleEndian.PutUint32(serialized[offset:], pz.n[i])
+ offset += 4
+ }
+ }
+ }
+
+ return serialized
+}
+
+// sqrt returns the square root of the provided big integer using Newton's
+// method. It's only compiled and used during generation of pre-computed
+// values, so speed is not a huge concern.
+func sqrt(n *big.Int) *big.Int {
+ // Initial guess = 2^(log_2(n)/2)
+ guess := big.NewInt(2)
+ guess.Exp(guess, big.NewInt(int64(n.BitLen()/2)), nil)
+
+ // Now refine using Newton's method.
+ big2 := big.NewInt(2)
+ prevGuess := big.NewInt(0)
+ for {
+ prevGuess.Set(guess)
+ guess.Add(guess, new(big.Int).Div(n, guess))
+ guess.Div(guess, big2)
+ if guess.Cmp(prevGuess) == 0 {
+ break
+ }
+ }
+ return guess
+}
+
+// EndomorphismVectors runs the first 3 steps of algorithm 3.74 from [GECC] to
+// generate the linearly independent vectors needed to generate a balanced
+// length-two representation of a multiplier such that k = k1 + k2λ (mod N) and
+// returns them. Since the values will always be the same given the fact that N
+// and λ are fixed, the final results can be accelerated by storing the
+// precomputed values with the curve.
+func (curve *KoblitzCurve) EndomorphismVectors() (a1, b1, a2, b2 *big.Int) {
+ bigMinus1 := big.NewInt(-1)
+
+ // This section uses an extended Euclidean algorithm to generate a
+ // sequence of equations:
+ // s[i] * N + t[i] * λ = r[i]
+
+ nSqrt := sqrt(curve.N)
+ u, v := new(big.Int).Set(curve.N), new(big.Int).Set(curve.lambda)
+ x1, y1 := big.NewInt(1), big.NewInt(0)
+ x2, y2 := big.NewInt(0), big.NewInt(1)
+ q, r := new(big.Int), new(big.Int)
+ qu, qx1, qy1 := new(big.Int), new(big.Int), new(big.Int)
+ s, t := new(big.Int), new(big.Int)
+ ri, ti := new(big.Int), new(big.Int)
+ a1, b1, a2, b2 = new(big.Int), new(big.Int), new(big.Int), new(big.Int)
+ found, oneMore := false, false
+ for u.Sign() != 0 {
+ // q = v/u
+ q.Div(v, u)
+
+ // r = v - q*u
+ qu.Mul(q, u)
+ r.Sub(v, qu)
+
+ // s = x2 - q*x1
+ qx1.Mul(q, x1)
+ s.Sub(x2, qx1)
+
+ // t = y2 - q*y1
+ qy1.Mul(q, y1)
+ t.Sub(y2, qy1)
+
+ // v = u, u = r, x2 = x1, x1 = s, y2 = y1, y1 = t
+ v.Set(u)
+ u.Set(r)
+ x2.Set(x1)
+ x1.Set(s)
+ y2.Set(y1)
+ y1.Set(t)
+
+ // As soon as the remainder is less than the sqrt of n, the
+ // values of a1 and b1 are known.
+ if !found && r.Cmp(nSqrt) < 0 {
+ // When this condition executes ri and ti represent the
+ // r[i] and t[i] values such that i is the greatest
+ // index for which r >= sqrt(n). Meanwhile, the current
+ // r and t values are r[i+1] and t[i+1], respectively.
+
+ // a1 = r[i+1], b1 = -t[i+1]
+ a1.Set(r)
+ b1.Mul(t, bigMinus1)
+ found = true
+ oneMore = true
+
+ // Skip to the next iteration so ri and ti are not
+ // modified.
+ continue
+
+ } else if oneMore {
+ // When this condition executes ri and ti still
+ // represent the r[i] and t[i] values while the current
+ // r and t are r[i+2] and t[i+2], respectively.
+
+ // sum1 = r[i]^2 + t[i]^2
+ rSquared := new(big.Int).Mul(ri, ri)
+ tSquared := new(big.Int).Mul(ti, ti)
+ sum1 := new(big.Int).Add(rSquared, tSquared)
+
+ // sum2 = r[i+2]^2 + t[i+2]^2
+ r2Squared := new(big.Int).Mul(r, r)
+ t2Squared := new(big.Int).Mul(t, t)
+ sum2 := new(big.Int).Add(r2Squared, t2Squared)
+
+ // if (r[i]^2 + t[i]^2) <= (r[i+2]^2 + t[i+2]^2)
+ if sum1.Cmp(sum2) <= 0 {
+ // a2 = r[i], b2 = -t[i]
+ a2.Set(ri)
+ b2.Mul(ti, bigMinus1)
+ } else {
+ // a2 = r[i+2], b2 = -t[i+2]
+ a2.Set(r)
+ b2.Mul(t, bigMinus1)
+ }
+
+ // All done.
+ break
+ }
+
+ ri.Set(r)
+ ti.Set(t)
+ }
+
+ return a1, b1, a2, b2
+}
diff --git a/vendor/github.com/btcsuite/btcd/btcec/precompute.go b/vendor/github.com/btcsuite/btcd/btcec/precompute.go
new file mode 100644
index 000000000..034cd5533
--- /dev/null
+++ b/vendor/github.com/btcsuite/btcd/btcec/precompute.go
@@ -0,0 +1,67 @@
+// Copyright 2015 The btcsuite developers
+// Use of this source code is governed by an ISC
+// license that can be found in the LICENSE file.
+
+package btcec
+
+import (
+ "compress/zlib"
+ "encoding/base64"
+ "encoding/binary"
+ "io/ioutil"
+ "strings"
+)
+
+//go:generate go run -tags gensecp256k1 genprecomps.go
+
+// loadS256BytePoints decompresses and deserializes the pre-computed byte points
+// used to accelerate scalar base multiplication for the secp256k1 curve. This
+// approach is used since it allows the compile to use significantly less ram
+// and be performed much faster than it is with hard-coding the final in-memory
+// data structure. At the same time, it is quite fast to generate the in-memory
+// data structure at init time with this approach versus computing the table.
+func loadS256BytePoints() error {
+ // There will be no byte points to load when generating them.
+ bp := secp256k1BytePoints
+ if len(bp) == 0 {
+ return nil
+ }
+
+ // Decompress the pre-computed table used to accelerate scalar base
+ // multiplication.
+ decoder := base64.NewDecoder(base64.StdEncoding, strings.NewReader(bp))
+ r, err := zlib.NewReader(decoder)
+ if err != nil {
+ return err
+ }
+ serialized, err := ioutil.ReadAll(r)
+ if err != nil {
+ return err
+ }
+
+ // Deserialize the precomputed byte points and set the curve to them.
+ offset := 0
+ var bytePoints [32][256][3]fieldVal
+ for byteNum := 0; byteNum < 32; byteNum++ {
+ // All points in this window.
+ for i := 0; i < 256; i++ {
+ px := &bytePoints[byteNum][i][0]
+ py := &bytePoints[byteNum][i][1]
+ pz := &bytePoints[byteNum][i][2]
+ for i := 0; i < 10; i++ {
+ px.n[i] = binary.LittleEndian.Uint32(serialized[offset:])
+ offset += 4
+ }
+ for i := 0; i < 10; i++ {
+ py.n[i] = binary.LittleEndian.Uint32(serialized[offset:])
+ offset += 4
+ }
+ for i := 0; i < 10; i++ {
+ pz.n[i] = binary.LittleEndian.Uint32(serialized[offset:])
+ offset += 4
+ }
+ }
+ }
+ secp256k1.bytePoints = &bytePoints
+ return nil
+}
diff --git a/vendor/github.com/btcsuite/btcd/btcec/privkey.go b/vendor/github.com/btcsuite/btcd/btcec/privkey.go
new file mode 100644
index 000000000..676a8c3fb
--- /dev/null
+++ b/vendor/github.com/btcsuite/btcd/btcec/privkey.go
@@ -0,0 +1,73 @@
+// Copyright (c) 2013-2016 The btcsuite developers
+// Use of this source code is governed by an ISC
+// license that can be found in the LICENSE file.
+
+package btcec
+
+import (
+ "crypto/ecdsa"
+ "crypto/elliptic"
+ "crypto/rand"
+ "math/big"
+)
+
+// PrivateKey wraps an ecdsa.PrivateKey as a convenience mainly for signing
+// things with the the private key without having to directly import the ecdsa
+// package.
+type PrivateKey ecdsa.PrivateKey
+
+// PrivKeyFromBytes returns a private and public key for `curve' based on the
+// private key passed as an argument as a byte slice.
+func PrivKeyFromBytes(curve elliptic.Curve, pk []byte) (*PrivateKey,
+ *PublicKey) {
+ x, y := curve.ScalarBaseMult(pk)
+
+ priv := &ecdsa.PrivateKey{
+ PublicKey: ecdsa.PublicKey{
+ Curve: curve,
+ X: x,
+ Y: y,
+ },
+ D: new(big.Int).SetBytes(pk),
+ }
+
+ return (*PrivateKey)(priv), (*PublicKey)(&priv.PublicKey)
+}
+
+// NewPrivateKey is a wrapper for ecdsa.GenerateKey that returns a PrivateKey
+// instead of the normal ecdsa.PrivateKey.
+func NewPrivateKey(curve elliptic.Curve) (*PrivateKey, error) {
+ key, err := ecdsa.GenerateKey(curve, rand.Reader)
+ if err != nil {
+ return nil, err
+ }
+ return (*PrivateKey)(key), nil
+}
+
+// PubKey returns the PublicKey corresponding to this private key.
+func (p *PrivateKey) PubKey() *PublicKey {
+ return (*PublicKey)(&p.PublicKey)
+}
+
+// ToECDSA returns the private key as a *ecdsa.PrivateKey.
+func (p *PrivateKey) ToECDSA() *ecdsa.PrivateKey {
+ return (*ecdsa.PrivateKey)(p)
+}
+
+// Sign generates an ECDSA signature for the provided hash (which should be the result
+// of hashing a larger message) using the private key. Produced signature
+// is deterministic (same message and same key yield the same signature) and canonical
+// in accordance with RFC6979 and BIP0062.
+func (p *PrivateKey) Sign(hash []byte) (*Signature, error) {
+ return signRFC6979(p, hash)
+}
+
+// PrivKeyBytesLen defines the length in bytes of a serialized private key.
+const PrivKeyBytesLen = 32
+
+// Serialize returns the private key number d as a big-endian binary-encoded
+// number, padded to a length of 32 bytes.
+func (p *PrivateKey) Serialize() []byte {
+ b := make([]byte, 0, PrivKeyBytesLen)
+ return paddedAppend(PrivKeyBytesLen, b, p.ToECDSA().D.Bytes())
+}
diff --git a/vendor/github.com/btcsuite/btcd/btcec/pubkey.go b/vendor/github.com/btcsuite/btcd/btcec/pubkey.go
new file mode 100644
index 000000000..f145414ec
--- /dev/null
+++ b/vendor/github.com/btcsuite/btcd/btcec/pubkey.go
@@ -0,0 +1,172 @@
+// Copyright (c) 2013-2014 The btcsuite developers
+// Use of this source code is governed by an ISC
+// license that can be found in the LICENSE file.
+
+package btcec
+
+import (
+ "crypto/ecdsa"
+ "errors"
+ "fmt"
+ "math/big"
+)
+
+// These constants define the lengths of serialized public keys.
+const (
+ PubKeyBytesLenCompressed = 33
+ PubKeyBytesLenUncompressed = 65
+ PubKeyBytesLenHybrid = 65
+)
+
+func isOdd(a *big.Int) bool {
+ return a.Bit(0) == 1
+}
+
+// decompressPoint decompresses a point on the given curve given the X point and
+// the solution to use.
+func decompressPoint(curve *KoblitzCurve, x *big.Int, ybit bool) (*big.Int, error) {
+ // TODO: This will probably only work for secp256k1 due to
+ // optimizations.
+
+ // Y = +-sqrt(x^3 + B)
+ x3 := new(big.Int).Mul(x, x)
+ x3.Mul(x3, x)
+ x3.Add(x3, curve.Params().B)
+
+ // now calculate sqrt mod p of x2 + B
+ // This code used to do a full sqrt based on tonelli/shanks,
+ // but this was replaced by the algorithms referenced in
+ // https://bitcointalk.org/index.php?topic=162805.msg1712294#msg1712294
+ y := new(big.Int).Exp(x3, curve.QPlus1Div4(), curve.Params().P)
+
+ if ybit != isOdd(y) {
+ y.Sub(curve.Params().P, y)
+ }
+ if ybit != isOdd(y) {
+ return nil, fmt.Errorf("ybit doesn't match oddness")
+ }
+ return y, nil
+}
+
+const (
+ pubkeyCompressed byte = 0x2 // y_bit + x coord
+ pubkeyUncompressed byte = 0x4 // x coord + y coord
+ pubkeyHybrid byte = 0x6 // y_bit + x coord + y coord
+)
+
+// ParsePubKey parses a public key for a koblitz curve from a bytestring into a
+// ecdsa.Publickey, verifying that it is valid. It supports compressed,
+// uncompressed and hybrid signature formats.
+func ParsePubKey(pubKeyStr []byte, curve *KoblitzCurve) (key *PublicKey, err error) {
+ pubkey := PublicKey{}
+ pubkey.Curve = curve
+
+ if len(pubKeyStr) == 0 {
+ return nil, errors.New("pubkey string is empty")
+ }
+
+ format := pubKeyStr[0]
+ ybit := (format & 0x1) == 0x1
+ format &= ^byte(0x1)
+
+ switch len(pubKeyStr) {
+ case PubKeyBytesLenUncompressed:
+ if format != pubkeyUncompressed && format != pubkeyHybrid {
+ return nil, fmt.Errorf("invalid magic in pubkey str: "+
+ "%d", pubKeyStr[0])
+ }
+
+ pubkey.X = new(big.Int).SetBytes(pubKeyStr[1:33])
+ pubkey.Y = new(big.Int).SetBytes(pubKeyStr[33:])
+ // hybrid keys have extra information, make use of it.
+ if format == pubkeyHybrid && ybit != isOdd(pubkey.Y) {
+ return nil, fmt.Errorf("ybit doesn't match oddness")
+ }
+ case PubKeyBytesLenCompressed:
+ // format is 0x2 | solution, <X coordinate>
+ // solution determines which solution of the curve we use.
+ /// y^2 = x^3 + Curve.B
+ if format != pubkeyCompressed {
+ return nil, fmt.Errorf("invalid magic in compressed "+
+ "pubkey string: %d", pubKeyStr[0])
+ }
+ pubkey.X = new(big.Int).SetBytes(pubKeyStr[1:33])
+ pubkey.Y, err = decompressPoint(curve, pubkey.X, ybit)
+ if err != nil {
+ return nil, err
+ }
+ default: // wrong!
+ return nil, fmt.Errorf("invalid pub key length %d",
+ len(pubKeyStr))
+ }
+
+ if pubkey.X.Cmp(pubkey.Curve.Params().P) >= 0 {
+ return nil, fmt.Errorf("pubkey X parameter is >= to P")
+ }
+ if pubkey.Y.Cmp(pubkey.Curve.Params().P) >= 0 {
+ return nil, fmt.Errorf("pubkey Y parameter is >= to P")
+ }
+ if !pubkey.Curve.IsOnCurve(pubkey.X, pubkey.Y) {
+ return nil, fmt.Errorf("pubkey isn't on secp256k1 curve")
+ }
+ return &pubkey, nil
+}
+
+// PublicKey is an ecdsa.PublicKey with additional functions to
+// serialize in uncompressed, compressed, and hybrid formats.
+type PublicKey ecdsa.PublicKey
+
+// ToECDSA returns the public key as a *ecdsa.PublicKey.
+func (p *PublicKey) ToECDSA() *ecdsa.PublicKey {
+ return (*ecdsa.PublicKey)(p)
+}
+
+// SerializeUncompressed serializes a public key in a 65-byte uncompressed
+// format.
+func (p *PublicKey) SerializeUncompressed() []byte {
+ b := make([]byte, 0, PubKeyBytesLenUncompressed)
+ b = append(b, pubkeyUncompressed)
+ b = paddedAppend(32, b, p.X.Bytes())
+ return paddedAppend(32, b, p.Y.Bytes())
+}
+
+// SerializeCompressed serializes a public key in a 33-byte compressed format.
+func (p *PublicKey) SerializeCompressed() []byte {
+ b := make([]byte, 0, PubKeyBytesLenCompressed)
+ format := pubkeyCompressed
+ if isOdd(p.Y) {
+ format |= 0x1
+ }
+ b = append(b, format)
+ return paddedAppend(32, b, p.X.Bytes())
+}
+
+// SerializeHybrid serializes a public key in a 65-byte hybrid format.
+func (p *PublicKey) SerializeHybrid() []byte {
+ b := make([]byte, 0, PubKeyBytesLenHybrid)
+ format := pubkeyHybrid
+ if isOdd(p.Y) {
+ format |= 0x1
+ }
+ b = append(b, format)
+ b = paddedAppend(32, b, p.X.Bytes())
+ return paddedAppend(32, b, p.Y.Bytes())
+}
+
+// IsEqual compares this PublicKey instance to the one passed, returning true if
+// both PublicKeys are equivalent. A PublicKey is equivalent to another, if they
+// both have the same X and Y coordinate.
+func (p *PublicKey) IsEqual(otherPubKey *PublicKey) bool {
+ return p.X.Cmp(otherPubKey.X) == 0 &&
+ p.Y.Cmp(otherPubKey.Y) == 0
+}
+
+// paddedAppend appends the src byte slice to dst, returning the new slice.
+// If the length of the source is smaller than the passed size, leading zero
+// bytes are appended to the dst slice before appending src.
+func paddedAppend(size uint, dst, src []byte) []byte {
+ for i := 0; i < int(size)-len(src); i++ {
+ dst = append(dst, 0)
+ }
+ return append(dst, src...)
+}
diff --git a/vendor/github.com/btcsuite/btcd/btcec/secp256k1.go b/vendor/github.com/btcsuite/btcd/btcec/secp256k1.go
new file mode 100644
index 000000000..5e7bffe4d
--- /dev/null
+++ b/vendor/github.com/btcsuite/btcd/btcec/secp256k1.go
@@ -0,0 +1,10 @@
+// Copyright (c) 2015 The btcsuite developers
+// Use of this source code is governed by an ISC
+// license that can be found in the LICENSE file.
+
+package btcec
+
+// Auto-generated file (see genprecomps.go)
+// DO NOT EDIT
+
+var secp256k1BytePoints = "eJzEmoc/UI/3xs+ws5OZGaKi7BWKhqKU1RYaPkaDEA2kJERZaSdtbZJIRkoZpSVpb4WUREr4+f0V3/sX3HPuc57neb9eF/5HT12OJPy+1kbjUwxYojoI9978SCNZij7p55KAQTuXdaZTbogC2CUE4Z5gMzCa0MXzngnBojAJas8GDFQ5jw9KBgmPjeKwA+KQ1P8cRne1U+S7PHDIS6A+h2R64/OLxNb0QHhXBwRMkCXZ5rGg/u0EG2m+hpyUKPr1KpP6FIfRqHYCQYtSXrrDGvZpiXChsjCYKKzDN8a+qK0xAJJL+jhX3Ypm1ZhDWvcmfq96lb5XFKPSWwl4FNPCsUvPwqMDmhTwWoSPfvzLjxPOkd+l8dhvUA6YM4lflYyG81dO8Jme/WC64BWN6VhFxfMXwghHV/C9dRSUH1ehUVYm5txVhNDZUTAj/RXsmhrFBp/P8I1Ns+nYjxdonzufJk53Jph/jM4HS0KRwAgcuLgIvjecgsei+STvZoayGpW8ffgOavnpDEnaInSvXR0evZqAB+fdhn/uu3F+3BWstH3AGx7OgelC+zHztCbujNnP7vOU4JHJZsiPWkSrPkZy3jNx9vpRhNMkRuMak+vkNC0TV6pbk2qKFZg7/MOCzAYKvpfM3nUb2ej9HnI/IgexP+vRyKcJi0d3w+A3CfCW7aD/JnbA4aYzNPmZEkivuIHmr5/yM3l5utmyl5aNXga9syTALEACzN+fg5W9FSBecoG3up4F6WRLHjlcApKEbGh6oTA+KBaEGWebILaxkCKM8kkCbSmyP5flklagY/s+WiC0Ac3UivGVqxIUyguQeVQ///TbgZULQwn0s3h/QhFN/NoKmTdXwucvv9FmhAb82zyPvlknUmu7DoplOuH6PX1soCWJ6xZcA3eHt5A06TxUxCuBRfhoyD3C8FrbngLir1Dd3M1YYPOEA58W45PDb0hzczM9XGACKpLHuM7/GKVOOcSis7bCIoEyejppHXgMOJKDySjofAastUEFdpWIwO3gjYzOOqz+7SzsNHmGYzv7aIvcPwy6VMnZHE+istqQIxsHH78M5ysDlaz7PgiTJ1znxMnC7OAdQnn+H/CEyW+8IaUIgkpX0aXjJLdhC3jt30AuGY9JReYzL7+5FLoGWjEsLwIj60cO6Wonq8am071BSwzYPsjZi0bDvOa31Fo6lz/U/mLzymy8/ckEPDaYsK7LYdh3Ope6TmZi7bn5rPdqAC6nnuNZT4Th89kRVLxOAGRrG/nc70nUu66bs1xvwbwNbhjcsI/DP/mCwY10SH/1kYy9BWGWgiM8e5+KcWeNYPP0ZHAJayKzJ+WM2z7AV5fjMP5KOe/LNALvdG1odXIG7a/jUaf0FSS2nMSpDrPwZsgkeNf5CPcvzYSRXTIgPm09B/2yoKKDHaz+cQB23Lfkztfh0LRYgaRPboOxO6bAyQ1KsPXXJ0zwuIUv+7zw45VS/nTgBd9ImM5rpzWDids/NrsjBvl2KiD3+z2XKtZRudsSKt0YBL+gga+eLgMt91L6fa6Z79tL8WUZezBc6kxjPyhz4d/raO4TT3ry86j4fSTOOzoIOR1zcPGTcyCnaQAif1y58NdcVJCzpMS6cGg/y+BNVmyY6YeyOtvw0tO1nCSgAv8ywkG5IJtKr1+gsT4FbFWXDRcH0ijq0Te0P7ycvt9cR48KlcDs1HIYcMnFpeMr+GbYVW7MvQD5oo+xeoMiXh5zBnvti9F6tiCkmftSkVQwmFpnwZndL2HMrI/Y2LEX10dX4Oohv5SK84WfE/Rg15VNZDT/F3w7FQemwnp0N7mHf0d/At3NxjD91mrYld8KqZ+NYKJXMJ6N/McPfjrzev9zfHj0eNheNxLub/QFRc0m0k27zm2Gw6AgewfvXumBk47OhPxxzzh+4mewXtEO51cXQXVgJTksd8WSGwKw4dtmmt+kROtPT8OCwBp+/Xomb51cj7l7XtNv53BUnHcE1rEQPDKt5UYjF9JSukoq90ehwOhY2JT8iOu2LqSgrzqoumUmbZg1GlbNnAYKyq/4woA1/Ht3CNlxK2WNHQRJsSh6Kb4BXuaHUWmiEKws/MkXeCMEnjyG27aY8AONGbxe6zTcX34UbTy/wgcBRyw9NgKMnDpowel+uNfTRV7X9LlDKgrcbxXTlFYREBV0oaiZKRz7SxNUdL1BvNqVVk90wfddx/DDhJ3oLnuVFmmOY2EPUxY/6opty9Thv19/YcCskdcIhYOccytPX6rJ2SuLWCzVBES6z+DAFUckp7FQ39uNxisKqfvwPDh3cCasC23ByXAQvDMPgFrCQV5SVQ992dLQlicO7V1tuOFUP8vrPkXzowM0Mb6aV8xxhMpbRjS3qg+yN4+AVZ/LcdhsoMZBK1q39x3fUlSjEHcrDFyVhYHPnuHUnXegJtUCTko78+47nbzgXAhX67mxVowBrqn6zuOn2FHjiy6+c9KZr6vow4Ob/tis3wti7Q78UjCJ8LoXZDzahupLmASlRkFJmSP/vDgcjNTsWKXoGZmufI/9jxzIWW4jm/wQwrtBP8H46V0uCnjFpnmGsOmgDCVsm4hrnzXD4yUnMPaDO9+fU8dCbbe4sD0OUh9kQOhEDfCNXgAs5Yh+5sN47+zJSDIyfPX6SN5X10cSptp81OgAhr1RgMYrY+HDsNfg2pGCmd33wGJdKe1PqYWN077gPb10Tt1jjAdDJEAoS53L7Wvgs18a5ZRrkp/KHcoYcwGKSvfCkYO2eKZsGj9WnAh78RpGhz3Hcbn70G70bKy8Iwu3R/TgjclaYDbYgcPk94DQD0NQzUmH5xETeLpsMfWk7wXxjLk46UUIfTCLgk4tee4+J4RXHhGkVfiz5PFdvFAqAEJjdXFquzlP/ylHmt/q4PmQLlrJC303Eeg8WcF6B+rxhLgr7fa/g3nTLqONZh8lH7fl3V2juO3QWN5XMwL+6V0HuXBN6Du3l3SG9J0++hTIb7/HsSkn6KRcMUWPuIRLPdXAa95reCB1lHf2fOX36pIUZaSFSmkRcK9DmDZIT6H5sdKcNkIVDixoJawY6lW726El+xkrNn/nYCURThw4xylVYRwz4ABkYAAjrW+xTPAjaiIjkDw4B9ZYvOLAeQZg53CRj9pU8bO4LWzqKg37FWtx1N8aTtrlxtNW9+EOZSfQmfsM6qwO8OiIw9wf/BjzdEfDQqk13LK0n4+Vzht6HzGo+VhNzlvN8X6SC3S018AXlWOQo2wM5zOnU/x+Qfp8g3DY7yVU4v+WGmNewBWh3Zhcfhe/HG5BG9CCUar6TAG/aM4RByz7eBWuu3Vwd3oqXpTrIfsrPVBzeAro71EGiVpHdHE+CzNdd9ApkbPwLK6cphwJx5tB7agwYIlyXz1hj6g47F3zCe+fX0HHxs7E6sIjvMqwGJ49NYUXi5rQ9Okz2JqWjI7SFiAkG4Fv8z7gpVnOYDVpERUZf6K3J05T1Lkn6PUjHaq3/qM5H82g71gn1F+8wDKKh3Cy1RrwPjgDJ7oagVDNSFqnKYSyj/ORklRgNlvyxpE1xLXqlJlxmTa/agMT+0ioPF2KDtKT4WfIAjYU1oOKz3PxvkUQvFSJg6Mr1chzwB+L0v25yqGY4+PX0YQae74oJQtzxQw5tcGej8k2wQxhfdpoFMDnW8xRcNYXtIcJyC9G4YVJuiBeqAUty4x4oPI0TrEppHr/o9D6djTeedNJ8zYuBKnwTTS2bzz0NIzApyoHWDz/Aly/HkNFKaZsMPsmaA0447gfzajxnw755ghAkpMO+i6Rph2LctD7fDH1RhfRw05T2KySCI3vNvD6Kk8ejNGANdOyYfncRyR9ZwrluXexQfYf3GR0hpW+PSDHj9Z4b/pCokA9uJozGSfc1sSsWwtAeGjHz3vvc8QpUch3zYY9KzdA29XvpOevDtM07lFigTzHKyhC3KNuPjBCFq8tfgtyfwywwNge5kda4p3dRuCZ8Q+6hq0BoY2u+G/udJz1wZ5/d1nDIi9pPG68Hay/laL8nBGw/bo9Oad85jwva/LK382ff02hji1SfEf+LN0cylbD/tOwP0kCHgaOhSaR4RylXwShyasxeU83PWIJ2rAhE+pxG73b0wMDqZrwUrUbX+xSZNktaiQ26Q6ec79EJ5cks7xUIEw78IUX67mSxkJ5mBdvAF7a00lj3mc+v+8R/St7QLeHr6MEhyL6EZvDaT+Hc2OAJNzY3oM9YlV4OWISfPeJRd/4fXDJpBTvP7uNu9f+Rsn1/yAndyKMnWAMbopFzGMKwWvwFD71y+dESwPwXxaC0k1KUOq9klZKK0MBieJw4UgIGHsZwxzt0PaQNZ+v7aKSrbWod6ub4uUCuNBqIsw7q8A+DUup9nc7NcgbUu2JwxR56ysc3nQAzrproPnb19w8h+DB7TR6JLKBJhXX4UcbKbR/n4dz3z2jwAceoHeiAdTFDuIYJWOQjHxL9dU3WTdtEp1P/4XvRl3ANr1KXOcwk4MWOKPOSzkabiQBzfpOICqRBx80XtPJLAvyKBqPEjnZ9HtXICXk7maNFDfYM1kE/rx8iprTBmlHfT4tSK6CvftOg/D41XTLQYMrpAtJe5cxblqoDmqPnMHt8QCXd2VA4afFcHmaAo+xi8Q/trq4am4tq1THg2H2BNAJG8/1yjeBJUqpz8Uby40W8d+Vszi3aTtOOVHBX34lc/lGU1gllg8KU77zSYVBqJ/cDbW322G09Wr4dskWOpI2wYC4FPSd0oYrh06Dp/kejElZTE6jFVh6VS0cWWhA3rEG+EjsMNVOfUBXU0fASidbKJCp5QX+V3mzVDH9G2bHI7ac4Bda6yA88w7HjbzKYtv04KHNezQ9VYyLUBO3Kdng8v1DHJhxjec3WkF7vi9bJrfAlCJF2GlZApeCx3JWyCV2jGrFRBhPz9Ou0vDFYbBs1m5+daUROvwMoHEbUI/7R5y15xTsX74U1b7mUKjLUpoqJMxR/q3YGrKFbiyzhZ1JA3xhmBU7b9ClM+1VYN37D0eJtKLGcF8yTN8I0lda6U29HmjFpGO0rz/7h62iaWnjKLrFD5p2Mt3q+QDn8wywT/EoWV8ShIM7TOHiCGtqtyiFYVGF3P2fB648YA8+/22kRN6H3+y0IcpuBOx0vccPH/eD1rFNvKsrAfafrGMVAVf8sPcNYLU0nnYKhro2K7A/k4BrHGtZKG40xB9VIsm/JfDAQpinhCbjq9BptP3YbEpYx7Av2BfEx/VSzXakfs9COO0QBHqHC4jqPkH61Ie0dvIrKLltDiOsu2nTu2CWva1AiyKG0Z8nR2l7cxm2bXhCyy/300qZVr4/3Rii1VLgpqEdvEydzII7KpDLE/GvgwcqBiWz1I5CmNEXAnLC48ErI5J2CHeTnIEQayzejEtqAQucppKmQxsvlUV2zn1NqpqiMNX6GgWsU4SJTWPQ9t9NcH+ykEx2C1LLMmtW7I7C9G/KaF2iCivPhiPAaLx0ShOnmbrymu3bqKTGmJbOOIPHpCdz3F01nJUkAloTmsDz9CR8UHYDTbSG2FQyG7vCLoKUrADGP97Hh84yb7yoCMYCWdTr6gIb569mjaVTOUHyCFTJrKDwuZNggWYgqk9Xh1NlmmCuuhgTJkmyR6EfbdDZzUGfMuikvhYs2PIRXXuseO7T9Xy1eQSYdC/lScES+Nh7FMSNlufsfntqvauNe6cb0GjbOmw/9ZF2aU0Ada+zELTQEB3rtfmm9TVY0G+MnokZPPF4L9gG/iTt/jN43NMcJHfUcZjFIUxa2cyvDZIhOr6K1m68wP2yh2njz8e8fl8A5McIwLczfnzmWBVInr9P0lLn6GjBfijNmwgwMZsixEfR+nHV2COgDRlHv8D5ReakbDBAGsv/ofeDy1C3zpY2Nj/govcDBP+t48ImGSjOt0TZ06FUZPMINzUVQQXu5Pp562DZr7eY+SMAum93UU2rDiyWTSXfnrsw2JpHid3boaWkE7dJ/yKxJRGoFHwPf46rgqwcgLg5SfTn5WN8trqOI66XsNZaSTh+3J6viD3n6/E7wDL6Ge7aag53NeZjdU4bpfuPI5Wzj3ntHgMyQj0+6qNDT5e68+eUEsh8rAzXTZOpYrMG/NAP46mnozFqiwRbFhTQFuMefHn1M+uNUUFnHSPoH/hNFa27cdl/xjSptBDW/r0Lb17GoaaGCGk5nqfWHzIg6GgDf+IzcI7WcKTXI5lTxsFsyKPq5x0olJYNuu7uJBOcCnnvBEBG5zMZXTKgDQuugJO9L1RKpZPLlA38pOIAdN9qoIOvHnL5DUPoyziFbY6j+IjXET7lnAYlY4VAyQDAY5QOJv1+Qq/PhmBJixScOaNLO1xK+Gv9TqoyAJ74Yyp0+Kui6oVbFJKjTPfb1qL9YyWQkm7h65szYPUQs8qXiaFU+Vtqf1dBolsbYLNLP69+Oo9FHO2g6+BkXtTwB9LOmVKzrj3JdLrQryMRKOCzBjvalVFy71f6nmME8UuGbjXRHsLVvSiiYjHXjbDlnvR/+HzdO4xqbsKQgD0oISEL9eOPwDz1hfTj9V9WzDyMu10F0EywHlsve7Hvkx+gO+0Abf6nD801fzG7TwNvDnSzh5UI2Y7txV7rV0BlLzClvxAq6yTgzRYDiFF6wlGFuni73x+Di6ez+eRI7HibhXe2XYbAbVV0oqqTDtvogltrIhubaXPpwTL2Oh/CaqNG8KcVVtBxZzbuX3YGjW3HQ3mDEOiqlOEojfsUFv4a7OabEN3wxCl1rbx60isWW/qSytq/geoYPTidY0WuV7S4TjEfE7wD4FBLFyW2n4DU7dNwZfpjLDvxEO6/kAO9in1QcrMa3714z+Ja12DWsjq4fPw2Deh85hH9MhQf/YQEVMdCdIInKL8oAJFNZ8hujyEG9rylWQkpaCuZyWGyXSzpswVtrxqD9xCXiAX/xnj9XxRTY8H9s+TBqtyar60nfmrpyOl/jvKDkfqQ/EeXfpwWIhWVRXjM8xRFHDVG0a6Z+GNMKKkNy4BJR0KGeHw4aOZ9J+XnJ2BkYhjF7BoBq1PugfjvYzhslCCOcVqDFaJzwU7QDI5sOA0X9q9GtySEqTn7EKiSs7M2QsLJbWQ60YEzz9Vj3WlBKFAQpaiF4VQ9oQpVSZvafyRT/X4DaHffybt3CnL5oZ+467IYzPrqjdP1e2BV+mpokP2Bn1a9BYOPAly+Up9S8qayWVcAXGjSgYNR72mZUxkfjnpHe4t/Q8uMtRQId2HjXgUSOmfDy0Rm0WCRLHyg/bxc5Ay/jzLnQo3b/GVZKr+a1IK/Ng7QHgdk6a83aMVXgs6YFDgo2E/GI+Tp5L0IfmivSRcPS7FqTxY3PH0PpxSLae5yFTjbMQGdw8ejctpt3tQiTbY210inXZ3HNG7HYL/b5OopQyO1jMH4mDJ4xRyGmRY70WphHixaNR82HcnlpTHLqHfGMWwTUoJbJcIw1awbZD5LQKiCF/t9TsWuE3G0sG48LNi+l9xismDjoftwyVQFHtv+5a5jb2lawzbaInwZe1u1ef60ayCpEop9QwTSoHON/T7ZwfveuyDYEUP76r+Rz+oUdt4xBpNUQ7HmpANAsAo9KK4Dt8OikDbqCi3PfUnl8qdxrWcXlgwWkdnzTsybaIvugTn4zV6ERJWH+rNfLEaHR3DArmgctV4Nbp42xIG0d6gW/4b2yphge+VZ2njMAN4WmGFkWDc08iTYa7iFpFafgkqzKxC4aw3zotMoFHSQVheow+M76mzkqQC2ExsoafFI3nygmLyyVqN9XzkK3OqlP4HZVK8pCQUXflBXSCwEdI7Afu+ZtPC/zSQXsowjB1fBltuJNFDlTCnXx0D6zUhYX9DAb+4cI4d308n5xzb2OybMCyRGUFngHwgcE8KhUorgsseRNWos0KftLnvqFWDS9wZ46qpFl1NvQ1D1YxKVGaSVD4VA4+53EjquRH8vm6GtUiX1qtvAw6IedFRBElgSA857hoPJMTloHNiNB621sK/zPCW5rsVNv3/QnhgbfH4uhAS/leHMwSA48X4CNBodBIPI5zh1mgTdXl4KrbU/MO+VBP1aas/7bkeR359jlOQpDF7zrqBARAHP9VlPP1PHcb/bEZZaOQGmPViGc2ceoZI9bdTtZQHw7jQ2SoTCCu086NyUwiEKWRxJb2GzYgsc5aGbXyjF/m+0IXq2G8sop7Ds4xKategnC2uNIZr9iLpnnUWRgzlQG+KKnyaOhLfxwzEXl4C//HF+n+XBdiLTabhQDV/b9gqDMw5CceYMfDtcFPZf3sjZ637D/K1L8FrceUh+MZECvQ/zoEMdfA95DO//hdPSbjMoqYvH7SdbyGCwFU4kDgPbqV8wd4sQaG+JYPVhwljdNYz2iYyAXvhFphY/4ZrKCfb1quOgp7k8SjcKbX5tYdO0v2wuPobrYmXB40sle9Q0w3eH2Xz/Ry4vv+lEmi5aUPpkGUdILqDiTwfAUNcY/mjmkmdEBCWnrsWeC0vYIWMifQ2+Qm6pdWz1RxDlep/h73CAv4tHo2BVGKsOKwZXd3ec+LiLD70MYTqSD8Lh/Xg92BLjNolCrGYNxoZ+oVvj88jAcABULa5TUoY95U7PZKttkyhGNpi/hGuB/r0KOP5CEw3UPNhlkQjZrA2AD9ViWHpOjuZKpKPY4XwIzJOF+UayKKE7ngPa2/BLyRN6cswVvwyc4aJaLzwbshYMP+Zxd7IRjP31g9fU3eOCna3sdsQWhJ8WwvdgWZgnf4TNd6rjua39HLRGGURKpcjpgjiFLf/LtvoDPHPIO9cuRpzs5Ul7rx+jU1PU8NxvgCrxf5gQ1ElVz9bSjLyh7zK8B74vH0dzt/3CVrt1fOq8B/28OBZ2D8yCyLrJKP+jmvMs1bhrdzxFDK/m3znDsPSUOak33KL1Jw0hY0Eg1/uUgZ+vJ8TVtPC4a7pYercFu79VYVKvNqTaxpC+sAo8UMulXetPoXqYBnpbTMQnv1NpdPFMave7CdfV+7G6XI0jMgRh/CQtoHsJ5Ivp+L7JHS7uG85X//NEw9q/0BH0lcw2PAbtlwAL1Gwh3XMVjJhyEky8CHqbgqHfTpCvfY6mwq5tdO/STYq/ZgPjwjbh/Cfa+PnHYez/Yo4ZyhEUu6kTTutdxbb508EkXRKfusoBDuxHKfMo7t1Si68iz/PR2frosrWM7iy8DPeVj6NPpCDflZWGg4Zl+Kr7LwvtEOCkGzzUzwdZZ9soHviyk729alHdWBXWj5UFgxJ1CLkeSVFyvdC0tJs7+oOw96w0ilUuofgfCbh67HnWlNeA41t12VRQgXK3q+ATdScK/BfNK6b7o7mVEyz/GoY7RuTgoJ8YPDBUxG+OCVTx5zU2/NEA16XeND/uO6/IjgLf5/5QqjGNhxfoQPZocZYP+Ay5u3ZRuIcgLCsrxoLJVXyxfidrnQ2HZtMhdu+VgYkyJpyl+B86lP6Hu9XGwwEdLTg4pJXPZpvp/a4ELg8Vp6nT5KFGRJoGb6piY/16TpdNgbOP1LlcSgP1n7vBqdrVsOFNJc/LlYaKIWa85VsNZzfcoJQDL2D4eR10qOjmFjUbqLu2BX5FlJHhU0loRDNSjZmPrkFFIOrzBtZvNyCJZ9NoW0Mf4GUPqHNOxOb/DIZyew527H/Kj14ugmNZb/lX4wqyFdaG3ClTcPnxVhiA9fxyqS3EHbaHaz+UKGIRodfhX1z1tpRHTknHrz6JcLarBAwuaVKK4XAwkroDC86KwccpKnxQrJOkTp4BtZmHObPtCJzYYowHksJ4wg1lUL+mxD0692CXz2PqXnSI7mpu5eVmAlS2bgwaBOXT3KZqNj+uDBuvPIKkxCLqETfEENHXZJD9D3y1R0L3Cgk4Ev8CAs+foPO9diDp/B7POM/iq8/ucJOHPb4s6yWR32eGbiOHewTM4IOrMo9VVQTe18w+z/Zz6VEj/PA9Hk70h5NDhD/r3RMCy3JV/Fh9l8d0ADwjG9DxOoVnWg+RoMk01L9YAooqWVxW60nezrmYYHmWXrmZwHQ5VzCTSIWObXvxdU4qeB26SOVWMbS38RCXBSlw7L9IOl6lAkmLXmCX7kRQkHsCgycH6VLtW0gTz6BRY5fhzutaOCI1BXsczGBw8mq61uMEzXQDnctaeeNbX1p5cDdeCRjHxy2yQMWpj6fOnQBmC0RJ7vs9umyZxTK9jrzlhTMkL3RBi/EioFe8G+bUOUDRWwM4NcTl4iHWsDrCCrQuq1NyawIYdOiQS4cNWvmfhhsfNdAoWQ+uVAfBHvtQfnoxgexHb4WgdT4gNmjF1sFm9C3OHjVnfiHbVj2w9jdip5wbrCNXR3ZlWiw/dQHDewWUWD6CpnnNIaW2FC4+Nwzs9p0mDa2DoBojAu6NS2nsGHvY83QY6RYvx4ycGaDrPResZhvAskVj2HO/E7tUVeCxX/1c9X4J+Sb4Y0mCHZdvaqD63jgctV8E1oiMB99VeiQY9Q1Nr5vjvUhJ/LkpkrZNucOXbU8hKz3j7/u14J+CLZwY1MCTe43ItiGYTUebk8ai02D58Bxfam8mF5te+rlSDMqWPUSRaUlUft4aZ7ur0D2l+djtN9QFLn9FuZC7LLdKhyuUdEEws4yCk67D8o/tQ9k2H8NjpsE7q5N0OXEKhP7wBjmvGKrZOZQz4iP5/bPPKNCZCDv3v8M1/07ypJ58VL3xD+QF3MFNoZSEAiTAYXEAd7Q54SR/cQwRWYh7F9ugx7tf6BotR2bXL/EpZTOSuTkeHud8goUqsyg1QAHNRYqpbvhIqtyqiOcCR+ED3x7+8ESf73USbHg4DAatbkBszmvylrQi98eJ9Dt0DVv/fgLKNnfQclo47ZlvBjHS9ynZspiqCz/y748GIP9UhLzv7sHRfraA205ii4c8p59QAfPMehj9/gXvCH6JpqPPsZD9BGx2HkYfrzjSBOG1IG28C1p32oKh7GK0uriLw5NS+a5EEAp2FHPah6VoLDfIX4w+cV1XM1yYowph4wtQ4UY2f08QZy91ZW68ZYMHr3bRm3vleF+8FdX3TIdbx2Xg0oxayBmXh9LWXagytgp2Jk1l/boKjuj/BpO9psDZguew210XptxYBTOc5aFPwoOMpl0AzZXXoFTyP2x5thYfvCKwuCWJUn/kIOyZOF6u94abn7Qwxicep3+wp+jfW0BIXIUfHPXBFnE/MLVTg5ePTGDQfzxqi42mLzGWeELnKzzs0OaGhX0828yTRzVs5vlDPWzvckWa5ygIr9fr4MYFwSwz6T9YVzkc5kXqU4HbAnyStoTS3CTB9HwI/PpQggsff0Hr3/U0xzeAwkevwFFffCG4Yyps39QOtcfUoTB3Nl5434mdO9/yxnUJtFBOC47tD2PTDGk67J1L2y1UyXOI38bGmpCvUBb01oRiRtA5FP6Sy6fdl3Ng4DeuXNXBnZ9zKK3DDEbuWo3wfCtq1e+mRX+2Y96LShK/twwvOQO7idyC3eO8YKmjIbQtV4fYhXfYwvQePzDop+cje1DXcTcqrvJF402bQcy7lm3sh0PHJ1XmHRb8MP8wdo5X5cXxx7FOtBqCdBZQXLwiCT7wwE6b0aD5oZZiZZ5y9qf9rHS6iU4XnaWDU3aQDsnz7b9bKNM+fYjlTOHSUMdad0WMU3bvQZ3J7jB8WzUvVV1Df8bNwsBDslgy0xvOusrCreLXMD75LvMSdXZxysLGrRn4vcwdn86Iwrci/fRorQcfXjQMTLIy4FmOA93c1UUJmz2pT8CT5pnsZNexATja7TxM+mxLuvlGcMVlLGe0S+IY/bdYPv8U3fj6nj/PsIVH5yzZ59Zc6PmSD39uDgffInE6M/knSuoUwVKDCzhBJ4tD9JbxugsaOEkoHpzGLaSIV8qgt/gErPhSiHkrKsjTOARWLJ3KP7SmQrLOLoq1SMBG4U5QU5EE48w7PMejja5Gr4HZrUo89Uo73JDYxX4uXdhuth2Or/OHL2/E4KzQCW5XsKMzB38xzHNip4OX+YztCP4u/xm/uv7jTymE+ooWsFrmDE7+NI3qCv14WmMmhefOgekNH2ni9Cvc9fYI6VUdx3BBAfBemIQNs5zBM2YH/6mbTXffzKTjUxZwztvrPLLvAlfY7YSti2xh376psEBChu7s8iHLIAMQnDCCt2oWE5tXQUZCHobO2ApCltYQvP4DfZmfQPnan+D2H1H6lmhB3p8jYbdeEvZOF4XalgK2fzAaCrYeRLPNzaTc9hLG/pUmeT1P2F/hSzEK5WxWWw8fo63RdJkGPF4vQjVe/Wgl642NG97g1/2b0Om0Fp0YsRMWkDWPD/1JilLisDOyiyMSe8lpzUfONtmHyvX3ofHoYSy76UkqM4J4hU4mSd4xhY2F6hym2olHG1SYk8Zi0OlbtO2dNZgEzMIXhy8OdXhRVgxXgPT2LDLp/gbWTVE4z+46bWv6yPb9w+mvkRh+7oolvYkLsdffCMLty8ktYykayo3DQ2uDKbR/LRlfuUVVCg2U2ehFtoVSLBWmCiU5RfAWm7CufTRZXLDmm8N/8EKzkxyUMZWFlp7iJWO/c34igfgC4uu/ZsGO0O8we3c9rlhtDcmWEZQ9pMcqB2XUDwqhGGmCVd8OUGLUbnBfYcWLFztC/ZGT9DZSjFoyPOnhtjaU+G2Az1KGw33fZr58/QkeXgYYuOE0Oqu40I0OGf4ncxJeJpni6xOW+MBHD+S61cl9y2GKCrjNRoHmOF9i1pCGU/ly5RUMNlZivYxnXK44DApib2CYsRIWPxaE2slHKX3VQSgX3Uxm2RMwdtxROjNDD6xmKcA10Tjwi7qM60VqMO5yPV1zn8DVR3SofoY+l0z25lX2zty+UgDcXV9S8vxTrPjDhWq658EMs0HaEvUTQ7CRrgYMeb2AJrZn6kDO7p289r9e/PpzIXrUm2DCi91cOX4b5s3YA1U2C/DH8lV0eaUN5AWdgbPDDsEatSzy66knFc0LtCbCkAKPHmDTPxkw/+lIkrhhCFNFP9LF7img5ZPPY2y0+FCzPEw/1YpzEzbQ66lOOGGWC7jKSIGkrDvLXa7GS7wX3s/OpXbx0TD/3kZ+PPCQTZea4Byl5/y+UREUJFfBB007cHt6mE0rGzD7iBr23hhG7ZmikMvReGHEBbo1RgJCt9XwH8WHePD7e4h7fBmPZQPaTg3jfpdGsp/iS+JDGXHAWATq3qbTGKxGuUXRoLZaGc+5ptCGAUtwj/cEhwstZNLkB9PvysHqPXpg2bUFP440AfV7s0h5ZQXr9FyFTP0gXuM8Abd5ifLlP9pAUSu5UEkUzG21sG2GIFv7TgWfOCU4q25Dg7POcKObCN4LMIXNhq/paL8/ZNefo99H1tCX8HAYFriYq51GgJvVCDaxE4BjylaQmCYCz370oNjyFmxpS4PqM9/BW2cSPxrs4HexgZh7ZiuK+Q+DaINoGh+WiPYazlxSfpuS1ixHv/ILFNbrRXe7dbhhsA3VZo+ESOU3uKR3J/Dg0I4n7KAe7QG4cCscWvOaqCROA8u1A0hLxwIm/XPAxT4l1JMwH/28/oJolTHWHPInja2pWNh8CoOswlF0mMXQXOt5zsmtrBsSBXNU17BL92de1OdDT17Xgs7O87BTvIHL7W2hqK+L31tthS77Nzgxt5he79VkswstsCVPjr9IdePz8Y+hvF0P/kYto9YQN+rQ7cHDXt4w+VApB8w5B1UvhHH7dB9OytHBka7j4a9PKEj8S8fYQSE2FL3Mu7PPguiwZ7xEShJCTRr5/fCZ9OqGPvyZ28OzNsiQRm4AhLzsoqeONSgvMp0jJMajW7IeugZcx9ZqLZi4L40rP2rRi7yfHKlvixMGReD71ZvQ6a9J4gbZ1OnUzB8eKILUw1ZcVjSFPgmOpQQBb16stwtF/BYCrVajXI8/MGfYX8p2GgcWhZNpgnozujufQ5myLXTEfDTpR/lSnYIK33KdCjaWs3mJtxHA6OE0rmUqJezZy+GyctCj0sa48iWOi9qH7ZBF1lPLqUHGCGJDajj3whI+4hxOrZn9qLrwDSx58oljjKbD9bp59M5yEeZ2jgNLxwEYdeUOX70jjVrpbmSwpZP0gq7A7Ix8zru9G+p1trBLkQHYpO6hjPIW8BylxnNOnCeN8Aje/MCXtW0rOezmVKpOOckb84Wh7swmeH5oH2cvM0WnKG2a0e2KC1esJluLIryY9AMa++ZAsIQofPiUBtePWtDd/MVQ+2UdTcwayfNX7YHAvap06P0F/u/xUxA6KAPD9h7gYr0e8Ou8BDr2/fjfXFuU99gAUie24w6PjfRaoR7jGhn6Zq/DXee8yUHan+WFkrFFdxQ4b//Li4dLwc3YOLa+4AOiZ8dC8p8xLLJxBA63egM79lxg0QNKOF1bEbf+cUOPAwPQnPuBdB1Hwt6dwXzJsxXqIi+wcJsjSdeoQPiGet5R08l2+tG8Ie8lP3USgz/Rf1FXdQPGGiSTVEEBr5E+TRkjZvLt1ALSnBcI837V4OPjUjD+ph/K973h1JQEOHRVAHwlI2jxgYcUjHvwxpz7fPPON/4tawvC41zwxFVZHnkskp2fRfPEDEdcJiGDw98vwQYTBxrnbIQOkXLwc34v+q2oxeGeUniuyx2MPwhDzoAXtJdrY+TLZppx4QxtFbaDNSc18eK8Cfh22njOOk0gaFcCC9yesvnaXlhjLYmTVjpymAvBwr0R+KYqEQ26vkLtWimKy55BEvdPwx03K2r/Fgq/t/2AO3eUoWOiPodPioXauadovXUEfqkcpHPH19CwwiQace0Fz97aBf0ekvAn/jvrWEzi57utcbt0IX5YZ8jm0i/x2o41GD1GjqpMvOBLLYB++i4YSHanNF8juPBtIq08/ZjWHqqmi5IDfO9pHbf136KUClW49XYO2FZZU3WgEMrMN0Uhk+2sKxKNfwtWkG2kBj0vSiDLaRYQfkcPPKKfwEc+SxUHRuP25hyI+OVDZi7P2EW5iQWie/i5tBGEPJtONq17ye36fvBS1aBYl17MSg1DsaTHEK4QzhrvVrN/qDpoPzGhI6HVEHBEk0PeVuOh8wcg20QDixUUUFjuOiv83sO6/42FpRtPwfXZFjyjQphSEsdT57dIrvytiPZ/hsGv11Vcei6Hfxfow16/i5gV/4WUWxPRc6sVKyY18inDNBYJyoW/wp9IGRfjGT0BsOn5RALRxbDruRtrn7iCB8ea8XGZF2gc+QHerfpERc+vQ6W4IOgXPiCbaa7kvlKCht8OorbITFjsvgu1jglxgNIh2volDBdusITmjz304oA7bDs+kwTNZqHkhOnYnzmP2rZUYv6F65B7tQq9hKWh7K0J3nPeAXYeW6mpZTptXZnHI9Q+YMLuEbBizy3M/JtGiVP0IeO2Nl0qXkt/jpWg1G0fdD8nj6fEZHhRhTE1aAlDm/MgjzyhCWsT42Dkx89Y+3svvVmtyS3BqzBtnDpm6UiwjdjyoR5khPEKVnCjSgS7L+ayn4MIf9O7R3MgA35JzsXM10m8cfsCkG96irJP1MDedT4JG1mD/ZGxtNnsIAyfswM+t1hy2bUubNpWytv1Y2C37SgIvXKbCjYo4t4ZkazklUzHKyZzReV+jHGYRgpznCHoeCq1XDMf4obH8KDgHdYoSmL75E1cO88YMtvuoM/Jq+i20JUDDYvhQuR4kCi1pb3GlnT/2B00m3we9rrlsuWyLm5MuI4+9p852eY2BAwzgNLaY/hu7iU2HaOKu04JsGm7GufsjOW/pilovjUKvSv3QPF6U/gwNZCeqxxk7ZFavNvzEglbufDHx4W80UIfpnf9ocQJs8nrqBbM2DvAm/rc8auxIk6JWM0SObOxaFYYr+7IxpobInTOfSQ8G2sMLbmWnFH2hhs2/WIZYwXcVmDBQTYDHJVTiQOpS+HKdzWgR6aA+ntgleEdqrA4Ct5a8+mI7mKeajEDuLWBQnVjeOEQi6+PGAPv0nLwQH4VZsqGwL/P22n2uEr2NJhAsbU6qK61EMRcfvDgUhHIWJFACr0P6LZnF/jObYbefYr0yv0RLY65zo5Fm2i/0C+s+CsDxVnmaBddSi8C83GPaS8vSOzg5pJcis9/is5roulwihQvXTMS8iJSMdS9Fq+22mHt4jzS/5tP9d820sHzTWxfNRv0P75EHWMzuG6tTy2ucby5bzWMsSyA0NiHeDsuAXz+GfIiqSKwVX3Dg7dtQS7NESR+9pFA8mHM9gXWPLAAuskb/8Qdp7fCOng54CocW20Dada19PL0e6zYKwu6Z6spp/Yne+iJc7FGHvpo3SNpzT+0NkMZQjQ0Mei7OXha7qIJia1cyd30abESXhz9DqJzG2mq8guMX6MIl2Jy8MmKX7D2nzcK3dUAv02rYeQZFRAK7mU1lSl8q3EhnJMyguVaEtg34TiqSR2hctU5/MyuApzNHlD6x35ySBeF9cd7ObnHFqYdjWW/d1vxu/FZOu4zBlTqrsKjelUUam7ixzME0Qlvwt1h4uCZfQaUh2bq+nMEiv7K0eDbWLi18BRLz8nhLSb/8Ov3p7CsVRiKtkaw5xBjv9bt5/1hY/BEsD2NmGNDGw1u/f8/yJg+Np8b7dRgw6APlwX5wZlVnRC1qBpWHLSDk1kvqe6rHmyXCed9GxzZ8LAGNKupgbPdAQqdEkT6vzfCh2lCFC11FJd220HDTGEIdwzHhSIMy89v4slO+1AhgDn2vQGZjpDBRQFZEPZwEmrkXqLdK/W5Q10V6hKq+Ud/HH373ErWZgU4JCRo+vKKls9NYaX32+mu2QeMHG4H2jtWcmuOG9tbvwfV0Xoom/ILWpcrUeETf/joroH5hlMhpEIR+vIV8OZ5R+q9+5cGb/tRpsBhevboGmSr3SCw3cO1lUM9K0YW1urmQPlZbz7x7w2pdb2lWX91oackHJsm7ib/x6VovnERHllhC3dbqzhVoYP6n7hxSkXiEINI8upWX6jp2EDRJqepuWYptvxRgxmljXhD8SOvjMomxwvL4WeuFmzc8BVbPGfi5PA1PO99HwQv04IYi+Og+88abS5up/E3kLZEeHLXCyHo2rkfU3x+sJjidw4K1ofOPaNIZ8g/Ij3mwQi/AVwYM8it0V6wZHUEt81cBz7V31ii1g4+2UlC2UhdvvokA094POTVhvr0oeUIXgrV41yHd7ymJIsq3YRBuEQL3knfA9+Zp6ltXzD/V/ac1K+9Y/MDx/Dh8sugtiwcvz7Vg+l9lqB0oB4e3Sogte+2NCn7HPo/uUP/1TnDhfW1uFs3DQyjNWCR8yiY6pZOLW+E6XNsCx02ukHu7nNB6foXdHbxw7MTp3GTgQ4Uf7/Egn/n0URnKWiUXEBCi3rpk0sgVB1cxg4bj1N1qxp+llSDdz+NWVuwCopurqS9kzvR56gLb0/NoXzFLORre2jCgVN4ZeowmLz2NXdlniVD2Qa8PzkNl46ayQqVqpBmnAIPmhdjG2uhT64OSIRkwqiiJvx024c2bCmnv/dWYMS6SEjXdyDPuHegmeeIAk+Gw+QV97lS/i5Lfn0FBUtUqHO6OLlH7eW+2n90pKiMa/+54SxbUZBsdKEwM0N4fOwr9sk7w1d5Qyw0O4qdL5ZRTWsljM5/RGpzZWGSxxey/qHLvYdMaZfPI7o2PYx/tTmQSfwgFF/MYp+eKBglNRE2KwZTaPhXnN9+CQfaf0ND6XiY5xdIVif28WL3FNxyRBDMz1vDjSeH4Vr9QZKT0oL0bedQpHcKvwp+SZPva9HL37r4XK+Xrw7XhP/0HpL5w2ymAV+uUS/hb26BOC79Lt6vbaOJT5NAwtYTjf4TB/N5gviuASkr/gEnK7tQUUQBhox2Ive8ZLimK0orNSvY/sMw6DA3oUm5S+jF5eP87eJWDhG7w3Hqbez/KA6lJ8wEfeNTQwwgBjMyehC3xWBWhjOUQD+NqtLnuwUenO4ZCS6xk3Gt/lG+liwN/uYx+NM/A3P3HkDzpHF8QOU7PelYOuTBwRBxyxaaxsuQ6nMbiNAJheTE3fQqcivfMvqPLodNojaLZ1ipbggxsva0478x3FOCIBNxnz+e1sP5nqM58nM71Og2QfWmfHIv/0Oy6n/BSdKR1W4aQ7x1MKgkfaUdb39R3k2GdSsNKKJmEbwNLWbnglb+fnE5yU2whPpSe7q+SA/bPijR/PFmqPVaFH5p6bONZCWO6z1G2hCJc9abQEHTdzqnF8lxB4k0Z5XR5PgSsLwjwubCGykn/DyaZF+FiNvyIJupC1v3rOOcgM/caPyGPUPzqGOfE9y9HQ4q90KgrugbV66ThF9vWiFNSY+qlqwCo5gb2JgazPnTPpDtmNOsvuA7JIZ9wlHlEyEk+gBPCfqLX83zOb+hB/St1uOHbdeooNcMu2reYqOfDFpsFoB7Y8ahRUESdkZ6oPMcTXw/VZyfciARF+MebTf0PaaG4oOCoGEzEqYfEaYHaUJgO0yXH6ZfQYdgF/aMDuLxnd9oi89xCEtTgaWWT6Hv41+Q2mIIdQ98yHjuI/7WLQZ9I3bDct0+GLVRgiu2TQDRB5E0SWgVyBxRwsgSbWyYWw/9Ih74uMYWrEIGoPTPfhTePwo0vq2ny+4v0CvAkpe8/MhpsgG064U+bZBWIbPoOdC/dh6EDOWooCbzqeXvYFV8Hju7iVHvWnceCEGoyDiLFOrDUclVNHsKwtc1Fezw8jyoPD3LsrGyYLE3jZKWMlp/XkwObyIhv7CbFl8xgNw4G8JypkexOqC67gU9G7YF6ieG0ZfaveT7yI3sgr0pd40E2JtOguuzvCFRyQAWv3kLqp2jIH14KbPUAPmGW1Nf0zuo9jUDdVkHWNu6E02+OHGNz336rnMXmwJewcyz9+iF3D3Ml95M9/7aQSW54cHgSmqN/si6hTPwwsApcokZRnFjBDhJZS1FbW/AoBnDQeGjCcSNu4fLXl4B6pfG1IRxoJB5hZxbS2B0khV8lC2jlR52cPumEeYW7YXYYXK0Kn4ym3bdg8ywVPyQug7wfiJKrT5FI9qUwc8rD7QeqlDpsR7y82kG2dhvtHLrKg79W0mPJh7n4sgkXj5TDn5HzqdPt/1xqVQADk7w4k2BVlQh9JOd/N5wYp4TlC74Q8sNBCFPaC7c7lWBL/c+kHfSArB/sgo/rR3yrBdi0Cy2GH/XypOFsx2U5fzgr0bzcNySi9hRpgvjbj4k5avzafK9JAo7fZ01alvZ77gMFAnU4L0COVo/OBva972nlIcN6OE0BzXVCfab/8ZDzYL0E+Rhcsx7aLpYyIseBPAnkTgSXNJJHQJ3cbieB4cucQM3+SSYvVAGmg3TqXB1KN1JG+Tk1BOwbM0P8Lg8DOYKvYKTDo5Q5fuXhSdrw1dHAZTVv8Ipwp6UJSDHg0F96LFoGN+t2MGp4+ehf24qztcSgmkKzrStYJDOhKyEfJlS+O/bAjoFJdySdJMaBpbiDjc1aGhmOLr0CPVppuGdY6XY4fyUKk3f4fRSJSqaXkWR16p5ULsTqUsAamdM59fPH3J0uT3ueDUBTkgsxF+L54LowuOkfMGVD2VFIhgoQ6htF3ylH3DTzAkNFCs5vasb7oruwJaylxx8w4+bc7X5524A0dNL2HveHpbWFOEEpyyepatHmu/iKW7NeriUX4DrVLKgYJ4tjPQsI+XIAfziH4rbV3zmLMxnzUfHWXNxGPw0LobWN1385g2Bo8JG+GS4nNfdTUOrkYvhkIYtevj50o/lwmxgEcY7M2ow4IQBjI8SJ8umZJhyninVWJtV/ymRbM8aUF2+HQeEa2m06jl+O04bIqY1Yd1radjl+h5LTI+wbPtTeKJ/HIUWb6CHT85QXdZJGpQWhffGnmh8NQW0Nt7l+2pl+NsliFIsn7OWYhM8vrUCK4/vwMVZupC/ootA6DbMy3fCZf7DqKMtEp0brfDa0gDuHXWLE6rVuGuGNtwKXE23Rt7lLOVYqL0Wjf4e/nCqcDV3XTjAI33f0qT6TaR5RRCe3G2Dg+8KKe1zKFeHJkH27cvwb78+N4klAjncoJ7iNLKYZATu+6dwS6QjJwVJAXo+xwRrJ0o02c+HZG/STqNkFhw5F+3uT4TiOHt4fuQNP4tP+j/iy7shxL8L42ckDS0qSUMy2jtS0jALKRWKhFQion5kz0JGmSkqDZIiDS1NhJayIklGNESSMkr19C6e+wV8/7jPOdf1+VDWnn80WyCQk9a48MnWB7hR4ypdNe/Do7+M4KKPBZ68/wenxeynL7/OYNKOcpZ+bgd/d/jBXwV3OL18gJdFDfVU1GqSMzUHS/9+aqlrA8vkKfhw1BF6PsscP8WKg+pELbTcLQcz7b7z3d4ivjLzAJ/z6yax7gCCEwv4/hMl/Kkfw6dm99Hus8Ng0tJZtKHpFmrfE4BdjwfQaP0SaNVdQcOL98PVMjdoXBiGU45MgKLeXdhWNoE9RL0wpOY/XHhFDMxcAUWP+ZP/+FXcdDAMgtzMYMmnO7jWbwfILlOjByunY9/uH1Dv9oFWB7tQTkMozLYygZyFcjAQg2ArkIILDmrig61nQOfTcfys9ZU71q+CuSVOcEtHF3auGAOG/87xlCM9ND/GAuSqTOjJ3WUUdN+S1r8ei5mdc7jadR89uK0O+onu1G7TAzs/auDmiGU8b/AFrlvWSducF9LtgzVctDQS+Nkw2DCjGWJ8C7lNYyl/27GH3Ff1c3vfb97SWQOde4EEPXRpiqYsLM3fBUaJgiRWMBMWVyQN8cZKWiIagxmn13LpyQA23RiOp2vE4LePP3t13UWvnwrgKhMAQdGbaalKBx1/UIAFnU148fgAc7AqrHadTOGtn8DkSxgFFe7hOf/s0EUont7vbYfhqz/yrPNfQeS0NlgcGMetfn954qVYPGO/BFLH3qT7ptXUdKGXksLvwZKbWWSRZQ5T3y6E60KeXK+ykJ7oqMHRbgOsKnpDTTKjQXTqZ96jugz/5hvBe8038Cy3iCP/vaGFMoV0M8MLv16tRKPv+Wy17QI8SA0jrb864OESAjoLDTHo2yu4NfiMl19YhovqY6i3Uo9aT4Xh1QuZpFplBvt+LQZDQ11ocTDlfTl5ZP87Hr89u8ySFdPIQC2SU8pOw4wyOdhtLM9urZ/QNndox/NGkqTLe+xal4z55u3Q7vmKeht/wnhZgCBJRXjiogrSIgaccX4JRSXocJKEPq5ZPBwPXbtFbkkncOlZDVh1MRWTHrdyQ70bq3bJkLx/HO/93cqXg1aAfFIr5Z9x44WzLEB1mw9fPPCAP2gO9e4YeY46/xdtjntwmm4lnr1TTRL7EuD17Glwd856+vtEiA+rd3CGgC07KjfBuSLCys4HeGzXIxT+qsh4UAgEo6IoS/MVxb41AYfKyzxzrAjGl6dS03YnKg8+hamNtyhwtjCkvfLlt/aIpeMN+ejWZfAxXxuXjjhHK7YE88ej11nE4xDEtirCAZbDz3tUIHHaaShtvsjWYa+4O34b1y4to3e3mErHXSWzc+awoHUoC2vXcrjXc/5wugpWzB5Lk1Yuxs7+z+j3ZDv2u5xjJxVjKC++zss8+yAQF/D2B4Z8rzqD5BaNRImg7+CTsARcFrlDoJ4kiJhIo3znPkzKygCxLgscM6UKvwvnguOs19CzYTfJ19ShyGd5yI7X4/uvkXvTNXD57Atokj6CGjKPYt3VlxSmtx+TbvtwhbQs/BYwxLWFF2DjpEuQP7ELPj4oJ9efozAyaDSUhh2G5N9RIPifBowwPsFfpFaw+hRpqLndBO3fouBsgyVvDnkLBvJt8HHQmZ97TgSjeRLgeSEdbtjXkMSIh5xhdYJnfTNDI0V5sGpGrhZZDYGbFODnw3nY3u8KCi3a/Lovl6LOb+ANPSaw49xWZCcx3KO4no8XK4LRYxu+vzuNDNzlINTHEAP8PahQtJo3Bfpi6GAnln1W4Jk7hEC+ZgvvvJYJmSc+gvZpRSxu2Mfs/ZN/+KaxSfoXrrf24A2PTGBpyDzu548omjMIt2UHye9IPw9TfY0bcw7irEhpWCw4HOdJakKtzGautLDmRUIFsEIqC39NkCSjLE0qPOxPCp9r6PiVO/hkzkjIblTD0Urx+MIsgf7u7WBLo824LWg2PbNJp73Bx8H60weWix0DkjO+4/NhGnDn8zJeIapJUfLGIDLuO2kcPIxz9T6xVPtNHLCRhC7hZEibqgoHon+w2eEZILVjE+8oekWPjC+gpKIlS31x54ZkQ2h3R/ZxPUDqH1todLo2unTfoptK0+Gy/kNypGI2HnCg/kOy0PhhAwUvmwRvn35n7xsppJ84EoSdunhj8QLq3+yJ9sNKedGqUdA9lAcaj3Jgwvxuzt0QivqXP+PB6Qbk4dRIj5OGcbOFBxRb60OryGuc7VfP3zv+soyaPXs31dHAdntc5ezAwbKx/N/SFGrJHQfHT1SB0NYQcKowp/k/uzA+MgjNTo3BNUO9oSxCdPXMI7KfogmjVf+i73/nUaf3AmiFOJD38SiWNnTmyqsJkB+6g2b+rCHHMRbQaudHCcds4MJ3Y1iTYc0+0xAtfl7iR0kRvMZzAX318qB9eVNAveovKkyqhPeDY8ivPAjq774D+Uwl8txoyjMF55F59gmSFVIAs01f4E+BIRWseMNbjNbT6rDNpK1jBlZ5b6FSpAby6tM4/+twMBhnTTvutkDIwz80roMweOk7PPguBRzX7MH/WoKhe8U53kWGsPrYIH1rD0d1yzskmieLxq7ruKMiFPsfWNCaUF2e5pKLUes1wMtElqyW9vHS4T1Y8aaEU517UXPmSf5UNJH7FWLBuk4LCkumgPyJShLpc4OxVlUYYmYL14OOkvVIW8y/vwF1hebR3dzF1PRFAhYvX8m5JaF8IjyIVqx9C4IKb7lnoTEGlN+g/YqueAuEqQL04eTPRXRu1n3akr2LPz0/Rh1YBxFG3mDop0tukwGLz2fzXHU5ePVKnPv2/sCC2vko/66bMgz7wETxC9brv6QT/kZU79tMw+eNg32u5fBc0506Rrwnr5VIH8+bwjijDHS4sI2OzNyIZ5y7IOU/ZZgkbgtnpq7ix9Vn4enNqxCXMUCZX7RgfdtOFlfcCTObSnjfDDEQffscPx6I4OMq72F3tiZpTH8E6c3XIOlwILuG+lB6uBcXyA8D795sTD40FxcqnoPDVWIotUCLDj/8jHPbvGD/mGouKrtGB0cD1L5TxcGpA/Bl2gEI6TRgvznpLGFohd9Ke0DrlQeqHZVk/VQxGFiTBXrnTKBxyml2WhMKleH6ZH5Om3bMbeTiiA8095Q/h82eARtmvWCB4r9wdN5vtB3RjTlFm3CB+x6yXXsdDUUsedmbBdy3fRwkH30CteYqvFJPFWvHCLFq3XtY6+sEMdc+UOX7jfhKeQvi8RnwYUY5rdZ2g/bNHSg1/hf1JbVT6Js47vX8ildvvSSXxj1YIjQMSp9Jk+CWVujV3EZhTYb0cpQvJHYNcKuSLMwJVydZr2z8kTkSxo16BUm/r8IRgwHS15kDj0MqocepCorU92Ha3s1wR9eASqNMIFh1C/vNqkCPJjv8MnaICb6qsMdZE961URbjBOdhU0AFHt+vCZ52ongIVpBizxIIvf6a/3OeiJG/fbBK6xjczT5CNwbegPMxNTD4tBXdNvvRYKskvDgeSf4O6bRsRBDE26nw5lNKULH0DnfeGwsJH77Q5r8O4CZfzFZuqfTwvDkv/hoHL08XQMzICAj+L527WgwgdukU7DSSgAcHcuFb5jBqGLkHzu+zx8zpOfTsjgs/1iEMOE3g8zwbRx3/BQcMJ/EXEWvYP/UmtO83pTGH79O7xe3ocGkSPTOXAe8BP1Dbsp5nTFsEeNyQ22bFsf7caSCnfQZ731TBw/tifN5zEhyI0SbxV39wICATcgsjwTH2J66PGINKJS3QfTWabJoCmW1kYecLDZ7xSgwDj4WyzPgLWPq4hH1SL8J/my7z4c2m3KL1mgtvacLYh05olfuMX4QrkOZFX/ir1UX302RwpVIO10YrsYF/N7iNR4hsX4oGtRP4q4o8PttQxa/KY3nCuXuQo5zAutrl1JsgztUK40HHkOnrlhi4o9ZF33doopqVJy1/f5YU3Z5jddBLuv3KACSGK0BOzng4KWjBVnGf6bwx4Bzp73Aeb0OzuwgmfNpM61/k4rGPw0DxUxokl5STnnsqjV6pBr+KUijfYBnNfT0BHYXWYW/XDTDr1IOXctYUFLGN2+/cQt9MeXCqkieXTxPRzHQt77l+HN0btcipWQx2t7SSzPlWjtqUwDZf4kFY6AkfGnkNmotTeSAqgu4+sWOReE3IV7yIWT+0eefBPfhr+k5O/1lG8YUzOPhoHmrpHEHvnq1Q8FYYtpjU0qeoQF5yfRb1D2jjk8wySMv/CcmTdsL9SDeQj27lerFpoJhXg28MRch1iDuO3nyJc48/oR45N96V68kTbLopZX8uWvyWBYUZK0jkoCXq8Qzaez8Deq47wUrjWOzKHUVfe09SC/jChq2GMCkjjl9XB7GM8XpcO6IY9xavpuKyTpYJiae5ctZcluiNQQkIu7ecxjJxQ8j47xuMXNfNPx5ocmXWNmwcMCTZ9ba4YSCVcqbowg67Q1g1GE9JkR40OMWPFPsUwSbRFyP6i+HliFzsaPcg8wWqkNcVAOtSy+Cfayea7H/HY5yW0pX+OE4ViKWWqzs449pirCtVgfIP+/ltbgaVzVeBk7UfMFNzFsuvdOeJxfqIWZegv2UyZS5WBa9Lu/mTmwJM8dOFc209XDtODrIvJVJJ8yba7XoBou2+8AZ3Q3hw6x84XNwO1wTHksv1uyS1/jZ98dsH20394Px/p2mKtixfu6sLMhveULT+Iponw3yqSwGTwodB08hVPG3HMuiePgs0pWVp2t4RcMqtlt8pMyjqXyHlLz9obbkkyk1+jtODXtC1Vj/MFT0Fnr0jwKH6AS0DA7AcytWm292w6WwxrZb0oBtZVhQiVs+11kPZa6gBxyoTeHuwB9WtOAL/fgMXXxnB5f8iUSTWkCe7/YHqi3Ogs00HdPZ4UPhgNbfLWHCcxwaaczeH3s+7Qj4RKfB93xi+PTkW/EZOg++b+vnMyEs0al4rLGy4guqTPtOq+fdhSUMA372XiDWlzZhwbAwMs1NFy28bueOoBj9OVqQlI3TJXEIUc9z8afzENGi8UI4haxVBaVQuXhichYtbQ8FkfDY0PxjyZSkHNlJNxnuhsZwrbM1V04dDg8hJfi0/yLsCyvndfRWqGzuA/XNyILgwCkXaaqk9/AQ/t2P4bWMAvVKaIJf8CL+Ej6K+9hZ8mjGbDe4hS+QYo9/Q3E09VeHgw2JadMkAC7ZZ4eGL4TTrShH1dA7jFANlXCvRQMF5SuTqawoBMS4UWC4AZjYX0GFZG5zsHwM//2WQ9JTLOCxrD8wyNcPbPpJDTNXGpTF6kPF+HCaJH0aX99oYrVzCk49Eg0fmZDybYk/3zouBgfgLjNPcT4ef1FPg0QzaeV8UfwfokNF6R6xdI8SPPpXT2VlSEGQ4yBVxJmi8SBcmdVaQMwaT2bdZdHp7Nuj7VbPU+xO8RXcqzMyM541B0fjdSgYM6svB5lcwGqcvoAn1liRUJMcbJ+5BISld+IcV5LNYhrwmHeCZ7pOwo3+IJXstoUOghAyneLJ44SAcBGO4bDkVgmMnkmBPOpucHk0aA3e4JNeWp8UqsqrEBcp3+QwUoQOJXrth/7HjqNxynU/1feYbbkfRVN8BU1YCD8hVwmW7PxxTLABRz4b6QHoZf/SRxaOVo3mD1G8qyTiJahUj+ejFV+x1P54+mSvCFQ8ZaNc/S4s9TvDcxHSu7bwCX5f/Jt0AAzIztcXIRB3c0y8PxcYXOLs1hMJLByD+ynK6v+0hFD0+zWnGArD8xy80uGOLS8gM9HKKeOk7HTp7ygNnlltATGQiHFssCZ6RqvADIlFJ4RCc+qQPLl3P8Zbabradsw0OrfzOh/tuglFLM79Y+gZff7OgM8paeOaUGageLcbo4fkcukqAbjZ3onChPB6vLEVlDxvwHJeH5w9vANFJKpAZ4IZOpfe555IedV3JwOA5YTzb6QwLORSxyfhcspyqTRcFZeDMOF+Wbr+B/wLdyejcFApZ50nDW1QgNqIAFk/2oS8Dk+DT2KH+6JpETrsbyLJxCp8NPkS334lw+e5DtMMJWOajD74YrOJHNXJgfDCKH0abcNEqY1LbFQNOGqb8ZV4Pp95fjMtbdoG6vQad/6sLf+tiQCcjkMPSARzrvzD2/cNZE90oy+sDtp8bhMTUNBybLggnrm3i4KmKJC/zAA3CSyB222eMtNsGtpMD4OH+1SCuM4d7J4tCgWAMnP0Tw+kf9Fgwf6iPPinS44wXcPxYPXqY6UH2BG2S/ioLf74+pvmLtoPomfe049w0UigJ4dObH5HA3nquWprJ+hZFdCVUAZJtR9C9MSvJT7gM88ytQO9lPlgphuCuZe94d+cRMN0dwdlBRiD+ZDotfzIZjV5upNXL+7nm2z8gt++sVPIXNyzbidUqrlRqaQrJf1T4RWcprVv8jD1HJ8F8LXc0WncQREN80fzJInB6ZU3b9I2hfdkTWO8dCVLH/vHR/goobX8PrfoZ/PPiSg4PioDLoS0AC4yhQ+srCocsQb0/nRw58Qyf7oqB/qt9qBo6Be0ep4NzjD2Amj6ckdrE6ZoR5FXwhXYqK2KJdxCvdu5G9elX8fO7u+R24yG9sBSG/y5Z4cjGL2R2+SJNX7QcNG/E4zPzv7StIRsefqwEJxVVGuM8AkYnN2Gt+QCDxUvsdg2ElDA/ejfyMqzba0PmMaO5760lRTVYwJvtnvTwTjrP3nOXp7YGQl7Yen6fuhQf/7wLj9NFsKpYHGzuTAVxVXu6kjkJavLfIRaZwtEQQUjct4urb//Bav1ZbN+ogPO8dOBV330ePysA1MkPjIM6+dreq/g0WwHd3fbDneGFVLNiGhy7rgRnjuZBlrMCr6i/DGluoeS/cgcMdOrDfXsRPFO6AlJHjAGNlqnwsaoS/F/m4FoT5lfK83Cl8RmKT/wBbbecqfTVB0rf0Aw+GwxAb/kFPnqjEKVD53OQPPCP78eoLe8vKF3VoEMjR1JPzyAartKEZ95CdLjlBZe8OQXr9uvBqN3jSCcvlYWnHILU+kJ4fW4ChekIwrPMfzBv8B16/XWg6/tW4Me0Gj44uRmMQ25S66r9/GZUDw2uEACpuiYIld6PTrs+YoFROF9KWgoB3ePg7/zNkDFiIuQtegFFsaLg7rKZj2Y30WdpXZ7v/oRlyqTB5OUf3C9/lFZaB0DQwrFgAdNgVtoSbt+Qjw1rz+Nhk6s89+5vzJd0hHC4CEmPvXhv/VHqWDEcHlaE87W4PnbnLihV0oVqizBaOmI7fb2uh5tVV2Ht1o04a7UBmPVtQ8cCa3rcGMez8kfDGP8JfFt6JupsXcGL7shS3cRvdO68CpgXB1JDaCeaHQ7lN99e45bYp+Tz7DpvCa5icXpDR3uMcf2w8XBZ5AQ9jb4MY/dMwvFmWZy62QpuWX1Fx92M19cpkEiWKlTdmggV7xfR6Hn+/NahksaFDyeNLlta+/ILpAxOJZWzCbR7tQQOD9YB3SJLLtqYQW4xp1CsL5hOWkvDuxvfcMKstXxV6AKkLxTnlcVT4YGyJx9/Z0tvDDTxl/QU6I2TRQUqg7GrV8PPH+VsWpfNkUPzUG9bQ/MPF9BPyT/4/ZEzP/x9iDa/DKUU1Tcw/LUA8iIf6tw4EdZqlfKoBh1qasOhNw6z7dYJ5Jdlz86dmWDZfxZyixrQPk0ZeqwT+e/n59Aw1Kv+blOxYecwiF34GmbukaXiO9cwet4VKJCUgcVxKnQq6DVXX9+J8w4IgYXcba4KjMYjemd50fNYSgiZBX/ezoAQPs7NfeXk+3Afu5S0scnls9huqY/bbv3D5DYfiIxfjt57dOAjipF4Syb1/U1DD8dCqPhWz3ohTOrvt1Ldr6NYt2Ak3Rk3ATLuT8EzGnWkJZaIgt35tNi1mnXN5oCxvi052l3iCVI3aKqjFmjKZMEVWk6iTxtJANeA8k1Vzu5QojitP2Bnp0AO+r5QHyQI5jLvaFjICHhkeIdSlm+FxQUjYJfDMY4f7UDTJwfzJ20vysyeDj9a3+OkurX4BGXAvuwMxaZHQcN4BZbxEOUaFTt0LI9CvVMWIHphBL26sJ6kEm6Qokc+3+pUYL2e43Sypp0MDwqwVJ4i/lkgBV9rItjZ4zU/PjIKV67yhGdLFKig6wfdmC9Me1Rf07/P3zA/XQD0NyiS3fVw3Ll8An3fFAQjnudiw9kO/Ha8FA5vY1wt5YyjfEShVuYPPmnqh4PznkFn/VQ65/kbHzgowKU0Ecz0iAH9VydYaIECrNgYQ5fObKZozxpYftaO/K9KEKruY4/vu/j0M2ApszdcE2cMUjvisfvfB/60eSlcC3+CC/UDsevAJMhaPwfLLj+DxgAVWPlzOlh0dfNfR20K/hbDXnLn6ZODMb2J9ObJ9fok8KeMTh/8Sqs+K8D4wlWgpD+JN6T+wbY8W1IVnIl3wjr56aUdNFL1D346/hOOCRqDU9B2mvYgku4+EOVrGYrsd6eRjwgbc5JkDq8xEKXSbwXwfa0M1N5wp8NZSqg8bSLauI5lT5cCtgzJg4QPD2GCjyS3BfzlM69HQt3s/Xwz0YFdw+7yS7vF+OG6EM2Y7oXTtvpg+4I4tFSzhEu3jcDmTDameVrQRu3j4KkpBNsStmHVtmIe4XyS3llLwaM+O/gjJAQ74urg28fPaC+5jn9EGECKdTzU+n6DURMT8eWtKzRXdSmb60pC0vYaGH6cqcDoJk7T3k+2Ziok93IFv1taCWh4jrZLX8WUy/pw88Iq1FJKhEOfQ9hl4X5QXJAI3zR/4iF/BXw65BLpTpNAtlUaKkwFIb9jkLWb91PtOmMwrn/FiV2zSCbwLVjNV6Z/WSthzIuxkNJqxgZJcTDiy376uSyE60/KQspUfdaMPQMXjf9QzOhMfPx4BnwcaKKSBH8++XAAElZF4MbD/2D5oAxpf9Sm7i43VNmWQJRA4OA/Hi+m3WdP55/wxFgMexKjYd3AJwycX0b/DTmr6L2h/VObBiBnDl6pP6hnrBW4ak3hjEotCNNBckwiyvDqRmtbW2jaog7vnu0YwuMEfr/mF1q8kWGf4aswfUICg4MV/+eqCGPSv5L9Jjk4d2cuT4ysw1V7Kvm2sD9pd9xh5f3JrDV8HP/4MR6Oz8uje2PHQ/z2Uj74awCyNj2iX9NOo8r9UbQhNxwPxPrCwQVJdKn3BY+PnQqHIq7TXM+zkKQlicf4EDauDuVVB21gbmU732z6DJcPLOUSs2GQrTCb1XVP0ljjXzir2ZqHj6vCp3rraL7yAjgVGkJ58c8gSGMK6NU+4xf31uORmBiaKpTDG3ebU07UI3g204dyHtwGw01XeH4JwPukJyDVpQazvZV4t5YOP5lwC2yXHqKn53pYd4Eh2W3Wggc1DBLt9vw2Zzv427XCqrxDqLI1FrJOv6AGgQFYezWTsjpSaZf6VDgf94OMTqmB909dfjhNFjTVk1kqbjd/eVSEJ66Xwbd7l/nHv7FguXob900/gZp4HG9MMuExKp0oc3cGHOx+gpoLfCl4jTouj5SCcYcKuCn7Ad7Z5I/HtX/isHh7elAUSg/rTsOv24tJNvowzwyUhYIte3GlqT1MDOiGkvouXGAmBdYJwuibtYdybHezdO14sE6bAe8gAGOi9tH1b5q4VLAQjDt78WDC6KFMqYe705U4SuYtLX8kD6MrJsFUs32cc7MKBs12YVmwAo5a4Y4S1wNpz+UmOmvjzMIn5OHwqQTY/8wS1p3Uga4rohC2+iPk5jvCA3NRaJ0aQmHrDdGvbQr8O3AIqPwStY/oZGdVW/YVSKRVH+Jg2cx6+D13KrWpeyOXj4RLdo7sZR6Fp7OX8SZNM7wf/Ygl3QdgdKUPbilz5fC1NjwqfgTcCGOa8l2DPz+PhbM0mjILg/C/fFke8fc1hhtdoZMthtS/QQpqRsmAmrM6G11Np5MHcyB6/CV6KOoF9cOaec5aK7rFZSh2djKILdHnk6uSOe/6DqqQuUdjnFbSZW9N2n+mFDMD4sF8fTsUiZqA07w1vOtmN2wZfEtJjgZkVb0Z5gfJQJdSD0veC6CQ9gpojERwPNfMa/VHU+F/trQ47wD2tF8Gie9CdOWlF25c8IcH/3vGLQ5SMMm8CRfIOOOMf054aEsN7V1jSmeHN5D/ldv871QTGj3dwI4p0jBilBws97Mny399uHb8ROhQFaasnB6KOLceD6v9RyI0D38UTITa0jPYtjiaBMZl01PpLs4ST+BpPstRoe8Qp3xdA0rmW0k/Xh4WfM/G9uCj9N3rEUwu2gizXeq4LkUEK/6W88XCs7ws34QcRPRgp5IQ6Vum4+eb5mDy+zwvaSpBwdbfQ/srhlbaUrQ5djfP8NGHucnFmKKdSr8970KhdCvtuFmOL5q2gLRTDOdFFxG+fsx/PgGUiP6ife9XEo3cTfOqLMFSfBasMZoBdw7H0+EqL5L+qwRhEoJg/yoHfde8Yu3yhbTJ1Ir252Wi2Qs7Clh9Cj+vu4N/zJ5B7yRD6O6KoRi9WXSxcTiA3hJadbcNvLz7MLdCETsCd2L9RR942q8EQRbKlBTnR0kbW+HQY0UQ/+bMN3RTOVCyFfYmJsPqSer8KkkZMtVfcph+EZ95/oC0JpbRv2/MeSvm4596X/66aC8HpwhDbZsK1MvN5IU+/Sgns5QT7FzY1H86T1l+gJ+eWoKOx23oUelfCtScAjlp8uwbcY/vXiMctIugUxIXUDbNBNIqa6Fwvzjr7fzK369PgpBbTXgiqRU2u5lghbsR3ki9yo8enqOogCgQniLE9l5i3GU0FOONPjx94XpI/WePi3Jv8sGqJoDl1XhN5yU02GWA6Z5YdpxvAlU2v8H/+2N0bRiOPwd0YMePo2Ce+BSrrZ+AkORdEptiQcnBsrA2vBRTrpqRyLHlvHbNNlBS/kh79qbRsuVfIU4yAm0gFVtUCZ4IqoJ1ZyOWpMmAVtQYnPNQg8/LfWe/mlrI3RSIdQnmeKlzFIwefgWrp52D41fVabX42yFGi+A9jyvgWEMPNljo07NHOXx1jx4cKZnNzw/O5m3dn+nqPQecN7edc9o20NOsCM4YfpjN6vrZrlEZxCOy4FjdcnquvA1Gmi6E/27Z0cicqbhATxU/75hHszTU2OibIIQ1ePOiIn/8kS9FoRmBFGKeNPRfPlC5+VEaM+oL/Pu6GiYFi0HppmVkfF+OLEujyKlQmWI9bWnGin6e3DGFci7+YsXYj3DylTCMrpODR6VtcE7zPIq8mMslOY2YsM+a7MSL8eSph1AXHcjPI6aBwvuvdEdoDRZaClOZzGZMr94Cbtpf6JmdEa38uI5z5SJxtqAmKB7eSduNCuilpiw/dn/LXedLUTRfFGo2H2QvnV0ctr2EtgUqQvVCH5x37ReN6/tKVR+WYUWyPa2xf4QCIQ5U/L2IPyxs4AnemuDb6gc1Opv5nmUrnhU7yDlytiClup5Ga/qD2/vzLPdvG27yNwcDPVP+qFhBY/+tpJZTtTh+3E3aGjOX3F/+5J9j11CAzVO0GBwH8spGnB6+CstCjHm07VrqD3lIfY4b+XbGWr6t0QBH9umy5z8J+PvpKl51CMCCBiW20e2EWy6x2CMaxndatdlYroRuZ2rC+rcKMHeoJ3yi1LCsWgcOdOahmKsNz5JazbtWVtEN3048dW03KHUJwol9T1B7pwx8sHwLH6zf8o01m+D1yT+Yln2JG56W0+X5xbhy01iIH1eIf+yf8carATi95jFcFtrGRe3KGNS5iidmxJLEyHZKf0kQpV+OZ3utIV4hiN2UWlCqcgL0d96FOc1COMk4l01Tb+NgykiY9iSVtU4I4N4Hv2DmpeVYHmdMS65k8dnwz5jjFImvmh9Roa4EDAqchwMntWD+hc0cZHmCz+bFQMn1u7zOsR+8Vy+Hgs0X4deAIZSMHKAs6XYSlHhLo47Vkm2rIzTc+AMtPl600l8Xzx8RJ8kQJRAZG4o7v45nCxtdrukXxIO7oyhdpJRIpg+d/LxZ4eQ9VJo6AS6avQNH5xQueXscc5+f5ZDkLSiheoNyDzwl36KJ4Fxvh/NV9WHasHgc8GoE5xu3YViKIp6a9g0rM4KoPiINZN5EcsubAL7VIAEvq1bS0sY99EXImU+uUaEJX7whcfMfcJwrB3fzl4GKiQGJgOyQW6kxDC8kw48JsGilAM3fkApzHvnxj1AvqqudBHvUdkOJxDiov/qeJesfoMykM1zsOx14shwKyTTxmo/KODkslkclBcLJVm2Y5t4IgSm3EW1sWPPFM5C4ogI9F/PYL06Mxh3wg5x4D2w5pw+u+QG853cc9njX4qxHFSg1xKLLLpmQT5MXnNfUhfpvKbS+UxrmqTXQ2MmjKGfNCzixcTRu/zOVF4rt5bGJ6dD51BZrlS5xwmoFOHvyEyyJr8C0pQJwUTaOo/cuwSUnRNB4lAZ5ukVizoZDpHqIYI9yID9Z8o0jjndD5d7LfN/1Nt8+uR4qTsWCy/sDPG1MNlhLKsP0dd/Y3K2GXGbnD/HECTKeJwH6AsNA/9w1en/qCPcJbmSrQlk4qmfImRL28CFRikTH7qWfS6Nh+4ThNO3jLNAaCKGBYToctlAHbsZdhU3qMZCfE43vzaJZfOQM3nVyBhaGW0Pbvpvs/PsZR0tMA70rZ1ngjT37ngmkWXM6YYGyC8YFn6Qg34+kNuYoHBd4CCVzVWHj7s9wUpgw3Xcc511JgCizdhwft4uWbtUgS7cU0DrfAS6BALXuaeQ2tZzFLqdxZP0r0mpYCNc8S0h6ig8HbLLGmfJRMF9NE6J36jIesAH3797cnqWGM9//JPmyD7xzjidt/yXExcsUsGLBdAibE4jJCwtJdIYceuWc5jsyhmznkcsbix7geI0vlO7eT8q7pOBnymbaVu+C9ilzIFW4ij9rP8bprp/5/MYoNB1fRX/ElWBnnjpotFnw/q44MJ+vxo7DfOiY9khYdiwB12aI8emM1ehrOR2EnivC7lpjWKEexnuWXefNi+ZyU9/rIR6p5bCAu5RzKZH/mxjFGTMFwM1rGXx5K8xBb+eCXlMOG83R5VcNv6mw0Y1L9nZT9vRimhlvBH0XBuD4XTE0zZrLwdZimHZdh17ecoe+ouXc4+WIqScCYa2jMsw8Nwh1VUUgsfg0xifqk9nhdl4M0znunCzvWfmVOy63sWCuCVxpDYXa7U4YbfYcv5xOgNDhmTB4sJoFOgXgzNNyXC28BD4NsU7S4l4QanjEB/2O8ZsDM/C+zXG0GpPDC2Ses1NQC62ZtAgLP0yFSXUbGeti2V7pIxXuVGUlQz2cUpXOKhljeQy5kv0HFfp+SxwKT6Xjy7QyXFPYwC+VnpLLglDyWrkXZ8SnkovsGggdeQDWf5KBLXHtXOf5gvfZmsLZKkeOUZ8Drve2gNW3KOibMIpnepSBabcSfH4uhyu95vFweQvefd6Dx41rJq/uuRSuMJlSD+fxQdEC2lWoPKSHkvTBwYOTCn1Ieb0SNLxqJt+CforetpHuh1+D0eTMciGiMEfMCDLy7vPzM/3wSEGXKC0LNA/lgcCbPn6ZFk37ntzAmW8ZAhN6ef8ECXCMecVz7brZ1XoO/v4dTKNW58KzsFwaiLsOBrunQNv38XCeq+njMwF4cXMFDZ8wDjMLhMm0cTlIitvyt9G/sEF5Irin32Z7p/v8bvk51pTNoaVrJTDUohi9TZmsiy1B9etwbEYhUOGDbNwjAVKigDcWa8Pc9X/o6idjvvm9gQpwAVwcdxKXSsqBg3M1LIlJgmW13eAjIQq6IkZDnnwKkqa/hs1O2lQ+oYb/xsiDTOMYKHhRg14Zp0HO8hnpWstTQeAj9PyWjFfHHcDhWx7DaRtB2DFvFR1cNZ6F9/3HOxMmYE+eKfRJqnPTsg1cUiEF8mZu+MpBGoaJ60D6wmN0M0OC1nt+h4nRg/TTooxmx83izks34OuDBRzrPTTf6mQQs1hB28rF6MJIYz7WokLbeQ7/ileDuZDL3m1pbDTEk+MF53OzdRh7O/mz7mItCO1oR/vyKtK2zMTmyk7WKN4DydpqIKIng6cuL8aO9BJemSqI9yPiMHNbOdy80Y3YIwg+qxei99TJcNwkGmUM7TC55DpKy2vw8HwNXqc4m/frrcIdQwyuMzOG96wSB5nI9+y6z4zkt8TCscxJXKavg1MFtvM3sTMUzcvwWOIxdt8+HVyle8jc+j68FN5MaeI6lHrxBQbor4UPtdF0bdEp1nlmQBfeaoNnlBx4tS8G/eK75OqbBNZxprhvwROyOu8I3T6ReGbnS/i0cwoMTkZutV+PRuOdIb/1KIx6M5cFo4PxAOqyQ9cEsImzYutzIlB0e4h9B6p5mt0wXP9agrTLbOCwdyErXzrFFTsaaLnIEVzoaAwd4zNAo+Q3TvEaS7sPL+SAwwaoONGF5fW/YEWHKo3VVyHLlxLQe6iZmic6Qu2oA/Bex5gsK9uw4ucFtk6bzQmfg0Ht+UgeOCYIGiIf4L0t0laNa9Bd/IQXF1iTzt433GQhwq+ehnLWeQvqS5oADzV6WbdtJxUdLqBJK3y4SeYCx2uNA/elgfzlcAqHnZakJTwGJk98S8UDi4m9N4LloiyenlHAC5WFwXxCPZTJ9sEOkQ7U6dWAgRBtfOQuRherZlDtnkcos20RdbRU8p6gAyC3ZRPu3bwXs1fIwbtrDii26zBOfHYfw6/b4mP/cBzVegaSb2mg0A8F/HD/Fr0T1oHxB/6xj1E+mozW5Hc7xsHc6hhaVtmIO2N3Qu6sEfDq7F4Y+04M9igtgN1yS7muqwBO6O7mYP/zaPsuEi8MW4PzW4fz9rInxDrC0J+lzMtD9dFZIpcM/PVo6iE3Tlg+yCt8+0n6ex/3eE/hzIApUH1xFb4ZdR5EPe7gC8dNFFhxjWomLyOZPHdYE3gBTpySgRsTpeFw72fIST7PDUrNMPLmRXBKrAWhio20M/Mc1wfPxZRmedKeogX5tu95SvUvuLT0I8t2Didu/8czwwtId/gx7umeymq6npAyRxfa4wshY9tUur/QBTaJvqIbLccgN/QXq5xeBBcfv6ZrrkexZ+MIaExRYKuxE2jL4Xj2NVkIXQo1zCDK9xKfc/emEv7u20H6d7TgnII2bkj7ChcdzeipizuGv6iEsU/2Q8EEZywf/g/MZ6hilY0xSMcZA439S7+S9tAokyx6FHWG1mk40IjqvZxy8R2HePpjmJc0VBYd4HtSDiCk9prmP0+FS4EBPPmhDew7dxQ01/egtkodHThFsGTEeOhSnECLzyzgB4/ewN5oQxRVycbrj9u4V3gx3Rruyt+KxGFo2ziyVJtPXz1E3gqEIQYv8cdnbY4RjIHTJhegd6IZqQuIQdrpNnIzuEfPC91xar4QnOrfQGk+22H8rolET8+SyIrRVE/awP7hPHr7Bv5jJY2T8xdzZKEE6HxwprAbLuj7xweOOInR5nVKkOhSCG27roOo9T5anHqE3qrkkmjtJNTROQWyQu4wp2MtoMk4uGXwmP1/ZUGEWDr9VK1kTdjP2/IO8VbzuSApswB53zzq9zAC6dTnlJcbBlf0NkPEvmHw8aQzBls24q4fujD190+aeXs+XJpBEHF3ALUlHXDVtk4QyjpMowp7uXr5Y+7ZYAjFv37A2bUz4GfMdGguqWTXHlO88ukWiUXvpojx21BmdhKOjj5PyktGkXPRXXD9aAY/9k/HkojL/NAxEfX9/lC2mBxEj4+kt8tvocygKYgrn8KLjZKw0kuFHY96YG6pAiZnrMN7oxKp8bcfqMxJ4ttic3FNWg8JpI6BHckGJJxmx7MomcQerwNF4Xn8beiNT54zqEVtDRr7ubNDqgAcyvKlUR4v4HrJXnCNr0TLsD0c6iCMQum6lLjLDMZ/mQXLT0vBzIXjKT1liInLQylzyK0+mU1DH9HDlD5zHT9VfsG5HQehXUYWrlrr0pqvbfjIUghWll5DtV1b2KS2hG1nruIWcS18vqyGWwIUwTppH3YM/oL/aieAbYovOG/WhbuX31LiOylyk9XEWzo2UF2pBFn/9XNiuBrYPi1FlckjccFKHVrnUwF3TeVo0aJe9Ba+DC3u6nAj4CQ/86rC3AMX8aJQHS2KLOPvKzzRuWcn7tO6yNqbDTGjfjTcGFDkmnwbOLjFgn5Pc6dS7yj8s7gFLmrcw+7V6hycuRobdVThQaozPl6nzSInXuG+9fNIMk+Dr7umwEu/WlZfsoQOjTEE2yIAb7Eh7hl1G3uvvoXm0gD6uLWHW0bqwg6xRihwOULNaiNhr6YWbL+tiv2hBaSZ5UNSls1gpdoBub4zMFO6Al6Pnw+LVpRg0jaCZHFbNEh1pwmicWgo3grqzU9pcVQvbPk1FQTVD4NTlAE+Ga4Djj6q5PIGyH36TYjWGgNBrxuGunAY7997luea1FPSJ1/e7yYI7jY/wT3gAd26VIFv24xpePQfzpdIpNjmhWhrvQbqHUfgzD3TQf3NJ7zd7Iv/ZmaAsOJ0kBXTwg7fAXw8WgIq7o7ApYu7+Jo+wJKbe+HWFhN4Pl+ZpDu1+bt3ztD9F+OKcnVgS0MO3FnJB0QEYHGSAvv/84NG9Q5ufDSSSgMU+MjVtbTqrhhFjX1Cp57chAXqY+BflgfeSx9HZw7cwLhZbRi4ehfGqEuj88kNQ/5nQbHvXuOIdSLw2U4SQqv8+HTFCoDwe9Q7HPi/V7ocL9gJ1c2aNOaAOJV0j4IZK1ogbvsMkHt/GI6cMKBmy+uk+UqcJ966yy8nraMFFlLgek4YIiZbQuK5Ahh84svzcpqo7EUE2I1Ux077fvpRmQHvbpVCIpmBilIdOlr6sUnKWTI/I0Rfz/wFicnAqoX+sLZhPi6adgOf9omB8EApHqpXAn/z+3hmszuuV69Bi4AksMwNo2E3F+Mx4zJw2DAGtNo6oH5jKvY6XEBynYayeWXY9vcFStS9INvZBvhcSRtprQI0TBXH4Rc0cME+O4yRt4Invw3pTuBEKNsSzxvlk6G77B57TtWB3LtSkGr3GNtatHhLTCtd3aTJewOO0zZxcRLwe0DfdFP56qcR4DpuFf0REeETC+KpYsVLyvb0Rj+nIvy55gceONFLC3bpUraHDmT8kSLhzlN8ptke60J/s2DvLipdEUQO/pdw5lxPjPBIRkuF8dBj8IM7/G3w7Y6HdF9uH0z6VgUdmY7wvsGeLWdYUk2FI+kNZdj/69uXZw8CNXf4UGsFKm3cQxMKJ9GUB9kYV3MVsn94kbfKApgbaQEmG5lfnfalftgKd74kY+leMR7T+BvBt5D67rrQVNUIWiyHYGUtDm/DNuCqGVNw3aIlcF9UBSTe7eBh22bTqvYlGLReFlobhOCJnQZ9PeGNU36fB/tzY1HHzoGVv98hg3el1HDOh8qFC+C6zDiwz9nKF/bK8MxqeXqZOAOcvilize75fOhKN29YYklfg23ok74BvIBcGPnwFu/avAdCOi/xs2RLFk7+AHP9d3CJaDY+vlnAJx5PhuDb4XSn8zmLL8qCfdZ30GPUTXa21oAmpeMcoTsXYkrr+fVWASiSnUDpEhX4/HIQlHTshzCeA+VeQiTa0Qhyic5oqjeNIiIVYVrKPZT8oMCvezKoWuYyn08UIEGVCFybrQy7i3aDRsoo+mIvAHYj3uKb7Hk8omsdBNs7o9/Z3zB5nwLXPT5PBZ7eFN33mWZtNIWjxyJotLcn+Mqk82OPe7TyShwbGHTDkleK6CViCl+vVOJBNTl49bSJ3QpmU9Sx8aw73Bv0Pk3iqo9h2Dq3G8+6BPGgpgMUHhSH/cc/U3ucMA3unosr1KfSxgQH3Oj4g1NMxuH0X0tZW0GZFkgxlMTY0dYHD+jQcmGyvVWO2halFN8yxIlTy6Do/gX0GfV0KP8E4eyi9xjaOw9kJqvA05Lb6AWb6JqJFNGPc9Ari3Dlv5Gw/rYo2ItPRBfTj2C+eid7b9kA62tTOXiJJG/2cuYFxrFQCbfou4AJYK4L5Yi/Q7W2yawxX4KPimiD9KZWirtxAZa+zYOuuTX4954FRI90Ivft1yhm1Ea8lRXOJ2da8OSsY3z0QATMKhnLRrOG/KteAyC7m6t8cvCpmS7ovshB6aOxkLUtjOLV31C8RSd/9xLHe5amMNb0PeNoHXb8/YGaU1bCwq6/NMH0AJ+584hdxeaAYqIguz9HWGzpD71vX4JmWxmHV0hRhKwqroSp7LbkBRmMmQOqjsNgWZ00fPZuQk0LXw7oHAYSx2fjPasfFCYzn11aR0DZTmC9yS/wZqUhtJ1vwO0/nmGFlzQm3g/E33+mYWZqBcn7edH80mMYVFHFZQuFoGfebfTfk04v/1xmCfNE9AE5vtSRCvO2biJlk6v81nkDlWjJwsl71WBjJc1fZZ+z/7wX9FFhBqnnjyOpJFcU7NiKRWe0oM94FKyK/YwbEv7Si2WyIFVwBdSylHCjmA28PfCLNegKr3k0gA0TJeDf2ntU3rwYC6WfkkavIEc2baGRLxJx4RkLPhjL+MttBp8doQkfqkJwudF1mrwii+oiJfmV8yDH1L2H0uhkDnbcyGPENDhytQKkJT3HKZlmnLfIlBdunQgTPy+Erz+ukE/yIMy+nkc/FAtxWNVwcJdIRvFNcvCj7TEluQ/lx8AxSp+eRCpzPkL6oDW82Lqdc4UEYCDoOeTnycDok0DWTktp2f1k+k9/AZwaMQJHhhnhp50a+LrCArYO5uC96DDa1FnHte2j6a/VPOzraaWLUS3w4mAxCz3rg79O4pCn407lc3qgNHAhXfIuwB51RZiuMo2WXxLANYU7ISfqJ3Q8MwK9j4fw6PN0dBXtYh8LBxo+VhPPnejCsCnz2bn4N6T0KKJS0XR4O/IahVid5k0B52Cy2UO+V6nLCZsMeelnb/5yJYLuHjnK8Z4y0HbNEuLLP6C+6niotvpDNTm/efL8ob65HIdvOl1JLWIHfusfC4fzfLkxtha+mr5Bo5k2XBFuzKrRifx1mCBvc0/ADQp1LH16NNx1OEwb6z9h3J9xcHN8EfkN3W7T9psUqpIEm2bdx6Yv9+B5iCBEDqxj+XsJuG3NJppW9BvVlu5lQZm32DRWhdTG28L7+BWsNEcAvnxKxX21U2nepxhqrerm4RjDKGVKVrPt0Uy/nDVdBnhfgxk8XjGZuqd/wbEyP3H3njj+ad8GJ4Jnwo3wWSSwdQXezDnC2bkSkPDWmEZ+b0Tzbht6vKQPPpxehw56xnRw4Wf88FofTH79oN4TmhAv10eFtV8g/dd+Mtk/Gl2eJ2LrV4LbX97zf+lmQ97rS3rLhWF+/kS+dzkd77o2w4ldpWg06hg3COWi/rsNtHVvC6VnB0K+lzjcvQCoMfY7zQkWZdWycvx7fYCzylw4UUsDNRV7acqRi3DIayzccMrj/1a/hLy7AK/SroNIhzqZV9fR+q3lYJLjDNOj9kKzlRbs378Q6vuzSKLZkMzP38N1z7NZvOIiWdWE4REla5h8ZQ6W5evCp4lJbCUsykkdRNIiLyFk+z1oMPPAf1IeWFutgZcuAeQKjADbSHE6L5CFe30E6ZhqEs2PfMRvLDvx3gp1aO5/iRfvSKJimhakvW4hH5rMx+Xv4jvZfzi7vZk3v/zDof0bwEOvmI39J2DtKnNY6v8I9v0O5qO780npxzL8UKxEHQlBFPrQjpx2X8F4281Y1yMMsW19rG67nq+vEsH/9NRJsGoHfLF25OnfHQnX2qLE4jnkVCMFnR0qnLnMhqaPOInhZ5rR/85Jyui+Qy7de0lerAhjo/Ogfec4OGh5FBeFTSTx9YmcXFXDycNdabV1Ed9OyOYjE6xZIlAbHPInw5GJs/HJzhFs61XNVt+/0uVn42imRS6clZhK89W2klycPyjUTQKT0psotyeE52d344Kt6RgkdQBHrZ+KymqX0fHeeJobEkaOMXpwwuI0dP2SxB8K9vRhmT9YCVWjQ3IZOt95RdV+PhCiVYlP8pThfa8ICf+0p8bBN9hs2ch0R5lFZptSQZInSm76D452XISMDGWombsEArS+gPl0WeZnt+H4jhMgKaVGHaV1vNnVD8hSFCftMoDJY8dB/n1zUN61l1s/W+KNG5NJLfwiNDzMRtW9/6PoPAN6/r8ofkehaEdpL6W9aA9FhQYZJSPKKpKU2aQ0ZKRSRFayo8j4iUQJhbLSoBClUJKVSv37P/o+/p73ufe8zpP7GeSvZ+fCbDtx2OdTBSVCdjz2+JD/l40E/zNM6zYc5/h/KTxigRKVfjQE7Xc28MDuO9zdfADMk4a8LL8cFBKrWRpf84yDdpBs9ZYvHr6LeadHQNSdiXx/sRV71Ipjqv9cVmk+jnu+mqOFy2s+Ibmezwi+5Jc7lKDIph0fdazHv3YukG54k66st8SotVdZLN8D3hzcT86fa3HpGQNQEUilpXCCv3gewCltUrCl0hyFJ90AnWGPwE1EFLqdkDwFdWDJlChurvkB81aGQtuJeGjKHQSduuNUJbMV43PekFtbMc/wVocn0jfwqXQ13HP25EgfW2iPl4SJOu+JJJ9gSYwlT6+owEvxw8HskQu2j/wJPdc/oNlEUfxvfwfkfFPn3dIjaJ/zVkyQsaMP6sqgti2XjFKquUflJt97Z4JlmTpY1BLLVCIGyu/zSTdPm2eWqkDN00aq/XIKtw6bxOYzTqKWVReJTmWad3cpplm44PZDoXwnWwTURIU4a6ErHnI/i4lj50G6UiQH8xn+/WwsPmF5iJs5AfyvjIYRE5aBxLc5UKLynC9ssYJuzVi88ns+21tHY2jrcf4mXwRjZtuA5JoxWBi7jnVDE2FW1U1QvKUMf+a84BwbH5oSfofzag7REjUF0LO+BFKOWpA1lDV/O2vg6g8t/B6RAQWqrbTysxgEj1zJZb664K1eRoa9u2BAYSPFqMexjFIdfVr+HrThASRRKRaN3g1O5hPgiPVv2BHnhEVP7eBxdSYaj7LDZiNDNNvxhuO1pkHxkkYw0BkBLWuQ/irsJkPnHu6suEtK/97gR+GTdCalkdaY3KMbzYd4bo41PF29h5f+9Rvqn+OxvaAItm9MA+dF4Xi8VREu937BA0YFYBcsABHXnoH3Yjnu0RXGaKEyvCd7ih1XVdEC1wpkowAQ3bqNn1wdD17p/1j+wV6cKa5D8qMcoL75HI8Ofsir/H7RwVcmcOyrN56zMgQ7yXc8/3gcBMeXk+S+T3z6eQVcXihBOqFeOKp7H0x7bMi5MePhfGQm1v+8Cyu2tnG47xj4b4wRlq5bTMrXX9GtaxvZRF0ExozVh4/X4umbWgyHTtDGXRJa6PXCCEf8Woezn+yC/zodcX63GD+T14Zpe5thr7sqK8+2p4oIBsEXxD7fZNFnlBP3B3iCuEsHRY8QB/PthrTk/X2Ydj0WLmjvQbGjR3DA7zZKdHuz27SF5GkfC2PKTaFNtgKjE8qo+ZY+Tmk5RFOuZ3BO5TgQixDmjZrnqP/dDQoYIQlec++jZUwCJaTeg2yvZlYUOg+nHKdzu6s2nzJphcxVRdiuKgaJtQEgcFGC5nj+4Ra9chZdWECGYXfR4mIo5h/PxraJ8/jLDVP47m0G9v1v6KD+Prrz8SRMHxSCN49m4I3S91S3xBquPT9OwtG6cODja0h+PAHXSHTge2iB+V4t7Pg8kPWm3KSrSmfp8yRvaKvSgxEHRGm8jzX0KrWA5OUQWFV4iogFyFh6qMOrKKJ99y/oyDSERUFrSPTZD4qbEgXXp9SS15/5ZKo7kveOegwaawL4+HsJUBiHcOOYNSVnFFH4lzHsoV5FBkIBFCejCg/D9tCdCZspZ24cjgUrWC1syLdVhCHn310M/lOBUwNzIG2RPt/e4I964SWQGLufrJolQP5sIG68mwnD6rewzUdjcE6ZCvTwOqo4D/WKlq041lYQ1nYrw1vf+Xx6YCG+cxciDYXdaJrdywHHFcFj5yeICQkiqWN6KP7NHn5/289Rehv5oNI2kDyzAB9NysKdFsNob4YcdG8pIHXRbZA60QiGkQjPWu1OH9K/YF53OBukS6LDkqk0r10BMp93wtR/W/laugUIdVlR+IJ51Jd/Ai2FZuOCx0fA+oodXh7KYnUVByx8d5/O1+nA0npzmKaWgoulDvNMYQ1QiyskkTA7NtVO4LRtG3HrgxI2f2AKqrF9ZCblDK9MHsPh/Fec3joGjWan8IDDMBA6oI7j98Xzdu1hkLEzgrxGLUPLDWc5wW0mqG8YyyPOWKFC4WL+nHEdukXOAD1RhozaOZSk/w5ddYN5tf1TyJ37BW/wPHQYthBLZE9gich83Gw1AkZ4t2PxbCOaeSUCzjjb04FHDRi24hH3xCXCGPMKMk305iNJevDv1g3WHL0IJy4xxQu5emB87SionHxDm/Mf0A8de9qY9Yp+Th8HugX66HymhAOajWF9uBA72rwlyaNjYOlofcrteISfpjTjxkEleO90DgePT2U3z5O0NOMCaCpJcMb7Slq42BsuLbIFzZMHwEBKGMwOrWD9MWoUluWM38ZXwecAbXiu3wpuLaUcHGRM2u5jSE5CH5bH3sOa03GwLTaIvYP/UeJbCWi+vRpX+0zGGc+K+XmuOPcaKIL9lXjIlWugF3cbWOL5frY+b0TiwTO5a4I7t0tu5VW6tvBnqhjYVteydPZ7uCwtysVVofjmZST2FQwHgfI4/GyrTHfm3ORWDV3YcnsOiR0whP6XdyFQaSvXOl0g2/92s7GOAidsVmHPugD6p28GfnudIeOEPlTu/I8dFI/C5kpbPvhEkWyif/K0x1+hWLsMXdbZQ35aMzkcWY/bTzyG77P28cmhXSFJP/DLqq04YcJpanqshk9CdaDDYi/73w2hebmeZDDmOPGts9T3VgrXjuuBgd0V0F+7FSz6VCBwmjJFSQzjSpEzWK84kUZP8OWisc6Ua/KZW/M3wdGsCNIrHgsnHvjCiqZD5BZ8AzRTZkLoq1peNXkfpN/7BR46xjyscySfnqgBLllnKWWPAMTfeg3rf96h6bMMhzL2Pfx+UY5NM7bh4uP+8Gu0GIiMZu6SK8Sev/Nhzum5lLpemi0nG1D9y7nwJeMPbi8wJZcBQdgpuw67YtUg/XEuyKaq4QVdT3x/eQEfFo1AO10D6F3ahlskCMyXXMAz287xiSexUBFZwmE9Gfiq8hndrUzggCG//qhbSO0LDaFR9QwPV/9KTg9EqbXGmRqeydG8oG5e9+UeLv38Ga0ljlBruhYMDjOi472H+cbzfrTfHcsvY2bCp4ICFhvYzzojpfHZi3DKEJOFhesP0fOAe1yaKM5bF5zByfe/UkZBPCq8E0GYEof+Fklwe9UE2OukR6e+JPCpij7oXfyYr+afYTGxFRyuoQQ3/TXZvLkB00aowHcdOch/U8y9wydgb+9sXONRBeN1f5No/DIa03wXXORLeXTmGJgqS7hg1hy2mrCNDobZ80l/F86/9IZl4Rr//ngb8zff4KQaUZD7V0zz1vexkXoVvjG4Q0F7fqPfmTSaZngMrrtlg7bYAzLtkIR42znk49EO6y+Ws2XTU766MAXSMmrwxpMW3BVB8NFSldubreDXjK9gqpOPDWmT6Hv2Ywg/kodRxgfgStM/jPK+gaMMY7Bj30jwLnjHAgOfWT9BndMDg0F98B9aBt/DvZUZoJX/g+VS/qOvYsOhehlDkdk2cFO1QLv/JtCbRdZw3fIW1fuq0I+5i9A42oBW79eEtIcbeFV7N1VkTsGXRde5tVONqx+Xw9HyMXivpg5cs8RQVUwAri2cyDsfSsEs4wuYmnkbxAPewM1yNZihH0BRup8hKGobpKjagPOtarBZNJ7Ccx/gLLF5pHf9NUTYn4OiT/KsInCWQ231aMUjVdhauxobr19A7PLBVVY/qW/fRJxl0YGerX0kfX0UK35MIYM4S/iTcwibZB7zaXED1hI8SYUrSkDA6SC9/zwJdo66CHULLWjhiOEg+cqOrilXkPid72QnowuGEMMS4RfJX+s7J9xyQIXfLnjushG02i7i9vh+Ctf9CS4eYay6eyb6Or6DiQv3otro33y+4xgeS5GC2bNXoF22EFx1auV7SgPsLKiPd5pOk4RMGGdMLgVNRQeM+TICdBsEyW/KWaiJ6oKQECE4f/Mlej5MBZEVljA9bwut69RiZbaAss5JsGDRA8rbX8W53uL8Vd0VrfxqME7UH1e4RoNZqhDVhkyEsXqdvEdSGgzeLQPrrdORHxTSr0XmpG21g4pNDmC98ylWzjIHr+31nBxfgzYvyrkh7SBOT3LEn1tSKD3lEy4ruIa1mvPA0d4Y7p6I4njVFho0y8WAI7b4IH0qlrnl4KG8axAQ9g5Ero7Dy0Y24LO2ln5W51ONbQe1jpyODa4T6PPI1diZJEEhUeNQ5Uk51+TqQE9IHfhHaFNqRw+Pe2dNO1fdgIblOnhJMg359HsyVfTD4sVSMPhyMugn3uS2o130R2o6z9gfQvBlEZy7qUqPrRaQ38o+KJ4tDL9Mt1H340fsG7oOAky1GYb6fYhfLj+dsQDrxhpQV4sej9CRgGjbSeB47ygMe68O38Va+b71cLBN/05Wap/hc5wLSUhfhjUbFcGt0BG3iOhhhHgISp1dSuLvH7HquCt8rsyIoyumUJPxH3wqZgd5066wQ+Fs8PjuRQOJyfS7rw/6T+6G+9G+FPR5K945VgneOB5+3XOC/YVz6I9SDl9w/MSB8xbhmrtl4LypHh2a9Hj+E1vyTbKAjI8GpNuyh8/HepBBbz5NWHeMtBdVgkDjb1S/7whPjh3gK4G6UB6exfx3M48L/UhosAdxUztMCuvE4euOU9LOZZyoV8BXXSQg18WRrco7h+S4T9PGW0C27XcWiHjG/X/7KVdQHafNf4oXW8zhzdXRMKbHlatHNBGve4yhK77g1rdH2LPkKG3Pi8bCTHO4lacEjzXfkZNEPB98fh92OMWijLQpPlxtDh/z5NF27wSI1HwJDhKaIF0VR+5QCcZzU6F/pSAtPVeHM6a/5FEjbnK2YyO/nN5CTxQVwGzdBNi0KAi8TiSjucgk/FfVzlrTr8Orxd8gc50rt0cGYYICwnvRHvLvFEB3+d+gs72Ii1fnwlfXYpoSI0muw69yjP9cSI0bBqa3jGDZOwkMH1dGIy8r4gGzAdD4OB+31mbyNJOroLaU4YiWEuyMRrg0/BpGG+5lG/jKwT4At+6OwJTRnuAYawOaHzOxU38Y/P1iTFaDK+lB4ALuMRfE2n5N2OshD4kxBWAxnWDph4OwLdQetkXXweh98TglXBRY4gPNumhCgscU0KHkNpdleHKuciaqZNmA/eI03KI9Eg+9PANb782CSV8F4dOCW5CxGPhvfAFpev2mdz91IS/NDdr19HGehDYt72jhazoeaJp4CtXnXqLckUL0u2wQcLUmlAg2ULrqbp5pN5FKcwpA4VwOtbW7sKhaCUjvSoZ2tbkw7tlYuHhNHUpKkrGv7jJbXV4I1ck/0Uu5B7JPFPHTpLcos3kRrWoeDj77hoOnTxyGvVpLJ+99QTtTSRxeVIoDlQtwSZ8zzFNThlWLJ8BBfT8wuFVHz97PhiTJJ/zySxPZ7r5OV/YU4SERbWzblMNyyhPgaKoo6f6qgYtuG8Hlozu7nbuC2y4N0nPbUti14w/knx8A42pDcPMczmItr/m3+xGYHWCGO3a+4APlRdzZdgULR0lg2HldWiRhDb+TU1kz25aU4AIvq5nEfu3pNLpDjx4N+XtUVBRtfSjKfdfNwdG3k50nyXNilz/59yazldEmmPRdlCZWn6bpX8UheOo3ymzWhPtXpXjaJA+06NaAbPUsWOITCccbhlNVzj8wPNeLM21i0NtjLHjrn+Eug4XkfXETzfKtRMvzXly8GFk0RYGr0zxAyFmANrUJQ53/DuhIOU4HtObCC08B2m3YhjX+29Bt1SaSs15Excvk6bHiWJhfLg3V85qo6uxabA8+Rea+4XhyWAW5rGgAj3GnYalcLl/RMYUyP3VanLiLTGUSKM25kbU8fPi9zgd4eCQffspIwcgKV5wpRJBbpIJBZl94yZSHlC/1h2zfZvOX8kW4ULQRTRxvcJjmIN3SHg7JqmugT/sVJ534wfsstWG4hQu+3LmLEr6b4+EVP8C8dg0+jNCB/HWSvOOXD3wynIi88Q599T+EcuVDjNZ2HM+mrubHWX20XQAhep451z20xCV/nuPJyxWooWGOxtpClBSxHgvsRcH8cC+Z14vDn43afHWvC4iVqtL3HaGw6+d7zj3/D0U93pDvhQksW9VG1cMBtFXeQWZZKQWdmE4iVc/pYnswGn5q4r/7k7HEJJ5vG+1FIQdriH+3mA4lz+Zjjz5S8GVbVKrO47wXflQ+5gawQjN985kI/TNsQGt1I8yuOgn3vxdBV1IwX75Si/OeWtKN/3RxavVXmv//u1U3RGDEpfm0JWoyeDorcUnKGOwW6gZtySlsJnkJJEasIC2ZPXDzsyycuC1MtdNmQM2in1Rz7A+M6TCkccEi8KAlBuNehfH32W1wU10MJgq6IHQqsNOrTZy8bjccPjAFlM/Ow2Pbj/CHk24QdOkS+eYYw9qL1fTpgxeHSnmxn+thcvqqg41zroDCZzv0Kz8C07J+4R5rWxi535IezgxntRlnOKGhnE/O0kLBzTa8SewqTl9bAiHjFOH0D0no0/oOcx0vDPXTPzDqei4ltd1hKxNj/jSulsrmTSLfFzPIdIhCV+nvx1PbPsPHPU00+vFv0pcTh4EltymkcjH6em3nDqqBwocikHT5Hezb84cvJ8jwxvtLANetoPzxTpQjXo8h2imc5HcZz+gIw9hdQuj0fDyWBrTBq0FtPG5lwMKqeSSz8Qnq1p6BVxZXsatfFp7tkGOZ4h+0ylaON39MZDMqowH73Uhu86F9Wz5vmBaDbrsFYeTtNzT30gRwt47iUsEojt68BFaNU8RpmRN5+ZV08tV6hMON5MHv530cZbaV3Ef7orStFV96m4dVO8+TXIAU2mh7DeViCAkAwieLJLroto6MA/RYUz4Z7ae1w1HRCFivLQsvvcbjrKIA1jEcDrMkR/OdejG6XDmAzs5f6fyBHA6+GwlbjyWBbEcr205xZIc/GvDbWph0Ra6hzy1JzLrsS61+Zdzwbwx6a7fhn9Ib3Ov1k9++1AbJXqTNaffBSvghHZ9xikyCDvJ/d3W5QXoB+96TxCc2mRRtrglqmwIw1DSPz22bQurVO8hTcxa4ltRziHAHPx8ZAzsKZsLNx4rwY8ICuvVhAuwvdSb7RS8521yMN56tQxOPGSyVcBaXWbbxKwt9OD3FiBbuuU6FLgqkV9nGD6SrQCXsJC74UkJfq2ZjQYQGLYo3hgvLZHnXyiPgfqkOwur/gl3JdgCd4RT9YxDXyNTh+9sP+ICjOLjGVdLvxaVwumMLdDyaSKdTneD8uEpePvsmtt2MoNflPmDmOgzkI0KoqMUWxZ5kw5/sY6wR0s111sbUdP8s3xuhQDKrN5Nakhxo2s/mv9F7qVK8kRxlsmha21Va7FhPmlqb2WrsRXpe1YRrgwka3Qdwa9l+OPt8LuvuvkwTNzyjN7dT2WTlao5/fBF9Zfdh3HBr+BUWD1+CSuF2jx16xRlx+vh0qHTazLYLKknO9iFdUtzJU29JwovdQVSqqMOv/jbB8ZfHYdJPSVa43E31y8/Aa1MvHvR+zOKgDHtUgqlimBDentBAUUM8vdp9NAgkdqKc6TlUXWnOMxol8HoQwIXXSdyafosmLEqD9O0PsSw2k3cMnIKHhv8oRnwR96yvhd7P1rDo+2v+NSwJHp50x4aE/1+RWIAGySth49MkVDB8zP/9jMTnoxmiDn2BfXF1qJkUTGffyLN63kgKOuCEPra9KO+TirdWp0PiLmuIDAzh297t5KTqD7qzjBDSjsDA+zi0W5HEAmefoGj0IVA5owadqj9xstFQdl4dyfYTp/Lcl4EYENSOTmG+aLBz31APMqfYEDs4HNmJphVv8bKnGhySbuBVGue4eIYI6zfOoWkDclxTfw6E0gFWSd/FVzY3YJLjOlBQG88p70ShdWk6xNT4Qxm70y9JHwxaZwUxWtpc3f+a5/y3AutE68CyP5NOuG5GxdlufOzSASgR3od1GQRrVBzYqdYY3122pbaQDyTv0cdy+xPIZPh7XHKnn6PeKHLCZoDNttHQkBYKJJ/Cy+VOUE+lDY2/vZzbNz4jtekjwDOiE8oHZUD2rTzIpMbgW+dXXLZiL03+l8RZxvYwSl2NXoXcgBXO5+BRoC0c/RLCVy/tYbumBdiZ+IwzozZC5hRznNq8FbQby2F2kwYVDFjAulkHYEbOJ3h3N41+Nsegknw3CUrrgO3ySMix+c4qD4dRkIcS0Nl+erRiBi+72kpxeldYvsIU7jmlwFnFfVR18B8v1TRmxVkmUDu9GssfpWOP+iMITtuOC1bdhh1ennh6jRRm7DGCaX37SV5PC+Z+m4gtg44w1fQqF2imk6LZe1yqdwxyAtNYWCmWdINU2CBSHTY4aYOhTh9u23YYF34dBxqGZdRzg+D2ugi2FSiH+BBHzNYShfF5FtjUe4qnKVwh5XmDoHU0nr8P6T9B7CTc/K8ez5XI4mQlW+jUE4LLgQ0k999Uun/rFvROHM9iflF4xa0Mg45fpEgNRUw4JA9muTe5Vu09b5Q6hpecVmHt10vw8XM46Ge04XM+hx0PV2JoghWcownsILoMCx+WkAxFwfSxzXS9+znpmSeB5r2HnPz0E5/sMoONQz3VU3gC/LuwAb4YGfKnbhuualkKlqU6cCV8Pw+7Usx3dsrDPKl/uG1pL+RlavLf2ZFUmnCZ2m5X0z0zPbhVFwi7ByxheIQMdDp/wQhpDfSdt52q2oS5zsUL3h01pNsJq/CrzyM8GG9OU9Zbwrj3vfD5xBco9nTGJ682Q+Sl+/TiRCqVOjN9PmSDdi/OwrcYQYhRKuPL0VdJQ7sLDydY0/ghpq+efBalfJegVqAzX9ScRYllhnDswiR4NH86L/CqgBlvX/O3ikB+0pxG3w/F8B2TH3z58mGoiRgPaVeiwEmnAttzi8GtaC2+KkHU6PpH64pjSejWaWppfQ01d2ThsQtS1ZzTbBTrjue3y8DO1iUUrtIDf7zN4IXIRg5uv4DXho+Cr3Mv4IeQXJRVXwHi6SZkUR7C4YodcDqjHnQvq5DyJ0GsF7WEbJ+vcFn/GheFL8TdYyog18oYvgWsw28r+6g48yps/dTA21chqL2roag7NXRE/hkIG70DY1sdXGN+lKx/dbGX+TGoQVf4Uj8Srm6aQcFWWbgnwJgCK6fBzM9zYPgnHw75Noe+Pv9B8hfleGK6ISgs3AoHn/ag3ycXrsk6Aq+zFWjZdQG8MU6L3/fN441TR7HdLllIPVEHyt2T4OTPvTg6C2GG8kqobRWBu65FkHXDjetX3oZDo03AQ6ICnR70QuBbfdrtNkBgMA5e9Ezjd682Yf5PWzApPMyK66zh4qsYoLzffNuiCgQKM8Dh3FzotCygJdU7eHn5GhCcJEYho5TgbxXh7i5FWt6TSHpzb2Jz1ic4ETkTJtvvp+fHfsH6nYvJVdAAnq06SWvyftCIyfdhz6l89n2VzbrJJ9Bs5Tna/L0SN9St4em9IyC8J45GfSogt0IXsjNNAigYTipt10EpYzN/yU7mnT1ryeuOGHy44k53nIKpTliOvs1O5aNGD7HnSzO96x6EyPlZQ5xzFadulQYX18/gZrKfrXf/Bf+DF/lqRy5vWbCOvYUMKTW0l/rcN+Lj9wYg2x6AA3HWNOHdERYwqsDxs3fSRZXtJKSVTtWWG7g6tp1XTkbwrFDEPHLiiEt60DljA2stPsMHoxgN1q7DRZWroarUHPPLJCFr8gocue0mD+8PAf3nWvxitRivECxhEcNplH8xFHold9Knk9Zwe2Ig/N7zkUOiD7NrQR3F3/ADq9ee/J9pF3++fw1S0+6CftRwkJttAevTR+HxIwK0zvkJrLJSJKdjJ8ij2obMbR1oUeR7tFpmAaWdG8HIIQ8OnPtEJ6fFkMK3eB7xbSH5lUji7UxX9n5zD23myILazAC6pdWHf8MIKhWW4Q8XbTTLCyPNoXyeOT0HKi2L2b0RYNyvFxSw0hOK2nPwyuXLWJ9gxCurXXF+rwanVOhRmu9Bah8Qga+//FB9phFt99hJhkKT8axDIBd4fuWvh1NZ4kg32XfNpPSPihD9SBPHTCukupTv4CCsAL/bJ3L/JXd++GEPL735jGc1rQS5LiWIDPvJPZlFvP6uMtwR3o5N8rNo2upiUrRu4mmrN8DfMaPh9kwdGGjXQEdjP7j0soNH786kSf/tZ9udcej/+TZt2riGN0eWgsE74SFOVOCGoz9o0155vvPUlZU1F2K40mb4Lr8Cco/+IlXvV7wgwBAS3yfT1LsOcFOiCd5n9PHtrg8YbtKNgclWKKs0m8/49oLMBBlYJHsZ1z39huJfrZgWHAaXuSUYWjCS5pfX0A/HSijangcavQowe8Q71pn/kCxdPtO+XXk0b81J2PN1OhiSOK5fGQL7rrijzIFRsGyRN+8WuEj9kxpwUn4ONAs+B9eVkbQ17gZfvT6cLhi9o1/qqnCqsZRzMhyxLS4Rh43/za5Wm+jZj+dkc2wML5mwgmflJfFRYVM4aKoIr790w5qiJE6qy+NrYR/AWsmXSyUiMcL3LY25FQ52Ly1BdrsrzfodShubSuD9l34UPnOBU5Ry2fKQKV9fOIeM1tbwhvGG0LFiJeerhWNDsis1PtmMP4c0SghSQp+JYvBRJZG/Rl7m22tVwWSkIc2ff58Xt91Gbf9gvr23FCdNm43VT29T2eYxUFFyiLdn2sLFOmmQTbjOfsmHcKLSdlZIaMT/FHeSnN1bfCZ5hbc91WRNMAV7/7Ukcf8hxi5t5Jmf7uDzjm5eVB4FK5r3YMv+25zQVIZp+1RBIWgRdqtWYLxrI+2O1gEB3WCoKIhiu7WN9K00Fqf+rOfmHQiuLhl4OGc8z8ncSwIxceTvk0q600NwvdcHGB44gzsyCGX+2cFfjXC8Ljmfvp2sxttfq4Zm1obX0w70rH6CYctesvgkZfKJHAELGlrAevtt3iA9FoatdeEjpVXwNTz0//ek0CcvEwPfAbY628KsXYmgKfMVZO40osTe2ZA/5w16Tt2JL68KUoN4CuRdlkPnfGW4Uv0c/c1tYcSeVBgmbUcLOtOA7n8jnrWGVV9OJZOXztiSYQgvQuKxxHY9voreTZMeBFDjYkGsvF+FTxzcaI0n41qP71T9Vg2CQk9zp7cSqX2+yD1PmrBYUI7NoQNG6DIdHD8PN2yYRc1NZtCmcYTlaq7xwgRhqH9oSgP/1vGhE1spxkAFb8yLJacdqbTv2AT40q7Po7/eQLc/+6FstCTOadrApx0/UKmgMFTF+gGe7uXCgnEw3j6O+47dwYo/afQqVovKzafCoIUOu/38iCaTOijiiyLMPD0OArL7ye9kJ/rn/WX53cVgHPiEHNrf40LDxXB600QU+bAGRcOUYHA+4gabDSgk2Aunjo7i12W7sPtZPEitnILif0L4sNgkTBQXAmlLJ7AcSAHlcCFM9lhPCkcEIdo2njUEHnPTgt8w5u1tEJ0gB2Zi8vQ5Kp6fVcVR8rkcyKn8h4+dDuDc8OWQNPkUmEhtRGMxQzi0RBrEhTqQ/rVwgHQoTr1QC5pzDHiBhyrZmk/H9MqtpB8O8Dl+Ii7bVkTj/BTQNFMftp8VhymdIyn4vig3TfMBmX+HqPwegofmcjgi+pFqWgl0FvlD8+toMvvdBGMiCmj6vBSQVlYlvVcG8OFQEYeMU2KZzZdY7MBuDn1xEE3ezeDo+SvIQFGbV8lPRLurZnDUfhWrpHTDXP8V9HPuTI7PW0yfrxlz3uJYfuBbT6eXVuH9RlmQCenlinF3uGT+FRjvuIEPjvWGExhI5fVabFsQBy2v3lJVkjjcTThNoVGHWCRokK+kT8X/Dn2ECycrUfKNK+xIs4LAT5Uo8UcVTuy5j3JTcsnv7xkq2JUCjge2saTY/78VL0c5o0figr6VEPRaD3qaZOD8ggbasNGbuv+Ogsx139lD25i2fp6P/ZLWVHb0KQm9EIINNQ/o17L7PPWpKH97PRn99+Xj5u5grG3Ow1uF3eznvBoaEkdBlpoq39y2nArZHSZNPsKDB6ZgiVQHBB+1w+R7JXjy9wTqmzER3Abc2fL0J7jZJA8ZrzaijVMGny+Ppk3jxHnEqVbwHXmKFk0ThAaHAi7sPYlTF9jQtaKTEPDyFmkNO4Uuj3djvPZhWt18iZdfUYFp22yhoLmWpZff42wVQ3oW5oo/qjLYb0k4zHdeivW2sjCqcqhPTWiHZV1XMFMqjKUcZpHXmSCMf5zPhw3uYdaVBDb5vJ96jonAYZZiV4tYWq2kD0WpfrC7dhk2ONjzhbSNpHjTjY3mXQKjGmNoznpJhSqL2KAviq8u6MJZiRJY/fIapA/fgTeKjmHv7CqYKG4Jkm3BXG6ZRgdrWmiLzi1qr5+ABrkjUHjzYvqRr4Ex/jd459B7qFda8YWpiah+xo8uri3GVYMP8XPyLDqx4zvuEy2iK4sXcLG9ALjLvAV3iw7aUK+JXUNsZnB7MtSkxpDn0Y+4R6CHa12F8HqqAQjcSaG3agcIwpWQlRpotdko8E4ZgHVHV0Ka0hEOj2HMfjQWlNUP4DrZC7zhxmSSzs8lhzXS5F7fiV9dSsiw8QMk25rjRdcRsFWonyYNn80hm7/BL7ub6HXlFha/YwoTOUKJPZ8wVHQsCd6Thf6XS/FvyA7qvGDKO5+YIb69hjFXB0m/7xDG7B1EyfFr+d99ebjSYwkbT2iRxZxGUJNfT6VfXfg/uYkwbKsS1CXL8d0BX/beMhYsLL2wJNiDRB59gGGy13FPSj2F3yinhWOFUGOmAp1Lsx/iFkl4HeTOu+8okaxRDCebdHNi4D7+Ui9Iy2IsUUSrjYOMxSg6WAOyww/zvZ2NXF0khFNOR8O7zqlU97KEtv9oJ6NVMWzoeJdVs2zg9ZH3dGl9Hgr8e85Fg3q8afI0NvocDYOXrnJmVif6zDTjYfmjQU3uDBTIGGCBzkFU0b3Gyz6aktDhGRSV2w/bj0rDPplePuFpDBku5WSSsRSefTvJQv7jsFxuD1eH6lNRfCTcXVkPZ8edxwc7TMAtoxhrnz2AE3X3+fcLZVpwdAEt0yvgUptmxDBboAfDQPyeASyync9Fh+25sdeFlkYdx/wTfpQklY0a+BOKIvxJcY4CtdUJQanFAdx+4CT/nTMKihOs+dLTnbTa8z1oBc6kp1UHadWmPLB8KgwnuYOrf5mDRugAyVZcxmWRUiR6dTe/qBMnj6WWFCuvymH62qD5tpOX+SRSfPBoflsuyKXbp+CPBx85KuAZdbhVc0h8AFvaqEPCoCTPq5zCBsYR+KZ2Cx1SeInnyj4M7YUG9rkdTYdDq6kt0ACuti4Ci23lXJzagv1CLaykbkdmSgDPnp/H6i5VHuufApnaDCaT+8AoKg7r94yC+3Nlee04XbjULcyGSaNZWiOQA01cOU7XCBoGn/PiqbJUY7UbX2y4RV5Jy0B5ewTUedzFbfajyXrVMdovKAt7Zz4E78xQzCsbS8/qMujmEEsUTH6G1yzfcsjaKzw/QptbzPShNbIHnmMireCbEPDIjMvvPoTMz8soY0U83HNaQbdazGF7jgaYd97kPcN94GiWJ356eQBOtJ2EyLZVJH/3NppmOPHhN9cpyALAo78Xfx7YC8e0TvLPlfc43GQpOAcegJlLdtNDhU42cE2jfSmWUOLkzVOme7OlPIBO0jQYtz4LoqqqmQ6fwA9PGIRHG/HzXRqwSUaN3rg18IkXRjCqrJ0faAhg0YhS+uZtyJ/XZpJBrDJpjlOG+JOKtL6/CxMUtlGBmgwcSlEAyfJYHky+T2NzlnPyYBIcqFaBdyq7YdHZPKaPo9nzQQDLzEvG9TOvw9JJr+CBbRiZv31Gx8aJQUz7NPqzugNs6nL5n7I2bna248xZS7B8jBf+/TuPEt7Ng04hAThqMYUPzTvNw6c20s/EXpJaqAXK48fg9a5aehvxA71Oe3BXmjA4xgzn7EbiuLt+KOVbj+P2LKEc/RTQ/5cJ132+8+JQ4qQNopC8dQfq5m6Cy44M538KwFmPCJCaOAry984kWfs7EL7wD5CcAHzoS6UY6x9YHKZAPfuUKOzgPDDQ1aXNWzJ4flAW2H1fgN/XmYPMOB2IGuiD6rP64L3UB7StL8JN+UdwyeAJ5g3fzkarGH1fWYHGI2U8JFYEvmHWYNU7iSQ+hfIcxwcc/LMeu7aOg+y0P3jfRwo+0Qxsjz9C7xP+kbjSLP5PdSudlZxELzWew8h1S6HztQKvOakLMjPGY8q3y3DkYB0EP24lDYe/6P2jmLQXLIdVEysx2mkCTw2XgIWl0yBzmhamSijgOO2PGCkkxX5v6rDTPJEX1uwh5cFCwo1y8LKrlasdYzAyqBOCxtdw04SX2BWchWtF9uBRC1uuf/2Ata8Yw5WcItjlowtfn71CnZePebzwd9h7sYL7Cu7w0U8boOPGAQycLjzkDyfYYDeJxB1/QavPHCoKvEGiZ89zWEMxfhBbDts0SvGSvyo0Ba6mjgqk2CF+uvB3B2Xvc4BHL6U5aZMh2Th7Y9fntxD21BxaGpJJ3+wtVvZ3sqD9ECO8m4Kh21w5tH4+2Y9LhVkV1qB2wQK0U6fCpnuN5HljP4mJF1C3kxcXzv+EE3fdpPW/ltFN9SQyGZo30fPP8XTfUthfewPPdz+iCtdPmOHnj4f+DEPni/tJob6ftlTpwnepObih35mt+/bS62tvhnpiNF5d6sQOK/dClPNFuIbWMG67HNS9MQVT97nkWjgKTI0Ju/yeg4H+C/47+QPM6yrjx09NWHm7Loyp+cZZUwX5ZboRLz4WAasflXHgL2N0G2+Npy6kwH3nJP7ZrwEDx+LxWagzNayOQ0PVCFSa+xSlFl/HP6/TeH1fHw8XNMGVQaaQNT6MZy5k7vFYBqNez6b9q7dz7qxwdq8u4pJlT9G/aDEN0xWBTX8SKFviBwY5/8d30vfCjp8HcP8HB6rJqqWlra2U/KiP3FXHQaBuP7xJqQZpjwR+tWEJS566C0ZCmWQSLAGSy15R0uSxdOSmFHxPjcYem5V0K+ohOZz1wtrU0SThYIeFeSPAq/oiD25vw50P9eHf9+uQr+oMyn4InbNL8eDMWghVmIG//64C49IYkHw5HnWm24D0oyOwYrI/VGupgrxcL/8qvESa9YdJXCaMD9o2olguoM1acVh2px0iGkVBVF0TvQKvsGlGI9r32vE8Ywe4rZkMxz4MoKe1IiwzUcDDXQ3sNauM5DaJ8KEWJy7qvE1ygyNYO1GWlj0SotbgYeByxR4eOs6m3fdewpO2O6SavBtDzuRQnY8ArY/8DX8sz7Hwz+GgnSRB75wG4a/eZ7LykcPgWU/A+08W/bFtpu7V7WRu+JfnXBwDArbyXNPcwM22Guxw5Rju6AQU3jeXD5ml83n5oZ1lmYPHnMVg9+oUNPhez6mlj/C04QNO+DMSvJIjqJD0wKWkC4tSxvLEY/rwYe4NlJ/lzCVrFLBpUhhq925DqfQI3FMRRsmF12nr9Cnc62sKuYceQ6y6N6iNHIOuDkd453ai1Mku7NEgTSY/peF0lhwcP20K5Ysm0/3uKXTJSRZu9V8f4oRyyE1I5q61IpjutYELX3RjW74taKUfh8n7rBCWHybL7YX4bNsLWBkYi7mZvri+6CiYPR/g1nWqcPfoHsgVNcLl/sirzKzA/mspz6zbArsyLnDM0kQapAzMU7UF+XdnKLjpPVusnkFdbpU85b8b+OnLNDBRb+PFQoLcOsYFDZ9NhMRGdVjdpIWfx7ygDL2RPMbXDo4NTILpRaV4L+o8b40QBK8jqtD/ZhAenfTn41W2nD9TAhXsqmGfeyAvXWKJJqND8EuBDD4eIwNOD3Rxy+SzfNFuFdbaFeABrSqQv19DRUN8LPjjPHjMzeEXW8Thlswe+FvjgfqzDdizzw1HHM+GUc3rMPvBNdg15wm2yVyk3il24Co+Fk5LqEFt9FU662ADa/bV47k/S/iU91lsPqALaVH7wPqZOQiiHVwkGc5akktG5/xJabMrHLpQS9EGPTzLxpre6N+j7BQLaBCfDsPm/TfEfBHUsfsXTBwvRgsK1ejvclla/fcpFvYaQ5TbRHjVsZIWyjRDR18RrbS8hWdYjUbaSXLmoddYM7YHnPIek+9Dexgtt53HVK7ENTpKNH3ufZr41gH1j3TD6Pmt7JR4ltH2OQkMt4NR3xSIV/6G2rR1cOjVZGr4qIsjn1TSS5Mwzr9oh5IPF9H2shGQpfEMTT608OSEmbhy/V/MFgnCD53/4MQpb5qh3w6Lp2hCR7YmrFUrYa49wfM19Pi09j+6432M5RpHk5tlCNaKlsLctwZkaWYNoQZdsDvgHO2THiSvQEd44CqCE5bvBs9BSwq45kVxh8W5JQ3hpb4FCcYW81s5ol83P/D+V+uhZUi/Q1XJ2LMuByKGfr136UFwxGfyfvCdRcIiqERHkn1LD0OOjS1W77eHtAPFbHTqK4olC4DyuUzMiZ/O3/xm0QL/NPIe6OaJjwZx+sE/7DJ7D5Z/8iX8LQYDYf94evwbiB40JSWVFTjdVpP1JD5yY6Mjt8/fjZ6jhFijVRneHUPK2WnGhR0nOfF3IyhOLyYj7RAoOCbKDYvb+eriz9Ciqw3TlrzArpwNdHenAVU8nsfVkz5xjs5yiPt7jZLyhODR1yDepyYOEzJEScdYCf4NK2YXqXQyui+PXdum0YyWof/+zZ2U1CaTbD/Awj7AF4oTqOPgTgh1iMYMwz6SXrqW3iw3pBFjTuJ/mSd4kbI8HE0WwaVJ/+CUWguebJzNb23+Y9csH14+oZC+f0lnupkFAhlSQPJbMUfyCUZZHmcXQR0cfFtIuwKzye1YNYiHdNCAuxI41epDU7cRrxjWRxP/DtCk/XdIUW4Dr7MQgC3CVrS4z4E8H5vxzpW6cH/eaFoY+IkNolaz1fS/fEL2FBXpfCEBvdmgcm0hTjjtTl6RQzM93ZpgwwGqSPzA9lkSOHLcKXDX6YLTrprwRi2btGIfgtqd8dDS4YftTg/AfdMvuthhj3mnnUDqpjWX/vwBzaN207D/0jD1gBAEBvSwqk4sPF2Yw7WdsbxCrgVajn1AEY8VVOgYTYnvZ1G+pBqcn3+BolLN6N4ZPcjecBPEzNeS8H51jrjUxJ/zJXDXvcXQ/dsKdr5ayfl68zEqWoYMJvjCg8AoWiHrh+PDkdVSJuPYgqlgXqYPtSorsfn5K4yWMKJdG0Kh+eBT3tO7j16NXcHRvx4jDr1dgeoYWDNmNEadnYQLpi2HVMUMMvUpoZaKYVx/owK1egr5duo0PKgpCWPPFOPGl0G467gbd+VNwc6wFtjZsoyHZQbyze4s/Dg/nh5HTASXYzJ4JvIBy6XEk8XMAXS3sMFLl9toqVAeWPMV2GrSz4/UlGHanUGcJLWPI83H4VUHBcYfl3H0F0/85rmAI0fdgpu7ZPFLrjTMiLiKBjUOeGflCbCr1uTVIyXgp58K+oukkEt0DwVPOc1m21Wg4Jktl8Tasfi8ZFC7e4krxrhyfdJefH/pCO5aLQ0CQhMg96U62Dx7iJGm9ng2V4AO1yvxM6kTsHyXHys9UMYK4Q76XbaZljSPhqT1q+hH9VlueDURg1JScdfdf2Ru9wh+ZSrhnMYYftjVT01bRsI+v30w6pwjnVuXQNr3v1EJHsGOnhJyXKbBC48Vw0xPFVJSZrjoZQ5L1f34SbgoR/pfpJkGk0jkwWqafeoURepPZ8epxezw2gJGGwujReAS2vBsJor6isOisXqkF6NFRg2bKOzAXlrlfxs67owA12tzON3SAlY41UDskoXoflmWrdeY4syV69B5WwoVHtlAk2ZJg9Q6Iy5SkYRZ1x/ghkEVvJp8Fu9YemOj0Gx8OsUYvd8mQ5SIEbiWqkBAUwjtKlg2pK0bVXj24eDsSIjzjKSIoQy38F1MWzYag3rtAUiNj8N07ecwJ6CbzF4b8cslYtx4t4D3+VzC1sY86nkiAnF/fsKfzATeUuLLq34doa3ik+FT6wZeeqoZ+tNkacu8RNrri7C5uwwXrV8I6Xk38ZRiAqubRbGN3lve5H4JvlxMAZvcm6zQOxam3xcniWctMLGpHhz2KtKtQCWOffSUDuktYJ3Xz6hzzHu42iMBewv/4IaW3+iVbUBbfozlz+c2MprNof6n/rAlNIgU+7KZ60xg98N8qquXxiQhUez/LYTfehfA4H1xqCr25ezRliA+t5XeaohC+OVz6NPsDWfKJ8OrlABq+ZRAKXt+sNTzVsic0wvf0u7i2etqsNZAFvtQnl8lRrNycwQK0E8yuP6bn6tlQKuyF7Z+0ye0VIAvjYVYJG7Ghw96cvxwad56tZpf3I7COndx/s/zItvdKYJZ99ShzS2HXTrv0qfBdpxjFMf9Gjupu3GIyc9PxpJVQnC0NxB+pgpDUvJ9rj7pgXP2SGCTdDwJWjVwZ9IfUPBqBnlFZmHLJlTRHQ3+b06Q8+4b+NbzApYVDoe+k7/ZojIdxUY/Y0vNozQ7ayffygXYmrJ9iFMHcY6/Oq28VkFnNesgNFKFhbfJ0ymxmWgxtFfx3Sgw6y/DVQO6qFgmAts+7IPcckOeu1wL9+/pYC+pdUDD2mDaFRsoPiqMw/c/QcmGXlq8J5G3dijxmW8rsbKzi4sNx0D4nsP4bbEgqAf/wFNCw3HXRiXKlC3jq5/e4ITxb2n+20TITxsLf9NOQViDMgxGNHJ1nRKsND/POZuT2X3SNO4ebIL+qcfo5xwr9Ny6HyPtbSDL5jt+Et3NLYGpOCncHr4vA+gO0cNvfg+wtaEGgo4sh6O2Y0F38hpOflpLIwSfQ6G8IDhkNcGheiHINZ+DAuFn0aHpFHQKmILg0e3o1OBDp30P8DvxXnykJQJm51Vxdu0ibO335/fHxXinvjjsnebEqlXrIGbYMp6ROIc3JW1hg4DLNLrEjie8NeMlxaqw7T9B6MxYTuVhsnCjJ4r3CR1kbcdqMlOoYpW9S2BE8SOMWWxMjU4qEBbqy/o1/XRPfQaHugxgzmtpGhd0E1OeNIOZZjYFxR+j+wOKoJk3h5MbFNBNtxxSczsg312XoxW3cfYoZ6hYPZuEg91g3TMFEChJBC3xbbS2YAkMO0WgYJqBt87UkcNVT0wocKTyNHN4HiUFwR9SyE7/MSc2nybFO90sslQDNt3ZwHtXmcPCaAtM3lKLjYXKEFkpCCMKzcFnxWJ+o7GRZxz8iAlmcSBT+g89XDzJ7Iwa56wRAEmI5TsWhznQQ5ZP6XyGL8qLaaFVE276zxCrjupiW3Yr9PSNgB2bgmHLK2c8oDmXP81NAKOBUdDqVs4iZQBv0YMd/ebzBkNjCHWX5B9re6hSwp//PP5L57Ta+JLbTFD1OQMXfzlDdGEo+6yQBaPeJpT+Z04XW0Vhp4QuKMSFcf+7FjITWAABPlspPFIUGobqxKpxKZhSGcRXYso4oBzZwX41LT7nTgIdNazjHwqDJmfgZ4M06Mb95HOK2Th/8lQe1lPJ7vlIjomjSFllAA3vasFRudfk7D8C7mSrQfKR4Xzpy1xUHZUIn3Qr6fckLXLU6KeD7eIw/dZ+fqQA8GGMFK0RLiChL5oUkm6Hfs/lacuNFbBb4xZsd+nB2nvBUCEzNO+qQHO/1NKcqztx+ffNMO9eHCiYl+I8AynW9jCAXzP/UnbTCGi5vIm9RJxh9LcYXPrbH2d322LFilgcl+EG9zKDILZwOqzOkwIBmwRa5SFK2QfHs234R/J9tYR+btuCkfc8h3z7DrNurqKAdwKwt0WFQ4Jv8f0FW1BM4AztVN3Bp3o1ucXRkrvitsGF31dIIFYTro3SQKOuc/DFUYnn//KlWGNZnCPvTmZLI6nzYzEWpm3g070G8OfqS8hQCaL5o9ay70oTyDa9gAb+ASRY4ASCi4T4/vLbXDmOQOaMC4aX90HHk2+wMvcnn5YNZrHpS+Dk6Xa2VLsBN1T3UYKQPbzzmY31cVl8fvtNrjNOx/r+cLrUHsj1hSt59eopYMZdLKotDCYhpRxbvQMHgkpIcvEDGr1AEkaEzcdnRunEPctoIDaLPcwFwXKVLF/Km4lPtQ7whsaJtMPkf8Sd51+I79vHj5FoaFJKtJQG7SE0FCkpu2RFISNUEqEikZaGxleFJEpLViEjKxmRNI2sCEVpSEnd/f6K+/n1uh6cx3l8Pu/3o7OMjVe70R6BONZRfEkn/tuLt09NhfBJ6ylO7h/sTQwD+5abcGzREl7bUgR7Ws5iYtQqVilZQ0k7h0NnkSr/nZFFkbXhkBJbh9WsAl8KPHnjhlT6dvM4XYr1ImEBBWjeH0h+CVZ0XNiXBu5uZN34Pt67P5hP93yhsrCPXKLuDbHt0qCZUs/y71fx71PbqGXNE9x6R5EXO7zmPB0zNLcwpNGTRoO65xgIjXmOGmvvU7CCL4SePAzhW9X4g+UArhAcmtv1LP68QxjqsvXgT1oC+x4Sx8Z2I4qvDaD14no4qewjwqh/sLq1ioXfRFJEqjBYjf1EHvZfYVleBf3a8IZ3zw2AnZs9UdOslSJXV1Gc9TzmRxNhXLg7XJ8tytXB5bwURTm2eyLXFQdCsd94ro7+ivn1FjBYaAoa/2qH9l4NpuE9cnh3hhZ98kYvkzx6sKoMMxK34KX1N3HLfwh5BsF4AUR4xDZZEBsk+Kvfh17HGzjtRwuDtg4rHewjRUczKM+yg01PjqDbvGIuGa5GVmcess/WOHjp28Dq6w3gyPaPNDBOD5w7Y+Bl2gK6GD6Tyzc9xVY7KRaGCnTu3cNih9Iw+IkwS8wfA1uPhmD9aQ3c6t4DjVLZ+DTFFtf9FKajzo58ZskRMI6UpGf3TQBnNePaFxfg+o7TvKvOGotPrcLiTRpDbFzAGv0vWSsmiRKWWgAETOGQLh94lfWTXt5dS3oThDi1azW4TH+B6YODdFnUETIjR8DbGk3uDZ2Fd8Pv485D+yAkNpWGXaqiLasc0cP3N7ZKzaQRhiIgaHaRPXz60WqONo6pHU2mKrm4b5w/37z3CgViXbiFf1DPAYC+uUaw/uckODLhOfX9ekEF6UoUUdEFl2VbMVVFBZadKqGb10bBn4gbcHv9btx8Vxpm+PpCgsJ2yCyQhTflKlwxuIkvjqihVtfRcPmbNwp8+jjER0WY6JoA1p4bceFlQRzjI4hTYm/TFY0Y3mXL0NqxGSNWK0Dss7+gYzwOZXrsuMUnFU82dEG3yxV++y8UAjK1YHeuGFvZT4Pqa6pwetN0rLr8nY5Lz+PpeWW8++ACylP7x7NU9aFzlCeN1GuGSdsd+Om6yTTbsAm3qf7kk2JBNPFHMh/e7slyD9Sgo+Y1Lncdj1GB/+jAUwWuyXWmZOslJClqgCfyjLm+QBEFBnVAVj0F949fTZ6Xl0CmmSYIfu8jsREToLw/Bd60rKCyEVkwODgM3uTn4SR1Ccw+mI9bzZLg8aEveEzQhyTHLiLjOd5QMBCDi1qEITn7OujWv4FLVx0xq3YP79R8QnfmfQWlsyNhxUo/dnBV446ZchAgf56dps3g83EJ8K8uiYxPBrD8xie4YcY//KG/jDnuEPwuE4O4WWUs0lCIZR0z4JPxOiwX+obvt9tQx/V7MGdfAkfHBtOr92pwZcYJkLg1Awe+R+EeO2fW/byYhCWbcKzLVdxp3IEBjidg82ILUPKcBjaTavlu5C2UGIzk+ZIx3JzjSWKnLbBKqJzGnJgBLyQU4Vv7Jsobc4nXHU9km8e3+dhUYXgxugvMndJZXeMv7A6J5h2V48BZPp5eeH8A41cGODknGP3GX4K/2zVJuFaANuhfoO7KUAyfNBZexTdS7vBheM77FnjMKeRf7mUU+OUWd+x4hk79rTi8dzVdfqADrxIfYIjeaij9tRdXbetk9RGXYVK9JoQMi8YX7zdC+uAA1r8fBVL7V8Mpn53s+c2H40gSFARC6ELbXY4se81hf2/A+/uCeEPQGCL1XlCt1AGYL7mGtr/Sx5FGz1HlZRuHPD3B1mEmNDJ2GmrJ6kAVj8W6VaLYfSYOPRf3sqeOBbdobALRcbJcvV2YRhnshqdeBCMnm8C25bnwp9sAPvj2oojHII0vD4XUZ1ksMfEXbV+7mSwiJkFM+nvILfCgqUP3/5mDHtnPzYFFMIPPHMvhewWWdK3TgO52K4OtSQWIbf8Ef/xdYFeyMLTs2EdOnTm8rSiK54V3kqRAExU1GsG5jB70TtzPUhMfoJ6LHDXr20Ce0k/83noENd4mgpHOOxzmpAXPBmLh+KWN+DRgEkUfVOeJtsn8W/PK0H3dxus+uwH655NWgwwYd8rCC4Vg5JA7MCJ1MZm7lUJZvANcySriplf1bPOsiY+MUIEemsP3ezVRuaoU1bVzccKRE/BXNgpS717HNVZ93L05jPoeSkC2aTC5XVCFQ9dCucpKg2qO7qV65Ul4M34uKKeL0KdMK/R1lgDHeSfZ2vI6jH00xF6zGunh/fPUMsISI4Y6Z7Dfly6ovsOTbubwsfwMWR2dyN93XsXARdLU02sNBan2vM/akvYdSsKjyxL5luoEMKnaysOvutBMoee4SPg4yItGwR1rMWz4lAz6xU30K+YdPNipD9OUwmhavwYYrxJizWBzvGopjLu0CTpjBXHnzEcwaecqmBYvAOVJhrBTTREn7zCjKem2JHf9AZ5P6UWhW0Y47uMDzDYvw2B3dfB3V+Cc2FS4vnseFicmwIRflzDkpDyMzsiDZPuFtGT6I3b3k4KInBm49NJbeKPexYtbfmKtcicbfK/iOW1h9Kf2DKlOkWBLe23oDsuAl09HssvCNVjrvICsajZAqK0ZZWQ1Q/rjHkjcuQserraEOod5/Ku9H0TWrOevqs+4YLI3SkntpoilGzHk7CwKSMsl+G8CPF/iQko5i6F6xHJurvAG3afbuMRUkv4MKoDv8WwondyBMu+UwaknEG/ERKH913ZQ71Ik6c2LWcTfEkL9CuHvYmHYN3Mm4kUdaN8ZDCNjppDZ3B+YVRMDuSv16cLL15Q5fiVWqNlh7csUSioXgaXbHFih6wB9Mj4CskHzqdw0DeJnj6bZvIt+Hcrge+GtkPsNoftbI5qrCbJixX7cm2VPGV+M2anWn7QT9qFMhzqv/xpNcQbqoOoqhPqXZ8MQ9bPTnFOUnnEVxjasgFsrxcHQaRGcPa7E11YPAy21GFhyxodM/xuy78MdOL5/CZwXGQMhJ3pRbkIzLjSuxC2ecnDpTAqk20jyh9X9vHN1Aq3lN2jWHsgHTuXRSbmplJxzHDq7NMH/9hg4sm0KiZ67h/OjMzBk5k92vNtMpZYGrGRtSILitSRUOBaGV6TzorpLVLEwhw8qnMLjXmvIuoDhiMMLer7+O86+JY0F0QiZk2ez/GdxtNAVgdVdEbxlfiwbP1pGWnsBxAt0+GDxOq7pkQZhKxM4qzeb5uw2hBG6mXjvpzs2rJSk+a/ywD6yHVTV98BDXzWYfTQFHZ8AtwW+AYuuS/iprgMtlxxgnxchmHNkOE/UWUJjRyBUeqZTX34LT7d5wv5zhqMbPafBI/24qKqe+lp68AUbc2WAPoycpYUhAa30SOo8Db74jd/XZYKlzjfcn1HINZOe8mWvP7TimihED6pSw59hZHnfhW0Em6EqsoZfjq8gvcExtNG7j8JvT4fRf81hoNaKrj+XIdEMX/h+XQlf7rEGq9PmXC8uwLV1IaQdmkeyL5Wh4/RWbgkzhojiHvzdGAbFTbd5Qm40j1ZYwccc66FjsIBTskfDuYkStMpoJp8eNML5vg40zlqWpTcf4ineeVhtGEYzyw9DuaIULLM4jac1/pH2216q2HsNLsiI8IbAgxjqNhWLmpLg/dEC/NGBIPCtgva6tqOTwzS0l80kibkWnPPrHhhubYJXe+zws95LnLNWHX60H6PN567SyarjOH+CONo56kH+fk26MD6M9w3MoonOSzFAcjzYp06Ff9GlPPxQOLvPO4PdLvlYZraAHh834ojt3Vw5x4Zv/poI7SnpaNb8FlNbHtK+xxsorTeW9J7f46juBtoXcwf2vjCgZ/bDIb01ndfM3MhbqtLIbu80NmzRwv6aOvAUUSdFmyOg1NdOe35rgVGtFLaVnOBQyTjqF9rPmcl/eMw5aY6IDkSxPZJwTLaCvKtk4Vu2Idn2zUJXARBof5bESX//8Unqwu0iJ9hP6ReMmDqafh+Xga9Oybh37SnYOKwbai+EQp2YJqQlBYDWPAuY6CRMH1vn0W8LBTi2Qo595BNwT0gdLwmxIeO6fjibPgcmFEjA+APC+Hv1CbqQMRrUevNg7YUKuh8qBvdHRpJL/GOU1nDGf58n0EfXADbalsmiS1Qhc3QcRCin8Ge193gzbyVIP1/M6+5MBwddXxwjU8r5Zc/xyBeG5XtqaUmfCx6TnEVT71+keG1duAuH4E7qLdT5uhP+ShiC3h6AWbcjOV9ai/WVg4f2RwqsVbeR8iovGhZ1GuPG60J00TxccE8UmqfJ4aXfRyBmTgxXTz/Nl9rkUHtHPRdtOMhhgWd5XM53aK2fBiuOO5K5WgMFqWzCY8HxfMNvHe637+SBEmUQvhqLR9cK48jb4+HNlEHM/iKJZtELUWdJAwd6DoCgUjkUiq/gPbXGIPs3mL4Wj4PnqeXQMNwPp/x3gr9p/sMM6fEceK6YVS9244W4Dvjg/4pvOcnB9hANkDA9BHXnnWizlRUGFP9HiSkPoFtLHrMvGfOJR5dh2k4DOHfkGwgH12NsSRX8UXrES8b/pZCF6zFsuAfEzQ7jDoepMHnQGMQ/zUaB90sh5uFqHKwSQ6nro7DljxL98Z3KOjfzcULCadZbZQoR64UxadcdWLMiiJIc15P2tUwek+TML/crw6gcB1w0eR96eAvD0/FFpFyQD9k/jWnu0wacZ+5JfmKZuH2zK2dXPqaGFXl0PV0SrANPwvukOL78PYn+qF6Et2GD/DJHgOwLLnLThlNMGmJ0f+lo8M5Gvu00B/73nlFScAetumpAUVdOkZr0bfo7WZ68xJ0ofK467Cr6iSrxVqh0uZEtBuyx52c6oeEwvBn1mbp9h3LHRg8bpAm8JinDhTOefMl/NBesrQGpNBV63G+I94ZfYdf3EjiyczsmOCvDaAtXfP6rEQ0tF7H6SDl4FmXMYULfeJLWAPguWwNSmlY4U1YEIpIDcX/JNs6ca4g2V8ZQ2y9FHhU/Db85byPZm5FYa3AU8akuVCy15nUPl3K07nVo0P9F+j3f4HHaGZT1NKbSD8mQ/uw7ZmoZg+rNNlbb5wvnTcTRNmUObPOOImWnl3Qp4wb3XUBevugpj1xqCTpLy2n5+dXcc+EW3RhbzmbVTnR41pD/VwSzz6l28M34D3fl6EL3tQY4GyJNOmtFodFPD0762+Klh1dpQ3o4+e36iG5RodweOx6C0u+QWPBQhnb8x36PjmCKUgJ8m+rIssvHg4jwclB7q4ypvcqQL1EEt+eZsPrDL9R7s4Sabgzy0dwGGJNuxOm3Wuj6puP8bvNoOLPYh5fJfEAnZX04uzmSvsk2sJUL4oDGGL5wWINdwjwwY6Uc2IT+xcfLUzDuVju5+Lhzs9kbup//AfZKVOMU/6u4x8GR7ryYAIKzTGlr/gNMfnINrLUqeem1WOi9s5zrGuLY6cBvvmq3E33ERoFz7lqY6FpE1X036JRoEe799AgfbbDG0cPaaeLU2ajgOgW8HMZARshffnh+E3h5RNGfrWupZ009HZyXBHObhlwptJonOqXyjVn68Pr5XERFU/COKEWn98lgqrsVUHgPny0Zct3xk6j7qRo5tauBnIQHyEj9Y5OX5hg/lHFh06ZyWNYGWrq7nH0Td+OJsn2YLSMIOzR0WLvyCr/7aofjqpJomy+Diu1ZPLZzGJU5zwbPN9PgmfF4EC0QxKxd71FI9CEJ33yLq31Msdz6MnXrqcMvQTc+LhLJ9X7GkLvOG6MKmSfFvcAvUx2oceVRbL6gQNvNJGHAMhI6Us+yd4AIzHx1G9VK3OClwjN+7fWUf/a2wdQ/MdjYGgtZP3+Rg/QTPCVKYLK4m1012yE3XgwuvF0DVvfaeETQW9hzxYuumGmir24A7V43xCiP2kDAdgTrXt8AtXbqePrcVki8XIUH9XJwbs5a1FrSxFN4BITryHDN6XX04OZneq68h1uj9FBvwS3KWpiFmvOu0o1XbdBZrwgB/Z+htbkH/PU9wOr1Poy+Phw3/2uDFtda/JnsBGIbY9Bykxz4RUfjVocYVntyAua0rcFkya0wZ8cWfvmqgjSvDoNbGu686aMxqBTYceytVvjyxIc+eRnguSVFfDprI7WsTEHLTz4QFrKRd2cKQMVXe1R/fJZd/o6jX00N1PpGlD0++GKmdTYY+PyDBfs0aLmXEZQLCOGh7jQqePYTDb+045E3Mynjqxs4bVWmYbN6WaU5nBKrLeGYfTpuOF/Ax4py2Wt5BwUN+wDfWA6NLr+i480v+bRcLS2abAzb9H6greZ73G9axDdP7Qex2fm8qeQatF3sQd/KaTDBoJnNF2uDcaAs9nm0kK7ZUpK5HUB91eY4eXo7/VZeiga5SqTxVZ3uLRoOdflJ4KW3lWYGRLP2lH58JHKRDCNiuahjE76a5YonKr+yuIUsPLe9B/GieyH64iCd1F2AS64rUHvhWVYT/YISe1TJ58gg77gwDv65fMOnQz5wKvU2n0oyAJvuL2Sr9olcKJnTujLg1eLfYGM9FX4drKXUPcF8bpEZJZcmo3/3EQg1XQ8dH2XorYc+6Y8yJtHPk6AgSA/SBrvocXwwf7x7lRPmfkUbj5OgnPEHtgz6wdxdMqDvKw+10+Xw7fi9WHvYgrT/1WGFQSgHJRqg+3pn6PL9hh9S+rg3UgOKZXawwHpdunugDn5MeMcLzp5kCbtkCHWfjeadDmR56QHWOU6DKIdZPOOKP6d5x6J6pw9lBXTBKneiNJP91BIjCMNN9fHcOym4XdSD1aWnuPDDY+ryBLJcoY3DugVpIDmSqwNSsaU/EO9PMYbOfdNh837i6QmT4e0IaY7/8greh1pgDUtj4chcnLTcEtOcxkBjhSokaO/jtTEvINv4I+vnB+Auj1U07c1IfPrPhQ6U1pOW+wQY7mkAzT+2U7hHAIcMN8J/hUnwudKJCn9lUkWwGwy3fogKF8fC/oL1LOx8i+sP7+BLE+p5ql81L2yKQ0nTLaC5agvPebgHqtabQICRHPknulGheCC9GpnDs/efId2aPjg6zRntKk+CuKM0l2xRgVLPEBzV0YVRC/5y659SNCnMwNO30kBlpgl7RNpwqup17twvD0an+ljZ1gmOXFmPI9Ccl1t8ocsrbkJTejTP7o2HNXPq6KO9JfCdpfDfVSGoWV6CE6TWscx2GdzgFgRvO0rhuMlo7BKcSE0VAiDx6AnHml4mUbOhM1dQ5sXCo9hQURVj407D+eOK6Bu0CZYfUwbHnBU8S1SZunWiIP/Wbp7zQR/m6tpSz1x9nvP2Kmx01aIu4fGwOOc3Tt69Bm3Ob8YVBb2w+EQXbZ42kW4ViOEvJ0sQ0hWj9TpCkGpmABrvZPFamDAE1X/kmfUzqfKoNsraF1PTqjfoKNIFJ2THwrRF79mnqxqvHdiJLWVGvOBFOdmVuWLdiyS2Dj2IgbGzyCtMGX77/8Ed65bi7kMNfN7kMFXJ7+Stq4ugRHwSZYn+RudJyXzQQxuE/aoocewdfOveQvDjPJ73CKT+oAton5RMmscc+ZXxT/p3XwianHrp14sAfqZejBYuK/HNDRss26VBBv7WeOZsKLkkTIVx3sOh/qcTyA6ogGu7MX7W3UmvtSJZs28yWywIwuzZDlz/TApCM0ZC7sZztLN8JKePO8MRuw9QqU8cLcy4houvP8V/t9rB4/N3nmczDRJjdeje/F6wW/2GedtrHjlGEY/e9KX9e91w5MG/PHrLFWy4pgfmMUd5krAlf9o0DMYKDvAr6KbSmb2c8moyzfC+TprzcvF1yTC447GOhSc5Uvjkz3i8echvnXyQDkVzoMRF8Fu/kDxPV4PxiWEwb/Y2Er15HAe0u/B+tShUKl+lzt9RvCCsDfNFt8PG1D/kYiQHmmHjQXXjEpwUFkb1D27CzVmDeK/RG2b+p0CHnyyBveunw/bukXB5+ErA5kOgvkMDLnfcgKTcLAwXyuVHxfacaaHGYHAR/2wSAn/DuXC61o0PLJIFg7/L6PnjUvi3r5oF+3NxTqE4NJu7c3rldLhY8IxusgJcK1QnZfs2tNZYi3qK86H4TRHdGNrrZWrhtMJRFDbMXYCPhB7h9gU1dHSGPqb98OMJrl95i6Q2uofIo8raImwok4Tq7YnQ8vMGJFdrsFjbIji2cCLZhI5g5Y2ZWFC9BKWSyjl6kwV4KDDc21CP3TY7+KDcT3hpsAdtbIfOxOEuvr4UCqLn5mBG2FhYtLWQq7yiyHUwmwJyxOBTYBLtCXqI67y1sGTXC9o07St+jleF6buaeO/166B9fyI/uDqH/hbd5tNh4rT34mawefOMGkr06dEyLTBfHcx+GgCv/zVS3v5erl6+DRzn3cN5j5JQYfE7ODzvOHhtnADXCjpprW8KSH1NJMtxIuwf9YxHjkzmn9EfYJbxc3729TEcn6gI1mNCOfnGXTAb6oqAaWfx3s5CKmndi5fT91LkmwvcuCKWP2sTrNKwwcf9q1l+yF2WG1TwlqJQ2vNWHOZWmIP+n+UYHtHNu7bowNFHT0l9zkaY/mUTzFAKhfD3K7BwjRE2tYuz/rd8Hpu5EioPmMDVFyb8NNmRDd4QSF1Sx0bvQigPeMrRXT48tuoP7xvKLg29kTCw/y5uytfHvFl+PKPKE/Z7DOfBLwQW1hkwoTUQBN894esZQuC5tIsnlvqRTccING7Kwrhf7bBWfCWkvdrIXUtH0eFaU7D/YAxt6vXoZnERukCIppoMoxs+naw15IGLxY7hJtvZXC6hDVufqMOUtZPh+KRSCqsrpsS7C/nzYl9ekl4PXzszMbXtE6e31eG5GgvQC2njNfEJqOc8lIseA7wgthTmG8jA+sDjrFrQh0aW+ugqPh4OXEulRfI76Nb2aHQ7FgBqEnkUVRBAoZN6uLUgE9fb5KFtgyVkK8+nL4bSpI/CeMV+IRdNd8G5JjVgufcpr6rWo8MhW2nlMR2wD28A/9MrWDSnHi0WmaDabT0IihHCkb3vWXxvCmYNd8a6ixaw2EEWSx3sIWD5WerXXMa7TH5z3+Z86gpdNsTXdtCieB+TovXgVaobND99i6KL7/AzNUvc6mwJ+04bc1FBDerf38qLMYUNUAnKD22BdoGJeEi9lIy9hnFnfivv0pXhEXNv4MLhHzB4wXZQf2cCv4bLcnK4Jdv9MacDB3/DwPYhplkpTWP3P8GFBlL02jqa0tQUIbptMSftk+P4tg9YccaPaze+5sS79/DOopmweGAOWUUOMfIsgvNvrtEKfRWe91UWpu02pqrFjlxLojhSX4oejv6AsYJzufO/kdCRJMUjMo9w5yF3mNTgDulPZLg6zpBqn2Xg+PQ5HFweRPkqqnDu/Su6PmME+eSp8zuSw8bMbLB/LMVrGjtRYGATv3FZyqu2akLorW30JDyP/9P04s8XKvnbYgFoMAGW1pCgyYty6fPAOfD/DZC13Rdz/H/BwuAYYEV7bIjxoNXpAnx3fCXpSd1C8XmjuCZFAb6EnkO9d3lsFGrF72bZUpLHexx1ahDNx5vB6lM2FH1pMwZnGYObYADdnBTENl2x/FaqCeYIhNCnJZFwrKyRrx3IpQZwxCMnETIUzCjA7Sg9qssig4Z93NmaDltmAowo/oAqh2Mo8uE4uO8uAO+cHSja4i4HrWinfwKXIMNtI+4d3kHbFBei1J9X8Pf4CvKbzzAnzBanHm3g7gcHOa9MCzZOUuH45C1wRledY+QVaafLPqzLnQCNKsI8LvE2iLjrc0KvA3eOvEoXdIY67lw8BkS+h6TeI/QoTRbkg6Mw6HEDCH5KAul1q+DI/PFc/egPy/rPhv5PmbRZfD7eTNMH+fRNWDD9MRhv82QrHach/4znTmc/enrvD+Q3WfO+xw8gIVIEvuRXUoqeA0203sWODVmUGbMfW3SSWCe8GMYJPWfv32FDziAMs4qf4PL2FrRQMyRxIUF6ojMXY/zKWDg0DM8fbIbi3HbcNEodto0pJI3hxbTbpwmtfadx2Cthau4wIEfLPSgUfokXrBwF+rOMYNTQLl78oANhVnfxtH4xtsk2kEWTF1/4pwSiDf+wo9SaYsMVIGrJVBx5VIGy15RDa9AnHhx2hqa0bcSbZ71g5JJnMHismj1rlGFzvAu7XLsGG8uTSTuiFsMTKijE8iF4ljSTwjUZftLVTYc+CkFzZQUEz/vMx9dmkPtdW5pXWsQjV3/k1jNddPrzd9SW7APjYZPhybFOcPkTx4EBCThzpzY5XzNn2+xuBgUV1H2czSkOJdRkMgzGD7PF0rYWisnNpkrFadCqGU1uQ3xPjjZkFp9BNL+J5oqLgFZWJ1rZ92KbzBfCY1ZwcswoLlleD3I9vvzSrgPF526hB30WQLciIOjHID9vC+aq0JtQ1LSWPQSO8/i4eFJ0/QxKqQ9pbI8l4LgYdo2zwR6H76T3zZwVHx8lx9gLYHv4DP16JMEvco5Aw84xkHqY+KyyMtj1tUBz3FXMPZQI4hv86W1aB3ma3ADhCmdS3ykE9gPF4PZKhe+/8aP0shc4bL4zhTSq8N/mVSz94BwGBQ/N0M4Ybrm/JtsiHTQ75Iwqgd2QerANzMUCuG3XDgqdH4CpnfIwuWYY2MsmkJarFQTPrYBRs01Ast8LdzyYhFvLMqh50QL6XnUQgw4JwJV4pq1bTKDt80Lep3qInz+wYb0gK/7aXw+ij/3wb/YDlNIZDbc2rqLW/1LhcJ82T+/5CupXqqgk+wk+q9MkrfsabLdlNMp/HwY9zWVkX7gGxZSssVRdk8PF1TBx6jhMfevMRZcycbLaPQivJpi7PQSmPAyhl18GYO7N3dwZLwE/pF+Q6t1xPHyyF/9MN+RXo6XB3t0MfY+MpCsyn+hs6ziqmRJGXP0KIlMUecwMD3Q5VciXPUXAM84VRaQ0UcN1He/eehYdzlyjF3W3qEnfF/3G/sagiSf54gF9OCH4Do6VP8S9GaJoHvMMXMedp7Hx80m4RwGkRKzoVKQX/9dnAJ+FetjRJRdf6ttjz8jpUCi6BHc7WpPXyRroSMnDXQu8ebG0NhwpKeeFrUu54cMNbDoyiwsfNKC0rDvFHrjB0w7Us/vpNSSQJwf6eR60pSeKos6FUOu28+gRtBlOX7oI+jk9LOA0k7crKfLT2aLw7ug7/D3RgXZMvsUJ/eawY5YZTRa7gjc9fnLw5CwqNNrJ+oEECtf0aJvNAE0JDsYPoSX4WDWeG/IFYUSmPL8TbeXuH3Hw3zwlcNuZiK82GZL8QX+42GiBsjK1uN8nAC9oKOOuilTa75YAe/zlIG20KnTfHMSnbpV0qmIptV8PAz1rO7b5UcMrCn5A+qh6mCeuDpFGL+F19hR2dvlJSwrGwu9uSWqzW4D9RmfoqbEQifRtgjz5YTDAOtgToY2DArJoypshuIlBb4UsROX50/ibkVQwayd13reErneSNEMjAx/8uYfKl1XRM/MjLTJkTCzrQ4Gvw/HhIT8K3McgHXoL8o22wC7Z5bhtwguYcCwAf43aSKrfD2PU8vdwfL4VH7SZAM6JVVBQqYrjBfRY8Iw7xZwdiylfxLnmkAlHLu2D+BVTceyEMWB1Kokn+GTwHpG3vN5JCT7rWsMw23GwsuYaqDUZgCQ1Q2+fOayclsQSN6rp8pU8fP0tjx+LafEnr72k0PWELkZVUUBYNGXvUoRFLUchUSaFBDfX4itOpBWTXDBrezDonmlCR78OXhs0EtTqZcDOfBj+LD4HknqS4Of+m6eqBPHy2+t4qsYs0A+P4KLRu2CSgTiM+r6OtyqM5FX60zk1w5hmn47GCzqesPhqJV4IkAFZq4f4tFwbCuRqoHLJG3xj6oj+DR0wzy6Cm9Y/hZZ8WcxQjuWQekUWj9OHqc/WQE+EP8aJVELM13O8/y+ijZ0BydnpgYpyE9+NKsOOLxMgOSQK01qjUSeilVxnI9+rQxTWCuA7Adfp+MBQVnZ8gTc+JvC7nqjitjsuswjDj2GT4PviU5Qy5PUbyz7Sm38JvMg4AY5ukQHL9ou4wOARTDqmhfTOC7xHfAcJLRe0LxShve/+4oD1WlL9bAz392vzWUsblI+vg/i6aUPfV2Nx/lGylE5G61gjXii3EneuFYIRgc9h6VYjiO+YyCdGm2Ge0m1q3REBqT8XkUeIOAY2MibFm4DrRxOOiC5H67NboeHbGLTZ6Ayfejfh544ubtiiQ69vnMBDJqNBPiMD7h/u4WtFj8HPRwfv39PFiAeCGOBWDN4bCOs5E0zC5IHUboPnVXOcPrCWmoS+0cvdxnCSK6AxYBh6jinlneKLwNx1PNg96OYgyQ5qi7kAdSfE+P6JXzD36hNQmByOaWwF2/uGeixqJETaGcI7uoAfldfgRbmDbJPXg99Hd0HOeVeMCzxIW5S/QjCaw1eFEmgdtAa5UY9hsu8XtDz8kf9cqaNfglKU0fgce2Uf4fIX8jDx2kRcnXqBdbqYVVV9MVYqCZzXBPN7+1Mket6Tl68aRtkjxGB0516KERCDSzIq+CBHmAV2LyDz31q4qGEn+tsE8ZeCvfz5/RhYNijDv9LnQfiHTrz18i8fkNKl3uqffPShPQlUlaP01QxIHT0C3t2ZRmlXqnimay1ZqQuhltUf+rzlGRmUm9I723BaaDmAI1eYwGUWJXB+QjRmON5ddh6rI03pYYQrGP52Ioc122mc2yYclWkK8mscsTLKn91LszC+YhRkKoyF1e/U4PiX9eSxrpEXDH/O62SmwGmDHSCqE8EHfpVh2I1eLn+gRqcU16He/iAwDxwBH159pLrrJvD1VQVsqFlDN+qTacvyeJJ55gUefmf4YKAM7hXqo4U+Q51waQx4Jwnxgs/nsCJgIe/424T34uXhd/sRMj29nzInzYOKpV+gWWUsrIhxgsj6JTQ7zRt2l3/kwuA/cLj/CbnoFNA4iVycm9dOgfdEoVsjA0x1/Pi352OcUhNLwpkvULH9OEywd6L7o4dmFRMA1UEAymovWajbkD5eOkaNK2eSdn4GfNDbhytVTuMBWxm4svEMDO4bD7aHnpNFbAIcKmtE1e0AO/c3oxbM4ZQHK+CEow/otRnzAhcJ8Nbu5e/Nc2HdO288avaD/X8G0027YzAtNpI6lYRozPM0ejhLG0QTN+LMw28w93I9ZUuuxN70aorViIUHgR/wn4YgiWYUsPQMfegRy8V7sUPsXDSbmxrL4ES/Lx5Ms6VEtIejAk/ZY91dEN4uDqfql3P/6TyYdOkARSX203378zz9lQQJpAdxwIij8H7xU36twzA6+RmbtRnggStW2DOQRVV/16D2qNlQpnseHJI1oe9KGqiY6kL8X1f6vsQCzlxeC51HfuO7Jwe5YIkq3r16mGqbzSg/6g1a6hrDf0tXct1iY/61TZy7hgtSc8oqPNewAJLoCQ2oRUHE+GtA31Rh7o+nUDL3HO4WioTCDyZ06eU9WiI2Ap6U+5Liie9QtPoBPauWAfWHUXxg4Sp2+3sN3mxv4/uHVqG50Rm8disRT9w1xvXGEfTVdQyY7rcDww0rcJtQI8ZfukjiZ6ZQ0+4amu8ynZtF5rHjU23aOtMYHuywx1nSHlzxsIS3T4vFlUM5Prl9Eayta8BJ9QtoXOcuirDUActT69n04wIUhZmsnvwa4xLHQFqdKaeVvOdVlh/4P/dKdvOZCKedPuCqc+4ksjcFZsh1ouLYofw92Qx3LQxhjKokx+F8eHZYash7NmNcxQSqGqmK2Us+0an/YsHHbjKV7WuEU9L34EutMF5bMBx0Zk+Gu5pnSD/DhcPIhoYvEia/nh1c1WSG5aWp5NC+hc5OGQ4PJ3nCc2NJCimzh+yPifBV8i8uftzO69ynwI/YNjyv2UWXX6rCk2m7eWZRLZVsH0G14z5w8cB/XDw/kvYcdYPzhyM4bIsFi6I25D6dypGPAmlm/weYGvAFrQd7UOTrWJr/1o7Lv7pgme5kkmxRhH9Kuahs0UJfX47FLCtl2HLmHoZNHMahGhawP3gBDBOpwWO9DJXztrH8MDX0bNkJA1VXObB1E/T39VGM4EJ0WLeGFsmLUuJVMfAPjIG5J66ilP0GcMMBntsnx/r+QmB7fwJc2vsVNTJzEE11wODDY/T+E0cuopG45vQTeLbfi9bklPM0SWc4Em+ANVbR2GYxDobFOkD4q/cwO388CTbb8iJ3Yzq7cxd9Jwn69GMnXrASA4GJWv9v7//KrfgPQi0+4Z7Fufx6/Xf65r0GvHo/0ISmx3xgdyMsNPiBZSsmQWe+N9kfeMgXe6zA9+43yvcqJSPpT3RJ6Rgek7Bj1XIhnrhuFKRLNbOT8VGuSLrPqzfsGtKsUth8IwzflyyHA6am9EbfmiLuq8GcjlmQNniCFtmp4fZ5fpxZaAA3e9TxZMBWtP1uQL/2OqGcmRE03sgHo8Jw3Oq3HOqvh3GnVyR9kyqHxn1qEDxLjisNC7Abp8Byy+WQvUWINl5v5LgnL+jP49f4YO11KtnXgQZ6E1HlTz4HHxWCu5/OUEJ/DJZVu6HNsJM4Ln41ZOwX5ge3RaBLKxuPpL3mzz2joDFhLc1e7QZ2EgnY8VUH9XWe4HibL9zakUI2+gNUMHot5gvpwL2Dbrj2dhk2xYygjAdX+dVtewpZso5k53nDk5UvwK9hOvYniAHsdoXGfF/uUVuKIaeNIFQ7GavKj8ChY/vozok8uF1sjw4jR0BjpgB5K8jhzJWaeKn6NKu7GmDM9gB+5xMEMotMed9gMqisV4C5i9zotuJZFs6pgaXbcmilvyC/u3mN3ff38L2dy7lbuwwcm6bCFIUN3Pa0Fn0U6uHWFG+wv/iDNEfv5f7cdjI1fAU7UytxQ+E4MJuVjy8GbFDTb8jzg+K5b3E/xMg74BudK5S08RDkqrpS8VEJOLp3BV/L9Edfo2d4uT+F7t/0he8jtMhqWAX+F7adD34fAdtdDaHnshsVHjXlKX2zcGvRVVx6agnHOySy5s0RNLnxFUa7rKNJS8XBr384fSwaJNfnbrhFywvmOtax6uuRaDmwhxQuX2OhH0Ls/sAEcn9dxPGVV1n+pCAbSqWyspQlT7q9BnaOe47XC1TRwyMcsm5Ph3FvPsKhTDHiw6d4S1sVHFr5E7DfDsaOXUqBnsqg/aaXSxZPhoT4HfSodDQ57V4FhrLrqfLZDr7h2sbRj9+SzRMnuCerRR9tEVpaNSFyw21ucNWj27NDOTxuCvo/7oa5zxfA/J5CsPszkjwDZcE3pxgLM0M59b0mqc0CftBpBJ2mFdAu0Mv596JgzuUDvFVFE86Wa/GcCVfp8VgrWn14B3mnDOeNET18aoYUdK33gBUjunGOrhiMi5TA3YcP8p0F62HnxmhMOiqNeUeW4FnRY6i/YwasfefCbiaqMLbUAfc9TYUXn/OwLG8HrvncD5VpvVi2bAsWedbDfrUfpKo1CkZ9/Ec/iqbQiuI7fHxgMrSEPwDzZ6VwtXs+Cfhm4IycTlqbaglp996BRnwyWKMmOQYE4bAvERCw0JsdVfvA5IQim2X9g3UvpsCu/CSqKdHlbpsMfpSymrucZuJhkSPcuLcQBLI/QW5WI0q3moJX8Vqs2yEGY6M+4kZLD641/041ZMBSBh9YTEyWtnl/hJM7x0DEmmOwck0EfbswnZLJiBqisqDRKJsO10/GILvLePLnCDx72xyuyL/lsV9e8uc4P8ztmElvI7Wg+FA6RQ/6oezHJZB9Uozam/Uh5q0VZeerwpluQf4v4Q61H3GkwvBMOum8BntK5XDduHN4xUoP/oUY4Nb7iTQi4znH3hbFPX/TQVFHg9qsVpHoCiWwLBHH8z+nw/fiHIzs/AYRj9pZX3YeRUm342j7QPzzqRv91FejUM04goXT4fGEFHrW0QjvjXeR7owOvpyuyUfXLKWOh0FY/WQNrTcPwbtXdEChogpVnzvS+ror2CQJ3P/JFBRbm0l7uiuKRmwil4SJYFUjCgslUzB5/0TKufmXWsmbppRL4VolN1pbfAB7V6tjQo7xEEdLguw9Y9yVs4Hi2q9C4t9sLHsyisqmbyWnrG3sPLyYz2bdhxv/hsHhMxOoZUkfpOcP4sbch9y6roZOukxjsXYrHDVNCQa0hjHZSkPkloMce/E3euVm8bA7WuAyxJpd2cdBa/Ns9G/L5snPZrHRAkVQd1PBeydD6K/tW/pEk8HccTf/Ln1Ilzfp0soRD2BpnBHeWDIKYv484s5QF5CM2UzODYuQp9Xiuclx+GLsG7zVVgeqUe9A+pM6PDN9BylRbpw9/Tx5KzlBY4kXFvVN4kWXz0GFYymtu6NN1wxN4aGhO7oK7aNRV3ZRk8EDFv+aBiVBK+m+iD6GvY2gBX2puC5iAji9dsS+TZPxlOBGHu2ZCCPXN9KdNkdy/GrHTf9tgM7Cfi7bpgthjjGQ5DSb0t79pdfLk1EmpYJX/jXksYJNnHHwI2Yt3YZLm5Sg0GE4vZNXgz+vx9Gs0vkQOF0Lnxu70dncvVA/Zwtfq94AlTtUwNYlAxeq54H/1BJaePsbWt9dA/e26qJsix85lwSD666N9H26CSQcNiBIiKK+XHvQ+ShB6eHVOEJvKQ2T/sLh4pWcljSaFJMs4bthNPccWs9Ogq18qWohT79RSc6PrtIo8SSacDMMVjVvgBWhpnB2y3689usN2O2cgneqltGmlVMgcGcNTWl+TfUJv1nRYzeZPTUBjYU3US7tCCi19KLx9P/NfyJeHHeRxtzNxRx2p/2B0rjy7ChIENwMSg/ewirnE5B+Por7BUPhoPUmfJVyAuNzavForTkmTJgKM/x82XmsGt1fuJ6NnW3g5rjhPNO0C0OOV0Bc5HZKfOmAYbNk4NmWOvab8J0vud6ACj9FHvgZjVfHV2HhnEFeGySLbi7bUc3IGA5PjuOSw+YcUlfK8p5rMDBLnkXk2mBuqA4WR4hwfdVFdHQeA6LSObB0xnb0+JWGo9efwdBIBzy5fAweGDMKgvf8JHFTa9owbAqssxFFC4vdmGKDPGZiOdt7LYdJVw/BXO+5eMLm21DH5KBgjgTk3NDmTf6p2FztBq/T7rPPPEloFTiORmsZfbSSqTziLX7omQ7t0qE8BlU5+kMWCe2ex0GLHagi3AT6vQZ4WdAm9s96RRKjCS7esoQtS7TA6Y0obz2SzvO2FeCulnLy02mgaaYacP2/QahN0oP/Lr4AnSet+NdzGfmvPw9GtQwzhP/jGskFuFTnMbtu/IleMxThr+4jcNk9ip42/iZ3e01edqaV7z4VJzV1LTT0XIUnOs5gu7EB3Cj7wUcPOIP2NxWsXplK1xfK86NuR0zc8w6u65fQttZ0VJc2hd73baiyawp6jnrJW4++x7dvl0PH86n4uS4Xgv7bT59XfYLFj43B0EyHMw61oFLKQnypcoNfFuzl6pi5lF+lzs87S7GsciOcPioCZqHHoWzMTHyYlccCan/B7FA4njtRi+v3WJJwsBPeyq2jxMaRYOayGHpXJ8K42f30wnYNPskyA4X0ZP4wqp6WRG/mBaGd9OWJJCjG3qDW2Yf4ZIogv/zcBP1TmjA6cjhcbXpOVUEvoHNgDlSeFIX4MH2483EQxyZnw3CBDXRPOJH665bhwIkByK06z22TvcHuiTl4/VTE1A9zIdTRlWqwj9X8n+E8HzGQq6zAWtk0fGckjDGB5mDkbkElC1eS7KUB0qm4jnsVfTHJyxd8r9aBhLA8j6rYTPo2ytAr3IbyUWN5+fAk9jVpgpSpo8m+xIISbH1BYpEcyYi3ckS8CsBmG16xbSasDimDia130H3be67LtOX1Om38Ep6R/sNeXjZKB3Yr6OFqmXo6+DEDBb5HYnTfZFwv8pSOz5pF+6aV8hXFMaTlPwV0Tu1mu52vqGjpRZYvqaDKlHDc/joHVKs1IPWPHPWHAvgcFwdxmUXkfeURrXsliCsSDVjPxpo+p4tD6cX7mOcTDxYcw4aW+lCspw1dq4fx6w17+ckwPdw48xwKKfVSpP9EPia3iYwX3WWXdDEwsp+INz9fZNHKNfif0H1SjpXFsI3ylHJHgm+7R+OA9mH2fiII5xcwShiVE0Xexi8NefR8FMKp72pw9vlnFFu+DtMUH2PxOSVQ8LoKbbwbf79JYLdBc27wWUdNnw6RndsWmukmCcHOXXBy+VTQXOZGEjZqoH76FBq/3g0bduuxmrwJDX/sRBHT+lDbRQGyD0yHByozUN62jQsb4snobTHefzcF7kf24MrbNnBE4i6k/o3g0zNkwFExhifnz4Ed7oexQor43bmJbNggiDYK1rRiLvCIWZvRuFQcwP8c1xbVYOCCsbRKpR/WfFTD+53H+NotLzq2YD+eXLiT1R6LwX+VTnjWai3dCVZm08VFLNtlRjEqk1C7LJKir20mvYN7GLeIQ/juJtKf+QuO3SlEj/vPQfr7TVK2KcBlFUIYUqxGRyPO4fmPZiDeYsLTnXzA76UPhHpUQu2/T7w0VIZuaKnRaTtNaCwUR48XuvDYZQD1N53EDeM/kvnSFrqn5YhjAtfz8tbZFNGwHFUHlMj82kiwkFlMZ19nwfbph2llzT6aMWEOftiwAfZ7lqG1kBOsFGlG0RAjKDlRCll/nmBz01ISXWQNjfElLG5tQaJmn7HVXQPdVKpo2mkFkNl9Bqo+zGSRXFd4tSOIgq/9xtKi5zwHOmlmvSovOvOSxlqKDt2rGP6qVk/Cc9aD+50uOO1jA5vPaYHqtmbcsFqSW83f0M8uJTi6zAJ0jfsod/Nryhv/iGfXzoOol4pUd+E2Y9sObP9ugTJndMG3+BdKB83mNKVsGJF8jJZM9oJ9Mpu4RdSTZcSN+ExXDzjET4C7o26jur8q1jX85Ht5pqgZYIdpp6fTPPMqzMrx5VEhPrz6iCFwsxb6N21hvClEzTyb2uISuHlBPV/f9p3O2rVCvtlqkCvUBr8j7zhc5CAnrr0K8kevwMxTgvTW/zQMqhbRu+/OWJb9F9vj5UBKUYlntHjgspZ/NOtwKbWPTUPZM76smDQdZiyUY7+vGbBBVwG2pbwnH385OtCdysUeB1EuRJF1ovzwqfkCsvkkAjteDlKxoz7o3p1CP6rs8Po+T+j85Q6jv6aQ0oFbHLksHdzPlsFtm2/4d6YZtCtrgU6SAN0eL8QuF3VYfnErnzZtxsr0LWAiK8Uzqzuo0F8EzN0/Q6X2FfpR+IPP9Kiy6OgiVvrlCGUBXuD+owBkNjuR6JPhEB0aR6e6crHqZz23Di+hg17DMdBlE576ncN+LZ3kcDGStulYwGOVLZyd8ggzZxrxrkkl3P8ihjdlBMGYdeUk5mFFue8sSPngVGj7uIK0OyxR8q0dmUxbho9cJSjWNhfT40Kw31EXnc7IwqgCLXi0ORRn/1wBZwRF+GLIV3a4yiS19QRo+CSwicgVunbgBm7+rQQ5PnP5jdVzKvTOA6tgW/i0oJestBNodexM/PhyFqkfaMQV1kP/TJ8IMRMv4P2lq1F9oxneKfvLP/2X8bvB7Shm4oc/V3yDziEvfBX2m7NeOvGsQyZYff8ECbI2wt197D7uOT0+egxLMsdxRf9kCGvczU365SCntI59jYWhLNyQimz/8IGtsZTcZMBbnE05wEoYWiUu8fxQBR6X+ZfzP5+HHSf30RzdO7hwQAW6JwzSDI+5JDvZAmZ1K2LTqXXoe6Of5G4os3P6D7Zds4E/JN/kMW/nUN6BPeRyiSBtsR15rnCA2K0/6dHEFhq/6wlV1uhgnKcxBX6uxqUnPGCbuBIE1zvRI2fCgzX2uF/+LPzKVIKoN63YZ7IVb2V6UWZaBz1XGAvuESr4Y+8F5IREbirpBefPs3mN6QZSa6/nS+sX4vAKXa5JN4Si9DA6fzQNux9nwLwrkvjW+hs9jj9AIXI/aW+KJNm/ywbfbgGoOpyIWU7z6XHBR453Okk/CnZS/L8YrLx1GkeqZsC04mm0ce8Y+Lo2k9STrsLmqVMweHc5XB0hTMXFZkP/y8eBvhu0eYkGFQ0zhNZH8ZizxIZqRtjy+dK/NMZ2Kz9dF8j9/rdQwb2eV7+IgcBNSvB/DJeHPxBqFIbPoLKFEhIVlR3ZiSsNikiJQkVLZaVIQ6JoqWiXRCmJFk0rolJCkooyIkSSkWgYt//gfL/vvOd9noW6ClgfQeA1NBti1pXg8Yp3vGicImwof0vnU+twlMJaCFOQhW73x/xYJxPHznPA7sB22EqPKXnXOnjrrcYlxW/4YbAXiEhPh193NFlISIXWVO+EFKNVcNL5JW/X6adJlh3QpZSIjy3P8Jor8jBz808s1Hbg0xOmg+7oOjphcpxt9qSQ7vKpLNs+FYb7KWF+uwxc6tlK0zXT2S7zCb+IsMbgl8uhq/UPtNvupGav6WiVWkkft4vAeucBuknbwbF4OXeLmmOn/gPavlsGjeyfoJhXNi1V2kDb3upDd6USLfW8xWPUfMg4V5P+8zzLgrZ5lBebCJmNr3hxogHsSdIFwY3+7PAMMWCcIHXHD6fopgYW+exJA21WYC9iTwGXF+GJXeZwrHo5v7y2HxeFXub/dmxFxaJPsK9pOcQ3juVaXX9wxB5cPFEZ1vlmoKZYB7TGNbPrbcDuzjWoGGfKTiv/UsP1JhDJ7+eDc01gytlgzl7NpNYqzQrF9aQj8pidnX/ypLECNMfgL3goO2F/8xiQTl4Mv26Uo2VFA80ZrU1VzwN4QHMa6pflYeOKKxRxU4mMVk+DlZaG8CvyLtRGW7LSPQketnCAWiZc4OvHXeh+G5JyZixzshrYrremdMNsbnA34MiN+8hCOg+9fsZiR9oWECg9jkmGU+lA6lgYO/ET+dyNxaqiOHoxaMov2sV4RNgALzEMgImjM2jfXRcMFhkPkS5euDw3DSawNOcoBsKmwOE8328qeUw0xbsHdoGk71jsHTkOCu+Kwoz6KyyxIxAN/P5w1tBU1knOg8h+KxJ6cY5WC0mjXOMwiGNd8C0N5PabsTRsWwK1BXpw3HENWmFzGXrcpGFOkSkmqljAzvUevGn0fLotNp9CT+9Dm6Je6pA8w9tW26L4pncwNDUGDHYLQ2RLCk2Iy6Dprr3gv0IPfOecxCfy/9Gbkz94a4UeRmEd1b7VhT7JaP6l48xz079DZIQSapxX5NOjJdD9SyCs3/kQ1uxl+C41EUwsftJQ0ieWKV6B/glWaCm0D6x2zMX/SldzAHrwnQsHKVt3GjiPtEeN1uEkaOfCoq2TeMYPQ7y+RBwaI06zz4ijNM33GQwoTQEF1zWkurIAJv7YTtvDu6EsxI1tsQ5eKfbzAk1nCNOsxZ2S5pAp7UbXFgSik2o7FGzVwf3rS1H0rDuM8O+jZ5VVmHr4OD27YARfhn+EUR/d+dc9woo2K8ye24U2tafwwaEuXhb/hMtc03GczGTIrZiG5yNa2NY6HD5J34ULL9vJXXkGnRh2Aw2+N1HeYSdwCVWHo592UWIZ0xGn5fxO6i62V6hCWMoFaP6wGCQ2X4C2B514Y0gXqpqmQVJfOlQ5aoDL52UU22PFKR/TMWTkTpKSKGZDgV5a/1oRRi4dhBc7R2PCh3rIOaKDSU5pEGgwGxVLQzD+szfmLHgHzeNHg/6zfzdRLpN0zQdZddEWFE22pvAruyF430Gy2TwSX1snQ8sYC9BpCiez6EASEWylKFk9dlo99G9P9dBGeheFfepg8f3L2dNjBAg9G4He0tvpfIYIvlbwgKn/SdDHo8m4PtqLxnyRwb+Fk3n6CCUYSvUg27J1tO7ietzadw3EJONJ0bWWv3dv4yMfFfndjCCqdjWBi7HabH9Zl/RHlJLyJF/UUWwGR6scrGq/TyNC2/F48D5K99KGzebdFOBbSH2h6RwyLghkJnuTqaQGyX+diz+pGTckh9GWmaogctiagkVL6doGKf57pQa3zezCupnPYff8RNq3+yw1P50DVd9EQWi/PgSmbUM15/HYpKBFtWdi+ciDv9w9/iBMTk7gNOcYPKalCrvVZuC8ymiYI65JQhGRMDH2MN43FuDax0f5idQ9Wv+0BIQW8b+bcRtfV5bxaCtB2rG9i7NP7+H7mlUYfc4dvxacgJtOo1Ej9V8+4gY49/NEmun9hsR7p4HwRAu6qSlDyY+HwcxWX/5uoI4rFUaCqNkAB8T9ghnBrfxTNY7kK29T4utgbG46ATo+tiSmHcYC5w2gZ8IBuqW7hvsSMzmpdzgqyDniikPvOTfXlN1uzyfbwJdYUKQGyal5+KVNDeJfqeCzvG20eVsb46VX7DxlEr6VVGcd4z42DNIB9ehirDiwiYVNm1A7yQw3nOuEYo8c+lP6GocCfmJLTALLy/97r/s4OiD4i6eGl9CzTl/WD5SCzG5ZuBpzivc/6+LmwgYyKtaB5I3fcHFGM4QUvYAR0pakBha0JNuFhvzzcNC/hrITSkHLdwrc2lZK5sfVodWwB27nMeteNqNe60GsflhNnmsJ7vbN54fPRsKLYUh7LJ5i7skCKn93jnNDV+M8s1w8rhQExbmLMEmwi+1HmoOChB3MS/fiU+9z+dWM59g7wxVelLfTGxUblr/zzylTcjE/EiHPbCXZvbzCx9yfcZdNLtMsbZg0JYqvJFwCwW+bYE6cA38FMbhSE8b5cl40bcYAyD6agL3rgvh+fAd5HRgJBY2u5LIxgzZ/nghLi6L55ikb+h0cz7sd3HkorQR+vU/medOi8cGgKMQUibGu6Gi4JGnHU7UJUmZ9w+eJf+hvixVK6UmDsV8FilMTHyyWho9f1SDT6xT32JziaKXzsMDfjUVj5vCbid9phI4wPSzbC8sqDThIdAysjmNO+n6Gjk+qpk2dQvyTbTArbj+mOLrRk80ucNsjHc9sHgOmtATc/Fx4WkQb7BimSrcPLyXty3KgdcGYZE7/QNx5BBOrRGBORh39nvAVj67Jp2EBd/ij1HtwmxoHRRhMJ3oreeqPWRQiORwentsAXiGv0KymmG97GYCdTjKsFfqCwRJfufuOK1Wl7EXXneowVGCJRSrraNSyW+A31wAsqw7CZuEZEGiVTaGzOzl/dAbq5yNMXyZFjVcecuUVYTI09iSjMCMMffGXq/dF8+4TvTB6/jGyuSUGjisAzh44wRqj5kD2iSmUb7KHfpkdo2N+u+mk4ALUyzbHJ8rDwfvFO/Zf3kGJE+Ngc+dxOnnrCPXMSYK9ixfB98Qkktk3DDZGCsP7ljb4efk1pM2fAmuLL0Lb7Unwsm0rPRuZQkpGPjQ5TIJfm2mCw4dCaFV+C3mP5vGNRg8Q07kPiv3fYWtlIWm5z4bgh6/Z5MR0+BM0jfsW3kCtShlICPiAY8Zo8qtvY9jumzZuSOsl8+lz+ZSeDIys/QhCYwlq7rdBkKwT6t7rgMjlazBCJwF93jgwjXxGx/aNgA3zE+CVsSHayAjAwbuCZJKZy7u0Z8LujhU0fNJv/H6iiKtPmsAd371QlHYXkyXMMa3LB1qXeKPmSEe+7jcEj+NP8iHV6Zh+dDiIiDjgmFfmlBTnTtsTnvOZwGTWk0iiZ9lCXLhQEt8u+862Xyzg9NYFMCPwB9UvlsDh9y1IIN+Ru3WSIGlzLJT99qflKVc5OUsAGqy7aV25NlYfmI+3pJVJqNWar9sV8ge5dp71ciTOOl4E416MgjVzB1H1/BLoVxMi01Y3cJQKpWQLO6p/1A3tCj8pQ8KQPccqwmKhbs78qUv52WfJ1GU3JqybSmnTAnhhVjLcaJairPVbOLVaFmakx/GRvD8EmyOx/VgVR8UBCVscpuJ/LlT5aj4VvNXhU5f0YMp6A64UmYTXvWZT+UFXTjd5yG7W41ngtAckHxKDFSM6QevTDDCOWkJHl9mRt2c1S1+5xGKuWSQWuRaGu1/gikVGfOjeFLxTqwyT9j6G8pd3wORgMYdKFtLtmdm0q9UWrtVFoqUrQIL+AXjQMAkO1z3gSQd7cffEXNYw0KaPiyyopyQE/dIOc2BHOjrcTGYNNXUILAvhvBEScGXjDt4y4zc2FoTyt20qpNVziufFPkWZG9tR3F8b4vzlaF1HNQUnjIWnUxvxsMNSbBrxFsc2hNKFyl18pe0SWoqKQpOkAJxy8OOpm8VgW7kO9b17g9uN9Dl5aDytzXpK5zRU8NcdXThdlw9qLyuofJkdDF+3EK+LdnFCyxZI+JFNjmG2GDG4hEarT4Ljd/WxOU8ZVuSkYrXfJj7//jA9cf5Jx4Zu0dWOWnhEyuw0TgN2iRZA6xxPlrwwwB6Bn2iKH3NAkRZO/l4Nn/MRn/vXcJr5KLATvsaN0zNI4EIv2Hh/AoFPdhwn/xDyTnrywVsxvOqvDKL+VHjk7Y1jRuSylO1tdFWIhgeleiTwoBXSLyhSu9JjqH3TQrsOjYU9J96x5JoAuNa2AXxfbqUbZvb8VGIvvJUPpsPCaRxgmgAyS0bA2m2n8OpuTT5wQQT9Jy0mPfsGKpFcATlnL+OIbAM4JXMfX+zXgGKhQCip3kASWWHg8DEYHTf+pNpz57DM6AgPSUTjx5IvEH57GDy0fAGXP+8lJSV3DrcXoPgaVdZWnYX9A2upa44e5j6qxf86ReDWeFEo3VML9uEEQkMm2EFHwHNRC2LaL3D2MaBd+RVgcm4GPDe6hi1LLvLrSyPJQnI6rTRTh2293pDyq4Dzv9uQl+EoOqwiBIedrHj0m6l4vFUU+w1Ww5jcN3D67EuYPWs92m/6199ZNXyy3BTENU9iSvxPOCziTuxZSE+lZUjy8mq0eWcLU9Qek6tOEteE6MDV5WtAwlScx8+NIQsyp+R3MVg5Mw9Wv5WFttFSeHRpMTgaM+z/dRGvh1SjTdgWuDjzDDbKDpDK9/N0w3YlC9vrYNitFlR3lgKZ9Im4f7w9+ESNxPSzgOWe7fzAfiV2iKewjeIzrJzuB9m9IuAiVYlT+/N4wvEM6LltSNfSPNlMvh2+HvxJWXFvsMfeiWXf68CL63W4acRiaFXciQUbkyhJoR2Vnoihtn84Fj96wwXjQii2SBGuJhuTm2gL7Qn3xAdOF9B6RDSUwk9S+BkPvy2fokniPDR+bQ5mAx8w+nQ7HQk/zr79/iwuv5d6dlwiWZ8lKDr1Anbq6bEKmkCVURibOn6FOOErbDrREs5GlcPgP/7If9fB7ofdKelaOxrEmEHCr2SKUJ0CdbWJVBP6FJwOL4bF+SKwsOg0rN81jwuMLsCV3hHwNSiHrCSPU7ewDGw+vwWehdbhh0Bpem76CqUu9tI5iUF6WzQDClZkQ3e/H1+t/My2mSaYJhiJiS9aSCprNCdbfWHL9Y+5LUsM9pi20sA4A6rVI9ZSUeb+Uc9xTi2yhM4hAsdHIFf8g+1HTwM+UQmi457SbYE2yJQwwCydBeDut4qLFXQo/cMG+KHXhSdkTOCU1AGMtKxGtXNvueFfjytIayLVbMSXfzrga+UN6q64RK0mJqBsfZKXOAVg640YdNnazeOevaFZhTvIKqSRdH4344GA/XD4zRSYqeePpxsy6W68L5yPPIPFs2/A0cg7dOKBGvv6iaCyzF38GGgKTrb22HZegjY5uYBq9Vzov9mIPROMaU+sGHxe+wcDSsPYaJIs7HW/zwF6/jQ0tZjrRpbg7JFT8en8NiiSX8Vp66KpdL0JqD4jmPFFGQbvu8PkP3dJ9d52kGu3xD3WvtTp5YOl9BebXBshuF0cmgQegsTsD/RhbBFljF4HGiaPYJnse9y3XYL7cT48jfUhC3dpeBuznA9tOAQem5+weqIHT7WUxr8vkP0zimiuzXZsLjoAv//lXECylFsnCZHIpg2w9OBYylsfgNN2dv7732k0TtodRgYlUu1jFbBqXQteU6Nw3N1q6Ht4COr797Jd8xV8+E0IJzj28+MLm8jv2Ggo1jdHZ4nL8FBQm+FENpa4dfHCy2O4Bdzw8JRPvO3iDVK4OAzUtlXj9x9nsdQ5ioMcE6l6nS2HbzGEWVJ2JPv4AJyOKcTFbABvu9y5KTOGFtqfpdx2U1gv7YkVa61pXv1x8Az3Zexfgq8XyoP8D1O2sE/iE2uz+G2MFRn9dxTDz1vSol5tOrlLj0KXjQPXNeOhuWcPG1yaBkfUfOiczDUKc3CHmXsb4NilNeR4XBgOyWeykboGKOuHgM34E1xiOgqMletp5bYP1HCiFJtONaCWny6JNtZypsgIKHu/GcP6bTFtRxi/qUeMTlCAX20FFLtvHQuuSMBduVJQlS8KH84p0OUH6/85xmfWcNPk5cPlUGKiAOvYuuFUr2Ao2L8Y11iKw3JTc8y0EKJ2+eMw0n0tGlrr8tbYBeibzbDm7Rn4LnyCDOrHQuP1aHQeZk/vjlShpLALeE4JAvNfB8h2TzbmDq+nkHxLsNX/l281Jc7v9sWxh2zoCXzHZdH6JGZXyguX3oDM4GTo8TOi20+MIeWbPN9VC0MLQwX4Y6MMRVXC+Ek0kQdzfCld5S60HH0CLw/LwK7ra3C4QSAGep0FiwRhjEj6x7DCb+BN4VWYKx3HDloSIJEoDXa9yWy/0x7dVt6imXmd+Oi+CRmF/Iedk8z4yYgFOOPZcPqdIw1qN5aw7VM96mr/zEHurygLItDXYwFo79DDsC3X4PeIQFCM0QBNsY3sWzSJulP64eq3MPpQ0AGZX+LJ7WkuKqEXmhw8w8dvzoCi0CY08VQF9SnLoDrpBhmNX8pzhYtJcvJ00H4/l9Iu7aWn10ZCvJQqTA+VxPqj6/HxqA+wxFYd+nOu0rjXLvAs6zT3Bz/Hl1EEL8WFYNnjdzAu+A6VVnyjPTGRmHfoGKd/NSMXdxceO0mBLmUoQK4swbyT3yk7o5IUBkpxwoaLZDz7Kj3XXwWYp4oSZ99RVP4kKN73AXZrfcSc6xu4Ie8IffqeTTXfrkJZgQ82dB+iiwN+1BdtCB1paRwetprj9xyGpNt3YfUWUxrQCICrwQP4adtFnN55Fhf1joE1G21w6s809FtpAiYVgA0JsnzTKgoez+6jtOUduE3yOC8WGwbmJooorXidK6JqILWvgMZV/8ZTWgY4daInlWXloVluNE1REQWpVxPg7ycrmu37ncpWrMX0patpU0LaPyeqZrGfK8BpSyAMBkpAkHwV7emaS5NjHUhy10pyW/EYjlisxNcX5DC7YBEtbHZDkwQzuDrtNrqsVALxlV/hmqYTYLcCa4AepMhvxwadKRxYHE53hUdDu00frby+mvau6qZNOh2wbncYjbRy4b8xTpQXNZtLbax4fJYRSK+fwOUeT+i6sAWK7H7JGsMF6cwzAZT+5IziV9ZgovF2sik2h+krEiFwmwWN+noPvVwe8aE/NVj8LoAcS2Zjo3U3HCtU4YVJOuAS+AyueIuirtEkHPFpBfSIPgcTAQ+MqPhC4VFGOMXHj9LfycD9dcnkJr+F7p5Mgx/Ta/G3627YHDaBEmctRQWFneAW/BsTHBjadjvhMX1zmHMkFs2cfqCm3mIoVmjGH12G6Fg+AWeVvEPXx+pwKSuC3oz9yEZBQihzVQbyzs9n6yJLWFO0gbP3H4M1t46x/7+drZ85FdWFH5CfeBft2OQDAX1iYLtQmR406oKkrB4oOK/FNX+nw+ltOtRyVQyexfbwp+uRJHEkDB4X64OdnxfXaE+HEaJxHCAqCHI3eljGwJK6S8XAxDsTg6ry4FOwDz1/9pZUVgpgsWAmRk0eAe8eaMBxaRvuHDAhlxVDMP+bJe15akI+z/bzjlW3cZKfEUa46sEaxwza6BBEwwd/cuSHdww1w+jjvAO0zNgHNQ0n0rbjepD9TRWWa68B0/ML6eDnXtxnNJ/S3nrhHc90Vvs6CTUcazDrWRK83zkMtMeex1GzNmP6zM3Q2BVCf6tVIOqCGo1tjqEvQ7p478IQfU0zhJebk2l66w42NYvC1LineER2FAxEXeI9MyPB2z4UZWNjYY6qJjxovooW7Zr0xhF4ek4E2rTX0/HPffjiK6C+0hSu0LKACeMnwjC7hVy41Iyar8Vy5MRXbG+lSDurvoHAjwq+1bGSjM6uptSzw8DAOhYHuv4D595yXvTjJmSMuEKLczbB90cHub7uMLWELKWRo8WhxdKPanp9UPnPWu5zvYMnIhbBJp8ZPFhURMV7atlz90Fo36AJSSdVcN+NNRT6ehs9yjGjiXbNpGb+iu2m76I7txTZac0Ak7oqKN9WxV13x0OK/Vxe8NqFFdUzYfDkHJx++SmwjRt62P3bAQsZqHq+hi/o7uPG2Dzo0TYE7eGtaNi0g5rf99AG4QSo2tfGOxwl4MmAPa1wLiPxE8zVHd+xVcmWpFKu0stWH9huPRdd/U/Qm4rhcCrvPzSqJ7ROEKKq8m1UdzKXzE7FQ+1IRwrK7oHgzUm0WMYUnowSgR+L0qDinQM2CFVh7BIFTt0UQFdeFbN/4H4qzfcGOTFBuCp6D24Jx7D8di9ecTuUiqLPg/PnflQR+wKvhA3ov0F5WP5AF7QCf1KijwgPVVmyjJMKzX4lCgqLmZyzz/C4nJFoXNDH6TsN4PSQPulphtLe+h2gobMMLUrVecX6s7T+xl729z9JCknasKlFEfqChsHHHXMoyaYcxy+r4X1/Wv6xUgg6e4Xx5Yp/c7yIx5Z+XRgY8iF5/3Ry9TuI3mKAE2ZVsGaxKgzLOEK6Rb+hzuoeTEkbA+uWl0PR8DFkm1hLeztKOXngE5/5cJFLrp+BsktP6ULdZzyYJgK64lkAJsGQFnQbPLybIE55EZzv0ibFpakg4mLA4/U6ccQZI7gUU0GR2I8OoyfgiMT/YHxPFR5dO4s83oZAw8SL1KUlSMGrTGBq5SI+d/Qrjlo1HGz3n2WRW864fFc+3RH3QNtlmTx61WLQeqQNXs/1OGvvRHyeJgdGhfPIbZ0DJLrE4CzzU1hx5gX+iHHBrfmjYfLSaE7WmE7v5xnBCZsLGOiajy91l9FE5/FYkWtAvpuFITh6KvhcDeWugBNs0aIMcGcetX2bgNH9V7H1wWRakvMY7ZWTYV2aLKzW3Mbjz4aRXpsI4eSztMNyIUamrMGe8fkorL6Jj6svJcfHyrBa4iT82CRMDXW2MOzKaXw0+wmdFgiF08ItIHV7By8MWMFL52pCFKWi214l7l4Wx5U+xqzd/wqiooxAJvMlSXR44ZLPFWhaYgEag9ksVXGaPVIfwiSv13BryXlY7XqFPv4Rwc3twfRzaDHfS1CFQzOTOO7MVzK/EcOx8Q64VPEFFagaUqHJfqyyroH0tvNQd0ETbgoX4EMtScIPi0BO3Inqbl/DhvGFEDO0i3qzlnKsxmNsPyYN96y9ePGks3y+RpzG/c4FzY9OULH3CeSOyobC/Rc4t6wE9aIl4U0FscU9MZ6h/odWKgWS0QMxuPFiAglurYQHnfHwfa0LhD7RBIHqdbjF4jd/er+bI0Pmg961HLq9Zgm/3juNJ5u3odCGEPyiZA4H777Bhcf/+Zgo4NK8XnL+2EqTwtfyjcFqcA7pJcM8By55LgDesZH8/vNWtmk9BFudK+GxQQCJ7O3kB4v8+cOUOhZ2uEtXdEQgyGAhuL6WoSFlxu5kIcJ5Gyk6YwEJ6CXzqVAHfOooj3IGxpD7K5J0BO9Rqp8itOzN5fmLm7DURZTkJwWgScQIKMlKICVZgJeqoiCeUA1LdmRRo8cTOCazHYfdu4a21dvgjoQcXpY9TvqLpoJ89k8aUTCVExeYU9M5DZS4acuF4YHUNpJ4z5VKerHwMnu268Gdww1QVl+Pzt1tUGE7D6qmWFGElxtu3nefPfdNw8jsPgwyVodtl66SRUkn5x6rxEzLa+hdxVi4fSnWHUa4ae6Njjt6cd3csXDz4E/IDpmOWYMlODb8Fi46b4HDKjZh/Kt5uOVBPZ/V94Uhk+mQcL6EzNJH8Zx5t+GxizrOH1zNf1t/YELaGfBRbIS+vAQO2iwAxncv861yeZBYUQhKQRP52JNc6G6wIJ3ACNzolgR31mbw8WXaoPjBFeIL8oF7l/C0qeM4WfkHhOX/R+U/ZFk2ZQnq2GVTYpMurFoXQ0/srdD0cx/4nJsMs+N8ecfodbiuVph7fP7QhrlT4D87PbC89g3M7QcwICMdDu5MpJPtWRxRR3DN+AxUzyiG0kWx0PZNGurk70LfpiGGJ69pQcpIisvVgdoN/+b8NI5ExU+xYaQG2byaCPuL79GMgVY8rTQGF31Yy6++vqY/tVa469BZsC+xZrOIreRySwmerTwF/X8yecaafaB8QYW+pKfCPl4OC+Iu4EErH4zWBNCfrg7vn0/m5GQJ7lTYwmrqHRwGx+hbwAxa5z+Ph+W/AIkbjzi/XQCuOfajp9w1sDHvoVVmx9nMJozqn3kxzLoMUhappLHfAUuNh0HgEwFYplHHotvnccPnGH5YuZoyTtqwmeAb8GnRxptbAmDOXk148s/3t515RAXpqZjsFUWSShm4zXcneETdx6G6UIgZJ0E+O43A/+QyJJtYOHN4DN77sI4X9adgvM9Y1Hk3kUa4vKSqWz5sbi0Ib0t9wW75S1rQ18Tt3615UKuG9VRMsCE2BYa27wE6NYV/ehjBR995eNxgMV04fJHql86jJSMMWEQkCk/GnKL7c1q5zH04HXsyA1J//5vvjQkePdXDxpKJZN3fz2nXptOs9p28ed9yfDTtCy64NwGCZOXBvXAbzDg0Em/viacVDprkGzQHBZcEkNA9N/zt3oO7Vo2AeZnDuPpTME17+pBHzb/D+q57eZNhEvXN2UhZwbPY3bSLjGy04VrRCR4XsBtCc6ZCe2I33ss8REmp+ymtcxckeMvza7XFIGwsDS8byvGVYQl+dxqLtcq3cNTKJfQ0cRUnCorAfoUIavrbAbuvyoOUvjGcjz8J9zfu42WyJSigPgmM5vzBkv1esI1dMO5oEH0YaQy7l7znlZmAVhKDnPXuLlqukqfyIaIQsRC40FJBrwRLQEp0EgxbaQia2uYYaB0OT1Kf0pHiV/BbtA3sc45xs8YAhfnYgLGpHNx4EE4eYrexAb7CPHyOG+8HUN25hVzntRefjwlgyY11eN9Q+x8Ph8PSHODGkVW86b/hGCkTRov/lGPZ+H8+2zueNpmW8ow3wmBq0I9r1ItQYN8w2BC24Z9PHuPpD9eyuv53St1XyHPvdIKIshzUer+CxWOu/OsTZU46/pt3WRxjz0MJFDj8Lj3W/MgtnYGk6ycFRfFu8NPalPvlROBuwhiUGGMO56GExRddx40q18D4WS9EyGnCiSVTeNduEVwVepvjp7agx70bMHvZOgyyFuKmJ+KUMmENnHKVhlNfmYWSpTBIfjkc8PgAJxVNeWVIJPE1JRpQ/k3Ra83oTaks6BU+gJjqx2Ay3gleKeTDmOAt0Pn3GfadewWq42/x3H0pnKw3Fgbtx7KTfAe1inrCwdP+HPi8g9qmPSK1EeV06/d3bMwO4/waYfCIyad5yx0p6YMHn/abBwODciguN4+ua+mRS1UWXxSJwds3x4G8XCiKz3DAtCoJNFxQQ7t+yNF7cSd03RfC6TltHHXBEXcmCIKn9RQ4e4do0c/n8LG9mi7ZF5M/jONJWpNwibM8nZG4yD9ODofnXyTxXMMRkq9ZiucKN+Fci7E4cnADfXotSXkiydhnux+GJZnDsuAMEoQyuhJ1D0+br6Vju3Vxzz4tdu+t5tR9XvDj42qqbVQGW70mdpqcAmd3LsXL7Y8pwUOY8lU/wbS+Ldw9qARf6nPZ77w0fOy6SGrvikDcP4R+xIjDt9B89r54BcJ3LsLcI5dg/LCNdNdUEjaMSeFHn/dB/9jhNHq+Lc2VUcRKn0gcs+kurHQKA1p/ipbvHgF2Y0vhxf0heGx9HaJv2cOsQ+fgppMS3n+wGC94v+KBsPk0M0YVLLMMgZa04elHUjB8yR6UwfmQv1QSxQzE6cQtB5II3A/udSIQn+mNh7wuoYH9EN/LkOJpexsoZpcvp5gk4vYbEzCivYyXLZQEy21CdKvelHZuFOaTGo+ovDwCvPT1+Oj5Qmo1WELb9n7jjnOCEJlcDy+i7TB+SxfvcHIjPwNh9uw3BDG7PvbacwieykmC9vRJ8Ev9DO9/wZD1ejjv6p3LyQsaqOXUJLpp9gn2WAZgyM8xHH1fB1QEJvP4pZepIPwPq++cwa7liTC3bB6tt/PBZ2npdFrGiWPU5cHEwx+Tcy/9m3Ercftb6K34iQcufILf+gks/uETmc/r5Kfeo6F4ywGyP9FHqXun0Ux/NzhaZ0oxyi2079p+mnVmJh+aVc/OoAvvNx2E87IM8yLv4uA4bxzf/gutNg9g5NNRFDXfgRt0FGjq3WFQM/4brdlZh717bFko1ReaP+fBAe9k8v5ejxqKRrDDzoZrJ0iDSmQ9xVQrwIn+cVSW/xEDGp3AZWQfbrWzhko5VfJtEKV8ey344F7LQtpHSWXJRSj5VUjGkwrRZdxJVljexxN1HGBd2wA4qonB5c0L4fhvTRSp3YRn3m0DeW0HuNNpA8pVD2Bm40OExEYQ3igICz4vwzmTWvhzVxj6Dh7DyW92c1n1flJdNI9Lam1B+NNLDEsRgOjRZfzrQTy2+/wg0a5d1ACpsKt3GgYtfAfPrIMxYWAU1hvKwAyBEGw3WsB+aj3UFPQfrni0DLTCNXGB6Uzsfjeaz/3qoVR7QXisZw/HsYB/V6binx2LMPBJIEQVqOF+/RPcvOgti0q9Ja1TCJ9PdnDRJRfKkJvPggfMcfcfL1Kv+cJn99nwRlDDpBJZVvm3z/WdL2HCmHrWoWL+tOEDzVO7yN2zQ7kpuJhWzT5KaVHxmCk1EQL6/1BwUw//2nKXfk6swBGeFnD14TIYMzWRNaoO46FCBeiZy/D9gDM5/xXGmwd3o4W3GDd2SbD+8UD+nIxQ9H0HjXkZy8q10rDxdBXHTDSDXN3bnCkfwTnPI9ktdyvBt/fcuPQCHC91JRhrBKvHOKLq3xOcIn0do5SleNYrQd65aRV/E8rCypVNfFPRA28MSEHPoiJS2GTCdu+UccHO1bhjYw/fi/8KMsurobl3C8aYNvFFZzm4VfaOrnsV0D11B3wt1ANzhoewe3crB0TZYsSiJHqZ+pZlVIaDc5E7LcxNg7ePHKlkzyFeH9BIozYNcM+s73zJqhKXr39FP9dqgLLEK7jQpcL/jb1GSw/l0VvXb3CyQ4AWn4hG61W3SHpHH91ulwFnVAThS9f/3fjfVHPbgSoF/+LbYCMcJZOFnlbheMXPHGJ7xCBELYecl2dwh7Elny4NxFn33PgHyVJJzUtYkxgAboJ+8FFeGOJv3MTyI9+xqzuOLlo1oaJrCC3/E0ldvpL0stsINz84yMfeyMK4/cX0SfQH3w43gZWrf9IRuQK87OGA2To/2Kd+Kfz3Vhk/CGtD2HY7DOvpYQ0FI9q6M5l+NPXhvYsVlD0+l1/6l1DfpYsUO3MSHBaPwkVL+6Eozx10bmhx6mFLOOIyC0+vL4NvToi6RQVw6MgoOD1vFPWaXafni/5h2+V4yBKKov8+B+Bqxcd4UXEBv7O7gAtSlEDs6kO2MNgA6rKL2StrE7p7H+frMS2wdacK2r0ShuzqaDx/wRTyJi3mnIN1oO1dg+I97XDk80YYkzyLlkdXgqv3MRr4soSPxOmBSn4wvI/3ohibLfRELow/ainS8MKtAEP70DBnEzzoH6QiIQGYoZRGZ9c+4qnLhOHF27lc+mQ5lpT1wX9zRtGyEFHS2NLIzunmYCbbTFuWytHI5asgQ34OyOsKQ/LaldzlfALKl43CZyNvsN0vU5jl7sgJKlb4oq0fjhxqZO57x/rZ5iw9Zi+t721CydnFtDBwOrTamJH0dyNYUSeNBqWzeOrvSHhTfZ0n9qjhHcUjVGVmBhqvBUHA3RSG7bcn+HuP22b24dzVQmBW/g31zYr4ybN+8D5/AHLTDEBw+US4KeHAe0+twlfDN/OZ9xt49tgcUnxZgnsWakGiciyv1BCCoKfzUfvjMuhfMIatHPtJcNob6rj0i5ojRNlgDsIEwd3knqEB5l9v47W4jdhgDuhcIwVTLmlBU/0bzKg5x9WyCjT2qgFZPZ8GltyFobnL4a++E3k0tuG6fV18bG4WifUWcsD1mSCxfjUXrdeFZyq7cFVFLt1uVMFIR0cISagDC5cFfGzec8hReQ36u90gSUgDBJavxMBPQ5D9ohZ3qFXgwPYOHjbrKP9KLafDz2X55ca1+EdmHGyfn4vhzhp4ST2R55XdxL/u83layDkyPbyG/RY9o+YBcfzsLwmq9yrRdXIHX7CfD5Mf7oG+nRP46fqHIDG2CdoOfCKxUCvWsVUFz8spOFlNiHYabqCAodH8d8RtuPdyPiwb20yrQAPvagXxx7O6UFULfC+7FFfNLOJVrX/o/vcG0uOROKHTAFLcMvjA/BX45tBY2CTmAK7bbLC9uwpMHEZCyYtGPHhsFf84KA1eYz/Cnspaor0I8VkK4FZmya63tsPJRaNo+n3GS1X3cWFqDbx/eJzvZlzhRccRjAvtec45Z84waeOciwcwommQ/zu9H9o3O5BJ6FtwHOEPKv/ye0QujtJT7Mja7BZP69PmPmNdOhazmQo33wOh6Z/5RtscLq0dD2v4N4o/uURhXi38LLsZy1+4gfjbSwAaJ+jwAROKqA6BtiP6MHlCL2bmrGTTwav/uCMB1zrJ0iIpJzpb3sCfm0bzjNhDfGnUdCgMD0XZJV48Rug2Fm5WAsODgVA3VpryBc6gWU0ElXoehtT7anDYsxra0wkobBq4RDnCfR9tirpojGOdn+KRkpPwYq8CP/6rBLMPXMVzPx7D2x+LMWhXO8f0dNNNU8Y37SvxmrUnD54zZpMMOajJDCRY1QliX6fgrw2jeOe4faw8twWKXb6A7e+vHBubTDM9CDLT11Ps9l7KKTqDzvNHwcL4y2CeXYs/H9/jUTeSaZPhe/iRAJA5bg1aCvbitGJPpPs2vP7dBHRLX8Duc06gmZM+iVXdo3MaFtAfUsMWQu086sIXWqV+H7y7rDh/IJw13xuAjWs6DSy1Qu1ggiizbP74sIBFBCJogYwCbuuKgfJYWXb4bx2IfWjE5T8EOK1jPMTLN6CacyLuUdAB44ZBVH49naKaszl0ijBF1PWRoe8oEr2oB4Upe1ir+T1Me+SKJyYrs3HXfWw5NhaEynMwocKAx7Qc4Gm6OqDxrBW06k5zKrvCd94FWzXEeGNaJ4ad/UOh5W5g3XyKzJsEITWmB2ct+scUN9Tg8T9nFR9YAm4Ll1Jm5Ue0/CkEUamvoLpVDqK+yOOMrkgqzozGistpcOmUNHp+PEtmfxXxr1kTd3b2sudOE5DcFUe0SYVk44i/qX9iw9YcLl4ujU8yD8D1Bacxy3wkR++XBaMGVXwRcAC4E8BAzoolTZNpxq4U2nK+lfYfjSD3jyYsNNkIqiviQXbnbxx4WU711vdRS3wDzDDfw8MK3OnRmI1cdboV5x2Ugu8O4SC36xzvWZHJXknh9HzYKGhpv46HDutRaFkRPNNywag9w0HHUwI9P1yjo7SKbJ2jqCSjAt3cGmnQtJb6v7xiK9tlKJskDr8WHqCpl01pXPwSGOHlhEF5thwxspsGLbfxg5RyUFMcgroGfTAo2c9zhDdjY6wkBOf6kcugKPRSKFxdV0vquWrooVWBeuNVYN9HRfK8eJ5PPk1me2ML5LfZ5Gj2ncuCcjh252TYIaVFC1KlYIvQVJB5+BTffdsIlgVWOBOk4f3JWAovf4hJOxWoS88O5qMeRHtVsaz+Ybpb9xhn/7TAlQ/EaKeKHL7eocaP5muQgJ88/VAYDZ99zcCk8gxUyeiz3uYOgLJnPK1zCe99P5+vHLEmFklj++wxcOq1ENx985EOb23GtLpKLLNahePWuUDxIRNwearG+SeGcL2INtyvuc5WyUpkeOgzn7h3mGlJGa4dKQWLJibQTgNXst56EJaHasDhmr1wRuopJ7cPUc++ClBadwrG0Ub+Jm6MH+zmwSPxt5RmqQvtqp544tFE1Ov8RoYrLSFl/WNI/TQd3Q/fhCC7FnpnZUa/7ptB8jVRMjIOokoYIHPDmRy27jMdSdTB70tL+EpFIbS27cLucSPA3ec0zxuTyL6OQ+wi2sMzXXUgVmkh7N3USz2nqyEl3w2rJyuA8fYUVmgchddHGoK7pSp2xjlQXWAaBM5YiKeOJ6P9iyh+c8YIqko/QsvjbhZ/KQEFmR+JJhlA6N8XaL7bGFp+uIN57gI6pCUIVQsGMTCROW/mQtwUsoI/dM8DVc0pJPq4n9QW/EDvAxtp+HMtmD97C7+2S8fEbis4VaMCjz5E4Ea9RWTu9JOrc+P4U40YS4WLwEyjY3TS25FETRazj/lTVI4MpnWPmGFRJjxUb6QSr3Wc1TASBuOcebYSwMAdW26qPQOTdk0l2auxoGn5FdOTEinJ3ZCT40wg+8wsbB71kvrMq0D+uhLPVZ1GSyb8BOWCYZx/cTX8Fj8CUW9kYHNkKUStWMjfWi6jp7seFolNZJufdVx9tYszNnvzB7MF8LlCHm7vEID/BM/w+tXFWBWhyWOdtnDUvizqm9/I/Utz8dkXa8yL1oK6QWkWu9WLEZKx+LxAHA7pjsOun4sx1LUNpsXe4CKxHLa4Mw0yQv5S2MNo/Idi8PBzEnfYq4OHlAy+mRaNK21f0sXxEiASMA4ad9+hl0rufOR0Lnh6rIYzGa68bFolSHZeB/jiTJJaP/HKN0XI+TwDXvzjikazev76zorfyTFlTK+glK0TWaXvN4TbaOEbCzEo8n4E0ku2wjU/W5TLXE/d1weh3Tcb3C+mkNqGR3Qi9wKl60vA1M8KnGOYBBJqjbBH3QvTT/mwcdV6WO35hhobxvKO58tIKk4bDkWtQMf93qS34DpvUvuLR4ecYYtSPVzK20IyuwL48rjj0DleAP4KpeLBIH/aE36EhEME+OgiYVAAUdpU3U/W80PpSOoUCk3QhAXjAcz1r1Jn8FHcc20rvxtMJNel9yjhjjXETSnlq0/j2ah4BBxKiiPd+AEa8zEKx24cBU41c+Gi3FketaoU7pS9R53qBI70GQcmN++C1ZgeGpOhQJ9ybuCCVX2Q8OMDStV/pckR8ezzdAXddleHQoMCHhO+AlfcDEeHoQn01c2WFk8vg/qn89DmSQVKvFCFsU7mkH3HEb+sn0Nj43pIcoY7jvskyDLRImxxpIW8giZT+7A/rJQxHgal1vOW/QcwqyqGTjq64SzvMjzf2s4SF6aw8+oHIHzEFbeIWoDq5QOs5a2Mnc7DMKJvGY1IrMH8wDm4d/Z5/KmdznZTCtj+giAc9J/Il6Xv0ubKYyzk/Jr/K75NYT9qWWWsOMhq1kGEQBW27PzHZKPV2FrpEh6wmQnGW4xJzCEWh0lfp9kDe6mpXZ1apHwxTH0K3Jk/jKN0wuFJnw9ab1oL1jfNKQFMeevR1zwn3JM19VrhVp8x1Gjn8vAp5fT97yGYcViT5HsLqLpUn2c+W4P+/qtw4f0XoDtyFGyOnkh3g7bBbV0rtJP6zvZ/vmGragp68C4qHDGZ9pSKwKuOyeDUcJF7NkSBoP4DbFYK5sbpnSz5YCt4V8TQ18pciDA4xO/iR0NfggRGPHxDP8LP08/sl6QwXRiGb4mjBXuWc/GpUppiv5Im55oDbFXncY+HaM+7BXywbBPPK87hs1preN5HWzxysBCnvFwA397Iw2YVPzC5I4Xpka5sIp0PO0rLoH1vGBbdPE0Cydm438iJU40VoKP1PqzdZ8+3h5bSmQiGXxSOc78v4Mq4QRw+6ipkO56k8inicPFFOk5KzCY78dkU+M4NdzbdoK1XrTgidDwszkykltRB8leVh29fMlh59wxI+dlATjkXYcB4Hlb4l0GJqiFb7/pDx8dEs0KFPpyduxYsckehk14AbzvTwdpNN7F/3CWcff8/cH/+hQTRH95WT4Q/HfdJv9UGmtRG0uegHtrS/YfvmV7ArV/66bPjJvZ+85maLceCg5oILD5vzU2bjkGjSiV9T5DkWVa/aJL6Vla7nwFnVx7CifnDwLd7DgreEoOb8XvIOSKND3uao7qbILydXA+Vf9rwyXAlEF+lAxdGf6Fwu8UkKDCNm0U/sNGnMgj/LkidW6+Cft4jVF6YzpKB6lCyMYM/r54NXwU+4qejhnhxVQXLbL9Kwcc+soXAPXCL+sS+ciowtXADLTpzDF9JGNK9bzFg+egTJIVc5CfjBrkwWIDvT3FA371mcPlmN9gtfMgjN08k/D4MJxrdY/20HLr5S4vnhzrhYvn56BkkB7sNzkHN73twzasXG57WUa6jOX2dvpeW6WqhStdhUrZ9Q7a7hcHqgiQob50ERxe74AYXO1o5SxHfiebw18RCGD9bBSeM/8zvtLVgwk1RftHQyv3Vj3G4ahw/ytuKb41MoFHzAJssLKPjl5dS3Ed5qPZ1wK8HCvBtsC3UbZBm8f4i9u3woMV/1vLsL/cxXWk+ztxvCq8813KR5UzYNKsQ7s6xhldTqijxeSycjp1AN7IiKE1gG9icHA5L1PbTwmkSsFNTHdXnfiKp16Ws2nKUd4p4Q+PXuaCVeh+fJ+rBkcfj4fXIn1ji8Q2bxf5lbNgJjtm6Es8UBXPqrlvgNbsNNvyVhpMiQZi/NA5cNvbjmjuK9PluNX0wegN5+wG3F4WCzHYB+LNeH1rmLoPUlXVwZ7CWys+vpu1+UqycFsarO4tAqtCYkm9sY1kLOfCfcRkiUtK5I8QaHhxw5IM3CkDHdBpPuP0O5NzPYtLsJ6AxXBhWLK4H/a0zceb5SaQIetTwoQi2XVbkR6bi8GToEDXcEuYtd6bCPtlj+Og/OTSXVeIxfz/Drpp61j6B4KKfhQ1/LpL/pUa49HwCSJT/ob7mMTT3jhHnHbgOC46cwb/zT7HU3SCYkpQJpdUeOM9BFRJq+njznyV86Ew3PJzgCFZurWxms4VbJVppae9wHpqpSyuHCLbZi9CHzCmkL5EOpb5+ZBilCpav1jIVNoNxxHwYX6YGDwJE4LlkBmf/DkL9iGCc9PgGwAcxbOjdSd9OuZHsnNlQE7oOGm4qg/iUbxifEY0id0PYbusKSugbT/8FRvKqZ/3YlnWKcue0wOcHShDxKoUqO55gYtBZtp12met/zeLc8mf48+pNMl7MGFyJlDxZCUqe3Af5JFv0nxUJtwpH017Zi7glu4i0bzjgoS1t7Dq+D3dfHQZeH9Xh7aO93KrnBNtkrKA59AXqS9egx+9M2FH3gP1nStDQ+hHw5m82TwzZw6XagriregNq7nsNq3wVKXqHOdxrnkSfLotDR5kMKCV9AxeDCZBTbsgbIpl09y2Ccy1dVFa/AkvcD5LjI3OaPsEMmtd3cYeqBslrR2CSgAe6lNSC9HEF+C+yni3XPsUly6zwQMUwKEd/DFsYC9/+8+PjHvUc6Z9D+lNFeapOOpWdrKestibsuikHEQFmYPeknrfMuwmjRzEq5r6EL6qjKCsth0fs30gpi20gIpNh33+d6BN1B0eN0+CJeybj6YuHoT5nNcU3/QcOl1R5Vf9xOODNIKWfxKvFJmOTkgiXqIyEyjYBDhdbCHVendA9J5AvNnbg7ZHq0OLhRecf3efA234gfCEOeTIC/OOaJemr8fGbvbgqPYQPTDUHC/NTHHtkEJoU0iHLYD3MXLiDJ08pBuf6Clx16Rv3FM/Ge2rDQFN0DgWt64ZGw3B+cKWMlhZkUaf8IZ4rZI+07QDmRdnCfAcFmL7Shf70DUe7MkWe636Z1waakKp5PLabSMBM9GMjH08c3TQdfq5dhNmHdSHfMpTfx9RjdHcErWi8C++bo0Cg6zL5b9PC448mgNDK76xbEAAFGX85udoSuzGHbWdUwLrlfjjfrwyOhCnxl6uasG7xO9p9uhxjd4XgPok4nnj0M627vRsrBJvYJOQ0TXFIgFYNeWjxq/zX/4s5YZ88vS1eCmcXvkbvvC/cWFCHTlafqPb0QZq6/p8DypRz6OYguDQnAqZb/QDtaQthlecGsEoPxZ2HhnFCVyMX5YpAyTNl+jBrAoTat9Lzg+ZsteAL+EaK4jeHZq7M64CTc6oguJKgdVIrPAo/D5pROiyeasMtE67ThGxp8B3cwUcWnoBdlXEgjprQOKCJCQticCD6A9ce0OQXtyp5lcxG8K0wRWWb/4k7z38g3//9v4ZNyiiF7IxsQpIV7RKlJGQkDVGKSkkqikS9tYumGUoUEqVNZRQiUamUNKy25Ofz+ye+N65b143zOh/X6ziO53Hjus5SJsPP+K18JJgLq2PElR+4tTqbok5k0crwKJzjEoKfOueDZ9FCyraLg8wUWRBueAHn9MbQPJ+7bGa8g/JrzmJYhSb3z1Xlwe9+lKv0AbQ/GUD78w+4dbUtVtTm8G1NK1oSfoDHulqSYoAB9P6K4bH2xpw1RgB0O++y6MMyErwwCc4OvwhTt57AcSVukPjACdUuOfLKFkk02E6w3ek2ihdG4RaRzxzisY0mzSF8YHMaBBoH2fmCOCp0tWGs4mgwfH2OxVLu07uIZ4jit7HstBJttAzA1pokalQP5pDyYM7cOhmWXfZEqRPPud95P0jJ9JC393X4NTECP+pGgNzuC7Cl6z37B0nDSafboJx0B2a2f+KLwrc5o20av15dx9FPXXCFwgpKnGPC7/T0YJ1lJbh8iiXZqTZkeXURpZ2TgjdeChQl3UQeWpWkvHMcDZyUArW9naQSch8uGbyCzvY/qJOSyWffuPAu+wAU1DXCAMNR1DtaE+zfnqKsyBDsCd5PC2uEEfetAPPna+jum1uw/uE3PFg5G5YVysIrLx06ndiF7RvGw+fpr6HkijQMbjXBoP3R+LgxjEfsEOe8aAso7tGDhYeeYWL4O/y8PIO67t4GX68aNCpMB+u9faTwr5RCnllCZughmDRmMTmliUMdz0Bfm60UGd2FhlMVSFr0HUoaHiTVJkGILRkPtYI1nJxfRcZpCrz+ZT2GfPXAJbMjyDhLnHOVItDl7nA4KP0frV+4E7HGD2fJ/aE/WRdJcc0uNp1UgnsmasPoECv6t9IQ4kZ3sXjscs5RySbnT4vwwOUPmPFnNOeZTeCm1hPgrWXB9kcmApp8Qf3UfBAJ1aMHj6bBzX+S7G+8A09vFONgcSGupVV4ol0C3MN2UuyVt/BvfyzMq5uPiWfjICYzHUM64kj0Thr/PpYBecWSkJp9hLJ9Z1O5ngaMOnYeynZOQWm5QIo5o0xh09vIebotVydbgtmSULbPl6Wo5DUgd12Vm38MB7veW7yor5SPx7lySmM3h+4c4mLTE+g9bSnWTXqEuxOcQKFgBC5SX0sOc02ZQhM5a4sr+wYbgqFJE4+44QkZzOy+wQDnzhoGbwcGYMSwatrT30pmpd9p0iYBSJoZR7YhmuB+bjYFRa+hLHN/mHNZhSMDUyHyXgenKY7ANx0WcK6nha5M2M6HLKU5QO0Sr3MJ5wWOZly8YyOe6NhNFyvK4XyCFvRe/8B0qAdLfpZAr6Mef/5xkBZfS4Lh1+Xg6o0SXDLrLIfZi0H5pQY+HT0RN29y5UPXZdj09D0O8ltJUd9L4cPOv3g9/Ss2pImBlYYmz80OxI2iiWCxqgqO+MXx5U/Xee6YFzD2zG5QXfIVC2XkoSjfgNJEbbnBvQOfDpPgfNvlFHrSh7K3uuD9s7cgLUIXxx8Qh2lHTPjqekdyMhZHo8RWzquP4aC5/ZQ6/A81e8rQ0cY+fLl2Inw2286rhL5zx3/taLz1MQxIK5FtcBUHCyyiMcse863GXFCWsASjpb9p3e/9/NJSio4peXKX1zIY9P5MswMkKUF4Gfjr1HDIIgFI3/GQpvgsIyOBUlodlU8PnhI3rG3n6hWz4GhGB77weYPbMyVh28l21FXoxrsfkrGm8g8EDfPkmFZD3tbtgwdfWNEwsQjIHuq1cpfsaVqLPNaEr6YXl9agjqgAqdzbSd/ijvKKtGyWvTuVjrSPg4yiDggvssZc/3esWzcZfUQqaWvaQvro7IteF1/DIt9drBunBplPDlDk/RqKUN1DErf/cETUOnog+BF2t7zDeW9dYZKoHR46og7qkVM41a4D70UfxMx/V/hIz5sh7ipm10uVmDdPDcvHSYLwVjMoO38MWtXDUeIxU1yeMniOFoX/CqohMrWVA6cn8dGso2RwShlu+D2GB8bV8HS6G5w+2s1dkvuQmgPAsTcAxGYIw4K6GPqqPhZGByBYOrahs0cTRPbn4ulMggUxL9invBPeiK6jRy6ENckIVbNv8aGoZhyua80HJZrJW9aHZ91rxVTjbeB3JYflDizkmy8s4ZFiAWXl/SQjmTdQ4XEX5la6QNTLNmqQDmMfw0JYIbHr/59f9s6ufch7ZOHn4FhIeK2DudNOYJjiTJCzM+TFattooHaoXw/YwIzH71no6kWKG+4O9rt28EqRY3z/lTS5FJ+HjK96nBT7j5WyjCEwzAWU1ydhh4w+PJb1gw9nw1B4QwD1T1HAVWZ20JUtQhg0EbziZUHqkDOd7I/CKQVjaGBiCfdtyaMN5ceQpY3o0qV+qkrRgwmvp8AMyIYQg+3wHCR4556H+NzxAZ9K6YWSWS6wNkKVUsMmQYr7K/queYRNDiyAfscxOEbiB1mtHcXOWx/xhkwnFLq2jCZeEoCmQx7QsfgRzTL0hsyeCqycrYw/VxvyefvNfO1VJ/cP6clM3QK+FBTQev8AvPS6k7rfjMeQRFti3kqX9yXjTLNWXqI5kt7WGsKbiB2Q5/AVJSTfknJEKQRmatIMV23Sj/+OboaFXPP1AUUvl4aVmybhlxZfrrlUjsr6sXBtgRC8U5SFD4ca0dNiEVb+0obrQ/sQ/17IVUl5UFT1i4o01sL5gctk4t2PdklpOKw8CAIcOkBsrTx8FGA+KmIHOa3V8MT4NM1Pv0fziuXwuGcyuIUb88jBBTz6ozjkLgimPx+6aGNPLJYnVkKUnRfhMGGMOenFW06PZYf+9WwQrw8clc+DkTmIqsvhqs9VzMx1R5t/QCvdbDD/hB76blADkaVj4OuvBfBR+SvtrhpN+3eU89Mfs/l4vRYsW3+Fb+U6sbmbKI2vEoPAFwbY/aIUO0zEYbvaH1w37TsYxFiRrfVUdloThX0TjoHBDX2Ay6u49dIa2HfxGCwUkuUXpUlwcmkE6JyZhWZWASDlGEvXFOUh2+8vjJaIY133LB6elQvzzCVB9NUs2m4+HK8fVqS9NQVYVDyU57muWMTTKS8+CdwL3zC/FwLaMwcW3T+PUl3C6D8oi+MOAhyWP8Dadg+h3quKQmtE+Tz7YoRuIA9TnQIvL2bQm+m5vNlEDgQke7h7sgV31xwDC/Ne1Jx0BDeb7eHmT8eh7dA6mHPrKCk+Noebjw9ggHs0Kcq4wQQJRaq+WkIT1xL+qJUnrT0zaOBPMAc/GQ2HFHaR0ojTeHBoj2Kpw7CANDhedg4ukdODM1fmQa1NJDfU64KC/nv4GDqf7tUdBuWuVLp72gFqR8ej/jgnVF/PcO9sHpZPGAbVZ3N4sDoTniz5D1a5xnOX2GVKvP8DP15ah4cDk0Bj+UfYbCMAc68jpFQK4IH6If1W/sZYFEPBz8N55nxBCmh2BPGlZazbqgXvDs0mh7AoMi3MxTDJArBVlgTxjYwfG26SdO5yFjn8EmcvMgP3QQNUfxRAqpvfw8PiT3AsIZgKvtiChsdkEDh0C443+UD8g8nQf8SOPHa6UNb9TRwrHssSvt/gWMhR0M75Be6TWuGqzjtye2cOtQ+jWGLwITpMWw6en77Q8O9isGGTNSdcGUszrg1g4Md4rpyqCZIGFtQg/pBmOvbi0ld6sOteIv2cYQKqUvn0rkwKPhQshvZ9sjCydAnkHW1FLRVtzN06DObNH88tPwWpoNSM7Psew41VMpxoPRnOGCEL2ZhDv8gU/LX+EjnVTgYTVXXYsfAoaouegIwxgXzW0gpWz8jn8Mfn4L8OCX60dxS+tFsM9069JIuEaLb6NQOvlTrjsSBxeLBDYigfr3PingYM7dAE7R5Hbkq4CHeDGsDr6Wpyc6mkWcukAGa/ZZWHaaDmsQhKvE/isGW65NpvQRML8zlgyx0SNakk82+ysCp/CnirWPPr342s8XIORzrlYebFnXTZ9iZaJarCF+kSMuqWgP8e9VOgni8c/jCTDC/Ph5l+RqwwopAfBoZSckcOTF0bz6Zy0tDtKoZnDKfB2pP95PLqBj+YvoJLKwqxsT+QVn5dTTJ9D0nS1xLGKs3kzbXTQP5ZMpqP04f2zc2QyxV4Q60Zspp/8xbJQgxuUgV54VBYsM8KDHPf4t6Pn9nuiBDbi1yCNpHhuO/3JRwlUEtuR82hze0kCg48Q/GFQfwypw3ve7WAsYIimdp/RadJ0jjL5hNkvFCDS04p/CBfD+7O+QHPn3fA6WmnQWNjBt9OH1rrtByPHbsV8opsofBFLSeGWUCghhAGix+GDboKvGLEH6zWeUE3t2+jfWVb2HKZPsw7vIPGpqXSeDVjlD2zlu/82c6bx2txtq0WtmoGg9SyH3xygiooDF2HEt1wsOEjqJYGo6T5ahyu+ZH3R87GM21X4NqrdqwImgDC0yZA+Dlp+BN4i4FHQZxYI8QP2wGHXl1nN50AsH28ge7OmAzrljSzwF5b7DJuALusqzCgdx1aTvujfPwbyg1+Rt7mxYjbRUGgehI7j6nC3+4B9O/WBbg+0og+OSvytKIecD/7no+ubgdzDWXod27krodPadqfENTYYUNnyqOxRuo76Wgc4CVCvaAu403zv44HsXxHrO3VJeVd81C/9iaZWgVixZY+KhnaV59xLWZ6qEPDfkHw1PoBefnnuc50Ap0cUQU7W7xwfcNVzJgwnZ48EqcftsJwabca1D1rxrD7w3myyABsTdClH+NrUdbKF87djcLUpIUYfaiUJ9+zAjPPJeA+4R8VxDiQZ9dveuLXR6O6x3J82ncUT7ZHNa0dvDwY4azLbVY/dJJjCuwgSuYm7Hr4FszPKaKNmiEXLZzM4tHPoUZFCgRHHMewudpwY08O5Dq0w7c5H2CNfiSNufuID2lMxdov2iBqpQZfPwlB9fujqBtaCodF9rHLjq2kqVoHp+ab0qJcG7oV9YX0hCaA2bE4SJnZAQZxwbC+dQ7O27CTZNeO5VcvjmBR+DnWOu1Luz8A7HmD5KQgQ9pWSnhPYSZ5a+xiydAAcJIvY8vnh2i1+S1attEa6iqncaoAomd3Fz91eYzLckYQKD7j50uHWNBDFZ+mLMYjqsJgcWwcFRWl01KpRzx7hxX4/5cL6bUTuE8gHt/mSWODkgBWiOrAm2HHWG7JAzy1JYQkrQ7Q2cmipL7xCzdonYTOUdX48eMnile0hGvf3sPhy6PYtVcfAtKtqSp6I9zJEKDTm6rII0MbTZ++4SeeFqDd+omLLwawlVs0eV/rpT8++bjI+BhHaWwB3+vW9MnPE253CEK9qB8cm9QGNtHJ/NbqCC5bNtRFhU1IY9xT/K95CfclHMe2YimwVLzNFyaMo+WutbC1PJIPnFiPK411MOJYLEjUlLK5xnHqDFUA5y/7ULJEHvMcxvNZa3tuqJXkqi/vOKztKHaENrKTsTqfADW463EJ+kM0UfO3M4/LOYALVMvJe8tlPqBURSVRaQBGCtgeqg53R1/kMEvmmH2m/FN1Gp8cnAZnbp6Cq71t4OJSzt5t4bC/Vwm+N8xki9BymJL8itYWn6QxIWfhoM9JiOk4AKcFI1idpkOJpjwMzHFiTd9uttv8HDdGvIaR1dG0tj6Xn8TV05VzVnThexHuWy0Ns8wOQE3MRtg54RaVf2ome/lqaA3+wW7ecjDdZjuaBobw1gRrmNrfwzELl+AYDgS3MZpcsWMuatal04eAVljTM3JIL3vJ96k0KEt70p1l+7DnsToNlGwAmf3D+M7+LywnY8Rfb+rQldeTcfINgh0fJCgs14QlFE5A5lygN6IbuGm8BEwR7sQr4ERZSqt57C8ZcO13R8m/8dxfvYWOOO/DdcnX2EJzEoSdkSB9auGf30dQ9AQdGBEQTlkVb/CP50yg5Yvx4pJe0FSYi2f879B50yvYKzKIm3WN4e+/AzjeIof/iL6jBevfUfu6Wn58+glXL53K79JG4fFfmnQmdQJMHGMNX4pa6PKMsXg5dh6udczhyhozTFlfAFOHm3LZnPlsFicO75tFQUv/L+SX2rDd72SYK70Z/y5LYOG9kSDu2weH5vWyvJsV6Aye4NLwVXCs/grMTV0I017FsMHyU2Tx1p7bDf24QuQ77T6tAtc9zg31+CBaMV2S82p3glfNK1Cv2YT2nkH84Zw+jHJczf31tvC8ZTl8+G82FNX/5NPPG/nUvGrobZrOxVZ7IHV0I00dPht0bCbAf5N6wVVvHN2qamXjxA3gfUuVPwwGUmHWHphmPQus7iSD02MZsKZ6fFr2C98u/EI6//z5gew4Cm0zJq/wSLqlvgPs841xy2VLaJTeAqviF+OyrcnoWViFXuuCsW6xJ/yNnAol8ZqY/2AKNr0bB9HF8lj58h+7Cm5m55tfwXpZMKd96cAcrx4Ulsxj0SAn+jbLAM71mPOe768479NZbFiijoMhq1DNwBl3SjzllRmBwEeG/DJKDRI39MNqV2V4vraUlka70sAhF9a/QSQ7wgB7hRwgRzKRHA9NAr+lNaTjdAjmRelj+qRj8HdaMJtd76UVI+Ig6T9fdj20ie5c1QJ45sRqm36Q1LsiAt21dNomhFX8+2i/mgJLxe3jm1KfeFijHpyFc/C7fDqY/LeUog0mc2V0LXxZfp+WLMggn5mqIHtWDkwmioOR5UZeyC/YnteT0Zhozizo4BmnC9EGTMFYKolC0gJRxWsidEa+xOyejfT2ylJ03bcPzER08Mb6FnJKz6Pq/vMY0mCLwzarg5JZBMvNv4+3Ps3j+MwLZHvhA5weVQNVThtxVaMEz8v3pLouEeidlsMn9/0GyxM7oa6hAWti/blyTD6KrI2Fgd1qXKb4l/tfaYLpYUFe7eKOa70XkPHENfhPTgXLrDy4cdJ5/neziiN95Sn7vCk4eXTihgt1sNrfAWbEbAOF0eLkUPwDRm+whtPd91F3/i8anTgO+udfwuKBajqESrhmryMusbmOy5wn057lNrjjkS/zwFvO958MJfs0MbTdBieIPMI9U0qh8WYr92pZ07FtXuCweBWWf5ZCQTtR8A3bx5cetFPa7cuUAI9oqYEraMlqcnX/BRgQ2MhJAZ9xZ+AEGGW1m45VOMBxsVaY0p5A5ooeHCVWT3c19fC0lg3MLI7Bex1yIOwzicf7uuBfxxDoFlqGqu/k2Egwgybpb6cZaTtpvnUeaQuNALMdo/nfpRK6nWZDuQtO8YM7aXDeOpM3HFLGUZ2j2WCOKc46oABr51yBf+35WGy1F25NyuVNBaK0QdUFHmg/peElc0g6bjJd+jwWNuv+pQqN6/gq+xMHayFeq31Knma7SUxiIpRvkKSXv19y4W9puPDUjioe6sLP5dUs63+DnEsSqdBYHkvPpcOxJ7twdN9tDh4hDGrhW2H0pMXE6AqTRELAfqQTRi2KYY/N9bBi4m9QfZhLU3epw4YLa+DIYw/YKnUPE/tU8dxGQXo26T9eoNLNun7f8H5eGg1uFwD5TiWUnZ6IPrfESfT6dsKTaTRj1Fous1DmSTsRjkiuwunVSuD1PZvXm7zlbZanWMmBKNc2gEQchTjnVQCUXrzDp80TudZAGZI/H2T+CdyfMQ2uDXXQi/MHOeBfKY5zsEClQ8pQ6e3M11RN4ajkX/AYera20G9w3X08fC+t41NNqyB9SCurS/pR41wcJbgOcfuc2dBd/QuqlefS5d/++HTyG7Ltuc7jb66EZcmGvPX0Zsx8YQbbukdx1ocFVDimgPdkG/HBgxf58KA46K9ZxRXHLWnND3f8ZmEOP5xt4dwOfZa9PYX4xxhKst6Pzy51U8UtdVyeWIIfa5dh2qxh8FjXHh8VzOSpoYKc1DkBlyafwQblclzzTo7S1wSwqmIyaxydDAX/2fG8sUjPO0byFDl/at24A4pq55BDdB1nPCoCpWPzOfyAHMSM+sCWnXNIdbIMzFTZB6GPEvhQWiqfCrjHml7DwH9LGqeLysPLKbFs+Hc7RPmKs3Ddesx5MggqDyK4b5Q9utFd1FG9CX1vFMD39Uyun0YU8qsBB0J2sOrbGyy51QcEvthys+lSiD6+hrqsJMD70nNo267H6ct30dcPpRx+9AbOXrAIc5snU//UGnYQE6NCbUnoau7mgdh0Ontehx4emMTiFyyo69tdGrn/HfasrIUujRmQoqsLSds28MQr7qjdU0C3zqrDf5KlFG3RSudeusHBb0qwvPA5PEyXg854Z7y81Jlr3H9wq+Y1eiDQBU01ybilpo8SfG6jg/Zumq42CbZUrOZLagV4JC6XHCbu5EA1cbAffpzG35Nit12plKYljKNn6MN31OZ/ZT8ofkcuf13+iuqunx7y4u80b900zDvyB6qSxpHSG1EIrE8myR/XsbTCl4dpNLFmwgY6PHsXFd2dCdkpoghKrVA8TRecSwT5tMhWdvKZjqtnJEFSliDF1xvDhJ4AuOe0gbaIWQ1pehw0ysTRHPcM9LOzYomre2GC20Ka2jifUwoLKVzSCP5lrubwP6Kw58cxPjQ8hF8E9ePj7nk0rGcm+uaag7i3GjuO2c7r1gnT9S364JEJnL35I8i/GyBrrUy2H23LFY3aEP9YBJuHqfBSEXt6HW0IsxcO44KNleS0qhN+eZRAlvRrOFwsDStTH1KQ+R/Y6faLJMVNIbcsjb52J8CUQGvQi7iDf6KaYZ36SZj4xhcKvhjTsG8CNDxmDBgVy9GN4moAlOHpOfV4dfUCnN7kQ7YbrmLk2w7adb6MfG5YwxjlkVCcYgfVmndR2fMbtUlno92ZbagzkajoiS5N+OwDBVFSoJx+H6eGToHmIntovdyCA8r96P+pn0q3H4adKvv5SU8VbK0ZBVviLnFnQjqda7vPV4e/A/NWA3rxW4OmDCaiudAOXpBtj+KJUmB4fCv33Z7KTxr1sb2wGLbQNdDc2IjT7arpqNx1SjltQG9UNGCSqDEtsZuGj59fhfuBQXTSywBSFARRK7sTLQt96bSROF31tYEJeztIPmcfhY7og41vNMFaYC46DYvjprZeWiTZTFcH3Sh/jxyURW/hsR0ZlFSby/llFrwwTBIldz3Dv42reNt5Td4ZtQjX61hB58x6ODhzIr40NoCXqWfwpr4vCLr1077Yz7DXfzN7zG3HWz/UYDfOIP9JSeRTLE++4ntpnNsq6v0TiZFGufj+mjG6tZ7AX24SkCy9mbK2/UL1pyNohm8Jv606DOu3JsPiFY9wc+FbPigTQFvvEmy7uAXz/e3JUlAM73TewpZgImx3p2EjF3LkwHnMNBKFlwkC8PGmIvbqbMAHT8uYtvzG2n0JKPjoHLSOFIFu81CyfLKXk09Kwb72/+iCszaJ9odzs/Zomh88Aed5HiCfuc85an8H7D4kw3FZorDFayY8/zsXR4zUg0gNRbr7qRNnatzl64f6QK7rBClvUuG/OVqwb1sF5rYHcPvCWXzGJxobbp0CFZ9kLs+PxWC7LB43vIf7pVShImk1fXioTS5x73F39yoOPDNAv6Z2Uv/6dHh5ogRa79vj0ttDa3XsQbvFkVhntIm2+8USWUtSjc5FvpsUTU670mj68feo22IGgjUJoJmug/tn+NG82MX8oDGFQj8cpR5/fV5oJ8QbstXYoVMXlpq9YQibxysVNlFbozisnr6UbfKicd2jTNJc4IT/nn1GzUsqcOxXLek5rqW2mk0wmK4KE/NO4L2iXp75LYKlGzLJvyCSbofLwXK99yQv5QY4ZR5IT1eAm09OwvopSKMs/sPj65zZyjSChl2SgW0Zhyl272fQV1pEtmM9eFvPCty2ox4TNz0lC9sPFFQ/mxVahEBQ2JQlnjnRlHZJXPL4AstGWEPZYhWYNGMfPgypJKGc0yDeZwimz3/j8e2S7DXE7vvSPlFs6kvsGWdMFWKDVLewh0UvzMBW0bHw7t1KStM+SMOaY1ipqhBT5N7CyohmFHtVxmm/lXmO6Slo/SQHR23ewV4nF860/Ux7Jk+kU0Gzoa06GPN9HeBU311O6v+J1/VkYMnceL6zSJt9ErXBYbgNJU8uQc9ge36rrcB50hdgzJhxoFqvCdenaqDBo1Xku+sSTbjxiuIbV0NSlDhGUhsVa2rQ1PgFdFFLFKwsPbnZOBXjhQtZ+qQask8LBDwtx/WDkzmyYz6Vu8tDt6kKZIyIYfGAcxTk78l/E5SoVE6PKiEHYlZugxavWfxbcx6d+08GXqQYUfUBU/DSPgKDNs/4nP9dDosogh/3neBy0gYSWTSFR+iZQ0f/WjyFqShvowxee7tgXMx1UFGoR9eT/3G80xP4cWY9+Sebwo4z3+DQ0wTOrgpA6bYBumGeBee8jeB7pBmlvnVEi0059CJLDgxmTKIONySDb7e59b0Xn9C+iD6r9Njq1h0aeXEXG+2aRjYlRmA43QCSvl3Ecpcz0GQlzi/qHlOEcRZH/ani8LLv8PWUNa1+LgwSO3NYW/U3zqg0ZcVWN/q05wJ8DdlGu3Rn8hXbvVgmcA8XaUmDy8d0/BDiC4kZJbAkvZpc9pxBXf1zfPtkOJ+o64Cky+tBWkwG1s/fhm2LwjlpuTENXyIELr0OfHp2EUvMdiBH30sQb2rEi9NFh/rDdsyoF6E6C2/+ezUELWb1c9u9H9ii/Qj19B3wQgJi2x41OPBLkH+87kOhrnPQddWXNjzo4RXZKuAqmExTAk/Bna7z5P5cGzos3KkmPxW+9bzGvrLX9D7rD3zOnc5JWhqs6vKZMmXUMWvKKBilNBenZsUPvcdsVrsmC51CG/H5SXFe++snB21OxrxyM3irqQ/Xjj8CxRGieKDpHu4peMcOdctZMl0GVv74CmHic3gtNPAqOwN4PX0bfsu34Kr3w3m95m9W+myON7OtKbG6B7rtDWHWfV+c16sA0z2XUJFLK167sARztFZTWJk9ySTehZHCB6BccTXuSVgBlt0iAC4q7FG4CWW9U6irTgu39RRAnMZJll1aQo3TR/HfuY95Xb4NOOp7saPORNQ7bM3LvZWh5PI1HF6HLLkvAG5GhmPCzGGcr4Xgt9eQhaQcqTreD0X8NsHVlpkQYf2GtkwooOk33aBk5h2w/qcO8vtHwuW+LRT6VwnHV5XBkY22KG8YgfNTDkBqoiONeH+EVh+Uh+d9O1nTdQRenXqN3/h84cVl4vj8RA1CRCQan5mG3iq+dHS+JgTPPYZ6J/1INsQK/ox4jjvM5tASXUHwyNpNc2O+0WbFRXitTR5Mtiuh4pJ98POSBl244E4RxfVsapGHL4z7oNbViI4ueMBb2BSCRJaiyRdnWL9wFCavuQnhAxGosOAoyayeTHeanvGKN+vguoYkHNGOp4U2ssz5B7ns0imOEpBhQx0X3ndtN3gJiYKeyzL+IK0Ems3J1NaGbFseiIGin0FMaw0GOsaQ0UArtUQmU3S2ArvPM/k/O/+3U8yHL4posW2YIBrvLUHNLbbwQ3QPlNEoem18ljMfE1qMNABXXU323rCSjky/y+JLW9BXxgL+DnWFD93xtFVhLI6WzaNvAsrwc/9uCJ0lhmWT1tIUw1S6VmnLH7++JYVTP/h7vBV5/WPMyRgH56+2UJqQCDgm5xPbmtLlmwdQevhFEIs7CGlX54O02iGsYFmI3iwAwg/Cwf7RcBp5ZyS7XYik8km6IH3/H5T/LiGt03vJc6UqlDru5v/OLMG6lBi8e6oAlp1cgfImzrTxjTaYOlXBynHvuOObMry66UvvM59Rnp4LS/RU0ownOjh+Yy42bBlLT71aeOfjReBpOgZKnTPw/MIXZBJdg9k3LClc+RWmn34IEc7nMG1PEaxIc4GBPGtoSNnKmiKz8eTBhbAo1xvJvRqEvW3htoI6tjS4wsBTgPwNGtD+3I4bFlfQ5+RBTln4Dcyd5GHOJDs4F+vGorqy8LX4KKTtI4jtq4Wz7yvh110djO2VhaR7UXw+tBqbtzjQtFkpPKdoOc18rQJvNpVw583NHHvqHMatGs/T33+nhrmCsOZPI+Un+fHz5ij2PjQMjKCI4/2y0F9hAifXGYDymF+UnLmDVgbY8JfoZRg9+gpnRI2Dl9tvU1NuDY5viaYaEQESnV5Pq9Xl4UDzLhrcfJNdg7N5easGPHjVxI2jpUD4oSHdrzdBC/MB8MvewXoa0zFrbw7UPv9Bax5owrVn8tDkLACh5zfCldmT+HixIytcdIewKFM07RDCas1saEITKNrjzp2mDsT3LrPndWlyaZ1HZ+9nU13EWh77MY00T5+H7fLjQUu2FJI8orCtUATn6HhD6OBMWPRwKr0za6Xy5dJoL6oIqbk6sGlvOMmFu6GGog6GzpDABVdn4qv6X/BquhwtENBBsRnvYZXr0NyPK8Pr5p4otnYzflW/SHmPc8ExaBo2fF7MY+xPwcT6WK6/NxbS5hdxY7MEhZRV86NFp8Himi6ZTbnITyI+g41RMixrCOND3UKQM88RDr4VZ+XtX2iF7UV69lUAZMVe4F8/TazSzKZL+Z9RN20kJMi0UF2JIcDQDE/rf4UNKzTx4S01mDWhHkqPhfPN5lrsWqYCx91M8V1JPI/82gdibj/o3ucWGGFvQT/+dkHnnGug9J8KBlw2gIXkSWK5/jRcZAw/Lf7ARe+TQcH/EAm+GQ8dR3zQ5Ioab66zhhUTfpLL7wW0aIk6F5x/DcAm9HfTERqe8pMSF3ehXd8ZMvpsBerL/uCTq/XQNaket6+4B37u2nDu6Fy2m+WCqZdcwbGzH+N+mUDpAweec2QPXt+2AUSTV7KJZiK/3JrIZ7xl2cvnExZ3q0BYpy0UusSA5eQHkNsehOK5LyBma8bQvTacsPMFV1kMw+KUBE53VoFH8QK4d5MuVj5qwMn2r2hAYTVfOdkDLy89oRvtAmRw+Tbqh2rDz93tcNO2hSI2TIYvxi00kDgPxb/Nh77vy7HNyIJ78gbYsdIcLB3/QuvDjbAx8DXKn21Bix8Ir0xj+OfMYA5xjae9v8ugZLcCFFVfJjuxaJYRM+XkpsNYk78UVySLYEH0OxrI+QHj7J5y8aUx4K7nRaSrj8AzYMbZnXj8ynl0zj/PGwQBRv4RhPenBHiH7TC4fWss7bjWw69/T6dQsUF8LFXAU6pE0Pn9Ux7pmkEhcvIwqVkGZkz6BPu9F8BC+N+/Oguwf/xisBjfDocXRHJV9Scy8X3OY3vNoLroOWkY7uGmZFfqUr/HV0orydepiedoxuN5tx+8bdxPbtojBpn/qULygC+kmhfxl/lrSS6zDyzs53K+wXL+nbRkqD9r8ZRPNrA7aDKYKR1El2+XsMdbjwf3vCWDWyt59SIVTo9Lgf0V93is5Fg4s7CIu6qfQ3W6MSvjVnpwYzGO+BmGqaZRNL/kMJsK7cEV/xnB65oyqvX3ZRWvCk5JOsg3HCJ49pIGNnMMghUVeXiiLY4lm9TBd9YFXD73AqYK36M5Iz/Tyk+VELImj994OwJvt+RGExfcpisPlb8v06pwZSyur+AyF1NeUfmJzR99Rce0GPBpG49v6/ajUYYElDxAeGNYynMGfaD0wzAsNBYlu2GL0GXaUZReNZXvyc/lCg09OPz2FLZNe44xFcv4TpAQ+o1TA91Ztdz+eganpj/m1MyJGPNKHfpmvIT3jjvA9t1j3Nopj831Dhw7bRzZH7mJBzzsYH3eTsg3Hw1r/t7jpysvMCl/pFablXC3djR5PBxNbWLbMZY20+byEohSHg1Cd1Jo1mV3rJCwo+2LVkCV2k+am7+LNZSc+OPIn9T8+wBtOMaQlOtMX3X1KPLKVXTP9YA1jQWYM3CEHARLeWf2Itox5S58fiYCC3+68QoxEdrbbgy75gZS5b0ETN+rSAvvKnFafy92dKfRl9PjIDKzCotk+mmpgD+tTxiOJ7+8gnKHaBxwFqadVonkH1QDlhkIzZMTaKbRY5j6cwfXV1+CiP0v6Z2KC37XnsGPputScfI+wpnCIPtmBaofUsB9S/t5eNdwcHT0J4VRR/HFh2yQFRegkQ/T8K2OMSRobOLBhI2ktP0pzfz8D1xHL6OVXdo4zGAytxpLgcqn4SCSZA5aa9/TeytDcg6PAYcX/3jb1lwUCnDDSMXlnJVxnr++S+afm2xgr0QPG55wxTVl5+nWhJlo3jqUmS1l8M61jhTen4Qtdush5rgU9Dv4oOfEWMh8upMP7svEL0qOeFl2Ef78exycElzQDnVw7DyG98UmXGJ6G2p2idObJY+hycYNN9mO4zmleew4QR+CVxfRo0UaUNJpCh+8/cgvJpmXDpsPMu9i+GBdMDaMPEBvJOdA1OzjfLdnBBRMHkcNi+/gWDMJSu98AH7pbez13yoYnJHEAa+CYWxBKTXZj4WHVWXUdruZci+IoKTZGvaa9Z71ba5CxJo80il5RPtdw3jKH2H42nuWQ84cw7xXFSzduBozrtbAfIFrXFysinWFl/nL55c47o8IOPQ0DXF+N+dr6KP9hQO8RWc5fA6eT88VzfDDh13UsCuRMjOHw7+Zj9B4eQzEp+iQepYlrrDbRyNdInlC/2SSLDAmsVVRKGumBa+WvCCFaWNBz2QhBS56yuUNU9Gx6RS5TjXDYZiJdyM+0WaBYVCnsxW7Nj6g8BJb1BR1wjtmFiTZNdS9E5Sh8+dmHn/BD7p4DFRLGqHl+34SXJMKdtaCOEVXldy0NqNWvS9ril9j7752YHkhaFy7iH+1T8R94YtgxEsDGHk8gP1HBMGiKxcxZ8MEmjw6BMRahEDr62esUPfjw3p/MOehB44diq5vJ3aBl6Un3NQWxNl9KshLZeHByUJ2efKRs0s34vUzh+nW+lh8EHgBwxRO0pwyG4yPvUCyWQyqS/9A7peryC+DsW6zL29I+QquMhPxVZUROEjq44GRT9FZ2AJik1OgRm0xoK8P7r84guudB9jmexZbJ+5F4R5/3ii6EB+Zm8Lwil+0/ssE0k/KZoO1p+hf427I4GAQ9tEHgQ/DKUpTko09ReDiEgeeJb2E3vzuILl398DA0436dqTiX1cRnFeyEhcus8IxIoIQIyOM6teLufLGMzZUWkj1uzU5a6kK9TWLgo1mOgc5adMqWyPIcLekowc2wmFdA9CalgrzrJpAofUkifcmYPYoI9z/7DWu/DEBFt+bTf06z3nkXx1uWNAHSfCHhJTruGjKeepc0IreK1MhzdoMVEQ8KXNMAomHnUKl0M+8evV8iA3cTP5HqzEy/Qn5dpezrx1AimIYq7xYxmK7g+HlODmKSnLF3NpiDnA5C5cedwK0LoRfk6zghekP/rUpjF02psCK+9Ox/fsTDNMNJtmEvTAE5RipLEE3LhrC9sKHfDZEAN6ndpDlUD81jhjGIdYT8GW0FSj6GCPP2sg1/7TARu8rrEk1xAt5y6BP5BzcmSKPrn357N6rwU19WyD3ZQxduywLdwL2g7ujFuRNK8dRYSdg3hw1nGfmgwGyAeRTrggupa95QZYEbK5QY48v1znH6j5O/3IU/30M4d8vo2FHox49sBdFBaUp8G6kPFjLPYVisUCSS5pJhx9ugKMHf7GtiDjtnjjEsirz6MGFNbA1QB3Wr1WEjKIVYPLlDbcdMkJB9T+06HETnvuWxy+aPajOfjrLtI6DNVOMKb0wGfrjf+LN1+XkJR/OovOBMqqyqJNr+K12A+xYKA3bEv3wWbMMvrv2jPQMXOHLxrPwu/A9altWo5arPo50n8tXN48D56rheKqplS1k94LpBzW0uf2Is3NzuK7Qi5tlY/nz0TKUT5wInrGe8OfRD1JMFqCrO1Lh1mglaBoZD/8G3vK76GQsvzhA/wTUwKR6J20w16HFx8/QrldI5bGHYbyREa2iNDb585FKjhqh2amJIFWkB2+3fieJOH1KOPcYT+2di6+mKtOdUmM+kL2MY4TloTBZEH4vSoAjS9+znfkM8tXMhbprIZBRpYF2JvJoVBjIwoWisLvFBDJsL/PEGTZsO+ULJ2+XxOiw52BxbC57P6qjJoNuMlx1BXZsHwE+q1rZYX0Ut8hMH5r1dPrt+os0l3uh1t8OqopcCXVBL8Be1Br+5fyglYp+3OQtgEZaCvhML5cz3seAasUrCsnqhocXPMDTTgLWrYgEp6w8mL97JY1UyobnJ76AoftkWvs+EccfP4vnh3jaR3MU1HnsxDd+tgDzDfjvlXOgqyqPSx+txIpID7DhOVTVtg7bpazhZ2oQbJt4CSbqOeMunVcQOkeAbz+bDm0/p4JGXT6G1aeji7MofGxdh1Pe/O+bIyt0TVKEC3It1PnjJfpcfo9TBGzg6Zsg/LVvBNz/FQkCnsKoJjCAiXnSrLR9F/atLeBHvVK0VesVSqxdCSMVTMDQaBtWVd+k2jvGKBV/jfWqLKg2+RD0rVoFazMC4ZPYBZrYKAXd6cm47KsV+DSJQdeWt6gcPpr3/d6Cz2/4om71KdpSI88Jb4QgsEwYKmAOO8grY98SfXygoElrwg6AzIhRfP9sOZ8ozKCDksYgPtqbRHrUSbnvLKmP1ASh7GaaukgdZGkocw4+gvJ5LzDdaxKQXSrsOFsN+b8/cb7IQj5Z8Rn9//WzRJ8FeWq/5T26EezTYgFB+u68TFsdaU4Brli3Hi+8TYDP+2fR5TuxvHBWHqcna4BAgQ3U292BOP2pcMvr6JC3T4Zi+VLau6yLv634x8Zz9GiF5kaaPF0PBvb8JbsL5zE+7hhG9tWz2tyJkPDDgmTH+4ODxTcWeTqah0kNg1ixGciPqqHgfiYYBYXCRTsBnty/iccpv6D8ojPseqMcxTMFYfiDmfTqQThHvH1KHUdLOVPciz91T4CkvA10ylsGGp6eI4vlihC6LB7cTqbRBgcd/t7Uju+/64DL4A84cXYqloTnwrqrF6nCTh1MNwZBt+1LfKJwBM+lyPIh7dew6+obUmts4fGTA+CK30Rq+yoK8vWX+F7FDoj8x2Qls4wEBv1J3lIU5452Rr/aU7xiwlKqlxQHi/pQOJNyHLelbGajvHl8fFEFpqercEAd8dunXvh91T4+N5QZImFfeJfaeHxiNJKlff9DEddiOqqliyrCxaSntYI1JZ1o/gkpuJXeQlGz/Fk2ZyeX3vrOVz985r+iOfxs9Eiyu2EDH+Y005VjcqCgIUrnf9nAUp1MjtE7gKo63lQd1Q0dS+tAxreAXu9pZycEcLhTDT03pdhL8DUI5pjSUjVf9p3sCYNa0TisIxZSjXOgKGQiDOetoK9mSHWCT/BuQSi/0/Sg3x8Jd11fyb23PfmahjaHZ0tDcNshEBRfhIbKOth6YgqWzzSFpSJBoKuST6dOPqPdBX/50JfR8FM5F5dbbMXBpmJYPHY9683YiPtj4kgq4zr62nZAw+Em8t8sCzPm/QNF3U4cjF9OzxSV6YkfkPwMXVTcIksHPn6jucdXoEonQ3szQN0Rb1KdI0eWhzaipMJxMP7owNOXDcM+iTXYb3MNEr5rQuTgX9KMPs5KyfNR9NphMtlyAgUtP0FMzXkIGhwGw8M+8oLdRrDafwR+f3eFg5Jmc79zIQZrXuaFb+7wlxsluLxvDgZZW2KnhzF0LPoHJh3nsFJYjQzGG5OLjSXvvdlJg/rv4cb9LsjSf4ZHXtjCTytfWOYbQNmLt3Dmgh+8YIQw29/VhWny41Forh8ce2QNyY9UIaflOC3t+w9kImrhhoEnq0SWcMi3GaTz4jHLfT/Bnd/UQNJdBM6MT8T1Oo5s1eqMA5PM0BfXYmRlA0wX06dbP2NYZd0cwNXqYNT8lmLNojlfr5qFPAvxclc39XAlT1Jy5+vVfohTP/GYUCFwqtfieV9leNoKLWoKvYMaWu70n95X/Hr2POypNEOl5lSs/CgBQop/6InXNIod4YIB9VqoIt8Ei1xng0N7PUwt/ER/z8VBkZAR7GkUQavxFnxUxYvm3v3FEsHGVL/3G/2Nnoue/83DgcUP6Ky1JPxbLkVLysLwZcMguu92gywVCfAs0cfc2xKwf0co3VtuweXWmhAWDKSY9ZHdVjxGhei/XDgYBmoav2i75g/8jc3Y3LCHMXUkhEzIhRarGmz4sAtMcnfBltQ9JH8jDu7Kb4CK6W0Uc2AMeSaMhdrkvbzPah5PtJHCPRc7IeXbeVw//gtHX/4IJSqnoSZ3PHbbjIeZL6xRrms29v/yAIvch2j9dTvt8gon6f55GD3uI7yLj0PJIb1NndOL/tvd4U/masJf4vT+4R++W7yW/QPnUkRqK6LifUrepAtrEq2pf6YiiZ2o4TT3L2C3uYxzhD/jmJWB8FXvCS69nkyzkxVAyt+Dr+WfIrW6FOpUXkxZuaaslF2CqbiN5RVG05y7O2H4lTGg3q4CVWbjyXnya8wSWEYnT1miTEoGX6nspW8y83hgaI15u0bAkgm3eMTkMoxck8JlJrNA9G4WrFQZCyWmf+G29GOeYhIEfUHqMPFyIJgHFvKzMjHe9C6FjR+vwXULnCn99gZwy6rANt+VIHRaByZZvsWISg/8tbgDtvNTbrlcin27fejx3S0gpvabqu6EgQibQ+qLJDqxVZnN7+azePYanrguGFMUHmDo+172fZ6AahgNnWIIdWuKWPFSKvw0G05eO+Tx4iglyOrphYeFe1BpsRK7b4rgq80IQZ8W8ueGOCg7PRmP+UaioNdiXCjxi7LP7cLInAbaQ22omGQLa3K2wYbFetxb8pHrlG9D93xx3rtwCreZW8MVERP+LX0We8eNhq9bUri/uYnTWxaBW0kcftw4HvcLW0FvQi/6SKuB1ZRM3ndwMkiNU+Opx5aCk7EmKFToA4y3RovG/eQWuxxPXAjATs3X+LrKAHbsOwJLn7mDQvYkdjOUZXu1CCqR3Eydg9IQKGKFv32Wg8RyYThW+ZhizK9CWGULHHbtxh0JR5gkFLGkO5YWrm8FjYcX0fmqKXjsbeLmonhor/nBpbIHaOY3d5DXWsXDx6/mr7dUKOHKNNy0QgrMZpbBsildJJ7qwmEVZ2CL2lAOyZSxR5kH3LA5RoPnvkFrozbE5rXQx2/W+NBECeGsAGdttaG/U9SwYm8uTV+4lPTy4+hMvQC0Bqeiz6NvsOCWETw4JUfFY15xsMY2Hti/hxaumIlLLeNokdoIkPsZiIVbQ2GW3l10P9NN8dNm42ibQzC3V4THBubRqbhT5LJNCGxEl8KXr7/xtJcAPaiIw4Mjh3zSbzkaPd3GXap1MPHnEF86jgdd0+c8MF4GmqYF8caxwZBrr0QetUlwpfUYHRtiNseWd3jRWQY6e4TYRH0+71ltRkrHc3nNxn+spnSP//pdwnDzZzBmUxde+WAJDi/jUHtOOW5dJ0KxY2+i4PkxuBpOQrCTCFxXqEA9j21Y/VgD1godp5XR4agTXkFf3/dAeUUjdn9XprqYBbS82hviVX5BfsVQLgycxiIXTzDxWw2mp61AxEKbz/7uAL9Ll0H15QcKsvSD8iEf0ilIonNvpOGL/Dj+92Eauu3rhrkr19LZt8P4/AQ5CK5dRTNfMOz0taIVo0JgmP1VWol74avZN1C54cX1AiPJ3mISXA3VA+9wIbh4Kw8kS6XxyuFKWHdiLf/ZoE3nH5tz3CwdyHmlhL7JAZxdidBX1MPsFwd15tNY8nU4Hfz6ih/PS+BCuwgI1S5n/X+I9t+lwFn5NK90eQpjxgZCSuhr/PY6iSdpf6PRM/ZA54UgfK35DLt3asDOTRmQv0AaZi4+ix4tkfS3cRs3V4ngKvVcSm10wxEflMk73grOrtKkhtpwKDcsAYO//hS1aiwZZ+Ria/tqqrb2oLgTnhTuJQiRfcW4/ZYZpI/KwiKZFjiu2ErlJtegalYpuzlMBpH38/nlaAXI+PyOT3g8xVTBePo7/i/ZuL3HaKFdtPycMRWoL+HGtCks2ygKT7YqQE/Qanh4/yU1f+6jgdz/2D3oDXY4qfD1WwsxfP9ckjWQAu99fnBbciVtStah0kF7bGq0ZaPeLNJfHYmJiTmk+/QrmPSLgKC8JB7PeQLtgQWkUoK8zXmQDScf4wKXg3Bv7x2ojDsC1y/JwYMPN0FN8Ce/NmjjXw6WPDx4C8k+fc6jl8Vig64Vnj88B/0OWMCKvBV0UX8ZlMacgufZaTjV8CIKa52E3CN5rCq7gtSD/vJaHwHY/noKf9w2n4od3sD/o+C8o4F6/zj+GWa2bLJKZrZKVmkaEVmVVSklKQ3tIlKEMopUGkoJX4WiqSFFQ1NCpKUkFE3Kz+//59xznvt87vv9ep1z7xWpkQG9rQRH3KNhz10Z1BRL4syKa+h6QB8eW1jwV7d35LfcjXzeyFFpvxLt99qDTpNLoaSglBa5t+Pq85owc8j1Rap8h56Z8ThGuBWsLLXp4uLRXNEtintiptCnjD/UkqwLlxO3wOOZk+lqwhZWH+aGI0M/8kLnZOieNZ0t79bzgN91XCooAqfvz0PvqnDsdU/jr5p3yT9gGwSX3aDk/WJ0bZoBdS2RhLFLVKHLwhpPSTbjudKeIYbLg4u1r0Bs2HFcc2kNjFqvgPbKR6FoiNdKaydQRpkKiz8XhMkK6/HirM00Z1Ynnl11Dy32jOW2+qNDWWYEmid9YNeMsTSrQJUWfLrHQjuHU/5JJ7LVmgLv9j+HEePfw5y9DiC5TxPK5c/BwepWWCcyHUd6pDMnWlDVFgPwFZ2Dijtkuea8KaQm38UmV3Nu0kFcnvQd52ev5HXvU6nrhjpvyPWhGSOjsUhHEHrr8/DzoAsbXnsLexKrMfyYKseLnIBWhfM0bsQHUh7VjPFCQqDjMAOdbltSZIovz7/zHntKfrGn7UOYNcQS3aOzeFPtLn56WwpUriRi7oxYHjal5//vWNCK8FN86PhPEtH+QcaPr3HTxgbu2y0Cea8lUFHNG7O2fcLE+RHkMtkY27vqaO41JUrEf/xg5X44XqsDCWmhYLBmAgf9l44tKiU0d2AkGmSmYn/zUw6ZGw+nyyaRVoYifLrTy1dGPcQtPTOoUPUVne03w9vrt7LTVyEUmXON1h3bTx5/RoFV5wS2u7CIbzsnwXp5Zr1qYb5S7kstwpco72o47PUIoPFCalDk2YQ+IdW8adh9Lth0jMX1l+EBDufc9OGYba8IrtPdQPK1DLy0t+AWtzskmbwTK6Y9Q2X3j7TE3QZO53RD69wGlraUws9RerBthgy52VbhNQl7NjF2wEafaTgx5zBC/BHSSX+ESanTISxGDTr/i6S0IW6e2VOLu2ObcdXCUdTgI8LPVslQntJslugu4qYlssAFFnDngS+bp3Wgavwy6moTgM/z9WnYVR0ulvsAFy+p4u9JhuAscQBry7rp2ahS+GQaBUvOSpHtbSf6t7EO6h2OsU29F581VIAb1l4wbskW9D6yGZedbsFIq144Ev0Xa49s46+Ty3HGHQ0WmScB71SD6K6qLSs2jeG5c/xoifBMtNXqpeVWJ3Df2CPg1ScCo2aMh5EV+7D7jRF9zzHEgmNA3rUPOXjgAfzSymSPj4GwKd8Z21crg2eWE/0e3YnntkfhPs9aThQfxuP8xeGBohSF2s5nx00hvPaiLJQ2JVG40lOufxbO7edNaFj+Q/gt7Qi5Wa2g/ZfIPKENhNOHg9ybBtYZ8wyqNRvgwtpEnthxm3MPX4P9u4V4xvBd/CJgPm18rgT/jf+Ii8KW0PxrOijrZYNzV+WAfksNS71MhD+aFbxn1z7WeG05xPoMQq8mcGB5Jt9zk0a1VlHq89bCtxN/k8jERVxoPRL92B5yoQSfTNPEjuv/MFRlGJxT16cK6SP0BaeRlfVHuj8pDzSKx4NEynH4YJ0FWzSj8EbMDfqTM4xsGxfwssZGXn0lhYz/iMHNc+MgNeoj6yjKUuhlK4ip1aKqxnDSeh2CYzKFyS7iFiy6tR2tI5XBTFkRk1bPw5Z+O1T/dQK7Gw/SiTEecCDGnDbtnkHmMRfwxpDXyvSbgvrtKnBSsaRUzGSrrAfQ/fYnpd2vBoE1g+wx6wbkbJOFkN03UTdFEv0XLkcZhXq2KFGjyfuXkdZyN7z8rJpLO804Mc8EHiz+S1W7bvONrtm8Zvpl5u1TSLpEE5wWVkH87nJS8C+H2N2C4GOcBUli+7lb7gGOaSoGNT9B7hhStiZjBbBdooBSOS/BRHE8fF/ajbnxa3n5gu9wo/gQxRbJk7PbUoqYrYmWdj7sNLcKDWyN4HPsPmgRvovCN//wXfuFeGtaO/a5TAT3FS+hpf4TLxOfD6teSMIzP2cwO5sNgdO1oHJvKNsfnQLVTb9gVPdEcJp1mAJLv3HZMlOw2NHIchur0V7mKM2cdJ1CVXdi2f50uJ/fBFIxrXBNvJtb81TgjpAJ/St+RFuP3OXv9ufQPbaTu9/1gv9fQX4wNAF5tkYc72AIRXPyIM/rN8gkmcL1Kfdo1ps0zm67AFN+O8KWL9Z0WdaBnQNkQTuqBDJyduHhxGGQ4nQdJlU6kc6BByiW2wPXcz/DT9EWniYtA+lGS3lmiiosOmSIy0eY4cIqQ14qPAHTC6tRdu4SPqZ3jaTjLCB1eBqXe/7DzWXzh/Y0jd91KIBU70o0fbOc3rqHQN+1GTimVwbWqofSHoOJcMjlI5Vr11Br9AQoajzClZ4OmDdMHe5MVWep3fKQ3PCOijdfh3rBesY/20g4PQeSVoxHx4+FNG1gFVwckwQxahrwUrofTk72ximPdKmu8C+kpEjjSfMlcNhvqOPVMsn3zSP+kKIBi0zOYurNDBz22BQc4mJ5Ff3Gjse+JO88iE69wcy75NlvFUDU0l54uS2bnEo+oMSmi7ho+DqoSdclF0VZeNodj2azpEHkgCyMs3pMN77vAye7WTDF6Ti62QahlXoK6av8oZxP38ln+l5eE2MDChvzuHVZGCYLbuAY8U0ctv05vczS5Z3vH2PG5A/4NawXQpMM4Wl9Hr9YGkImKo+46Ko6p2g7oP2H/Xxw6XFePUUCsuPOweSVgrBIR5HmH5DlyHhd/qllDWH7CkFogPHmRFUUv2kJ8t1xPPujNfhteE635Fzpgtg7GBNzg1UshOHRQ2/2PH4Eiy7p0R2hxZRmoAzyYukwaLUSfd99R3XvFuxISobnjXtx/PxUyssKRfemoXOOsgH38Giu24tU6dlH09830cVUecjxCsWkQVGYl/YUB6peQ3yAOByJu4d5DdN4QdphsDudCR6HfOCq8VLUJke4bX6BB7Yfgi2eRtAccJSmq31AaRFXnHrZH557mVDyQCpkR+pThGIFqu/Mw6UuBDdsnTmpXJsG1Q9h3ZNK0Jq4D3aMABjYFkNHmv1wssAXdJLTB9+3+mzXnw5nPZeh4dOltBOy4VdhET7zesxzTg8xf/FlqlUyg9a7x+hWw3qe+kWBzMzPUf84a9K4UQIvOieh5qpsfBR6mYo+jwPjJn3y1T1K7UaLSdvRnBxeSsHtUV0gUP4MP+kewv2f9oCylQEEfbrKT3e+xbfXktBFIhPDdr8mKjjPsocFqSp/L1YO8cfC+5Yw7tJfTDxph6kt2+kbO+BtHAOXr8RD19LrLHF1AJpOOWKb+XhYaiiF4YvCqOXxFny/4iz/+hLBNk2hPNi5GqxK2uhKzifat0wCNq2u5FduZ+Cr0EjoeHabbJV/cIxKABvH/+TtFp3Y5yzKqk1ScGqo96yDH+F1kwrW2jUBfpSu5csLF8DSoGLaZbGHj07pAtFEaTiYoUKjzUv5buo5PPdpGQvYGEF7YTu7bz/OqnYxpK3RynY5otD5KRa/F09inHsPDHf9hxFnZOH6tVV8a/tCPiDdQYL3oim8wxaSJjxB7YQVsM3gEwRtNcXFCz/huV0+kKJni2fyUsml3JjxyQg4EfuYPCLzIWmGAwZ9lORdr57Bwt6H9FHnFcWa64PXdHV6ug5AVlyPGj69w63P5oPK3fGc57EGTXNtoOenLj5ctZJ2Dq7Gv8lK4JC/ibZU34avCjXUszuKDkufxm3S34c89hP8kn+A+z66kfcvQbCXVMUpB/3xok86uy7cgGvvzuTktGFYvP8zK21W4yybfipZqgrik0W5PrAbCwp3kcKW66Rfp0muCqfxUeEABVftg/7S6Zg0tG6HhBwmHs4m/4KPENB8nAZF1uJUzx1YMjBIcbOjhph5B6mdsYLL1xZAt9sR2hTcBgHrF4NY8Cv6NnsxicrVk3DcRB5TeBK+XteA0eG7yV1VlR22LcQx8i3wYM1ceDNyA44ZfwlSLHsxZk4Yu34YCauTPfDv5EW0+skwuOm6kw/Nk8MR4+rwl2UsXbzyha64PSXZVGNQNz/Kxhlncd2WixjYEcN/hnvgC4lmvDmmikRLm1HZUBMDxwOkrI/iR0cO8r7r8ljZKcshdv8o4/FTnLVRlYpDVdDx3zSSqReFhD1m4Fm6le2n9ELV7+VgerURfSZchZMNd7HbphGuaNxjzftjwajxK7f0z6T/1h3HBUP38d6bBBgMGc65n+fh17oCSnhaz4f2I0xSv0Sjt8pjs1UdBK/aQXOWrIS9oxTodo8NR0aP4ZCyYL7dPhzWefzFAk13jBSQYeVfySQs/xbW6wtRXZw3Cjb2gMW6B+Rz3QoKSyaSKyRC3ntBkolCUNF2pgw6B8aV5vhO8ySN9xbFEn1liGlO5CIpJypPl6Qx3l08/RbjiN+V7PewGtacnUZem8/wDpQH3Yh4frZtK0yMWY935rZC0ZhqHqUwBzLmDaKBqzZoHXyKExebQ1BpKa0UGIFBlVNJvSIFzR18UXnkI8pTeQPdIzp4wsId2PlFB9bPQlI7HU4WY02w7NoAj7htj3/nmKD8vCSMsSnGCouF8HyFCHR4m0GvQxSbb3kNHWpDTGp8j85u0yOf0r3QLC1A09f85Bl7jOFv0Xh8fGYfKWzNh6tr9Gjc6PmcICQFdgtCOGvHPy4zeAWp9XrwfuA7xYTPZttZ6mwlNpM/rGwj9cez0KJcnuWP3YbxkxRYCYzAoWcDlTQtYaG8i3zwhxjxVQXaXZvNxv7p/O7AYvxYHsP/bNVgxuAGcNEwgF4zC/S30uUz82bzEyMp2r4liTTHdhDV/cZFDpaQXPoFzVqXkXn9N/4UnkV+M5eQ0ElbnPrZih12pZJNiTZHL9CGvbuU+GbLBjriXgcTjm1mieh4HCM5lc3LvTlmoiE9Sk8FvbqxkFdmQWuH+GOspSrkH2qhuPqLlOLYxUUmDZibe57eb92CV29pg90JES4ULkRn84U8yiAZ/x2s5e0P/2BYrgQLf5mDNxfEwcQOOZjjMwe+jr7PZYOHaLuMPnx4+wtvbLbCiIsT6Y3aOBIQr+efd82gI1WRXINz6GhIGuw/mELh9+xZ4rUV9aRvoZFCPphQ8AEXbDKER7IPOG2bCMx6WsOhC0vJe20+Jry7AvaqAXzL8RUExKfAyOwR4BXlNeSd/8HcSW8o75Mj3tpthsVnlqGSwQhodByg2NSJXPhVFgzXuKOv71PMma2O/rvb+FR0KbaGnwZ4Echnxu2ETad9aMBbDoyC/6Bb814oufyNQ8LNuPEO0NzrqrR4YB09sE7CYb1dWJk/GtrrpfGNmiAEzX1C558kodJWGe44aMKeDTNpv+1CWv/xCBxZIg96Pjug+OJzbrx9C5Jc/sFunRfo8nge7w+1g9oFfdgUdwHLryqDg6UQLR+Upwdn5OlkqS67n+3kpw9aWb/5Fu0QEQX/hcvQoAdgblUQm19wA9l5NyEmfyUn/FfMk/JUcPLUDrJ7mseROXGY0zccHk4RhFUVh6Aix5xsURDO644irZlyfPr8MF7unEV9Vrbo+0EEoiqLIWT/Z5Qcfx/LVkzlGAlrOvsY6dTUZVjXs5rju23IZZcK9NdnMO88BNHiFnxb4hlJ3xpFGp0asPrCeJaRHfKz1VqUcEkIVmS1oe++cWh5vg0EuBkUSr7gsMKR5Hdt0lCWhMEyySm8h2XASVcVxz6ZSdN/zKJ/jkE8dlCGTj3Mh8/DjSmx+T4mtKygOTutoWp0DFlWp/LXz3PgbMNaEDA8R4Gi0dC214EjNZvA2sgdJaVV4IHFQ5y2/T4cU4zigoOTqKAS8fDLv4yv2jDx03SoUtmJveHG8P5LGCW88OJ892SwKljPBV7L8fuvefxnzFjwLHiFpjOKaauzOaxeeJ6zLy2ljddzUbGxjv6KDvm9kjZoNqqBtIYd5d05T7uWS8ETuYfYvOEQFEbV8PvKU9z/ORxl/hbDhvClOM9ogB7vXE1x/eMg0kWYFOyn0Yk1fRx5+yPQFwds3qZNF+kvKjXaYfuKZpg5QgsebExG8aPSsGL0RP77MpOd9uhwnHMtbo5IAJOUZ3Dy5GK261YBt2OttFdrPnh+P4drAtZi2cdyPJmVBqIL7Hj1jxXkoXOSDm3QgqCkfmje/YPtHzngSg8DvtJpDRoH/+JNJSeaOnM9XGifykfdzMBs9mp0dEvB/tIgkHmjjjYfDHBsjxedcx/kDgtRFn7gi/cnWcAkDT88V5pFci86+ajiBMiYYUaB3x5CtL43DwtK4z3D1/OC/QQXHa1R5WgxuYV40o3ftfRzVRovX5SNSwM18bLYDG5PnA61McqwXO4kSM+KxiPPz/O62CxO1ryIuy82ov3yVeTZp0K5L/Wodq4C3NIpxNqj9SSpHIKh6ZP4bPYGqv3RTCvNA3nyohSa9WQk/8uXAAOBOTB8dwrNnheLK9ecwLehb/HX5kfoK5/F+5vP8MOKLlziIgc+yy7xljpZHPFzNC7HKjyZsp17R2yDankZdlqggTuGx6L5a0u4obIWvDrvAMzajgKrV9BXFy/U8y/iJ6M/QNe7Qd6jvZMaYjQgpTwKdy3fSptcpdDG7xdctg+hKW3GfCQ+gp6fuI5F07P5w9vhkDn5D92Rvg4z4veRnPcWsDupDPNf/octPZO44tUhaj+6H5QvKMGXBcHcMEGCi+LsQCh8LPatC8FbkVP5is5BvqSZDV3Dc2nOe4ClAq/Yep4JhjmH4dMN9SyfdpKixmeRhM6TITa9Qwus8uBOpDUEuw7g1JrJ6PX6DPTlDtLzDd6MSVo4oBnM0s1xHK5ow6+WKMMr5T+8/pMiZV6UxpKS2yykVs6SpzK4VmQR3Hg3E+T1FGCmuwboT7qC80SIhM94QrqyC204ocC0RI4GK7tAxHk06b5ZwC0FQ9eb6gFeWZsx3GkzBwkE4Lq62bRlsIqt3VzBZIcV1a89wO1CgjBbSAXzl3vyD50evmQMsCr9LfYmR/GVhb/Y7KAWtX24wyuTxkBc/jLuvvSV799RQ9EVRhToNokVHL9QqJIsZIRf5y1Of1nwhw2Ijx5yq9DNvO3rFA6K6IBY1Tj+/n42nTX4AaaTWqHNLY5+OIyDZbVbUP3DSejZ/Q1jvLtgX+opWJ+Tw5lPZmPT3kzql2ihhKkmIF4zjY8d/o+vm3qS6joHNlnmQe5SvqB3yRRkepRRcsYJPJZhDVbCU3j1nCtcUB0JNcesIT3OizaO2kprllZiXrM/h22Ro/BwgLZFemQe/5OcXxlDU6sVeoXdgrfjwsh6eTS9G74Y37bWwaOvNqB9zwc66oy46Yk3HnqUxW+XXQGrsOV4+/k7KHbQJrG3k7BrnQEYS4VxbrEfbY+cAKX9D2jwvAVcEorAm76jKMouCWfOfYQlAbKgHhqJAe75ZHbEnHYeGeJWk5f4n58juwpV4qQfE/i+QzpId2lA3fmtLK5sgNGmQlxYas6OvcL87L8FKHfuA0dJd+HZo6W0Z5E27LfPpMBZCThu5H5KizGD9Q7OCPOn8QvVJXC53Jltd65i80sCUOh5FhpiO/Bv3no+ZZ+DIlFW9HDeNnz7sm2I3ZpYoE2X9wYKQX3UXJjcswVHrtTHChNfFDGWxUNHr8OjCiVwPZDJ+RcTscl8FLzYEcQnMptZe6oiLTHM5wuNY0luljm/SF9C5xPm0dLLNSQRMx72Ot/gAy0DVO70Hf75MM+r06BWcsN7wXOx/cBBuE9PydNPB945EByKsedYew8u3baE53wS4Ptvw6D/mir59X7mc+0byXqmCSj1d1HttxEo/3ENT4wfpDDHX7gtWwEEw4Nw/bkMVLwfRvcmisGXsW7o+XMUKh9htP7vKGz5fRIigkZAXrYW9n2WRjNnHboP+nBu70WeOVmSFqZVQfFcK1xak8SOy/pJ79cBbNEXgzd8hRtClcHTtBPGeJvhcH8psg+Uos+Tc+n+psNYIhFE1VsmwxiT7xAtpAER+3RglYwn2X+Pw8SiA7zVqgn9IyIoOdMBaw3SuFVUmapWWYJ/nydIZ57ie2mO4GMax2EHbvHB/17Spn2b2AYSOE7aA4QidEAyKJkblUVg91Yj8r/igN2eZ3j5f+Nwa5kvhm3MAPlWS9ITVgG99CJ6I7+Qm+5WsMTGh3Si4wa8ezuaftZvgIQvPghlbViTogFB995QRXIh/e6NBekLOjDDIICmuayn8PdPaFp1Mq5a843WvDQBh5Kb7LxHBp/E1+Ll3Zm8RCwagrOaIHq3JyxNC+C3zxXJq2ckfHA7hUH7N1JtrSP+/T0O8qpvY0ZmBuZP/ElbFY5yTKQVxp4eBxtG6ECpoiZqeShwY98Y0o47To27zFjrigQoHT+MflFlGPbQFMz8QylMQJPk2g9jwOmzcC9DmawN39F0bRHYkb+Nds25TLxBDOoX3ufopcjRNiW41f8AekePp/z/duLSb9UQZ1jHlRfH4j0daTj+N4s/FfezxJ6VbL1lNOblZHDexkbefPwxe30VgPwxAXjrBcGsd92UvWkjbOnaAQ8TilDyfBXtnH8NPgzfiKrlUXTs92S2LROCk78TyFpNlSelngXbk/Is8Kia0iRkSL3Dn+R9uzj/wxiO9DCCzBghfD5jMc6d8JVv1Y3jL9hHIw8n0WlNCwrN0wUj/xA6NFICVj98zC5LzMilrwTeP9tBFD8FPT3b8LWoO6p61kOzgy38/5sk+7kWJBTexHfeCXFJyQnMsv1F26eIQPGpSaD+MxVyrfPh+YA0jJFTZvFOAWycL8MXH1/E0d6a/Esmi+/9lCeX4K8gIOaMroEqcOBqF2/Ii4e8azMxeDfC/o1nWeH0Guyu2AFuJYchdVU4/KsXginfU2Gy3ir+s14UhSrWYXR4GAU+34UJ38+Cy5TVfDheAkPujAPpKyWYerIYk5amw2DWJaoq+Yhb/LS4+BNDZ14x95bdI1UvJXg4vJDKj4li5o/NNL3rAenmWmBxmxilX+yko7liuC9bBxIXGcEyEyGas9QV44UCSeDMW/r6qZdXuC1ik3X38VrHQjL64wf7xuqC7hMFnDrKFje9X4dLA/yx9tgivOHjwd8loniGVAX4WlVRYgRBcJEWpUtZYJtjFZU9/cDi2ceoHlpJevQkqnvbReOPyWHnbi24PvcdCMU95AJtU5yd8Yv3D+bTSMcmmCoqC40qO0F7Vwb8fSkO9nXL+GhaFn1bVkbJr7eTfPp9Wiefy3HeyTRhaJ295mma/9wAMp/thBVeF9Dh2Tl8lHSbS+9vZ9/kciaTRxiclYD+nYfxaLIMeMr5g31nA7qa3sD9Q515LJjZPdoTYv9uB9vDleS0vo9qdBH+aB3HcRFKYD/BniT2GFLZhxV4WVKG5YLF+ZP6AuwqO8t6ibpwKuEg9D8fB9kKSA++jEX5Sy5YK5kEGkJKPH77Xvp64TNlH1IHry3JaBEyyMVuu/mPrC7uvxPPAhuLST+uiL6p2uCbBX+p00MH5jdvBJ+cIpSPWkit0bF8/Nsx6DruBPuU7+KVnCwqi/Cj2CUEpdf8qH9MGi03qQad3W2YvcMSJ7w5xTPcjqKX5mS82vgXbgrJwlWRXzzD6AK2fjrOjkmdYPSrmXM11TB6ux1E/7NHrewiGlGhD84CT+lojAbBhGi0/RxO43+68x/D01x0YjN9fPmbn6XI0/kaA2g76ojb2xSpxr2V7+17Rp1PRkGb6HWQNFkEc4yu87qnRtCXoQ45gjrsFfgDPX+l4RihcHCqC+XZDSp4fb4+n+mPI8WDv0DC2RDyuxwpevhYeJRDkFl/FRPXZGLuV0/6MuSxQd9j0Da0BHJMrODLOj1O3jeRVyU/prT65bS3ZCRtOjCaan6OovmCsVBtEoFNLA47vffQ3EdXMXT9IzrXcpwVJM7BuNT5YCdpBFei1mHMt5v4oloJbs6y5dZjjzkmeBZ8nalJWiuksVVZlKuKB3lRZz/sb/sBMT3qUNpdgCmZAXig+QIM7BVj/DUVZb9bw63DFfzY+h+Mzp9B3jt0YUZPEsyOCmN4Px+9g2w5oHUSP9HVwDN/ZXjkIjuKismEikgleLNViNcuD+Aj8mJsuWAVKLydRDM6+vHu7mOQsn0nCrl8w6nLRkDE1hhKLtYAs5sDcPKtMRtumApeQl00p7AAFNM20rfFn0nEzw7SHKbSvEX7QDvCApy+q1BlXzrJhkzDPX/deWRjIdmRESsPcd1loxy6tPAnHNd7i/suv4Kc7Zuw2/ESbLIW4Vurr/OZWwuo8oM05LVU0Fb5y5T+uQcXfzbn89IeFFd6m0ZOsMW6kz6ce+gkZOsTVKAI32h3AhWhXQAzNVC5xxsGzVLhkFQAjJEN5ISDJeyhpwMxsZPpaukvvjg0tA97c9licSvMDQsAxeI1EJUrgQaF0vxawhjW7TpOE3ds4kLh+eRf/YjFpqjAvq/H2N9xEZ74mgYp66VAP1cdQvv+wvFnu/h1qBjNyI7G417W0CG9CKh7PRoWroEX1kPQGSkFEzxSQfuzH700WY0KsZd5RWAsx9x04K9q6rDi8SUSGSkKqm/UICxjMY1785bz13vxn+CjUJK+GNSljEA/+hG9DZDn273JqJs6Fg6r5OK+NzI4OcCI1qz5DnnpNWS7/i0fi+iif//dhBlv//Hsq1ZQMXwRmPePgLC5SyjL4y59XeOIdxNGw/bdAeQ21ZElld1hrbMoxL/Sgs8hG2H1glwuWuDCxbf+gtK/L/yRL5OvlAXoKE/hHY9HQtT1J2TQUECbA57wMp83uPzMZd5xsBdeV1aCy/exqLrfnxO/WMHInnto7q4Ep7flcMpQEG9xa0EnvXPUKLMVVvnYQV32W/JuV4FfXU18RbyEBhZoAa7aCd/+hdC9Syo0+68gDjT0UbzhQ0jergHtxU543UIMJua+wKS6ZpSSswVtlzg6c+oIX3znDdtzEfNrzcDkTQWfPHGPM+xiad5zV943rByniU3AEe3CdEXMF6VW3aHDJsPAZ/4aXlzThPUfdPD41Hxoei0Bb0X96OR8OzwpupRKpxyhrdP0wNQuldLqEIWWxOAIK0Uu1EzjIl9xLLm2HP1+K/Dr88EsFK0HIeP1OMNkMv1XeYOFz4XAhRHToOTJlCHeMiTdzedJOSEVuxfLgY1IP7e2xOP0Sg2aefw/6Am7g6KGl9G95xPYCuqiwyQbbJsuDfKCBXzWKQvrx92E1qxSaNWoJpWds3nucVtMl21HtYoyerRJDd5lrKLgiFd8/9J4WHc+E2uUpvLMm7H0b2iPai91sO+GK67YOMSJuXW8/0cM1L28B2ulx8KflEQe0dCExu3P4YhhG4oGO3HxcWkYdO3HsyPjKEehjkML+0nW8CaxdCqJH62lM69UsCDpDyvnSEHlywxSGnaDvsx5CFMkLnLQ3jJ89DMGvR1q8GToDD64cx9FyRnAVjcR/Nl+gYLkhnzc1wIrhm+HU/sj0cnnKRisjMA3FbFwyUgZJo+8j/J3w3i95xZ488Kb5Ca7cvFGZbzqW0N7n87ilmZBzj1hC88yXGB8jziE2j0F7cA67FothbI5qtTW5YfN8vIwuN6GVibbgPcRG5Qe/5bjhcbzjwnV1K7/kRUqEZqnScDwlvU8MDmQJTaIQmvZCX57djaO6H8Ozqtk6WrgNth9exdaVwiScddh2D5diObdmAAu73LIt3gukm49K+5pxRNSWWB9sxjL7ILQmYa49uwafPVeEIZKEp0d07HB+T+e4NrBbYdSwK1dhZ5NbQS/1Do87fEKK1wZjt00ZvkFDEn69+j+Li8S0h9O+0Nkef7eIKY8R467v5UtrfTBfocAfdbw4yKVleSzSg1eBI6gmtSpdPpvG/398g3hZCI+btCEiCVnQEnpJDoPWOB08fM0Ws6Brt1Vo3PtZ6HykztZOdbCP2NrmGW5mrMGHejABH9UbM/Ep80h6Hs2jjz6xWCKwCSeeecAD7rowgXTL6ji9o4FH12F206HacYrJ/D0n0LsqkVexgf4qPt2lNfVh1GP1VAt+xqNaz0BL4rsOEhYAstWe/Cf1IMcu7wQZ8zxRY2vQ5H84BNWjkiBljUV+PrOKTg5ZhyIC6qhjPlnWhByCG6JFPOLFbbweIkQ2S17RNl+uzh9XSSGNO+A9U7HsFRtDvjP6cXCbeGY/1sCzMsK+GSBOee32+Jr9MDsy6l0Q2cMKykr4oD7Osx5WUopfVJgn/mRW3o16fXtOO4sPDLkL2741f8p+Thpc/wmTVqYsoauz1AAXtoIOjetoT3TBI8uv0UH3k4l88Mz4e6Mcir5by86Ja1FZXkLyFAbQ+MCh0HV8RgWmHmNnoVY4I/fJVR+aDihshv9GpxDh7vswfzyEjKs30CQFoDjb82nDy7j0T81iYO/LON1hpt4bPJqMhMZ4qsmDfbT0ISN8wuoMO0mrNm5howtLcld2pRXv0oCgnlkKaoDS/qBo+wlwOznITry+glZvdrON0IHECIbIVS8g39k7eDyyUZQ0pdFK4Y/oDcGr6hHcy0/EJgKh1z7KGrOJnoRMAnc8nfCgSIZWDHzENsUunIVDGeR7mFYNtQn5dP3okvvX8iW/Mheiqq8RGcsjL97GO5d6KWcaCEKrvzICWERVOlzlc0SHUhETA4O+h0lOf+RcHFnDp0QXIZbKkR4S5gnmx1ood9ZbbBgbwJo3QyDymfmOPhZGgTNb4FDaiOn23jCgVhjirg8ly96DYCz8BX45qZG874t5GliZpCVkQ28mEF1cTC6K77nff/+sFvQCX5oIk5fus3Yuvg0bjqgDjYV4/jISEt0P/YFzANNYPaycDAS2Eq9N6VJwCKPS7UfQLapKVgunYreEuV057sSxYx4ikcbLLhW+z5YpU2B98vH48pHgah+fgIsljSFgsk7yaRuDmw7O5Nc53zBFTH3QcB/H7k+ncdC1cWUeEMJrl4ppNnl9ignqIftoaVkPaUDLB47w/Ga8zRnxEGY/N0NN1RPgC+/2/Dx1hYYtamcVq3Po4LblxBd6mjmg3VcnzwMn7cZ0qh8YzDI8+Dka3vYK7uIDfVbeeaoZP447S1i0iT206nh4ZdHgEoaw890KXqbX0xBMWXgrHuXfPISeFHwPtC9rwsiIv+wW8MTBkarw87NvXj6myjH5qykw6ojqEB1De4dWMeFV5Rp2MS9vNDp4v//sQG3E7uptauVI52aWPuEEJxfvZZyTCZib6w3Xhdz4cLWTSQSYQom9d/w3etL5GoUgq9VPqL07lSyMXLk8wkWnOEzl9p110BAmRkcEJ7GcxL9wM//Dr75FsDPG+bCo6hJ3HTNBAs69dn0lSfE2ytDTa8w/5kZwnoDe8FhySTwG+kIwo4GZDM6hn8Ir+Z1W2woJ94A9uan4yu9LhSeaEPDlk5Ct5NIVQfHk82ZS5hUNY1OmAKs7hkJr2VC4IzvR96i48hTllzCLgkrntv9Gh4UHATbxgZWFHHmiBfKUJY1dGYJ6RwZuBq+fRRGXaMpYLdPihcmneDYSeWkIihMF2+IQtvOAr71Q5+XpdwGge2XueXOYuhMK6Ez6d+oJa2Ur1k5ccjL4SC8zwYbTMahQF0I/bdqPzTMLsZEmz0wNegou5sfpT3ef0lqvQQM+5EDtk/SqPvuAdBSsSaNsD44HFQNx40rWH1LBCzItaDN1eKQ5jGCxL0L8cnrIpz66w0XWwWz+js70nykSiMvT8EfIxby/edKkNnyEV5/O8aFs3w5t0SA/n0tp7vyoSAWIIZ2DRfwyZVh/ERQHwbDn3AOjQD1uzNBeKkVCQZo810XZY7W8OXHI+7xRruLtHylLXSeGQ/yAZtBNycGOt4ATUlNptEF6SyO6TTy4wrsrllLQpJScNZqCrUk+/NiGo9KmSfoUOIgGcy4x1wxjsZoutDGfyVkvlkeUldVkG7gWThYUw5bFUdSi/xLeJ6XQqvOKkPdDyc+hdK8dqkDTLKYBS8i78K+00s5QOkzTXSxhagHmWh+exbqllii1/Ms+G0pAeEa77mjTRJmVFzgxLM5KJ6cxfHBhTD3mjgv0byBTfsFqfawEphvf0tR50x4dHg8pHj6wGpBRbaZu4ytPh6g/Zr+/NxClQMPGkHYtxQyjbUhsWVv6FfAOGp/OR1CQpbz9JQUXNWTw5M9Oqj6iyaEb22H6NNXwLh1Pl/+lsUaldPw/PaNFFxcys7uVjhqPiEvFoSWkA485RZK0Vry7J03C0RS/dHk8gdcNGcqy1aJ0n879/J6DWOYvnE/ly7rh/HnPrJruCrojZqANQuF+FFwF+zc+wY0CozYuwbhzIGZ1NjzhcUWe9KK4EFojFuF+2cmQ9uXWdStIU3ftCVwhZMeHCpUo80rRdj45yna5Tmeg0uDwaHgHnntSaT5OJPNlxjh9z5dEAixY/tAP0o6LQXBshXkfamWzs5+wA0jLtPz+D7q/0M03GEUfNBQh+8ThuEFw3iMELwKlxfPg7ABMTAPukF3inzp4NIaTn0nC+7lwPrOIpSgJ4Pvfzdj3JIoFFwQCWfsZ/GbM9ZoNKMRbn2Tgfrmmfg75ik17fOl7COC+CL/PTyarwICReJcNFDC15+XoniEOuz66cPBOhGsPb2IBWASm3Qe5Xq9bry8dgONK76AZ5al0IF3DiB5UQuXVW6n3jRZtrSvolv2olDi3oA/R07h5+GV9PzNDxZx04P9kbKolvuTjDdeoTf/ZWIDKZLfgefw4qIUJO4wIMExcfArgeBrRxd/7TTjkynbAMqyqWbUe1JsWgWvx0+nd90jWfJAML2fpg4dlpLYV/wPUzKMecGic6g/YRcP2Jni20FbCn/ZwRvXXaV+KRGI1b0Nwz2FseFaI0WonICCVTp4KjEa1h7/iEpxp+DFcRs4dEUMzskj9R7ZgP0SBXDu6wvsd7eHgk2K/OpMLK//I0Q7P5ewz2V7MChA+jL+Om2aqAatN+ZzWshDDFaoYl8JX7wzzAzDYmtZOEEKbDs3s+qDQF6o7YAzD1mys8EZOB5sjC4qjfx82jf+3XaNn5vqw+zaEE60zUXxyLuk4dSDPc3G8Asuge99U/zQOgZ3GsnCtB0KUDQ/miY/iwPxtFBa0CiMGQtX0ZQpr6BuRREME91Kd3bb4TgpBaAxC8k7Ox2f5TdDxWczPHDhNc4V3Ea1gQlwXHASbdbZhcH35WBy0j54W/UHtn8uIEHnl9BQpILntVWxZe0/etj2Bjtl3sHrWlswHJYK3uMDSPqgIsq07KOa/L3orBUHZpKyIPvcEFXPTEMtTxsY85VoQUoV9NSvhZYVmXRl+F3QOxrGG8fLYfWSGxjjaAMZ+8RAdMlkWAeuIDP4mK3uv0TxjTvoX9UumLp/DfdITEG/Pzuxy84aouglPSwfRezcBPr5aRxkEQFBkXs43aMCVS/EA4fWYe50LSjLy4YFH7JAfMseniTby4ojgiEgSx+uy/8EMaPNVGZ8FV45GcPTC714pl4et57ai5Xjy+iZag5XTetB3yEWa+rKgIPCgfzioAAEHTqMzzal8Tfl7Zh8J4AW71Wgif8KoEFNhVbsGYS7YTGMj+Vgz/pq3C9mBxwui7J9hfxwpymfn7WfPgnbkq6TA19KdcJHkuJQfbKYN72wJIs5mZSvshYkXiDVfMxn+Z+78LCyP2qPcaEkfXPYsikH7oX48aB+BjoNWKPipS+U9+cMrDB+gYESZTBjmj0cXj0Bjo3ewbG+hexktQeCRTvwQ0kRS7w5BjExSALnWnj4nh5+8c8CUqQG0Ee2AaSUv3HpSnmMXZmP9TZ9UGgWgWkb1LmxNgx8XMbCl51z+dOzSF5om0+6306TwWodvLbDFha9soI9BW8gxMAN7jhYw4BoNShdXwMLRg+D261zWO1aEEhOPELSO5aTqv53WFzhwk+viYHQr9dk5nqU1WK2UNfUm5Byfj2tDS3gHZk/0V//Dqx79RCqZ5vAjM5FvMBwORUIxkDcrga8XrgSPp+rhfywRjimYEn5hr95yRkx2PUlmiNTVxK+s8cDddZc+EEeM8f44RvjPfTt1CzQC/sDkYu1wazqLM9SyuakkgTa8KKIzPIGIE9/G4XJlsH6OTnwvEeFBsZLQ32KObq1+qJMdj/Mv22Cq/UOkfSiAT6/qIX23f6HuSfnw+EFwhCsugKeO37C6f5G9EU9BaoHL+GPuoVg7biRZad9x5W73vO3blloNZ4KGaJF3Fo7mvLv1HFE3gkUlPPAjdfSoa/pKx8yOQbxSxWhw0KfrUMCufmiMOi+TeBZAsl0K9gCPsVfp0PBEfjttCVEV46F5ZbhIHNnOp9BNfRPruHTud/o5bvzaFiRBPUh5ZR7QIVuL54AzUqPuHXKBfz19gDLtJnzm0xZnOD5hVxTi2icRxdkdOZRcpspnMqvglT/xfzKfA3ecA4iFyUEfvWX6lLEyKP8EsqJmvDIOAFwHtlIc/47DMf2ipGW+Uuwnf8ZVDCHJk3OplPL18DXLG3+z10XNMWeQ7bKKj6xPg2+P91J045Uwk25PHTV1Sa3mY3os2kn7NxuAwl2ujwh9Dv9Vf1H6pXe0KwvStcO2WLz4wxQidgBsoedqCfQDJZFLqXwZf00fW8T9VUW8q++H6T26BLNOxWOpyqW868tv3DfcC34dLUFg2ZK0PAjs+mBTR6Hb6iguVaH4LNvOv9+5s6p227Co62mMDjZnFJOreeyBb18+UYnnk6chd3K+zDtbwMdUHXB1aLZuDPcCkzDm3DZfUFSr6nghwfLIHJgLR8uHwc9Jy7xiuNKFK5fw5JhlmD8YgPne3+kiVuaSF5qNGj8OYEjJ9pCbFUofUx1pqx4ezjlYgVCMT+gcZYq3VdtJx3rYHAxGwNl7yNJpnEyXhUXpybHN/C60gIKjumhxbcU1K9YTcO+vmftrHpYlHGCxipfRXXdJ7hNzp1TNCRA70EOftYWxREu1WRFTE/XFUKGbjfXhkjz7dUJ1PfvFhjXS8H5wnK8ueMCBV0qhZt6Y6DhmhU+8nSHM+fusevJS7S7VQpjV2tAvOVTiOithfZLX6HmjP2QGv/jdbeGut1+FJkc+oSpknuoeLkMmJabo7zEd3q4pYFqfYKhvzaZfJYuxtxqZ/ihlwgd2jmwpcoGAlbGQM7lGDCdFkX1ft/hfXkLfep7wQvsftKcQIYrDY58LlQVrgwmYbMFkpP4MDwsN5k+xByitf7iMPGMCwbCWehKc4WGveZg6quLsemZuPzXdJ56XoWf3BGBfClRevX8NkbXi8KazQOUPtYQNBz7+H6vJfOf0XR+lR5GPhlDZa2uVOohC/N3RFLe2Ju4ZakeaB+vwXU2L8FO5zRdPKnE50QG0HI9UYr5PJTM1sBrEi9g4w0F0K1uQAHd1zi1poR6/q6lxPeaVNp3AmQN5hH/joT8lCK8tsgCvGb30Lyh84nNdyfP8g8QsSkOdHs/06uIG1TLDXB1hShZNknC4pHzMDlpH818dAfDZaNwuYg161V484a4brZ1NMQE6OGvfgif5o3mGEMbag83o07LsaxyMhpWPotmqcXqqJJVDucjt4Ps9nFgoTqPulM3MD15gxsT2+i+eR/t/mDCFoWz4ULcTj6lo8xrmibA9kRB/E+3D0L1TKCh6h1XFkyCYce66NfzDTxT9yzL32oFy2RLcMzzRPdr9XzeaB09OaMNxxNDqUlmEpQZzGDD6ea8dG0orfrqAE4HXuHcVRPw4NZqmlg9Ea7oANtHW9CuTln4YGSIF8TukEe/DvxZ+YZGHvlCFgusaHtSGLz4nA7huhkQ+E0Nb9ie4vrZklD9wgr+/TQg44hkMtzPIKmxitM0j4KOoB04j3Ii2SXrwUXhIH55Nnyoj27SjLEH8Oa20bwuQgPG9atgp6IPbn25gErlarm23Z3k1jnAZgugjqO78bbjKxq5qg70VvylwIhYvmi6gjZJjKHUBTY8LEIfvi0qwaInsez33J1WNAihlsV0urBWivbEurK7STQInzDjgH1aEDJ1Fq+vmQpvs6+SVF8zC88kLv9lij+/OUHYCAP4u1MTfLI1wXOHL26r3kOGA+exPdaXLV6PxQ/vZ/CcKa/x6EMrjpD6jUFSVvChvZPWb0sgmxuSMK5dGe1bXdi55AnmS+bDAxdF+K8/kqZfHQfCt13h0I/ZVJNahn0fE3j4zv/I1cYTT3+IwEVHjvOB2yl0QlUe7h/7hUXPbMlb+AWYaBbQ5E8/MDjeE97fk2TRy1Nov8ZI8rAVAmnxCn6V8RqvCNvwsRsVKLD4M14Nn8AmCzdwyGgfshO2x2UeBrD7WgN8efGEN/+cwmUHnLC0NJDbg5LhYpU878C33HZkGMRNF4EPUnkoXvAa5tw7CKv+BdIj8ddctI3Y0HANiW8+T2cF53FwrTBEjyogxwf/4TzdbehWI49bIs5C+zI33Fy7Ce66WfM0m5soGqIDa18t5tn+l+B3SRz5vW6gCvFN7P/mO5r8uUjj9TWJlKNo0w1TGOgIgPk6gVwRvIHHGPpBVfxa2O7eQOrdRzlzhD0Vhp0mvfoJcGXrNnzftJa2vniAf9Ue0AjVP1hk9x/Of54EEs0/eOPsQnY0UoOs1kHw6tdjlaXf6PxUZ5wfuwCFbF6TwIfVsF7Rj9XizNFOfgI8XnoZ1s635ULDP9jSvBhWTP1KILAOE7pyyNllNo1IFEONyQxrbq+jLyTHz2wqME1wKk1KiuRiuw1wZ7ICStZs40vVI2H4LFlYouHNj9yO8/Wr4RjiW4Z43oqbvVRhR9t1iupQ4cy4SgpIYpD7KswTLlZy26YjOH+xGlsvdEIDz0xerneTpPbMhdebp/PzL2owyVAMHxe1w4+tm9FCwYSu3nhL2lke0L4vnfSfzKBjl6eghL0BCNv9Bd+P/ei19jRt6qzCnuGP2bLGBI86ZqLCQ8STFxbh5dUSYGToSjsb9XDWil+c8TIA2rwi8dnYpbA5eQL/V6yMYt0zwcfIHv6MkqJ/wuN5Y9Up2KP0HbfcjoLhR99hjoEWvTxlAir2C/j8FGUw3JoHNzVLuCR3AsukiGBoqx5JfHmMIgde0UY1Wb4ashE6xEVAVHEdOSyazaa5QeBRcZZMx2ZjQNI4yn7+m/esNOUbjrk4T1IT7nAL7zZ5DOxlg1VH/8Ds7efg6FomjeQVZHB3M34IcOF1g8Zw45siKJfU8ayqNrqa+R6vJMtwr1Y47P5ZBvFVS2GsdxbZBw0Hq7ZMVC7fCGKysXDHeCFYVswjpdcG2P30P9TyGoD+ZgEMHGsMLZYII070gcyOJ+TxUoXilqRybtAT6iqei2tuitDDgbP8MtIMDBqFMDpShUo9n8CPSndUi8ojrzUf0U7IDT1iC2DO4Gy2XicDI0UM6bZyN88VvI4n65twfudMbj0iiq3XI8HjYBVet7sNWgcdYPiIeBz83I+lfpEcP8eUVHb3cdDDLB43Yjd66dyHA1NrIKPMAvSsK0nmYQCriQ5Dm28Z3PBOnv1EajizVx9TRV358NJfsOq1DHg9robYSdo82TIczbYep3SHUXzoygbe8MCRjR5fpPuu61BGleFe51qOnrEXLccFgtiyYK5aeR4veqTwjE0nMezoLUr6EYVn7HVA7vxRrLrQQV2nt4CwuRYV2YzB3nRTdF+dDApVDzCxQIM664fy+aYeBNeepB1Lcnig5hAHiPsTvGiiB/XulK80kbZXP8MTE5XBbMMr6AxPwFelK7F6jiYsNzlNhz4ugYU6kbRp91F4NeEpxYSNArM5ddij/AFTbw7AjbjT/IzG0j+bPJS1Pk4Jh45w6+LTdOaBAVhPSKObqYXwWaKcp19LYdGLAnjTyYmSrm+ArqlanBsbCYMRUiDhPBOPSA7NyecIcJUVZ80UYYbHd0H8212+l1hLTr3RJDRGDrQ+ueCNhh5e1xRKmcMGcI3QPDj8VYjbjueT1D8l2CEoCd2OKjDCsh0fFl7Bwm1X6GFMDKzx8IXfBi3wqHgzL9jzFLPmh8FNlzGgeF+dOy6r4ONHmhRMlZzduoQT/r6BfV/vUfbKX9jGoyjxuxjYJgti3K71PMy1jC7nNWJM3QCkv3tCxt8zYfvHcHIQ0sVlZPQ/4s77H6j/feP3IHsLZYbsrayMEBIlUSkqTZXVpImIdpJ3SGVVoggNtIdSsiqFliRaSkWFSn37/hWff+Ccx33OfV3X83q8fnhB9YUnuOheMp/WK2W9+tGsGunPQxcMMFHvBZ6JGA7SpRKYdecfb7xdDR4twfTT4zq4vglmU7HHfGPGJbo+XYy7/AAndYjBuFI1kIzfCaGLhvjzP2gbdmoRrrhRgyYhESRflAuLFt3FLwknQPKdDQT1ZKGMajPvtgzDi4bt3Ng9g1SNzXHVKWF6OXoaGXdNBhMbgo975Umw5Q5Z5teDo1UIjb8zg+p0ijD4kzfWsDEfznfE4JcE4Yan2MnpKo689oP9CnuwCY5wmoUgb4pfTRJTk3HZ6MMk5GgNZfN1uH6hGbuWi2Hdyi5eq61FldIz8J75QbDwzoH8eiGYskERggQ0qCMykI3NpaDVWBhuDljQz8hhPD9wgP0nVHPnnhf09Z06FIEL1dj2o9DyOLb7ak2HDqvQgOtsyN/TS/vrvtOlp9f4qaUdaE0wx3qegobv77Fm7A+Yq/6Dv+QmcGB2GG2Vuocpoxbw0gZBkHG0xcZfa0Fu4kIaL/UE2vPl4HLiII4wtYDMMw7koRxJ5z6Mhjd9hvRunw78vpcILwMfUraVHF+HdexWK4IGEqYcLJPNvRPlYJeHLM1cWk9b1gfy7huXoX/9MS6Y8ZZLPr3hfX+M+VHNK/7ZYwy5LsF0epcm7yk7xDpjg2h9XxCv97GH1w8AA8YcJS3pbPTLHwGK83/R2OEnIPfTAAu4rObY33Wo8McEZpSMQ9uJ5aC1Np9KJJWg7Lc/fB2pRmmf9an/xiUyn3IHvv/Jgwnu4/l2gxBITfSgOZpaUCB/kRVWId7sXsV5d/tQ8Pgkyt87DCf5dpKo7S4oF1lGmS/14WTlBI5rWwxrTq/g2LbrMOBrjMuerWGnnmgY9vscpM8UBq7TAaWQPZgqtoV+f5SkbZ0j8LHXGtxtdJgFH2hzxIp1PFrkI17cIA+efUrQf7oVSg4fA4mtMuxuf4gos5uPH/PGywIxUJrjCJ3PjKDBczv2PemB1opSWrNwE1UqSvNdtSQ8myhIV7Png2npM3iayHB4bQIKX4mlpD1WUDYpDEazFwTlPaR7T9fCj2nBPO/7R7xWJwpRwnY873khh+ntBcnxx9g7rZvkh8dyeGIOjqwdBtHTeyjI3AZSp7Xyr3/vn1g+gl5vVYAYXXF0Si0DkcxkHHe1kE8lz2RfVoU1hcW4Y+ME+lEZBxn6JXwvLgCOBlax2fTZ2MB36YNvM515KA4hRrXU8b6cV0vowES4CFIByjDzZj19rZNhnQU1VLfZhNSiNWHvxnJWudNEU0z74FhnJJuK5KNM2g9ccFwYr2fpo/mtP/z7sQX0FE2AqjGuPPWPB789qEk+hR6k+lwYPe6kUvH1rXz3iQcPntGGrxVOJKr9AVLqROjPUD5rWS+H+ffqsXNjKBzf4kR/pueC2G4xmBnXwbufC1H9yTiW6D8P/dIaMMIjkUQWBtGlAwGUHncRHStGgd94S0pfa8hzjQW4x6WLayWucErgUuaKqzzk505VegZ4VlcL4ver08K1G0j+liznjdjCMHAJhX5tRIOGCHjb94oVwq5S1Dt9mCMTR2cap0GkxzDcF+PGMSdO0IdIRd5SMojnZA1YMP4ivWAnsNbdC9oVM3mxrzgPCY7iuKvTuMf8Kx9pOIm6htfJsm4ipEbrw/L5C2hL2BjKPdmFQZ7xOKZ2AUZtcofHI0ohFO25Ju8vHpUyhPlZ3jBydCBWtcjR/GcaeH13PSUvUMCkkYmUNvwyb9t8EQxk9eDwqRNQvOAaa2wNwgML/8O+8Zq8XcuWL0jNQ43x50lqZBMe6BCHl+Ke0L1/JJZ35UOGdADbV5aiSNB6dFNdRmIJyhzi2sG+ObYwY/EL6Bp6zTnrkjEuyZcNFm3m5wkWJKBXTwNZdnDozmKIHbKDIVFz3lomxX/icrBk83Y2M9GGDTcrOS5jJTpGTcR5IofhR68yLJTeAWomVRTz/Qs/+hJFovoV6LowECu+nMTc3NF0v7Uf/iwRg61p9zHcVAvFLh6A/jXJkFFhiVrrz7JUWjHEyWvDuWv/YcpRAfD+bU8eEoGQZ2tD0T27efzU07TyYTNsmnKTfP8UUfe/f+H9RB2elgRTurAFZVuEcYq8F8kWzyHlhHjsMdtBmQ1n4XXTHIjdow6Kq55BhYQ/Vj12x5SAOWyecp422drga9V7eP2CDunDNr6pLwiykbX08h+XZbyugKETz7HldRyXzurBEz37yF4giK7rNeH2HDF4dE4CS/gQJsS8xraznqwWdIGSP2jBZuEy/m+tBzYMzkQPreGQ6fMQcqYvJM0ua9RzXAk9xx5wx6KLnLdmHn0KLECT3Pv00VkBBK+chx/qQRhdmsXjC0/ijsw/2Bw8hRVs8qnmqTlrW22HwTgDMFr3CPI2elFThROEVqexw6NoFrgTStObHf7x1AAGnbuPLxN04Oi0lZSOt/mU+U/+R9csqvoSFhQyzOyNIt1BZXarLiKXD6PgeM9Neld1gvRnzcPNLv84SbmWr17159ayo1DvpEtR4zo50MQJklaOoeHr+ulF+T3eJm7OJ20vwT0tGX44yZr3RcygiUNreUmVHdh+Zlo/4ikNlPay1/I8XPvbgzxHymNA21USOLIddp10ogZnRajeXEAaywTw2Z6rdDlyO7Y1heKLl3VQ5RWLd3wjwP7NcIpcZgDHNazJpdcZ5URFqPOuCkVq54GhawAt147GIfW7aGhowh+bHSFydTvNSjvBrcnHubfyCPk/7uOFJ635Z8NYHP9dHRsHRWDmkALcrkqjH1Fu/P2oPPXvOQE6McspJuYsr3xdR4XxduRzIgmrxpjDLp+teP/wPC63H6B5dVV8QFSFbPeIUVLxdJhtbo9zR2WRVYMdlFuew8qQhSAu5gqn7xXz0MrDcF5pGrm17wNVxbc43DQRYTaB4egInBnxAz6WytKDlaLkZ7WC7yZP57RUT1y1WRhvfZ/I5UctIGfzC9oevYj8+vPx+RUzCJ/aywXPZ3DC+TJ8VxrJCetFcV+0Ifj6H+WV2wxpZ0ML3iJdPKERjkGaJaS5QIL23M/ADQFbWK/GCSJ9JbDovTnvFTnMjTtSeauEMj9a3ASfD5+Foo/t4LP1G558bgWS5ozSc0vBQPwjL91VxY8kZ/H6jvt8pPwtz7l7j9UELejbZiV4/vA7Vf3j0YCf18Hn6le6Ra9o5vrluEw2A2d/F0WlsUnkISsDpSbv+GTwOlo5P46N3h4H258DOFt6OZuJJOLaG64coydNPz7pgvT2fOjwX489Pa7sv3EGzHdzh3f29qD64RqVnpoMtvYX+VikOhwQdeaPE29ARuIoTN3sic+PqPGMW9/IzMABjp/KAa3LclDwxxJKvkmRhvQs7N3oD2Ny/8Od58Wg6u4reqK+kRUcJLj9XQv9Z6cLhkU5/DylkGdE6+HWIgHKT0X+ZDKRJUK/Y435EnBpKsONQmPgbLon/fAIpLXyPexV6Q5T39yHxoX12BZ5HBfdtOOSrvMgNksI5LpfwyrJLVCSbsXSip95V9la7rrcSnjsDJ+e58ItLUKg1WAGOU89IJn9cVlcIAQE+EFUjRV/+9xNrjpt3Ct9C7IMfoNbvSEERG+ALW41tKxWlc+82wAnt4zBL1PvQp/qbVjjr8GGUdGw4LsU/Bd6hqqHPaJdmRpYvS8PyjSr4HlHJjnpMS48W4o5o0VBer4DZH2sQJMND9H/uS42VWYhpYjCzIVl7DggQpYih7AxdQnsUTSGj4NDoLr9Gu5NLuTIpVJ4+nMPq0+Uw3uR5/mGUBJHvbqCZVv0wclyNh9bcAPWLXoE+5boUOjEe2zy5BuMjH9Pl+Zase/PDXh3vBOUGh3gyRUr0DkvHtrnRuOImdWcLPKaPizNhc+ZO3D50Fxo6teG5zbZUBYwB3T2fGVvuwkwqbMFGxYXg2W+GSdK55BpowccuCkPy8w+soNgPV8JS4W/7VY0LHsA0qIm47VDz/h9dRLu8THFmv+M4L3rYZYUHQl2dT9B+6k0Q9hC2KfxHiw3T+bUXaXguykRZ5pJw5K5MXhodzJpjN+PsR1O6ISKtN5UB11mhdJMKRk+WnUchTsFYHl6Bex1XQslj91hdNcbNlEPojXOKbxRbjtKlMvRDg8JmjNeHwofdmB9XzqfiQrgQck6SP46CAvneeJN/1xW+DKObdWOQLyQPaz1XUYSB51YrUUH98seZeXy0RSy4Tw96iW+WOtCl+9okcNjAfgyVINisQxWF+thZNssfGgXDwfXJ9K2wDE8I/QT7SzI5vfFmjBcaTtfGihiuGELygHrWU5+MvjWz6Sz0t9A87Myms3XRJlVsmDh/poEYCvtfFIPkVW17H7zAtaPdIemMU5wbGUQD81+TDaZmtAQVsdXS/djfr8bLUJnvqn+j4XnHoI9fs0wqOpCSQEHofO1BCRXnoWDrfdgmbsuxLfspZypQbTCCeBs8BVsX16KZhvtUGCpFISGXqABaVvQrhWFivowIPXZuEDlE4DzLDbpXUmeu/6gr4062E3ZTG4LLAHDbvPpji/wsCiQPSfEkZV3NEzyHMTlNTrsekIcViS/w9rxM3D8hCYe/DZIkjZjkf6qUXLfbvxZI8Ybmzw48Zc+/HxyBEprdqKThROPqf9ElxzeMkRN4X7JLlhf202vUixg1lxlsPHp5e+CI+l54UHaktSK6+I+ofyMBA5RyQMTaX/asuwZulQ5gvvl49BZuoFDp/hS//QAnvPiJB1YtYr3CquC+aFU+jlWD9WFdaF79xY4k7yH58/rI9OXClDc3kwba7t509gnuHHRGYrVkMdjTUbwn4UAlh9to6TKMczZNjRtzSUe/+UaaerfplPCl8DX0wXtpG3gSu48KKy6QjLX5uDk9U4wruI8K7lJ4pm+Jt5fvpjla3yg958ud98W4aWS6rBTOZxLShbgz7VvWbM5Ea9HP6R8rSq0Eg7kMTeMwFK5FF5+E4bF73fi4Awb7pCLhuuyuSDxMBue3e/A7fu0IFdXHxSaZsGl8VZ0mRxpxjlRLtjzkN7Yx1Jv3WP8vciPpXYcAfFlghClYsPWjT34TcmKpJsLWaPuLBrOWAzyV/ejhMMWXPVTHO/qOEKNSxT1wb9OtKWCs0W/QoS9Hl5Ukkf1O7Xw5XcrjrmSi+7m1nBGfCfYdbti/ItA/rqtENMWdqDZKXFIypmHk5bfpRgdfzo9XwHiG30Z7NazyjQ3qB/7BERP68BSFweaJKJLEw+kkpObLz/f7gjLHh/BaO/7ICSUgKF6ivjw8UmuDEuAowkCsCB7Jtg122NrxVhoqxvLtWZWMPOwK25/egI+Jsvik74hfnf+MpI5wYoL0yAt1wz0T6zkH9v+adc7Cao8XCDsSC3oFmTS530H+Oijz/Rg81FeWjgCXs59hI91JTDjQCRJ9ACbaLyGuuKvXP4sjpt0TvJth7mwXV4GOuaPYvdhC2hnaSrfnToS417twmCD1RAVfIl+Lp+ETW05EDBTCcYO1vDeznm43tGcJ7YUcWDYVkp5vB5Y/j0um9xBNd9PYewBgEulTRyx1Bc/juuC2kZ7tli2h0/bL8Z9Tseh6vdm0pj3CuTOO0HXqn9d8dc7bHu1jud0R3P2SQX2+ONM8ienw/UPE6F6xxnIU9MEx/hYsB7Yg8+b5dE8fRDMWqdCG5yGA6ZjIa5QE69MnA/7YhTBSID5beADUE88BBta3WmtTjFVhO3gcRM2042ldXgbf+E8fRtwMPHGvXsSwEs6g3JUHsDPJZbw0y2A5Z48ozsXH9MZlV3E98bB6YAjVLhfHPJd29jo/Ah665ABfnXBrC3XSXd1zpNPsgDPfDcaCh2KaNO3QY7YOZlXHR8B2ediYJ7Vf/RYejROa/OErXu28QY7K6i6MAC6D3ey0tZ2Pl07CtPqr2PFyWc4d6c9Hsy34Fr/JgRrBVgpFUUeLbvIzHs+W+9QQ8OSFs4Q/E2q46T46rlR4D5VgfUatGDOi2hYsfol/CoMAgH1dlK5vonOmQ7yrj/TKZMJqhwrKWLeKDBPq4amyvVY6GmMQz6d4B7eA+fP34VIySic8uU8XjU4g2dE9cFSoZeS0hvYT28l6ux4RAaCz7g6uwXrfzzFq0sbcPu5QHCZawrJtvHcFmpJZ/Rf06nkGvL/VU8hQQe57WExB6npgex0dVq6cASMEzmDhU3PyCH9MToZmMDHGcE4qvsUhJcbwJG8q1BxSYr67uiBuLoKXStWxNuGFylsN/DxMhf+GS4Pn/ZdJ8mVIWy80x+uKduCpEo+RMbOoESDAK49uAkkfZNh7ydf2GzgRxJS0zAzeZAUPITAu/4ORGy0pSkW72FQZyJt+fyKR6k84fx9IVR/RR5VnKzBo10UWhPX0ZUbp7Ht5hBLlUjCLrcuSP2ahT2Hyji0SJWyVh9iy+vD4HqHCZXNJVqz9C72WS+juVUi5LX2M7g4tJJT/Cwi7Xb8/NsJwl7oQfyBDPIb3sbtX62x9ZsnNlhfwZ07cyDH3RAFw+NgUZgqrCnOBBWDyaR+QY6DRwYSaQnz5eA+OnbiNjgrnYGTyUfpHA2HJ6MVcdV6dZI7hOC+OJLGjUzi4ccT8E/qbq7/c40TIvQp77YJeP4VBJDezAOuq8FeNAImCZjS9rRptCJ3NrudVYMKFT20bhwLRjPnYLrMG+ir/QJ7yQ68xv+CcX+/Qf3SYzRhew63q8znV30Iq/zn8s4n3WQ4fBZWOjwk/S8FcNPxCi57PYN2PG9BtR4veOVjA+tU26lj/DEa6fOJjrh9AjObRoyddZ0W9tSzyRVPqi2dgTqbtSCueRdfEDGAE72z8X3tM/y+b5Bv1OnD3QmJGHn4P642voz7AGDrWaSRQQMg9/gZG2oGgdyOEbz8GIG+gQVVrVWEhvR7LD1PHCSeWuLdaGHw6vsACefPsOnBj1R87yhFv/iKruEGVO42xGIZZjB/zAku/S0CkV6dZHI1EhuyenlyvjsoHRaFpOqxLLL4Muv7WsAXnWiqO3OOfzVVQI7KSjZrG+BXLsXQPlyPxti+x9ibehS8Rxms39+kYx6f4L+UcG5/5InV64wo6F/+jIs+xOqTD/IuKyuIaDMGO6cRrHdYEQ0vHqGmsl+02dAaxNp34PAJ9my8Txuq5TVwmOcYwJhztOhEEcWtvsWVqYlQrn+ZF1ano1NeEEXUb8YNcZMxrEACNj3Q53YbX1zZIksG75Ixs/IcuCevgvKaj3xZPQ7uLGnEv5J6cOhoOUhOvk03PeZy2ptg3CEwih8FfOJ3XdvZYultFLm1A2C8JnxUKOGbh16zlPYsLpxVSUNp41ntwTp0dD3IEulaFHLkJd/rGgG3XYqITowDEeUrEPgzjO3ex7Ca2wtyTelHo/+2ct2kHv4v0w6U7yWTxYAFP9EZy/o5B1hiphZYvxygyoNunOQzkwuX3IBWIRl4KPyd95/di0dfyFP3TmHel6QJdU0VbDBnEo6P0UWxgHsk7TgG7M8KUdVqV4yavB5vKp8G1elGNN56BmW0V5D9quvos+UpGghYgWj2fkhbWcHeXxbgiu0V4Nh2hVvmXiX3lUJcXFGKCiX6fPmBDKw0UeSHE/5Q5PLRPBC6EX4PPCT1qhC68PopZT2/gmZf5bhSzRYWNRrTjndq6JXXB8o/XPBI1A7eFv2FBqM08FJoPF4V3A5FCRKwZqIv/E3cQx+7X9GPqRWwbcxteLTiGrybGUCjzeNAMNuYb6gLgpOfHf3QDKXRW1aAUuhh7OhaAdKKTXC6ZzcvO/cLvxUocGORMjTxHphtwtQe60kSw8/B4bdLcfGwEXjpYgOcGXODXfgzPVmtDQfCM3mucxwb/hJn16VdNClgFIh3dYDmSwvao1sMc1Iu4rJOIZg/eBdGb4li8WVx7DDPBFO23IW21G14ZcMFclz8BmSe9fOi0zIQqb0Rx+nLkNK+zSz8tRd+B/7hieF1FJaylZ1/GVGJiSCLGSiAyrEi2Le0B7p/C3By8TRYP0OTv87YS/t+dOPnxiOs8Okk+16QgNyvWzGlUYAOuTdS4HxD2pNkAgVXvvCe9/5Qd28ri44rwA/RdlA1/CIcbcvnpGIHMEycTq3rksjMMwyvjEIymS/Fxt8/4IpZOrBi+iz8aaeAxc6tfHxtIh0rn4ZX5FL5Uvlj+CL1AQpq1bABpCB6/Tm+ckeIYs6Hg3eUH27xV4Jh+zIo7tJ9vJh3lYeb1uCCKks45PYRRlsehAcHBClxlD1FXiiBfZua4YO1Fm9UmYuOG6RQ/Lss1KqKwN6je9h23Hiu3q0NZ86WsBjEU89wQcz7x/et+97xJ91hkOKC9MP7GthriIHVL3k4czWNple68XyxU7RAvBojPhPHeNvC6u06IOWRAMF1LZj9yw/GnTLCa18S6d3UBojXXMIRk0ZBhYHN/+z+3yEvSd4+LIHqt+2GFaHL0d66ja/Ovo3TJyXg3E5bdG/1hHVrdSD3RgZuVVhMC2UzGR/54E7xIK5edZXWlKhhRvlJmpfhztlLJUFomgnZzrvJw3Olodz9Ha4MDSaBw0H0LH44zHxZzdEWCvTERwKOmWfSyBuzSR+f0f2NFnRvrhHXDd+OTd6ncH/3GZjm6o87pMRBqPY5m812wtNybRyQZI9b8soYRrWRg5sLf/pmQi/WTiXTR47gN2s1jTt3CE9a7YRzayRwZcEvVtMyhvCVxjQ0PI78cxzBrcUa0uQJ9e++h4BYYZyr+h5/j+pGxcB/z0qbjHWlUeCquBFV8ofDG++wf1zhDKtv9fCa2QYcsmwzae8/D+SYiR5BJni2di8HvlAF5y3jIGmHEj6U0kCVbw9gxzNdTCFvmCIjA0UXQyDLeTnum6QEkTUjWP5OIZVFHac5WIyKMkXUNGI1mGhG8uDn45ATYYu75eVB380RDGt+kZHJFVggmoOjdzejmvRvuO8+F0skO8B98iTW2j4CtipG8LFGW7Q9lEVPy7azqFUg+8/5i7aD8+n5p0kcdPsWTHdTgaCGZFpbm4duoWPZJaOMFfOH4871E2Gey2Pcp9KHsVqn+ec/XzuW8JEndetD875IcC+J57uBLfxgnCHuvngUzA9LsYzEcGiXkIL1JzuozNsGPk6fB2kZs/jD7kRcMbMAl78X4tTDJbxi2Eg+3G0JqX2qvFHGESvmPqNzE/dBjcMHelwshg0tD+lHhAMcG72YZWJkof1oEEzXfErhD97yV4se/CJ3HNQ3qtPujk0kXCjPpgJquDHDEEY03uIjZ2fzn0E32rUqEVsXPIKbuBEuDL7F21IuWH1UEp9sQkjMmE5n3znT6sBUNHP/RhoFx+FGeTP0/E1AI6EFxPtCuGCmMVQqraYLM2dxl/96qNrjhIIlZphpa4GSxb78RC0JQxTzSHmxHCgnfENL7Q+8N+krBm1RoU3XM6nmcCIrJJ5nx9X76NdsWbIe0oSS5Mlw9moF7VS+xHUnmzHkGJDPvAVQM3oxvi2Lxqk/skkuywZUvBThhfET7Bu/gP3uV9Aw00AQvxlHYcLrsNZHDZpLjPDiDAXQip3C3ltWkeivazjs+VzG+3EgHZOC147P4uDwGB4x3gGCBPRA8LIv9Vq+wW3f02nrOW16kZ7Gkc+WkYFmG9cqHYRy3+2cJyMFmWvSYD82cmqnA7VsSkT5MCmWtYmmCWb72QTdScj6F0w3swBtqT+4JCSPU/ojQMr4M92dPAvG+80lw+N/ycbjPyy/3sBPK0zhyJQRcF29CNb06cO0rYGQusGcmrMlYN3KPNomfZ9GfnqNuOaf/5lWgrdkPJbHvsMque0gqzSWHRdlU9DR2/T39QdccuovL4tVgZdHptGQ1xRSfVcG/u9e8RKfALa7Jk2/PSx5+is/rjkwkbY9HAkC016Q7WgNEC3axS2Cq9CjVxQFrmiDv8cMOnq5jfePk8YU0zEwTO8kHy+PoRHH3rCCkDIdX6ID+98sYfO4dmqb28yKo/VZ9bAlcJI/nFxjyEce7GKRZ/0gMnkFzk/VQwe3NfD1tzPF7rnKrjs1YNn2XdiHr8n+ehYJzWlHGVEjfhuWi0WXQlHSzJHyjxWhbYU8nEqIhtq+76B7/xslVMjAu2HhIJX6k7pzjEF5xxOY+MYSfR0k4IesHgfdy+Lpf2PhqokAKfqsgbCIFFQq02Mv0yh41iDBXcJjYOBpGY2PEOQfLyLx5PxYMA4Mh4biXmo48xhrz7/gecsK0PEFgkDJBGo5ugaNNjpDjIkZdzUM46lGRqx9NBTHuclByFpTevxWBm51+LFCxFJ83susccaZtKXfwgedYK5s/DezST7dzFJEVykbuKYxAM/mnaakA42A7Wu4/SzQDMHDPKf+Gp2QtKLe9i7O6RGHh7KbQfWPChxJvsUJpwJwpIo51hr/INEELVCr3ASBoQ7spScAnZNdEQrWg4nCUby2SosNZ/zBBUJZvLk1Bj49z+Q3Ldd5i70DnN/gy3P/7Vlwtgixqh6nR+wGMZwJxUoLYZq4NYdUtZPkdy1YOox5dy9TyIEMaMjVpgf7tUnJIouXVqSxj8Ep0j1UDpce28Gqpw84z7oKXm3tZF3T6bDjmzweevsBHtfpouvNHbRh9BX0Oy0M3waDYEz0TDL40cfOJSPoQQCg/gZ5qlbu5eIH5Zi0JJWOthnArgmhsO1rN4rHvqc8YWkOPlGLEqmm5CoWw4lp4/HrI2E8OjAOmj+Uwcv4iWwdkQN640dC+6l02vNqHNqtnIrNFg5k9TyaY0pNIGObMRiXMUktaUP7+uvAC4xIRTeB/gu/T7Xtd/Bq1BL+7ioK06UeUl/7ISiNL0bj7P30JsCYzgZfg9yAaSgdqwpv2mRQQ0cRLjSd5uWXTOhUVgF/WmxAef31LHd7MrteDySNexrsMHot10w1gwN9uvBzVDOaPwJa8I/nvyx5A6+ojBSnFdDn4Hm0YJcL9XWLQGD0NMx1nkVtQi/p/d6N4NN1A6/6dMD66hv42cyB6oT2QtduGcj3saXHtJY+iW+j158+w1+lXbitUR52qIzh+enP2Km3Fi0VjKB/RjZOSTqBIn0/2M1qDqX/FcY7HkqoPuk1f8RCaLx5HXs9rOHCmr8YnnkQ6zNfkG//Fxhz5RSLVOfztk1h/EOlnhblRJHhahn4EZkHnqrxlGe9nvuWnYTIy5vAzUIf5tjNxMnl1SBm5wY/hTXBPjyAjR9qsvTDFSR17NG/rpBAfwo+wWo2R9lF+pjocxXVUv7pze4DrTphhm6vptJIzU244VkeqY/2JoH0Cfy48A9HPHkHRdnWIHfwOb/r6UKlS5t579/JPGv9ODr+oZEjUt9B6JMh8i6KwzAxQZhkm8RHLk6iCYe7uHPicg7e8BY2LLSHqel+MDVfmXLk74BquRx4hoiC7NkmTIvYAWpj/8DmSy1copyIFZndHJ/SylNDxLDxAMOzzBRyLfunX89rqPTxG57yPI3dbqXo+kYLTh8RgoQxk+Dp6xEQP7mK3mgeACEvIfRqtSKtLm8evteGabcIKyxowY5rxZD8VRROy7twgJ0R/7m9Fi9lCdD3ax/RZ5Y2mL5Zh+zfwxPfF/DBKiNY1p/Kav8827njMCeecYCjHtLceDKDTUvHsmBNC0dGWbOzjTpYX8nAFecvUsL+3bw7N4m6XojRKqMq9Ay2wqk1Dii7UhYDoozh3PEnvLD/GUurT+QNcw9zoI0NW/69ioqSznxn3Edc/v/nSO3yMGq6PlZmvsOsl43cdXcWat2YxmM9VrBXbwKYho3Ake+PoVS7MKitLeSGfClOsbgBr9+eRIc+F1YNs6SbzlYcH+3E7TGxuNBZEZbpHOMJ5/xgskknzs3dDedW3aa2x/W87sJe8pBMhaCrxymrThH2GgfiY/kMjrnmiytqv1GabivZTfBi5x91sH9xKOmHCYLsFjOwD5qOui/DqC9gNpgF3uFw31geergJHDe4gVJNCoYMVNIq5bFgusSL21Qu0/HfRfxUbAeKrB6JsZwLNxx30bUbN1g79i7SSAVQOD5AOU+es+eaSqoe+JdNDy9Twbp0FA2+hd4XftLbv4d5wTk16HcqgwCVOMi7fgoPditSXcEU7piiChc2GeNEo4X4QrWP37hZgJvIEE/5vpA3f9KAnPgDwF1VfHPUKai2fA/Tk5ph+uYaTtuqDsVpq/mlaigmC8VjxO1npLt7F1/MWIB/Ut7zoeB+Hv+9B1RMzKBIcAff/O0BYb+TWWfkFPKx+gN9pT7klG9HtjvVwe3eSoxMsYW9BoX0IGcezzwnheeEpMnJwRJOLvD5py07WF0+l23GvORZ55XBe7QcXLi3Hx5YTsPPNvqYIVDOHustuDPuO15o6eMpDqnMRqqgPO4Zic+ygqI3B3HOhwbuWpWHKxtDebfbSZT0PYdXx62HVx6icOu5MIimieM9+/20MTuA295YsYJ7OcrL7OHZj4TpT8pHSrAaCz/mNUNdSQXuGohgmXtPOZxmU+VfbypZeRkyFj6kBY2P6el/yvDrbhfWJOxhqy0plK4rSsvfDZL3qFfwac8bfuB/kKvfb4J1xQzB6vn0bYMMjph1H+oqm0mpbTg+ieylDa4PWNNlDSct/YndkgLQ/vIK+73KhbW5lqz6/t+MaoYgDYvg+bsmlg28ROs2L8K9r0ZCo1k+d3ZOxJNix2mLbiTOGm1FOgt2sdCCWKxrc6POwd98YYIA2AdEoJfoZ1Tzq4Vx89+S+MIvFLlJhDf83cWLX3azV6Y5798jCUM7lbFByoPWfXangFRHPvkzl1se/usCp1Ihx7KQOfguxKw2BedGhNJOezzyVRYy53uwl8RbfHhMDpwj1tBpWghWf/pAbNYoOGD2lEuUvtPyQhco6/Bi/5xwCh3chUmgy7WHtvPc1x1gamcN+xwt+bN/H9T+Y7mXh/Zg4aIMqCxDELQXxAkGSfx61ljUkXEAHpjA839UoXrEHJ66N4l713ym7QOeVBD+H0Y9OQFrp6bRq4MGUDv4Fy2GpXFFdCPkJM9At2ZR+PbXij8u3s8KQ+MwPGwhdCTbAdFPzJ1xHzrLjeiq3QXqkO2HIckcjJKM597K8xxaqoiXB+zAJ+Menx/3HykpGuGJa8/xzONC9nSPBQjYxspHFKndP4OPy+nDQR9fjNruRWonbHHUVRH4fnA6zcoaJOOKE+w/Yz+b71GmRHdluJ2znma2zMMnXzr4Ukomj3V/B3dj0qE0dSUPnN0KW1emgXe/IIxf1MMN331519QHfGx0JFiHmMH7WxoQrLwFnVKE8b1tC6cXKsCzFS70n/h/XHdkPHcHX8CPOhdo0rI4rImqhG+KNRBqtQ/kZ4yGrkQH7vw7yFnS40Cs/y5OzDOjEO1yUipeCkL5oqjQewiqzUxgpYQ0er11xMV5arxJYiwPLv0Ccqu3cNZMQTJuSaFzARUob2MPZnMaqfH6B9wgdJbsDvbwlNBKbI+6T8ZuJRB1LRl/axdit/1weDvyFtT9y8M7BswiC07Dgema+Oi+EUwMkuYhBz+OH+vFeusdwa5yHc0V0qBJU35Ryqs5NO9uAZx4PhKu/MmBj2KmsENcnV+P1ARH/0wcdF9K0qMeofxNQWxoVYCzluvJPP4u6lYkc8+4e7CwVB4KLlThrFsF1JTvB0MGmejluYjWxm5B65WjYJswU3CHGV4JEoD7FvNBttmWsxYnsorzU7TY14dnLGfj1I8t5BeiijzXjlJS9CBJeRQPDDxnSveC6KQlLL/lIi7ca4E/Uo7hcDqOeVsecaS6OISqBnKVai96fVnD3p/HcMV6GTg/IYaPrSrmrZiHGtU/YfUhS+jqKiDpNH96+1SJ+99NxNp+Rfg1+gg/mfUA/Jy72ar6Nn3dJAKOH6bS25ACHHU7lZXiZPGVwUMKd3lM/atamZo96FLDG3IebgiW0+fTiiObcPOjmVjlkkeP6DrozNGgd3IBXDQjjg2Em3nYpbGgqaiH7DOGx9k40Az/X3xff4COP3zIy99bYcEDG94QVU7LlovA/Yp/vvEqmMyeb4XwoEa6WywIc+IyKKDkLAnPyGazNSPQbeRY2BJ+CMeIyGN/dwfHiK77x2mjQDr/NVk9S8Pnm8yg9/c3evrMClJTDtJmbzFY4yNBs6eqcvi4ajp0z4s6rIJxStEz+PRzGKfkETSu04KxMmfwuN8D+Hp3JqjK1NHx187U+eImGw2uxSjP1RAwXx72VUVy2outOG2bIFHlD8wAbyr3kMTXV9rgge83vDfZGRPmWIDc+DfYo6fGNY/VOF1RCsYY3YGU/V68c1MI2uz7Rfldc+leqjW4F4eB70tNbI4bxvmxh2mC2nl6mzdAdvZVfHpKBBfLzWcNG00w7ViERX/E6EOsHyxpuUz2UWqgmvgN32c+pTdvd9I5U02SDheBxNXpEJltRzoXxkHWg/28eeRkCPprSNWXZ9EkhybcUbCMyuVtQFQhHduXhOLw/ZOp2HIWJLyfA+dezAKpKFmu+rqCle9NgZJ2ZTi7/zZPOJgL0hN6+GpBErV+34OJtdpwVeAHTjwqjamiGRC2laA4Ziq8O2nONecKSUl4OGpptOIE8yT4deM/XAuv+JdeLm200YcLpSU0scURfpffR+OZQ7CkPZstpj3FV+cfQ4HBCo7beR8X19uAps9+VMq1om/D79PG45rw4akO1ayvRhXF/VB9pwfNL4qAt58oRB5Kw7knVqFOkhqJ127gLd8EQDFyC1YcTESJA2b85Vck114bBj3hvXhAYzTmLLIBiYFprJVXTEO4hR9svsy3SmvwvM0R9rpP0PdUnHbEF1DL1Wo0P59LygJjeLP1du5SfA+tzTNo07JuUJsgA6+N+vFM8090ErjHgn33OHGmP8kFSaK3Uw6rJD3A4p3p+DDCHrptSzi47hrsPpoA2QYuqDfRBb42LIVld5wgfRvw3hI9jLaRhTw/UwqYIsOB6q6c1TyGPqkacsgZNXR4sZ/vvSzCG9dH88R0Ifjt1w2CuY+gN+khH4q6TFnVzyle5xGfPHMVLepuYqWYPl6aPxzmGJbAc+t58LapApaOP0qjl7rgnH5F7A05REFf3GlxpwsYTFOHG9+7YZGDPhfl+tCcimvcWzQFdtutwUsv0nBeljyPbZQjpcP6cHjmED2WvoEtfrIkUxYE/81B9nhqTDE1TpAbLIUfpl+joklC8PX6WS7JrMeplVb4t0AaLzmfANelU2BMpy29+2MKq4SLaPGDEZBaa8TzP7byt7fuvPHNSBg/tgfVPrWhtfQ36mmbSj8X36L2phFgeyaPX5Yr4fhJ76EmUYHOe+dQWdV1mmBszDF/slB+z3R0qzcGi/kaOGJMAHyV/MvCLmqs019OIp0+cH9bPFvonUZ6GULFg1KgbVzLbcGz0P/uFJ5bXM6fFEt4ICsEtvNo+OTezy+rtenLOwPIzF1DESXtdLO6mEVmJ8CY85fpzZplGBmQSt0xvfjjmChrP9GGssPL8YzOIja0+o47Q7wpA22h06oJOkpjcf/tIi6riKXhd8whxTKMqwVGkE5VMOeemEGb8+yo+fUG3Pa3G5/MlMc4QTm+4mgLAttu4bK/dqi0VpgOHJ/N1o2GLL9tHY8QiwbZhyGg4WMCZWmjQdSnih4dNcSPt4tRp2QnDPUGksxQIanXLYKDN9fiq8sNNPTdGFbuNqd1xVv56bZYvDT2N87Oi8F7KZ8hLP0KTxHby/6Tf9HoNXKwPaKV1Sd7wAIvOegpDuAtI/9yn3AMebja8tDfEXQnO4f2JYrAKsmPdM66HJbFecCa+Gf81O8Gz7k1iftfKcPukHMU39mKS5qUAOEYXVydxiHrYsE1aRFetbWG2SWHuHnzTm4pMUZTmUZYnigJ9maybLNChm/lr6OHJMM/RPPA9Mt3yLi7mEY8noQ/jyhjv4Is6Ioc4ieaE/HVbQlIrhqFnePkcfrpO6S1XY56mmfR7NoK3nhJAf4rjEBprSxWqxQBn0nL6LjAcBTrToXHbmGkZ3kZUnqTcM1WPVA0HkMVoguoauNVGG34EQ7zfNb61+0yw76CpOo1+LZcGC8slQbHMe6Q070STi/fD7EuK8DFTY4nO8awzz09NkjShtkniC+rG4On02d2zn6Iz4KG4SF3cby/YRzNVLYmQ+Fp3N7rSx88V0BUmyBonU7Db5t8OWW1AX/U/cyPD6vhyBJ7frJ5BxbYX+Ds5KN4X1wa5speh+jMDG6am0LfTlvj6omSrPVhI1q9XIazdrpjuMJsXjtDGPZGpWCqwxNYJ7iX/CxG4akfR7H+9yWMCQqBcdeFeWj4Kgj/pgWXe7PhP/lf+J9zOI7y/g0dpgpQnx/M1bJHYPskaXrbZYHbdqiDSfs13nH6X+ZGm8EP3SWgfmQE+ikVY/OJzyj75gBLrs5huWOGsP5vGTSFNpL5zVcsUuRNbto57CkawSs81ejEdUfw3z0BsVUaxq+exWITynjOyga47yqHg59HkHJHDq+2FMERAytZ6gHzrG55ML0iRv4Zf+nONFX+pFeAIfO/YM2wclq1sI60a2JQvP4Qjy2RgqfSquyzLY5uj/6EvqVxUHzLCyIfK0PNxg4WCq9GPad2dloyBgoS1WmmXgLvKw9FtbX6oFCdhQmOP+G54GwOiT2PVtOmctAEETBtbKJTdwFrHh2iEYcm48LvdnR0zSpSVUvGijJdCLcmlM+WgVSUZoWZgM+2jIPVJ4bBpLniKLouDx9N2MTPhPO5bnIuqffKgVy2BuUsOEbNcxeCv0IrC5omQesfcT6cxLzr9wO8V+QJCz1Gw7Lccjx5xIpaogN4UVY63Ok8AgdfnaANGd/g/b5LUKfRxak/9KEn8SvNWbQXdFdE0J4oV1bsTCLNlm5MbvWl0F/7adPUSSi+QhRqW76i+zdtNvn6gZd5vIdO4+v4ULKZfy/WwRf2jVxZVstji/Qg+IEuv8j5TMNd7FHdMxDkZErg8c4sVCmdzjdzDlC09WlI79OHCZURrCNwhuNX+9DelRZw5rcVhSfp0Xd9dzKw78GYKbXsO8kBrA88h/jy++CdpEiFb87jCq/7XJ4UjsvbMulOVzNnDCvm6++GQbL0vw8gcIvHrN6Pl7bZwYPKTaRSUU0NPltAQ8oOzvvrcpWIKaxV92X7P0440XY7Pwo8SBbp1zDZZC959iqA499D1DtKFsR+OkHxi9HcHxNF7y5tpWrtp/woaQoHa3aR5a0hHrqaz6Wvr4Nwpj1IRnnhfx4msP/nClr85Cw8bmdSOfqI2jVS4EnOPGyTD2Hz2Trw+sRmVrgQzG6ndlLYynAwfD0AdzK2YbZ8Pmy9dpvnGBXjJjkdELHJ4VOlFzl67Rka+b0bG9r3o9eMAdx6O5DeOh+HplO+fILMoHUOwi3fHxCidg73y7xnhaDR5FCpTo+kD/HAjjh6vK8RjdKtoMD5HN1yWQcXbgvB+w0NOPnhIHe+OYqXJq3F3UHJ/Ed/Mj9TGgt23sUssceOLM+msXv0SRg53Yb4xQ6sP25LjpVV+OGFC+38pA2Dqc84W0eOZ13Ko/OrpkPLhSxOUyzDNwZruWGRIZcIhcPX4zawtt+bBI6JYNjFSjravwLmpj/B2ZtmY2KrHKwZJka9b7MhP1AITPWPsfWkSewsmk7hr5S4QKsQfYfdgHy3vbBJ6Argy1JUmErwIXcqrXPuIpUVgfzyuQNed83DaXfEMWRNCVlPquUVQ00olD4WBp8g2PeG4ZErOrBoXwQU63ihkd8x/hxkD1qJZSQT+wV05yqAStoZ+C3ZCm/WJfAb65f8K10fz95QhXUWDfTXbyQ+8XoLr0KVIKv5NHh+ygQj6/c0XGcqnRyVBNtlgWI0yvF6VDaf7OsEpU8CkH59Bq0Qq8PhmRHwMbOWpks+xssBM7Dw8TSWf9GAuiV1UBLgBKayD3DPgpmQOm8XLRCIwgJvZw40egz6Jyxgb8cnVKrphDNh5rAr7judj30GPhO6QLwBoHyNGMrP3ojbdWsoQsWC+tWW8+T55qDiLI1P5xVT0VJ1kjPexSuEBag05BEullVDJ7pFdXWydHyCLmgIHMN5237Ty4Im2nrLExw6DVHydz+h8gUQi3VH4YwBkLuoCdaz61ArvZieR7ty6PeVsGSCCadPMKHvNyugxfov1WMB7ZwlDt2O1zhsURVd015G39rUaOJeKfr+7RzJnV7DWV0W0Bp2gJe3iIOp5m+8d3M3if1dwr63P6LGBHUoujWevAdN/zFeGSw9PRZ/rbOGcCdbWvOpg71/e1L37nAai9GwQfwpLc8Q5NkRv+lT4hxwv6YKW4efQbGXvhjTFQRFd8fDYVVPsOh+Asec3UDN5AMErnSmkdKS8PpaPopWhWFn6HWMFtdAUdVetlIYh1N85ei7WibvKHpO7W0mcPridXwiEMLdvII8HKRRYukPNnx7h/0/XsJulWo49ScPJi3WglOHxcnu4iAnvP7Gzy+ngb1XN49KIHowfwmFiF8CzwuGNOGtMHiI2pPel3PsEvYAQyfPhWXb/+KPUb/gR80unJZtDg6Fcyn443DYPtYfLryKwTm7vXj46m949b+tYPDJgEZMmYFaR9tBrSaVdEdbwd2ximzo+hc8XBnOt6ymjVqhyLP0yEBKGpdP+Y3BGUcxN0QDPJuLSO+2JSq+2wISYkv/7WcfaRzYhjd3+XPi4HvcIB/Av3dow475rbSqJQJOd/Xg1Yl12Fy9GO0lDqGdiwBec02j/7L38BlDM3havAcHvt5A+doqDjsZCZ17vtO3bEF+usGU7kZXclOoDS5y0YT+PW84QPUQL2gcwZ9CA9juTwZ7T1GHENHxOM5WCluTSygkXh9OiOry2x3hNP/lPYwOS2ar8bmctyQOvk35hpPfTGeh5RspJ1wJjrYKouZAJuVffUJR22Vgjm4ILfCzgpP9+vSjbynHx2VT6zRzUHZ8Bn1/tSFrojSNKnQhvTFx9HPvRLTdcBJ/mJzHhYtng1SoDqjv7Kcxt97wF+iD9IYVcLv2Mj5bnovHPR7hsYWfaHZdPVjpyIFQwUn4M+w5+K3+CvdPKJHq60+wNnc6Jay4jB8TCmG6tRmKyuvDPD09eCH3CKz8huj+8A34Nbqd2zPWk8u7I6Q/XhiF12pT0yMzeNvZSb8nHUff7Bo0Fi3hyG0dJB+mCLHq67h8xzCQb94N57LEQF7fCxZc3s9ypudhoEeLlUvbwO1gNfcuuYpTZq4h07tHUJXMoWbPKCqKSwPbL92kJZHO0rtekNexnzBSxpL0dp8g+1NqpP1RAZpHXGE383LUSNzKRyxUecOqYJLZMQHD4lXZOngU9V8b4kzVYaC6u5sdH7bRf8a3oCRxLLrHZ2HWxGoqOvwYHH5uh8+X/SGyYhTMFFfkTsUh2jFQwx3CovR65GUIGqkKyknbWFnAiKl9FObqjIR6PSuaPEqZPoYNsp+fM77LXkcxp7TgtpQS7pvvhDKnSwH3m8JueUtcMecJiKtuQl9nRZRw/4rOi+WBRAtJ4NN8GD9vM1CaCLj4bMCEj39xiqsnfK7P5ak+ZjAlQJY2fR4G8Q9WU/vefOINSjBtdgAvjrnJ9bdO0pehvVzhdRnMH9ZiZ+MBMPIZzW7vIzmv1gh8NJxQsuEdbE25iSY/BlnV1w2S4xeB1PolcMVzOvfk3YakGoIjgc8wemwJzWybDaX/+OGh0Wv2X7eGijTU4HubDpt3CaDAawBz0SI+87OVHto/5itnK1hmjgdmb7jHkdVCOF/tOYlFZaGQvgj42izFicfyKeEGwAvVRaAX/C88Eg3AT38trl7oQndyhHjbJQMoLMzD6+0XMaBiB/rGSrP4YVV8eVKQOPIsxuyaAlZfl/GS0TJQGXEYTJZrkIrdcj72fio8HzkVnxQr87r7Bnzt/l72XXYZlE6og8NwTezaijwmcwFYVQRx3a2f7Or2Ao52NyOLmlOL7zLY+s93ZRR12bfJnu6lD/JfyRc84+wjWCP+ixS/f6LDi+VxW74ovHigAsK2/mQfeYXCyi7zCDk9epu6D42/eMDC5e/hTUcR/R/F9v0P1NvGAfwaZO8oI3tkZpaGjJSGNCgrKUKLkFGphKSiMpJoDymSliSkoZIoLWnQoFJWGvQt8Xj+gXNe53rd9/X5vH84/zxSuCpdGkx/TmeXuX4wT2cFev9uBakdm0B01l2aEi0Aj+WcQbCZ0TPMFsKF7GD5C+aPrv5U9rMRcKc8dCup07g6f7pRGwYDO67gjx5F2L+0jwEOk4OJGnrKGsI7L0FaZ+pL4n4/KM/jJWTXF9InGYB2uzBO+qlHGuue4rn7ffT4vCx7PMtgY41L9L2mmNr4F2/RJlhQcZFlh7LjLVzBgP//M5v2G/vPPOYVvvbY+HgG6Z3347/nx8Bd+RictSOctyddBBNhaY449QLf/f5HnXebWPeQMZ758wuSmoeDq8YoVJ4eD/1NWyCj1R7iixrpTasLDotr4Un7a+FP72JOEBwHvzoms8a5asz9nQw2K/5i3ql30K8Tih8+78U51wPIyTiFrFZpQZrZaNTUa0d71xhQehVDKQfu07kfZ1lq1QqsrO9AwUYjSl41Cpy/OfPbtoMkqRdBx4ou4phOV55rsIUar+0A+5r50GtnyXo2FuDa+ZGN3+dCe4wdSwW7sEFYP50+PYPGGf7jLX/kcdsfe9ZbJwG9zV/gVXsgrxk9Cy7eaIEDumVg9Psg+w5zB0+DNtp7YwO1vdGFm0W5YFWfAJN8iXHQki85yEDM98845bo3pUpbwYCEBwrtUASTEHM6b+mESZalfM5UE+RiSnmP9VII/DqUUylDmetrSrr9NnCzU4GEImWw6EgNT45+iPZjVtHt8V9Jt1cN884ZY+RAKSp/FIfFlktgTWIWxEc9BKkYNTjwRY463IuhbcpUWD80J4VRJRzyzRyKLc4iQQ0mSU1H+y2b4YvUVU503Trk5C4+P9IZ/+l+gowQKTj7rYSiWxvQa58qVBRe4jnvSvj45NWwNnQy7Z7VDsrPluDPPZZgqXIcVMKfoEuQAK2XuMLdq0pI8/xM+FiwDU7Gq6P/40QqODMRDC6fgePfH0BUw0by40Yudr+Dhw5bcoFPKX/afhZF5SOxuVEcElPryL1JhDWXxeFBz1l4rOISF44h3quxhrZ8WQVrq7SwumsY5MoLkXjodLz1oAl+T7uNu8bvhNasDNDfcJa0H4pRvJIIX6o1gtI4UxK7H8fGI8Lgooo9Z77ZxIEN6STTQRh9YT9dqv8O/XWKsKl2GC1ZtpEvzrlNk3aVcPGteAxudePS/J3omfaP5Uf+pqlO4+HFfx6UqOrA/6W/JfFhRbSwqx6UprhCm8hBWrxMj0/4/obJ80RA6FINHB/spO09m2mkjj/2jryFDzTqcNWJ+XhpdSD1vL4A4VuF4W78enS+KAW/Vt2k4Q/TePacFnQOnQofHVaCk8le7llXhwaGk8G8MQHfvmzlp8d90dlSDEd9XAx1Nfo0a8FhuORWDRGP7tBzcWVw979MIq/v0ArdNDz8TYF3PJ3PZV5zYL5hGL7HHJQ7+xnKxEfChF/J7NHbAIPhwlAluxt6VPdA2A49EDq/jPKXnEQpuzRoj7CCy6UvwadgJtdffk8GtY4wseAwD5yIBv8/43BKuhsvE24CLTUTGGcvR6frtvCarYqs920yh6fq4LelNzBWTonizT7jt2NP0DNbG8ZKP4QC8WUk4yfDdwO34kHdA3gpVJjfbK6nwNXCLF4gh8FpArDgyX6SP/gFR3eUAvYkU5nMZY6kQH7dogQWURNgmloIPJOWg+yBHAjQ/4nbjp6lXPt9vMInhuXP60JisRc/lt/EkwqOc99eBYBH0qDm3s+vrC5C8+fR+OpdP3nsNMJ1duoYJKPOr5d6sYyINHjsC8I+3Qskb1pH0fdWwO8GUWpf8wRC223oxbYKCh14B0K2yqArcp8H1inQtZge9te/jtERkkP7TQpvLHrDG2eegu9vwvGKugQ4CjbygwxzvrNlNX0hT2opU6IPf2bAdvO3tP7+bzIUk8BxUlpwQigEMl/KoMCZND6wx5Ik/G7xb7kGmDWlH9+sPcoZ7dW4rHQs+KmIU/uxZnZMGqBqrUDW+SmB0/eo0+qmRxQavphqXVtg8Q15ME17BSLOa6Bq2Cx4ABpY6SiMIsOtUKn2OQVPPwmNfrk0eFYPTvTYQsr6TD4YS2wSKoQTxjvik6HMka7/w8EGkTDR4SVbPreCgOmTsEjkOb6InAy5FzoxPFueEkqf8vKO0ZgqEoAFJ6XZebo2+Ax5ofL5Ljph2gPCfQ94+oZ8eG+yk8eUNWCSo+eQjy7Qug0A23eOgamPHuPOlbcpYGU/56fnwEJzTWxSXQ+HrEx52ZsH9DiHYeSUa7DrbS2WrQjFSc/3ovTr+RgEKXBgxDhquaoIRrZ+IHpABj75z8I6z6PsGijE0+5qU5ftXn6QsxZm2DD/jF9Il/eX0MsHmrAkZSiz9V7AjBIHIgkbGnkpFg7t8YSxmVLw7MREkmu5QgLpIyDvRwLvFB8DE/SyQeHCaroe1EXfAl9h2rW3GHVKD8s9G9B0mCYYaR/i8rg0HJjzGkyO2dLZFcvh8owb6D34DJaduQ8fDrjAEgMTODvOjn7seEnXTjnx7g33aaFZMq5qYnBIDMY7uQ8obZQtTVgpAB0rWiDl0UkY6J8O3Q+3wtY8N/6je5vz630ANcQ4+MJtnnJ/NBy6vh12P1sLEse6WPb3Z7jvpQsyKz6ShcQBmuayiXMcTOjmYVFoCFoEqWecYeO+6/haIgzpUA4rjFiPoYfm88/TlsgGtVDbMA7+++rImTpvyDpgCw5mnmbFF6W8bqE/7NOayl3/1sOd3WP5l6M8SIjexRDda9QQ2cjucz9iVrgGCe4lDloRhKpCCfji8W+802EM4opb4S9Y0lGDMNZ1/4TheU/QYrwFr1A4DRWVi6g4Xojf9ehA6OAdOqwgzoU+rVjrmgCd0v0w8+kr2JX7AwOObqFNfb44OdES3CdI0qERcvDD6h7tG6/HHg924bS5PdgZYYO7eh7wRIdZPFZbDIQlNoPi/Pd859k07HQKYOvj0RyutRUUe0ugMHoa9Z2IgZuzTcDWThlelyXwlSvXIO2EMi20DsWvWISmRZnoTeXQaXSQ/MwIHljUgZzdK7wXYgHCv9PxsdNmXNK/Af9MnwzJw2fCNMmvsNVHAKx8X5LbmXrodU/C6c6R1LjcBCVeP4bfQ+7RLI3EwqY+jmnRh/eJhznbUgLlXszDNQtCyNPShCQNPnJ2ryJFS7VReO8sDN8yCba/GEcqk7tALTwZO8IA7l+/A3DGjLZkttKm1INsm1VJ/0JtwX6fLL9pm8PThJrx2Y1DoHM/ln7sXgg/PtjxeKFyaIrQ49UX1MG87yiPeW7JmTsq+MaI03g5bCTG7FBmrefPud14FabP8YWNajpQWfSJZ84+gHYBE6Hm7l92DJ0E5eEP8UmmKMcddIa7b/bigTJ5mKjyk2Z0POSMWR78MbGN562Mg20mXjR6ajAp28ygVEd/8jllDo2Lq1nqRDdecDUlrY2feJmNHQe034PMLldqzK9j1x1GmPBaB6yTGqjp0nrU/hHDmxpm4Pzjf2GrRSALFMXwx9gK3LPlGHYoCcAIv0b67+Zq3L+6Gz4JV5KgXwuFKqpCgvJ7GisWxW4ni2DtdWlwEJoFHdHiLDStmNvGNqPJ5CO0b+ERzK4bROvHy2H0CScSHGcLK8610LSvN3Dh5XpQEH7IgdlN2CW5g1acnI27dltxfM1rMlorDAE30ul+5kQ4H2FM87MrSaU0lLJPLuGcNepwIOgo2vuthn1XrCBZXIc/rj0IPgoPKbTLBI28F/BaS0VwjtiLI5ZJcl7Gfj5fy9Aks4Abm4Jp84UDZK/ziU7Cc7RrOMHJ3umoZ/8d3oxJ59OyarBieRyk1/6F2QJaGJvez4s3/8bFzw7TMW8RLLhmQkLHBehjrjwsNkvl7y4fh6zXy/8kC+n6zjpQlorhBb0xVD/+Prg/n8dZR8fCksQE9oZl6LxxNY+ZuRLWGy6gMYNlFCb9hLNW7uSXHm9xm5AR1OU0QP/fn6AkpQ23X4+HwrYhy825SAKik3HQKQ3vF9+hUfUy4GhqxO/mL4TLrnvYRfs8p18+ToE/19KqPBt6XvUBnl4IIKXParClPxjS1MZQvFEabKmZQK8DXOHTzh8Q25/CLWNPQIdZE/ctFYMfH79AR+EakInV5dvWT7jj9ivMpqVYLfEW/1le5yq7eThMXw2O9RJKXOvhhceUcNP7EBDTTYeL7yP4VmIYH9Efj7cl/TE0eyzcwQ/8n8VzdBMwZIvv62BXjSjdfaOK4SH5HHG/ioNCxSgtUByyMvvZMEEUTbpfgKFVKLefPkCXUn5RzuqJcLklGBL1DuHMcglQiO+COVYDNHxXJ+v1E3Zu8kQ/9//A4Ns3er0xDPLd1LlxvT4IqxVQ6q7f1GMaDgbDK+HS9UPUfrGK2+KG0RS/crBM9UIFFWNoj3xNkvmdMDo6mb2iO7Bm3U8o2kXs+mox2zVPxmllM6BCxRaSHEu4zG4VVfoDH9XyxbMea1nVN5I/bhJG4x3DsHORHJfeZjh60I1J2ocFvDvh/g0Tfr6tAdPiPuAGqXbMP/2U2gsO45JYAWDHy7jI8wQ/LzlDeWLNNDUlBFyexlLJ4SDaYx/CXfE/yeKWJOACP/AsGmApjV20uScJopS7aOfuJPyyEjBt8RmOzjVit0fq8GBVGrXw2CH/rOIskSDWykR86TPkw+h6sL+1DBMN3/H4NYogRPLoEHuDfn+vpdnTHoCrmQ1sexYBL+5fxy8G6+hskj3OaBSAsIRRuP/Wdwj4Zk37POPwTZ4ZfcsOJ1n71bBCZSH3R7VRzUcL6B19kFIilbDY8S9MHfr2zwtW8Lg3y7EgZDpZftzJa7d/5y3vtECuJoF9bkrhl+FZJL5EkONyb1G3zlq4pGKCMvHGYJalwMXmAlA9ahl9uX0D0qSjuWzLOraaNgGn0FxStDqBw47+5uE/9dn0uBZ0rq3D2aLb8e3Kq9Cf1kcCEb/I+lUeWf/3jA6Ma4aR5rGwR4IgweMb7Su8ynp9anzMbSEKW8+iiNA4HjSowsG7KnDJIxcs/IxA8Iwl39j6gDVSkkn7wC0+Z6kANT9nU8yJSNodkspieV78csAUJO89QCuBm0xz1flw0Fdck9dK+kaj4HgxUFSsBT3tcuIw/2GgN3s+z1lpyJEPDMFfbx1eSugkrxPv8MRBT+wc/pi261fyHhFBODqmivoMvlFhpxw4RbVThthjkpxuyf7LBNlBxo6mX1wP5X+VQUE2kmQ1dnBTdC3deV0Gq+Xvw+o3zlBkW4Qv19+l/sZsWr/VBgr2FUBHkhZuGi4AfWrreO9iFZJ8HgKVMbfJw1yQf/iv532/JaHojhYmZApg1MurEHq4HdaHadPjEGcI2mnM2qtf8uIIP5wbqABSX4PYftwotFT/Cx7L9vOOqtNU87mMCvW34NmHUeQZ/pmswxTB49FB7v0hB7qbWqn91DvMeGVOKd2a1JFwnlNCzKErTwFbpsnCjfZq0ukuhJRjmaBVYzj07jws3f6bw9zFOH7nRtjhb0xlb2wgx2UvK7xRopRDdqjcYAUnDVI4Oy+Avyw8jt3PGZ5gI+pHKUFZeiRkHLpCZVmLeMWkr6j5yhz6LgTC4NJo+p6UwW11NmBdPuT7UhtWtFgOGT8WcqOoGtfduQEWpi4w5asFDyyQxcQAMdp2FyC6ZyfNMZbDcN8MlN+4jra9KKebYQNY6+OAM/TewccsxvvJQ8/7LxyzNjaSWPEAvep6Tm2iZdQaXINXTG1xeNdUCvhxB0/NImi+18QWmYtwu0gI5dUWcuEUAX7Z+h+HzVhL61YWkLRyC7RWjQHjDQspyHQCGF4WA4OOqVB5s5+WO5yAo9Nm0LVNdZRy0QzGzjOGE8mMP5Sn8eXRhrjhhCl5LknCSQ1bSekPQOhiNX40eI2dNdTgSK0qvY1iLDhQhnvuxrDvPRW8cF0KZl+bxWeq9kHnsGxau3gcrDPaTmvGPYaUOjNovbAOrq+TQEMaAJcX8mxlXE1poh/415Fh8DCtAkot59Gph8g1M9+xZ4ILfngphwF2z1nCJw/z4/bzRR9NODJYQCP07/KeF2HALv9B4If9vDCkm2qVztKctQ00TkeC0hUnw6IPcuCet5btVrdRRE4bLL0VRDuPb6U9FYto/K8Ssg0IBTBQglavNozsMqQ6wy7cP/02xD6LpZVPPWF8axTIWetgAK+m4AcSkLXVjZLKptLN+P0UtXUCPZ7gCJabutDkvQsIm7pDYYQWlzoqg7n0GMgb5wpj7Wzp0lctTD1pT5KzxkDC6zn4Q2A/uPT+5EItY1DfcwXP3CcYd2wq9b23oN17M2BDyzS4ca6c454q8hTRT9xoIAVGFv9gipcHhUpV0+eZiCz3hXZOHgFX219h+fxHsC9nGVUfFICFz95SzI5YnCkhwJesSrnA+ATvWJbEof+OwMErL9kzzp7vH1IHM60IuLi5jWIUH+GImVl8oraW9H8I0M5yPd7cr8afN+nxWSdLWDK8FdXKxqCQeCC7SndSYeAXFu5/R0v2aHLoGics05pH00sEQKltLLwtcOOzl85T7+UR0EMDXBn+my9N3kN6wbIcrdsBkrZKsHX6DAiedJ3uZ43Dw1enDO3KNEj9tw/bHnuDUkQlzTMPY0mzyTD3RCsNtulTbu4qPO6pxvDyELi+z6XK/uMgsf8fqd4VYp+7JnDwzGXa83kyfJnUQbqOQSjRUIBPj6yi5rdhKDP/O3pu90d3R3Uo3/QJb9fPhmGvvGmxvAM9+SNBPXYugBU38de8WJA9OQX07CfBy1KC/WcLaZfLEnIYqYHx+I8ismPxyYJueK9/mB2yZmJ+sT7E66xnWfNqkvI+xeE3Yqn73SAcm9VFOhmPQF/djcQKAjlihDAkOp1mhQMO1D4yiq4O9TJduQxwne9OU3R7obkwjUvM5ODsZyOIqVoLFuer+T8lY5j9byInJPZDsuBofqb8Hfac1gTzD7+gzk8MwmOnobHkB9gQkQgb7HTgX7MuS3SF4Ja5JWyQOYM1Z75EaJKAYu0BCNe/woYTTFBoWQTXzarFWBoJpnICGPIzjSaeHg7LL4+CDPsWpIlekFUyQEL2lyhsZhrc/FUJdi++wLqrXdz5qgVHK9iA1MdY3F5pSCKPnmBY/jdQK/pMRV/WctUqN3y7YwEkhrrwrixb2KObQL6Bt3hG21FY0QlE2W54ri8TbPodMdH6L+vsP4TrZRRBuEkafbsaeHTKPzA7swIbKtbRN6scXnQuGiaUHoPq4ZvpX7gSrBAkclCww3qjeTxpuBCKntDmk45/oN7UDrxW3YPAci8Y12kICy9spzMrVKFkVDMFzl+CGzbWA4UkUcKvVZR/4ymsFxakDcXK4F7WS+ZBauie2s9n8ifxm0mjIMXbg40k/hDv0ORvKYMoU6wLgoedOGlELeuO1IAFS2Rhx/vNvOSzLrxaIwJiOiF0RnQyx1WLgfaJIBzz6TD+rK3C6Hwmubge+LIrENxk3vGHaf34uCIOFG7Kw8Dcf6ywANh1/mEoeabHp+2OgUJoFzgVbMdbl47j2klNbPRTG3Rr5+PN6svoHOLJpdWpuPlQPXXqLUaRIxthl7ED/dezguYttoJDhXNJqtEGdvtHguJ6ccrqR9Su1MNzXekouX4JZN14wwFtKnA7ZBXNEHuJ3/cspml/P0Fx1TGyFLwCrdMmcrBbL44oLGarw4ZwPWYRzk84AM1nmsD9w20IUJal45mBFFB4GvIyhVnNvocark6AR6XBsG/TULbRcHJ514AqEvVDfm6lpWO70X/EkB/t81Atzgi2/1HDRIVI6tiWz03yw8Ci/CleSyyigtDvHOA7AqPV1sGIrUpw8I4zmEiORpOw7WTeDBB51xq+TM8hzcW5sEn8C2dI/AbBFQbgJfADF1U1cr/MBpjhZQLiccHsr/WA7W/94FU/oih32V5wDNEH91M3+N4nPVxiqsfyFntob3Mi+HYH03AzbZJ26KOF9/3x8dFJsP7dATwW7wSbJH7zWtuHeMS5GXKF/WDCTG+ua/fmac7dfPHXGDgsnIuvY/1hW9YcehpQDrdNpTmzegSnjHJl7cv6dD4ilZzOWsMFP1fWrBdn0X3OYEftMP0/H7ohupRvcynzuZX0d5w1J3hMhjNVYhz47i8+qn0PkcLZ3LP0E/j9cuXhq4xpXqAeFlVmwYtpDH+XfWFa2Q4imjtB+08bD3xIApm9l/nolBtwPuYTzLcvgXPHbOH99ad8MWk5ledMJfmuCuzpmoChUqF04p46TnNNJUktc161xQwU/O/hmtMdqKCqRzf6b/NUi09wYrcLLM/3AJmVa1j5wyzu6xYGUE1lrs+lGX5L4Pe+ybwoIgaF9sbh2+dSdGTtOTBPiMXnl0XB9L4H/H0yDyeP3U/Tl/bCjMYD0K+9iiYqX+dhsxPosocoLs1QBzkVUbjSfYa0r4bjpRf7EJfvgvmqvvx83VOKalyMp0wH6FC4ODgvqeCr4w9h1MO/ZPK9gkY9reY1Xp9w+3g59ryygBTUHFjlzxiQeFYBUaKqpFpTQmpqw/FTkwU/vpDF4+XuQcKhkZRwyBXiF4yAwzVD3jicSYZLZ8NNxRaIMpwGR2c+BDp2HP0MFSDx8n34SoIw9/NNbtq6jl0ydsHWkmlU8coPtCkFui0/Q01WJRoM5nBYvi5sGL+DAm4+5sc+LqSsV8+RAs8wdO0kLvY/BdqzxgHFV0Fv9AjoPvqTZM/fwWwTcUyesYKDru5m+2mt2LrvOrvsmks3y87SjFYtaLLoRo4bw7foGun8twDuB5/Gh5nENjUXuWyeJcfdSQaFqHFQFtSHNb0mdPV5CjXJduMLhdHUXb6EEwKlWKLcB7s0dtDRGTYgMT8FHqUHc/kRcdK948UfPIxY4sMjaPHWp/Fjr1CrlhHsrlaD0vRy9vuQSBtX3qTaAWu8LPAe+r9ch8TX6Vh6+heaGT3HD59toSKzghW9voHy51s4IqAP1t2YCm2mk8Hgoypa7qiE7xfuYWKHCOw/1M3KFQ14KmcVjNWsZUElS9r4qJVzJwnRisx7LMpHYPoaXdge/xSWlgVQf4wx/n0eCO9PhrKmsC7OuD4VZAJz6YLqcipOk4T1H4MowaWc9eqQqk8u5TDddHTzmMLfYishYWs3znR7QjcmCMPSI1Ww1PwSq5c145XHw3nzwF7Ye0kUpi34S/ZSEvDMTAtTBkbB57WiON5BCVyX3cZDp6Igw3IeeL/0xw/bRHC75U+cdN0TS/aZwPG5UvyQRThjyFNfPDNhc00SPabRtKO9AY5caYMyAx3oiRgNx33jqfTmWdynVMOtRjKgYHsHNWxfcUjnLLYZYQblcvKwNtUKbL9HUMO3fSym4UZ9qW9YdJIvvZnYzO5WSrjMyJ3v3esZyrzxELPlOQSeSkKDiedxVN5o8h9VgwejDSHy8jA2b6zDeK9qSuWRUGh9CpWGHPRKMYWeLf/AIlMHOPiAENUv6gN9o1n8a6wmvTG1hhizdsq5KI3xm+rQetAO7HOc6ZzJPPIpNObk+F3Yrx7NM6NM4FeSF+q4mqD1oWZqU3rHD+eUoWrNSXQ/oMixnzToce8nNjqtAN73LrLOjmJyi7TFsEAgnUlr8UXhL3L91M5K/u9hY99ZyjwvCWOq/EFdF0Bj6STQVNTkgvGHgFWT8ch6E/ZPqeea4UAy8pKwNbeS/x6I43svVoFhiydlCSVRaf4Pis/byAXpfyBIOQpPPLQBG8E0knUX5yv9jZBy4xBVRNrgg5AEKspJxWJKhTMTEnh//UT4FKNCy6df5N7sAZpv3kAbp5+GiPh2XnvUls3i2zj4bTmddhwP6+a4QPPgI2iNNUa/ia/hrUsrzWvegS9yRnHrsKu8MrCZNY6MhAW3trPdl7+UF/eHh4/biUn29zDivymcIKDBm40/UXiBCx9Ybgr39xjCFHjDG926OFAoADjRlR8ESoJL+WN4fy0PnW1bKU5NDBzbB+GlxTAY7T2IJqna1LXrFZ48PUhTHnZQ9RkD2nd2P/7uEoaxlUKU/vM1NqR95+ieBNZ+fYkPn7Rnh/sbQefLQdyluhB7Mk3hcawS3lEJ5Ir9HbB8aw1ZSbSx0tDub/l+hvRHRrB0STT7jZCAXeNm0PmsO+B62Y5DRvqTRU42yz19SIuOZ6HW5v24YlQk+gZoQYl3B824fZKyrIWwJWsJOjTZ4aImoBlji/iAWAeoTJgJW5bpw6fMbCyIRVAU/YnPQ5rgw/QzqOhgjSPWh8IUQ3XuHEVoW28KUZv1INrbBP7om5L9haG98W0ayfiGo754P0WYHWVft0Nw0WkcWOxx50T9P2QUrs+3S9vQcPMMnv7Jk+LkTLn3siyECa3CfNkJsGhDFRxTtYEkhRAqnnqHb6+sx80qHqi9q5Wvzh7qC68EeYuJDdxRuQ1CLh4gOG0LholuoQ/XJpH3RVcY6RdHDusiKMSlkosI4KvGAvyQIQ/nLhbwlxsX6KpOMNr6RZDsyW249agW+bRMwnwRKTgXkk2tMwJ4e+c9WGp9j/JHxOD94vVYZHcFZ0bmkOrHMLKtNgKdHA9ckfEC/8sEaOzcSRveu/Bw4YfY7bmXDy8Shm1ql3lHnBCU+8bx8HNWvGbeYy7LNaK3hQfx0a4k6Pb4y076fths9gf3e4jD5suF3CWUR9aB7tz76DQvN94ADvU91Ph0KWZNC6RXur8oL1EHdhYMQJ31eVwVexv2T83nTCU37C4sA8mpWeS1ewp3KD3g8xfVYf33Mto5/jTPmXgMZeWCeKagCIZOeQdFyacoUa8fcwPNaYKBMITxH15y5yiUXPeHhxm1eGu1HvwrSuaZ056A1kkTEvJtoBtL1cE2OJQdKvI4feZySJFbyobd/phcWglWehup8dZBHKdyjHvdjGH88SsQm7ICFuX4w07j6Sz9eTYaR7VjR6s5peBwThjxF/a7KIBAYjOJVaSyrJUIBq/dD30r4zh37XwsTJjHplp+2F31mtpqbWBZ4zYMaP8N4uq98EbkOY3L3MHy16bihkhtirC6hm7aoTDj3HgwXPOX6HgnU+BqGj9fBa9N3kIDYjl4oqkS4d1z3r8ol158M4bC8M00W3MnWuj686O3v/BWcBKk/BOhzcOH4YY+QY67OoLaLMVBHGyotOMpBDtEwsTJdUMWlqFz+8pg4MUV3DJOAqvCP3NJC0K/pBPZuufy4u5ykq3dgAJbmnhSSjJXTY/m+J2hWBMqCG0B6lCkIkOjVn6G0aktGF7QTE47xOGp2kZUshXF59Jrsa5WDXcuMoTFCj3UefI7Xq3RwTfXR3NHQxBNECPKvzOc99WexAXz7tCUQFMw3e8KK4dmry/+HesEy9nl1l60kLrB2psu4LEJCaQ3poyn+QjAYnMnPpDdz+/eKXGqVSWIGLXSRPd4UOmqpaDWLPrRsA1zR48DuWmn4dOIcNZp7sYNzsug178Arvy7SLXum2Gf/ApUN06CJSoiYHHrKNU6G2NZjDm3TJDmC2abSffaC/zitRUdGzfixKOxtCxECnbORtQ/4Mnbcr/z9qld/CJxJ2YW3Icju0VAwWs7eWirIVbYgIzxXlSe0wtyq5JIsmcd1UdPptrXw9ljky/IlPxFgc6jvLFTCLzjevBj+1ZQ2HoUW2SDUefmXvTNdmDVVx3c4jyL46864ngncdh5tY2spv3Hd7SuoMDEFrgiGE16v+VxoZMuxIw4Bg5pcyi/Sgqmui9huZ0n+d5WaVym/QPjt9wiIbdqfipaRmtXzQe5BavAw0EYri3q5JxkeYyXtCSTyZ/g+Kty+rikCaYGC8KNbAOwAkUMixcDT/dMllg5FsznJqOCrDLcUg3EBQeFwXrCaLi6foD1qA4fiunC7uPC7Jm+CF3PNdDo163Q5FmDi9QCSLK4lMqfHedZrrMp/vl4mH9bFb6J5tJp9d1gtFSb49aYYJNuCWbrJJC7UBednjwMVfaoQpHjLtgoowlPTtrhVbnH9G5KK4yMiaUKDONSDQ9Wm/WbReQMYPidWnQ3uIaT7r2A9o1f4b+qn/B4y3l+kTwRZmspocyivbRumBW8kJCgPd62dLZWkuYn9dGuuDxKmf2S5AaqeZ52F+x9J8vrKxm4cRL3nniAdy8I0RHJC7DJuwSnuwjCpvB4OnhfFY8a74Dag9IQ9ewodkY3ofFIT1psuJs+zLrDZg8CYMdufY7emQra1/W4cYcldOtsg0HBVpAO+kyioUowe7ARYzcUQ/88LQhPW8M4dTnOaVcH0xtSAA6FkBUliLtHK5Cfhh04/DzLX04cxrFGVuDjb4ZGhyUg8NBhlBGK5FJlBdob8h/e95VFp2ItrJWK5qpuM9oqzrw3Swhyg6xx36GZHPnbBs2KWvhVZQK9yNEB71wRnFzszkENv2hTkTgElpzBklhFHCmZCLcfjweJj4p062A6RW7Lgyb5CnjmVUYij00h5YsppFu/w97ZB2Ghx15cOsMXysWdOdVAEdU67oH7al9IDVOCeRWSdL0pBL7ee8+2J2355m1TmufuwcVGPnzHZx5+TjDjOceFIHqWChS9XADx8gdwt+g02DIGKVAsEAIKuujXh91wRlWTr6yxhMdnjvCnj25kJHKI/kEyaobNYY3mT9i21BuuH2nEPIvLWCCuC8sxBS+dUqXDJc64RbcH3c7Yo6bBYX6xIZEdAxvJuP4gDnuiAd3nr/G6/vtQVL4Qp26ThqGFSlaBd1DzYgY80i3iI1tcEe5OBLknSfw4ygrTghdAdkk2pO1fx5nvNKjgfC8f/1mDkiWNaCY8EX5F19Ltiuv0xNoRnoXEoFhGIHy4+ghdJcbD+BOBNMGviKeny4CNjj/m9qlCWNQ2HnysiJNl7oLgVUPKv+BKF50uw9/BPrpXKwdxtfOw6fAu/E8iARPEPbk1NwFCs4ajw+JJ1J59ggUdxahggSTs3f2dvX8ZQki1IUDGGtyc+JfqP2qS1vIGrN+XzemciQrLx4F1cgTudWrB6mlKrNrwFmyEF+KbS7KUETidtdv2wvXN+9j/jxII30rE7WWSmCObTB2hgziY1winhgXiqS3BvNf0BZ5dqkqNuqZw8Wc9RVopskz5ZirXIFgV9xOL16/Eb96PGA54k76gCN0okoAncsJYMbgI1cvOg3fQTEonAc77EkKzpmrxTfE/3NaURml7xKHVRgC6B93Ay/Atvb12ked9ugvJya6wUKiDS+Kv4LS/B9nJUQUq2neh0b08lqu/g98SqnBZsTypF4+B26Pv8Lrr+aycrYIShaOg7MBYbO6TYU+pUJp2fBMsrz2GD+XK2TJAD181v4JF46aC5aA0LCibyGqf19PgrB/k/dIalGcYkqXEGLIXSiSuyaEQQ0uomi4ETyuK2eCLDV3RuMzvbKZCHWjytrPCvDSpnA8qBmBbYD3Gag6Dwe5TpLT/NAY+XAXqFpJ8+os3zXH3gF9NQzbcGoCGd0+h9HsB+HM3GFIn1BKYV0PWNQlQ9jTiFysCuTw6CFrbTblIrg/6nkjA1O6x1HVeDVp8XEnr2GjQns68sfoP9AfsxqOOnjTBtBNF22TB+4QT5ijOopkLtfBv8WJ6JKYPMoN7ac9ddZj/4woXNTylrbvVQGjYGriRtQt17CW4RMwJHx3Jw7nqKThnrCxn9CkP5dNG9HksDDO9HLk7qwlzE705rfQfvf2zFb0ObIWfzY+wNuQ2p4sYw7vjAJucNzB2eyD/+ICiXpMhSsSLNsZr05smHVgUrgaPjIZDUrMy1If2k4hiLzksEqBb3p1800+Gvh5FTv0+hQbmr2HrWc9BergWWKfGwuxUc4RbCZRzWBB3LUygtCxRVvnwgvtOPOF4tWDWblWHqrvpIF1ewe45wD2pc2H7+a18wm4imV7PgAa9lbRz7Ajs3C4KnVXi4O32mSrMV0CJXjs5+Zjg4k9PSKH7Pk/VQ9SSHWSfZwDXfr6no2NUQBTmkGVhG0/K30AdY57jyU9WZHTFDXZ8fIk2CvKwPeIIbB7KjdvKP1Hr0SOIWtDO52TK2Zbz4eVKC9be85YDdCZD3eyT8OskQvjV4/DPZADM/53ks/OMWC53Hn9614kvR0RgwJVxsHK5IN7VBbr7aAduDD3Cf6evhy2jXPlHpB+VnizG05eeYWvCZJi98yOv+xFDwTdesZAssIJAOC3pdCTeshf07Igt1+Wi83Et+GSiBP8+/IEv84rJpL8IlJWTeZzzbKybv4WXdiviwrt6PCdHAq5u6STxYhE23DpAHR/N2XXmBnYWCASlg1r463cHCKwWo1GzxCDM4jvl+h6Ey31VtP98HidYzYWo3Y38yHUT5uu3kFaSCYz/oQ7K7Vcx/7QM3ZV/RV+a4nBreCKYKoyBXqkr/NhLl/nlAzCtHAtf5yRg1vZIFIrNR6dfT+nRpz+wYJMoJdfNZ5GlF9nIw5iSE0Xh8YZiFFLux5+xplClvBGDEmMgxUafx42pg5F/DXH0+/NU2DUBHl1opuw/R/jKyh9YrN7Hmg3L8Wq9ObyvDEOtpU5clVXIBWcmg1m0P6p5zwJ3iYWwPmw1HFKxJDdni6GetwXUE9J52tP3oLJSH4wm3scLBsPgons0ZIlvxLHbhGDpUjdKG2kLN0/PJxMjR1wdrAWK948QhKawxiwrbFoTRyISO1m9eiIbblIn/a9B+ObXXlR/oQnj5CUxLEUcDxk7UZ23IB/2lIMjcJ+j36VyUv4FOJYmBxXRJjD/20b0ShsPV7IbMfCJJOyR9eBZa8bRsBNL2OLiArRb4AL3virB1T+38ZjXX/iiaohHE3zogtVwSrp8ANsNrtJWKQM8/KsM06/KwS2nKI6zrKfypUEwong+f4vYTiYOJiAtvphGjqihn2Or2VFeEiYqbeBNN37xBo8f8HhzGFXbenBk4ldQTPCCu4PDyNLuB+kP9TrjlmCWkn2EsRuH4VS9dBJSeY0Xn45k9xFPoK9uJhuvr0MpFRuw3E9U9ucWnnU7gf0d/6BQIJ7OxZbw+bxgqnNvZY2Fb3j1SiUwCzlN+2a58nhPBdLS/w+WTx1AKyMmt6ZF/LconOp2FdFiXQ0Y2b0A34e859RLmTTuWBrbZU8mgXejsOFZE7UPGwMPphThqQoTsJfNgXuzJ/LD69sAxO5RXpsYpL15CB+EnnF16mJ4P+kaC843AjVjJdCSqAfbG8chqLsSn243wTFnJWCPuAh9gxC2rWimnDlaIO4kBkGSqXiu8CLMPfiD/1YH8fhFCbD7IuH56t18THcHLJNQgRcquhD1LYfO5d6CoKtCNNbBnLTsf4CqpgokOzvTs2FScGDfWJj48Dy5SE2lDU7CXJi3hMxbOsgrchiKnvbDiFlnwdGuERd/Hg0WUztwy11JUh9YQLk2ZSR1cTQNdufQxROnOLKxgy/qBFFrynAou7cCE4UuoUPtTXYwb0bLAV8aGTuLikP6ofpHKadMP4JlIgqgOc8M3F+lYH58G92X8QWVU3WofXgi3hc+jy+3pWKvaSv4jtQAO217SHY8gw7pv/Cm/W/sc55HZ14bcr1rF+kdNOT9M0bBvSny0P6tic7f3MHOptZU3CxDpZ8Xwdu/N6E6fS0KbEO2bz9PnWO1YXPkeda4d4Y023RpXU46a4+T5cWNe1ki2IE95l7Gqk11cEFfE+oLGqj2lCqPdP2ClY0n4XnjcCq664ICVS28pMWBWtpbIeahEWj/scaXu97jR1svLvikzbOsDHG7qAt+iTDjvUGdZD8uAW58FIPfC0+C5+U99LNLlZ7d+I1rVXr5yMo6NI5/QyNCtVHuP0nMGKENMmsXgfqbUbAqLApLKq9RQlI1xk74hN/jfOnSEkcwP5qIRhelQOX+UwioMIcFpjoMNeq4Y80u2KTizMnBnpj5XRar7oji2xoF8Mk+zxn+CJl25zEitAw7hJJROucnyBqNwqly2dRjeYymoA6MbnkBno6S8IPns0CaDcUvyyKDTYJsIdAJAw5JtNs9hARuTob2sQv5YOgOFO10YrB5hnYj2mjwqOPQffjLh7ZPgL7odRTUpQB1bkYQ/a8XdfuSIdjgBBXpRWFx/m2a+nkftArIgVncc+rrsICPM/+DWz5SRPahLMYW/PCwCTy0lINm/6uwtDOIPJ748NtXcpA+KQ2m/ZImU73J3ByXAV72kbik8y8c+TlI7nf6YE5xIrVoiUDoTRsaHqREw1RukUg2cHmyCN61voLP+qLo5OLbtFi+DvYkC8En71Oo5/QenTbcwc69pWyx7gceqcnkIwLnOEPaH7+WXmU7E1vQ/aIDLwt8UCNfF2teZeHR8VJ4zyKDh6+fyy7WiOfn++DKfGlIXfWVrn2P4Ik6h2BAThDvD4YO+X4d3qxdCDapr2iJSxvPk5eGUcqz0EL7EtarqEGcmiLnjIuCwtn7ua+vh0Rc3LBCdSVNdB0H9Sbx/PLkOzo59hErNK3iupDb8HsUY3D0cpo+KEduB46C+BlFyC40xIhMVQjYfx1cfRfygYgimFI8BzLbRair7y6+Ec8HjTIxaEnSYOHxP/mERQfkfargqNF7adi4Zla4+Jxy7UzhQEMYT988CQplKji7pATmRiwj+6WXsXz30D0a8m+IziHaF7UY1galYcdXLRBL1OTW6FiO+VwA6vPtsc4/jJxlz8CSK9/Y7ZwMP79xFaPEAFq+VqLHFGm26h6BcwZWQLb4d1w3z5FZpgrKppfQ3E2qGPVdDe5GF/LYnFv0/OoUfm/kBYFJPpATLg5vb//B9IZYWlGQBZ9FbeBHqg2unvUS/DpjUGu7H0xcfw8GEuzRp0kc5vsI8HdffRhTJQgVU33RJ0OSnd5Z0/6QPWyyaSStzjWg53WNbDbXGH92POeQMgE4kUI8Pk2e6ke8x+d99+D04348t5Poy/UImvn3C13x1iNbRQmQXZwHg7u+UpiaA2RUWrFY+jtYpDaa1T2Kad8kX26dvgqUC/XgvxEjOUTrB7f6vIOtEp34yu0QVFdOAc2Uo0wC0uT9dDvOs5aDK+vewLFfxeAoY82pX0pgy2U1+PdoEZ1p+0jLLzjDHtEKyJNTAZmYk3Rt8lF2NJsGn9cpkbDoFzo/MRvfVklT+3hZNljyDx4OY1gQf4+OH4mg3WqK9K3BFuw8z7PvxRTMLq+A7DBv1H4fQO+HjQSNS1PJx2AO18bFsgjFwPjbI+nB6Scw7kIR7rYeBIu7w3m70zCAZxmsukSE7h44TYJL3Ph2UC9EzTPl4AmZXLvamQY7p4NspjxMsk2BsfaS/AALqCOI4Z+ZKp2pLuXo0Zro5DAVbO7+hBsG+iC83JHMcm7SUnEx2myejz1Dhitw/g98L92i6Bl90Pk6lxoXjwbDvD4OGeqSR96m09fV2SSvos7icfv4YMMVqDRSYxGhtXxIWQ1OSf2AtMqpkLXXmuSbLsJxOWd033MEi1PTac6zLPxwoZO0syaB546V4KDzFi9sfo4JOdn4UkyJIzXVceXRRlh87RZoBB/jNaqCoH9+MxilKvK5ZA1E9U7ys/elbV88ea7rJfxPcgEYr19A5sKaYBrrx0WicnD8+HMoUt5Ol73/4JOkK7ixwxyOByxB0p0w5MLRsNHrEQ4/dox9QirhSeVJVjLwZ5d52tAz4AJ9ItJY2lGEU2ongr/rcRhTXE+LZG+TsuRo9Gq6RQ3LbGDG6fEw4+AR/PfbFH+dsYUZ+WcZrn3mB5vG0L6Ryij4vJUfzQqGjLwUsj6/Apae8qP01xPhpJkYuv48Asbq11nn6y08d2wUp7qfZ2mDO7RTdzfnldzmpf6aYC8yC95t68cKlTgI7Xbnn4lBdKvaGa9d9kXpyyH0x6qSM9ZaQFTCaph5+DKornXAacvL4XDhGoz/U4XxdQYs81CO4vStqHS4NLz9tAS+mqwiDVGktWMOUk2iAFfL5cDx2QdBWzEUDq2+Tw3to2B+zj0cfrKelu16iar/TpJ83X6Ii3rAT7Rq6YNrBl7IH0MfZYfOy5NUMHwXTre2nOFeyY9c5zSLYofc/b7dCk1+vuQFTk1wab8kXFYxhLjpslzQ44eOVw9zQMUrFEENOqShA/YL77LXx0JOj5wMn08fJl9DK15i/AIDXpmAQ9U+XNlfz2ZhgeS//C7GhK+AUYPmoLohAVKF7XjeGH2ESzHw+rosrHz+lkMfzuFr1jXITa/4k6YJbN39kg7s9KHKsxPwQM9vkqkzhac5+TBGRZar9g9CbkQ5ir4VgmtL23DjjctoGDaX7U0jWbv5DY5xK0ZPlWQqNbGkjPBoMgtRh5i3/Xhp2C+wuC+MIUt96KzbBVyeHIHbps7gOvvj8L6gGO5NHQHVmkH4a4w0hv6byJFWVZCNwdCccZ21/CXhQcwioiumGLlSGwZDsnjvajUYLhgOty4u4SVOt3Der1to2GMOO5P+su3B0TS72QJW2J7intofcGweIBZq0c2LXyHsqj0/2a/EPWOkqfBICatVakG9wBk0v/cHHw785ny1yfzMUBp9Jb/TurHGGH94OF/a3gZxz8Vgp/ctoPw26q1JxdmLi+D0vVX0YKg3uBxYRfqWNXTt8CV8NFMGxox7C3rLFEh5iioqvEqFr1w6ZJASWvniFBrvcsKj9p5oeXgknPqqQVEBNfh041EIuF1Jj56s5adR1ZjbEwA5+hNYNK6cvkwUBKcxZjzqbzD4BTvygx/LcPa3BkgvG88v2ITXefnSzHVpHDdmFDQ8q4LTw9tx43cP6lp2FfZP9mTp3Do8962DmsWnQLaQNQYPjoRFiW/4zA4T+r0ik3Q/biN3cz+WrbzH2bJV+K/pLbYIG+Gy33rg1peOD6bUcs7DRjJKn0aju2fCqPhT9OroMO4yO4NLgl24S2AsKF3K4fGbRfDQnHDYUdPHapmOeHGnMvq97gKriQspSTOZml104HPrBHipV4TSfrf540YRtHJbh5UPUsAgKoWivCpBSeUe9sjbgNaXfzBy9gR+NpAKdfr3KK3uMxzLjoSSU4fRuTwPnT7dBY2h3DLPN4W8C5tpeEEjz0kohIm610ncNZgm7/Dh69MyodzaD3crKUETmfBe5ULm7D1kNl+BBhdL4M01ybDVuIyO9tyAXM8kiPE3gnlv/+M2mf1Y3nULNnR+wW9iV7Gm6w8urcuFRR6PYdXeoTOZMBlG0x08bWCAN10Oo2bgJniz8RpNjlSiPWqnYN/s6fjU5hu/aheCelUb0kzwp2/utpBiLstGo5jNjCfTqcmV7Dg3njcNOWP3J3GIuvuPHVyKcdRLZw4+p8qTOrahSt5pGtGSTC7CplQ47C4tHzkaQmxPc81INSiCeyhbs4USB+ZgcccuNhFXgCOyUfAuXg9jNquA08RetPSdDkdbW3HHlh384Ygi+ixJBqPeWko7l0UOe9twlPtY8NH5hCKh32jRdT+c++sx9Is1U8WfFbjNtxNuvggjuS1naIKvNFilfuf5GRco/2U1DHZ85NISxC7ldijTu8sOUzNQ97/H+PK1OZybNYmnm+9m31GD/MR1LlndvYZ2gT9pQ6Q5Fptfpwt/WtC8YTR4r/iGbQe2g9jttXRkZhAUVU2j71oF9DLAjm2fDFBQbw/vMhaGUSdTaO5eF5bSGcHFdcd5wdcATvN25seafnj9XBd5OP2BeWryYPO1Fb2Ko9DuThbM27qRhRufUPnYXJrpU0K5ivtgZsEemioqDB8XXadD55Xh3Oyx/OfaJBzfN4ctorpZVCsbWyOvo27nT96VPQaatErpYWMCdg7Nx+6KDE/UWsVCe23R8MFy8NokgzMcftPGBhGoVJai3p8fKaP7Hcueug4OqzXY9L/tpK/8jW9NOINeHt3wLUEPFPZZg9uZPlr5+zJn5LnDTXULknsLdL8yhFbcLCKxKhcskZGArzUI6Y4HWbj4Ej3IGA0+pXV07lUzJco4UXzYTLad28v1F6RB4mQdrD91Fk8uM0Lvuum0ZtCAHdeIglJJFPmc2oOULkD6yRqg1+MJ3x0dOW1hEDxYqoeudQ2Yc+MGKYlE8L/Qz/T3WhWVClmCQrEEHBrY+T/izsMbqMf948+wIhkpO5WQEVJGZIQiJQ1KaUmKJKWSD02V0VAUKRENikjaw2iRWZGRhlUqpFCI1M/vr/j+A/c8z7nPe7zOuedc8JTeiGuHH+bhR81xf4o8/xEYQOmB8/RQ5QN7rTKE2w8C+KbgLhIsD6f9xwJ48drXuOLvU3hT40Zimh7Ayd84L0QLIkb8whLRQe5ZlEfLfU5zgIkGjz28lV1nG+KkQBNYsaYcLy+QB4lpDfTTNJpn5vxGXvaB3itdwTXmjhTi1YizixbQ88uqcMnGFJYU/IUVxtexb3kt5J57QXKTx+Ch6ln4pvIWHHl9nSWm1fGMl1rgIOWMR5qSyNnIl78EGHHcoQ2cP7ySL/Vl4ZG117D49ghsHyUEyiOFMD97EyQFmbL9rn1I8zthsOA1nYu9BYfGRdHAW3Vq2joR9ktP4tcr89hL051To97Dct/juCctF5JiDkI6vCOHazthfZ4w/BDthU+zP7LHXRm+4nSaz/+dDb3iwSSQ6Y7ne+bQNc2dVCMpBVO8iPqMlDgywg4nCBTxYzFXnrW7gZ6EHsMg87lsZ52DCn/EweT+PSgtCCaQGEV9opn08bYmyiQ1QYyZCGu51+Ghno0gFDscxPe404YjVvh3RwsKhu7BJW9Cefan22xh0o26Rc2Q53wPTSIJmtW/8gGXQqpc5ckpFTPx5kIayov55DNjFjX5KoPKCmWW+TACkqeOwe1hT1Hj/W+qWpFNF58dQU/H5+yQ3w6zflyGkJp4bJlnAC8//4SLVQFg/CycTUq6qKb5CeesquFdHEX2Hzby5+sv4UHiVPCve8Bn57riGK9WnD/6Muq0fIV9b9sBjp9Hj0n5KLRdgoyrBGChRCgYSS2jxQ+XYkVECKetnw9ZB85Qz+STeNIsGhwuu8LhndOh9XkTZdes45axL1CheQKcFfsOxp9a6d/ABNpYOALDZVpgnZIMNJmPoBVtIji9r5b51gZeIJiADUsCOWfUUp6qch5Ou5+DP94W4HjrFf+xraOvE6s5WzQTDrwQRoWEb5xebgb70yUgvGMdjTgmCOku8tRhlga58V1Y1rIL4+7dxMVeZWwhYsLbzOtxzbC1MClEHzr61+GCCgl4ay6A1aq6PGl2Nz4/3APaWg8xwPcvTu0qJJEQQdAf3M1/ctphSmoDxR2awROy08l87CROu9qJrQceYm3QWL7zdzxc//IGdWYPIx3hldyXrgI1WVJ8XvIfXS5shZNKezBRzJk1ig3A0UuRdtS7cfhKgIsTJ8LUEed4rfs+Homv8Mq1ARJxWw3PUnQgcVYb1u/KI5PPlmBYdpaWTfyNR86mgpFsGejLLKGgTht2dpUCgfq9tLIU8ZnLVfJ9WofdD3T447pv7NakQzOX/qBlB/pg3vUJ8O7WJHhx9B5oH3qChau0YfxVaViUPplu/hygo6lL+MsLI1L6owRVqe/hcvRTSJHqwdh9/fzQ9igc2hGLIwodUVbxHKxc0MmdylNAdl4LxK6VRff/rEBwsgLua5xFe+bfJA/cSaVa92CS/HLsFpCD+kUFHDJ1aMe7W2Fd33y8VRnGtQFZJO/0kFPs3Dhn/UZoE1aGHs8LYDo+GG/uVacks2tUmbAD5E+3c12QEdwUes2WMw9wykhjWKOlxFsmbKWTMvNAQ+Ey9kTE8pQjFfT3fB0tT9vJdpYC1NajDIO2r8g2KZkHp4tSjcNktsxyg5+3X9CS4+6UECzKYme2U3jaZNjtpESvbpTwhIxM8lrSCOmj78KrV0V8o9KR8hTiaA8bkX6NLDxarYHlAXFYfncLC+UGwa40Raqwq6HoKEtabfkYXjV+BadQSVirO5pMm7bRk1am+tv9nKXpQTvFbTBo1EGcURmKZVLqfF9MFU6dtcIjQS1841kvtYy0B7WgOu4dXQR6j7bTphEL4Y2rG735owgGHVdgVr4KP3hnSJFJ+3Hq8AAY8H0FrUbAuyT1acf4CF6hKAzBjqHcmVbK0Ql98Lu/C6JiS/ln1z9cvFSfBQRHoUlvFdvcEYK9a1RIyNcJBo7OwJ3VHhRtoQYOUaKsF5nMNTNe86GJU3jdDFVInSfK+3rzOFVEEuYfG7q7CxNo+baxONkwkULH3KHCow0QPkYP1J9sgNPz9GlDswzexPXs0yHKFVum4ifrEPhwEPHu96dwoXACBDsUcv8/E7j+nzzEyz1jydOLkMO82K2tGtQfdHE1akOa2SjQ7TLFsOIWcNeo5Z5JVvxHeyo1ShOZ331IixXv0yYXe/4eMA5WOfnxP/sTPCbFil59uQe7/mWCL7dRU+gPWjphJParvIXLosPA6sNdvnKhAPrPt5BbZSVK7/SDloQT0J8WgRKaUjQF4sjolSLsLtEhUZfLsPatFE6s1Kcf7V4gk7sLUru7YIfrMbbHGCxLMYUirau445siO2+xw5pgCbAylcQcRRcO8dxAdSssMaBgNEx4IAsVhkq843MKCmcPcoezBCzR0eV4n14UUV3LH5YmYZxgKdrfNYWHYaJ01XsdJj2TJK8eFXSeU4wv3D/xvhG/OKrWllLrvuPXQAlwU7nB7+qNeNBhJB57Mpz2rrHh9TVS4CiugCuzvvPYS0do9UtpmHWkCCs0FOjz1SmYIfKTry93Qp3sT3gvXYEvCV7EeAUlWDNzPIy0vkOKm+fzhO3bULByHCUvSiavsRth7yJpeN1YgTuvn+Y9YVNhh3AcDi9Tg9Fz9Hhe6hq8JXOQv58Jpz2lN2izvS+6b5LC9XUC0PXgC+f/8kKRydPBT7aRysdsYc/ecA6yaYTrzwR539pUvFOlCO8d5sPaPdE8N3ALGDuV0zQPMbLJGdLPnw38OrSWrVvWo1iCOGS/ykSdrhM0uXcTWn0eRre0ZpFf7TDMsZGHXHM98nl0h9WNpGDFZlWcsE4Wi8//5p2rt5FjhgNtP3KXD01fxF+0xDhqy2bS6lQCw8r19F3uA/91aeG/xck036SPfy2ToSLRl3h4yXlo+DIabGWNYZ/PQYjOnoghS9T5cEcOz5TQhCN/vKDfqoNWDN/IsaIN7LNyPNzvFeaEXBN6JzaF8/d+4Ovi4WScJAOll8uoO0kUoM6etXVE4VhtIs90mYdhC2fC/HBz3HguFNX/bcKttr00544o7JEeTk/mioHw8INo7qtG4htDoExLCDbm+fKxG3/YZ8tGqosZxMy5qzh3jQG8HitOj64oYn7wClSTnI/hZp95Q0YYOLVmgYbkC3B8fZF/nTaEB8dv0Z0l10kzMJK3/jLAxX8N6DQ4w7ER/vile+aQBlLY+oIeDMMT0BTeC507QsDzqy9PjGiEN6IKpDX5PM5fdwHOa9qRZocK7Mm+RZnfuzk49Dq431/H4c5hfHzpY4Lpl3h9xBCvnbKFwcGJQ960hfJVQsHG/SspPZrFN69+5IGGXfQxaDQKqAWh+JzJVFsjAB1257H5+zie+zIXVy8bxSYBayj8/ndyFnnBntfVMPPqQrBdORmi495Dx+4UXr06A0R376VHgXP48KhGDJNczuNPqVBNhDC1a4yFz0mmLHE0kJ+YvOAbcp1cPXciiQ5E0iFPY1Zed4rejOxj+5ypMKXTgYctng4Hp60Ft9OPaMeSNmwzrAaXfXPww5Nu3O/zDES6h+59cRlFnHEA7XdbyTKa6OTEuyQd3gEnOp/waukInC+mAhHLLeHyAxlq1I4FieJ4Xn9sG27w6QGdtDYYqX0HjN6J8/x3iVi7UQtSnUvRKaOOvz1K528BSBTvS2FavmATlsDWne85fEEyiVgbwTJ1Uba6NAVs3LLhceUkLKAJWGazgya9vszqEj549uc9mi42He7V/Idq+4RpMOE3fNw6Fzdse4dr2mzxn0QAPH59BDWDtvLEN8Jw/nc6x6jd4VfmhvQ6ooostL7BLKPRsFVhHMwd4lvTC3kY+k8TYpfWoZaQHf3ZNornnN4B5qk6VPJXDzvMQ/jbIkMY3WxFIxsYlu/wBc/WGPwcKIfJc//wM4HxlNDVj4fiZpPQmidw5kABq9kbwCjH5bB0fC8Y5JiQsM4lmDRXAQ7NyIITy2RgyWlhqsg2pkb7SSCcNLSDmT4uP3KF+u5X8cjthrT/ciQ5Lw3BJJ9VUFHwjyY/1gPdWfkUmDsOJVcKw2BhER0IkSRrsxe0arUAC4udgO7Nevh44RjYXLeXDNoPQNfNvTjGYj8XWc+AMR+D2GfxBz767Rh0/veI+yxHQ/3EG7DcyhybIkO4a811HBc6jA3tfpFb/2O6nyXH1xqtqUR2JBz77w2Vnt+NtqraYLNkHUeUxPPFV2/45KN/tK/sF9pHbUN6JQTT1Gy4PNQGjbLjsClsH3iHnSb97fPAyPgpufu9hNoDBuz/QhAKbgTgofgX2BujSD0HeuC3H/Hg/li+cBjJQEIYPhoNgmOrIoiajiOLjZtArIhxrM8yym0zRnvFfJTIrCKNhRNQ88U4PFwnDNd7DdlNPZLrHeTJUGg5RI5ZClG1Z3DHoBKNfBhIs58Fku0RJcjxvTHUG/v4z/0OQKEvVCBtTQMjm+iXXBWfPCKCsvrfsKtPCKQSdtM2+Z+0LGkGlf1q59zrBMVFWaA+YyXtE42Bki8H+dw3BWieuQs/yF7iZ/X12BFfSnpaf2jDwt3oJC0E3hMQfkSGQo64JRwW76QvXteg/K0Qb97gwX81L6LI4zwISFrBU0306dj4/VCspAoVM8JJymolxNzq5Gv767nWM5fMXxrhoR3K/DFFHsN7jXGOhhkkP5hJGzrNafRqcc75vRALQvvJICUK7uj8gUefpsG9G1n8sW8qBB88hNUyJlw+9z48Ge1Kfn8PorxXxxB37ONhwu+opLcXHTqmDelgD+Q2TMJtvoVw8EUXz5Oejmpeh3Ct/Tmo9snGc9lROPuKOfRH6IL7nDq4NtAG4tmtqCx7gZ5PWw5akj/xYYQnPc38AH8HZUDf+ycYL13AEnM+c4t3Bj73OA9i9a649rEf6Ynd4a0v7FCrShICp/vRp/cyaHozD1ycD1HVwQUc4p9CWSJN/G/XcRzn8hpErGTBSvkFfYorh5H/siAm1x+3vznFrufewTvH7WR48gHcf74FRx0aB7dPvqD09nRKVo0ANeEVdPHFbwr1j4F9Fd/g0fMdGPL6E/f+pwmDO4q49YA6ZS78g/L3Erhi7xI8M98Xzn/tQDtYjmmn4qBulT7U790CdQsWQcZiZxau1MILjW68/fNrehDkANetrFhtoIj5vRJ4XMig553vIXlnEa6qrSDb8U3YvGk/xoweh9o2eSz84gFLOlmApZwIWq8U45+QgfG5hvT72xIq6lKgUA1flmhuxqVzrvIWYT34lfCA6jx3g/CKCHAZew43FWzgJL1z8OxGG+zyFMe67z0Q/3UKSP+OxYUbwnAzj8GRa+5BndYmmgXbMeCUGz8ZJQ3rr+2l7tyRcEpqI2ZJ/qXwwn5s/fObObwMnuVepXr7KhwvupkuxSlh4lZxKHXYzU3m8RTz8xGeMXgAo5bugGKn97Cj/CPazyqhq8sbWfXacIBN++nujqsYs1GP1xt6gOeozdxi10qnbZOxIvY6DISUU03WOJALs4dOH3t4IP+We+oG6fxzxLUFO9HptDyqpInTcodALA8U/5/9/1dMewcmTjOh9JwCfqkzC27F3IODJxJoe2oIzGgvobCn3/hQqjB8qBvAVVuOsYvDKXD2z8AUzZlwfIktGsW6UkNwHQT86kXVu3JwNkmLKws0oeLJZrRd8QGF4i5yv0cn1+yeSNEyk+l7oQrfyhCCxy/NuXrGIbp88i+pHN+GxVv+gaLQHNaaKc7pnhtQ5WIHeyxXgPD2Ivjg6c75Hvr80aYMformYkDmbZiyS5AlR3dR96g0bDimDB98lTF4yxwYEM4g+P9vFhOc0NQwlzYJ9dFgjyvOlnLivQeGQ1xAG/lvsEDdJ/NxusMkjB/hQfPIHD3H/MQFo6aCg5IAPXw6BV7vXsojrXspyiGWB8KALayH0emYp2i3bgc+FGiHn76zqP67PghE6/EZsTIYNnUXV5n3k07xEk76Zwgj8yUhzrAPL+9bxwqzEHJ1X9KxbCvcGF4LdTbRlHItjtUtV9BIcwNalzgF1+7WgsTGsSAYvYjn3djI2+LXU463Lx6IN+Dr7Qc4KcwSr8qthqoDFvjvpiAsMu2DxRu28gz/zXw07RIHLLEktyJTiqqWpRfjRuNMnVZ6vlICDNS/QMvfLOgLK4dFzs40cUIsOiwbYuTXQWwa0EWndP9BbbwCZFWJwfPgOXjpTSkKea8BudfzcMmDv3gjXJLnvC2kUTXuWO0qDH8LUsnCpAscf9Vj4acEltKaxoKKG+GVaBy0+K/DifITcJuAEGwt3UJO8yXwgL0cF86qhpHCL+CkhipGGv2APtsHlFZfBsEfNSEseCbmrFElXjCNV42cBSfPCdGrAlVaeXA33P9jhDTqAIVL6cK4AtOh/WfBfdlKqlo6DS4UXUJfMUl82BVHtUfvU2uYDCw/rQsmS+w5/2Yd7cNTNBg5nEIPWqFXiQQcDctn3etT2HPjZ7zXMwrmzZbBCPNmvB8gjWdCO1FitRMHu26kT4dD+GdKFyjbTsHNjlPBLfIyXnq7idbGbOIxms9wV2IQvt59AmN2e+PXfX2YtPIu3fARh671iPvzXnATz8IJNmfAyq+NL38N4TnDLThXaBeIJ6pC+htTeG92kuJ3TCRhCqTcX5Fc8mQsFB5Mo6CVn+hOVCr9frQIdgUZg0fZP/wqswAe3ZPlBydWQOVhSdbrcISCZi+UM36HwyJug/wOEbijXkIP/C/g9r2xuLPUjkuPziSTIC2y1MrDuf2/MHHlD9KZLA9Fs8/x1ONKQ/4WDjKuc2n55KMcW9xC65anUkCGBh542oX2+ZNhyz116P29lYbf/ATP1stjirENpMWn89HiGF73tIId9bZjZBiDr0MdGP+uJMekH3z2WCmPGDkOTYtaefJWSbysK4aH7SdgT8AwuLu+EtbKrsLbJIBruoNhlHMSH/OzwgmST6GvdQ8pbWuEy5VmIGmXA8FmSZTRtg92Vimylv8Raul1x5IhbhZ+2MCLixpxbf5QHpXkUtOin3zVrwaPOk1CITV7mGgnQfPGBYB5czTZS1bSgmsMqyNUIE5Hj0/97GfPfx0Ye0WGP6guRPfhfTD6dz5rrtSmw/+UYTBjFXyZDOSqNBxm6bfRZLGzZOdUR4rTPtCpOWOh+GY3jo0ygMcXu1ns2SSSkSuEMZcVaXZEK2amlFOFwEUUKp0BEV7ilDJSDM5e02H9O5fopIUw9Dw+gw78jrSHd4GH1z6YNroNsjuj+eljeQBpFYrNsOSjE2U5MH0PBmidQDHHIxB+YQfqGcjiu42u9HCdMkgu8EX5J3G8aKIszdl8jcXNOvFB7wRWefMUXgzfhOHtZ0GlxRKMKgVg8opAHHfDHTV63cBH/SUXxBZCW3ItrFpxgsRrqzDxojQsWvGM73u70Fn5Wr4zyFw/6hu9320D9/Ui6Vz9S3oyOpL+K1QG9ScdaPTqFxSrTeFTnZ+h/OJKDFU4zBIbZXBFlSBbOjbjmQFJSPWcDtNzqsA+pYefNtnBeHNXat5TAMtL5SFDJ5lebrPnYd7ysKk8CYVW9MGnNQmYvS+fzWUWsXv2P/zv8Cq6dryIb32zg3GV6jD2wFiecHEzrEUPulraiF//mbHMrXIwdzCBwydTQbi/DP5aCILj1TT+LSrPclIWtNJVH1M/T8au40U4dYIpfZk+COf8GuFrshLMFq2jgisH+OS/cr6f/YuEJOrAs2sCbmw4zv8kxg1x6iKwOyEDf4SS6Ou9bbxv5mFIXGWFVT4avDhyIfrPGk3Wv4ooNG6ArfzNQO/9Q1xg8JVF/33F2hOBXJrlibLfA3CBlAF/KXMmga2eGLfJCDRNrmLDzAfw2fAAmY2ZzNPkKnnlpa3431bms1lbYXDGAo5Us4RTqyRQ0/UONG6Zi8te65L1YDVndCSwxrNOCp6TyGXCCNvWmIOl4wL+mlaJbZqm7PSuicaHtnHTo4t46eUvHGaRxH7NV7BSAuHOTUsOzdSAid+SaWrBAjxfocZ36towOLOQ+qu3YP27Cjh9Sw7UMvrxARxH3eFxfKtuCVubXKS7rnYsFFjOe8VNGEevB21rQ5j/xg3kbAXQyS+LJxmK8BSbtehWr457BR5CutR+Dr97C8pnElzZqsBr5WTp+55uuDxjEZx5vxtGluvhLZnLXLVJEL/MFkGXrQxRIdNAINyalDOO0I23H/nMpP10RtIO8wIOY65/E19qGbqPSBmIbDoKv7U0qSpoEh42e8m1hkj9PhnsJf0dY9aPpAXrA9nNaARI+Gbx+NoW+rJqgFXdPGjGCGVe6P8bdyZdxAfZtznUZxr93KkG4SELuehOBqhuuI1bHjSCc+dSetp4bqgHvuett57z2Re5VBetD3fu7eXwvGvg9q6f5cInYYXgENOcK+LhQvdgf2snuThOopono2GsehhsVG2HUUO9qX8DYHViFaR5ukPoxc9ganeeKzkWdH2FoPZTDd071MCGPQtYcawfmLg2YMl4G3r5yYtWBodzeaEJ7fwqCbI727jxow6Mvp7DX306eE8a045jSuQaNp8TTNTxeo8nZfhOggkDf/jW+7ugFVFOIBsCBfe84MfkICyY5IMzupnHHbTh0j492OQqiEphLhi3z4Xfhr3lNTVbUEF/N67/IkuCZfdY74wIiAgPg6TnL0HLsRM7qjeBVG49PI04hJ55ihgw5iAuyvnAf/PfUnmpCrQMdSPt5M+YfPomc6ck1hidpenvxHjFZR1YOz4Pd78ay0WXFKA95xaL/1WFGikjqhE4wwt+FfAmcxtIuO2Aw5+G0EbVeaikrQKaj65wetUE0L2dhuKWYqjX4cKFxVsh+E87ZUlZkeeJHryxXgJMeoehScAgHiqZiQcr7+IsoSqafX8XudURJESUs21UG1zS1Aft23vom6cvhy6ZjzZfxXCpYSimNp0Fyx3P+LmyJY4csYSf96hAkdh57lVYTgk7hLjoiTWWBXiztb8JRt3uR3/Zu7iQf9PyVh2on2kwlFd1PP7jOu4VekvPd36EhS7GsP+vOPyefZdtxFthzT8tqKpSp4s/C/lfwWHKSl1EByzfD+noFoVPL4d5o/LhtbUy/fDQhD79B1Aq9BUeSQnA8+Oa+PFsG5fEeFC5ogu8dvkGY8Yq8+MfCuB3IIAOx4+CMxN/YFa6DTRO/QUuwmlU4/0Zt95p4PzleXzrwkhQPSqBT0Y8o5cmTeS7t5JuBhSjae0xjLSTR/Nhb2GPcRiv9lWH4B1hvKonHKv0xtN2czl+eSSJiqyl4dQrMWp1sqPMlOd0uMgCbu6qY23XSnhsWU355vfYIa2Eo/9bSA9yR/CZ6ixQakvijG8MmdxKtp0/4Oj8r9gpZQlX8wpBUkAE6qsFsOTZJE59NchPD48GySnJ3NV3hY4VF/MIbQ1wrReFu9rJsCGgEQNamyH/WCUqPBeHvzHJnK+7i96cCMPP17v5aNEWHuEySIouwXTMNZ2nteuh93RVmONyiIsyZ2N0gwKZRLzlV/ppuPdkG87X/s0a9Ruge+F6XKYyDWbv3UDS3kOz3VEAz1ILzrbVYfknoSh5dRBXh4Syp2M7vF0jBUfyazh7zgAFnPfgrHVvuTkhnJo/yPCy2nA+Kn4fPQ4+gb7X5mB3dA18yN5MayIiecz2Hdy8LY8dfymi59hzsFp/LgamLIdhZSpwoa+KdHIDOaj9Ks7adBcVvBp55/UNdOGtCv5znEHdE3RoabY4qPgo0LezE6kjpxOkd0hy9J9VvGXndJC5fRWaYpbBGJe51CE/CnIGtNh5VxhFGx6GBQNHUPDtXagc5UJ3rjyj0lnveEzCF/KSngTKNw3BOfgjllSlQLWRP9p1/ybvtycgQPoO+e3tg1F+AOmhkvAt7wEM/7mSll8ppZrB3eid/JmOmejxLokuVLQThtWqtzEiWxC6lSNw7RlDiJX8Dy+KdfOA/3SQeK3LrvWH+HTSERCffxufzjOCrlgpHn8FIGjGSMq/qEz5epF84tha7m6rZJm/38jkvCgWvhYDA7CBzLhizkudzqKv+mDGZ1P+09oBy2Ua0HeuH/VnO8Ltdl0oWVrNckMYrDZskL7tFcKV2QWE20bhOsMESl/ZwfO8pkPlGnWQuNYAOTttweJuOGm0W+JrQSeWXJdHuYtH8ptwA9QfrcR9sqZwsDGZN7RuoxMKI9EofBf9rZZkB+tIPFd6iz6uWIC/LuiQRpQm2K1K4Ki3zfjWdh0ZHkihSC4FoVeusC1oF9m5jEUjCw8oMtGAJw5xIDdvJVx9G4Jn9d9R4LoMLK3MpYD7m8H/mR+pr5zGb2tGwFOZcaSpdgEOfvCD2XJP+KlkF1w938IWK8aQxPqbrOfYBrU6JrCID4OmfhB2Ws7FN3KDEDiYx+Vq02H32gOsnV/HZQc2Q3KOMrh1aoCmVS/5alpS4mYrancQZuzNo0T5Osr8uwsalx3EzcXKQ/qMR8OSsRg/bRkbherj4Ym2fLJjPI29qA1LThSR3s4BkN+lBi+W+NLeUGccmNtGh5ZdpPxXKdx06Cz+tTGDqd/l2Mv2HPf/nghPM2R47ydv/mq4hQ+qyXLd8zm4c/54lFylzell1yhIewekxemCarwFS/vMR+eiKzxd4AA7R7ZCrNBHgIp+LKhaxTec76KHgRi0a39E2/HB7KJrwmmTvnAX74dPzbNpYWs5PBdNhVFyZ2nHS2MYkVdNyiXW+Ef+DxzSXAhFBsJwXdkDNAemgPX5bXgvSphSskbCqpulJHkgiva/KcC/Rmn85scGXvL2P5i8Uh8WVk/EqJYfqDHVCEK3zeVLW77yPVkZ9to/jo79DuLZV6ZDMznT8oTreMX+Dx4Png4LJX6DkncFfip4iEvuToQFGUdR+ag0qVVMQ87xw8A5fSBSNRJODNyHStfZ+BidMcRPgBSSr7PnrhJI/PIZHcZ4oVmQDR2tYKjwLgArn22kYyLDzWPM4U94DXrBdipfJA61/vn8feF3mHZ8BCTcM6XkmgaUiwXc82EtLTfW4o8CsfBlVz/FCwzHH1+GGOSsOLw5UgaZxrVY8M2U6yWe4Xqp42BqIksblLdQYmwHvJBYDMsUJ0FO7EsqGP0WXjb54nnvpWSzrgdeXo6n5XP1eKHGMcq2/sjFXiPBNN+fOs1mg9HLXjpaEE3ph6Ip0/gGtdtuox/jLWm9/kKwyZkErvtE6cyvxWzeWYZ3ZwbDBydJGrbKjvtauunikRrafUmekh6Og61LrWjJnUy+lg1wpm4u5O1pgLuzukko4B4IbrvNt0sj+aMXga6ADf58aUB9Lr/w87BmKpN+AZpPBkDJSx2Wbl9MrXeWY9CQH2Q5WZFMrjeP3/kWhLMEScyhCj/+MeUzujV4Y6EXjLZYBFqrtSBwSSrXK8WRRz9gSlYK3/WUx+z4KOiobYGju5+CScV2btsyAUZovEGJTzV851QpV8mng5/6OxKrO4W/8rxwxt1qKBn1GbwCRaBt018eK3GCfii8oIpUxooTE1FrUBI7D+2G83SVg6w+8+Jjw6B0ryyv1RvFfYtPQbHnLo4YwTDYg2jnNxl/NHRAqlskPdsyFvo1ASQ0JOlqizAuXr0KV8bNpZsF0Vj5SJUlE1LhUKoJNEdNhx2i67C5bDRNTSY+LjWU17GifEvFFXOl5sKma9txuF84r7QQhx2Ns2iwZRodW/+ejE5txtApodBkIw+zbBazg0gbylkXobbqGIgwIxA+NR3ik6IwtESRlXedhCLLWXjaxYIqcgI5tn7Iq9J1YOcmSzS2tWfL0c/pi0M5pDT0YOSMFhTZHo9xPlLQ42sB7b/VwW/7VQp8/p0TR2RzgtAlWORYyhpX/+Ee1R/08owr3xvRR4I9RpAdexycnKvoi7YMPTkhicckVvHtt1dIwc6ci14V0PyocKp9aAI69o2sGOFN5sZ+XOV3B4a5G1NE5AGa3viTIvRCacH0jVyWaATfNe5zbt9j6q4KIWtnT6xKruSRn+p44RFr8n+8GtZplYPp6ikgv/8YTdhmBwq/KmhLmQvmROfQ61c+NEIhl6tnnODLb16Rx9iR4LwgEja71sEp016edyaTH+Rsoa4uB/KbKQe6brtRc80+1GBB+PjuFiUmprK7dTHpOMfy4R4nrhHeRxqXXSn4VQjdvFcBLfcFIOt9Eq+1Xw4+N0ugLnY2XltpgBfdvrBNeizFymzjlRdvwX+qxpBpqUs3Ux+gir4/XJh4ZEibd/H3x5u0/cpVypBfgp+tQ3nLNSEIvxLJhV9WoftwbXglKk7jnIbz6ydf+NbfqXS8+yjt8/lMx3V1QFzsF2hevIIdj9NYaHcRBYlKw4+i01jANyDLJZSC1JfxzZApoP1NEab0buXd5b95XEwj+Ldn4P22jSD7PJmuipznhp2zcNfOqXB1w1E+efQgt3smsuQQ+8358B3Ox9+ic5ruELIoh8cN3QG+VoU8qWHgFKPMRSEe9KVDgJMPO0CbjB+uTlfCgOoUVlyTSmkz5OCGTwgrbBuGB5vCuNmsjgPrR9H0XR6YY/ASc4feVUzCDXq/ShNeWCyG+9qmYB98EuLGPoBFTy/zorU/4KKfG0b9vgynNF/ivZsi8KJBnfTGv8C8WWcp2qQG9DadITSQIwO//9BCZwPemSDIj3UV4JtZA1je3A77MgeHcv0XrQm+Ra9en4KWu/fhcV8e2RtYgliiCKgdmMjyR1RAQoAoom4d7B1MRhd5GZjyMBbunVqO0c3fOXq1CEzZKUNOhevxdOAdrDyyHXQXNqDSviiKuBZJMmaFHLqxHV2VRoDgvtnkefEarq9aC01nPkBh5A54/7QQswSek2bSTph+UA53xwyDmjktcGD1BSq2f0OPhnr4ZYcJIFR9hcIWD8O9/afQc0o3LPJRgdvBGfyp9Tr9d27oBg+N4BXhX3BDtD+/D/cCUzUtEvV/hoPxipDoaUaC6YlwXcOfyxuMUaVpOowz1qTQcUEwZf0azqtWotXdk2GF+GI6njAA4b+k8L3Lfdo9bTFj40u8u8mRImfGgrX6VTY8qwp7j2RQApiymsJ50lB4yOdGCnJCvDurqyiwTP8jaJj+ERcigl27GTSPWIn/lgeiWHE3NLUHocaVErq4zRt8J17F6oGTUD9JFdarvaf5hbLgIvYUb2XY86WbnZSVfRz/TZlHiu0SqJ5zBJp6ZGGauxxVKGpi/FAyR3nU0D/fq/Ts8Viea/kRo0pDQD0yHR33DwfTCUowu18CHy/5gG/0U6DI2xvvhvgReWmQvJQ//td7h+aKj4XsfWvokNcovORex+f3T+HO0bPgzOgvcM9rMRfNJnj0ogR1WsXhRqcLnu8xgb2FEyE6R4jT4o/Dg3ExfO/PCVIqcYLpT7tI5LUKhDsawpUGMfJ+cwtUYsToXvpI3mcexf9O1tKYP/uge5kbrzikCAvs1CnghBt5bXDia3Fv6Z5aCln+leCTZlkYHDoPxReMweSx46Hs/mqKndtCq3JbWexcAgf7jCXRBa951jZjPNNL2PrOC+VvT4MKg+/8bK429x+XRZ05s8lmzx302dYDiadX8MweAZTqmAktuZawa95wyMRs3Ow9AmC7D89//J2yQl+x8NJu7Eq8De57k1nwugK4Jm+l55cWUr1AMt2d+JLAuQ4fDWl7d10f6YyNAZd9uUC/NeHkAj/6Ly8JvH8+pgXWp0hd1Qvcbm6jxdOVQY+a+PucXdw3TBuwfy9X2I/ndLUejotuoKrT63n29CucN0sRv8ZaomapNGalqYKW3Ai+WRPMpYd1ObdRFr+m3EaxF/dZzPw0joieRk8y6nDbJy0o603jOfn9/FDPgv/eVKWcg72QqXCb2gbXc0exK4+tOI928xF6nNdgf88rtm7poTinUM6s2oLNeu2cNO4GSE35TNVnl/LBIdbOX6LGjUkJNGfscNIw3osC4xuwyu4ETRljjOF1fTw7W5HE7HWg8f4lDH71jVNWhIDPnkQWtAiGlb3OkDlGCXP27sHNfvthz2ZlaF4ryYUuTwHTxfh25ySYdjUfSyJlMDkinAtiP2N4xVEctBUFD8dSSs/RQEOdFDK4fpFapf+xs1sdSperspHECF7l607piZPg3diZVCQ+AbSOu1DJjbt43kUbrSeV8/u445z+3yxO+KBOQsOmgtcnNTx9WYr9XqRgamsDO9xlzPZQIH1VI3L+9pVstTv43itRWK1WzU75m2BV02u0uN8PVy8No4r7E6AOt7B9pTFcUEvFf7oioHu+AotcO/nDrAG+I7MDjJtLqM2sFjS++vHh0loYo2pPHnPVQOXSMlR8s4qE3Zppzj4PEvhwHIunHsSCVU9YtMWc0od69M2L5mDzcQt9v1rLMt46HHp6JB5Vd8E3ew5SYLIoGw5YwcNqFf40WQ2MVuRTndVoeJLSC8OOvqCoyXb4+6AcSA2rw+89Wry+QIvmpiuA4bqvuK9nHYiuOwrKsbrcKFmDLspP6dLzYPw0YAjjkuZg2jEGKesCjg0XgcxH60A2SI6Eh+nz6vAG3PQDwElUF74+seOwR9qQdK2FI0oe01LJQTxYfREMz32CFLu1fE49HGcanWHv0Q+5drkkSPb2o9VGd/wl+IvPtx+E4Q+V0HHhMza6rYFWeaLsvXsmZW8FWP8+BuxSqvGnVwesacuDNX/18RM/o48N9VC6SRzfqM8hu0sGsCx2KX+Zfpw9N3tAsYoRPzZUwtpOW/rPqIc7twRhVUoyFJpowe2UQ7R+oB9NhjRYtDGd9XbFQOQ5T/6cJMwVb39j4S5Fqn+uBFaX7bEuPpmOFb+mYA8TnmihQ+7f5/Hx5M34X7w2vVCLBHl7NbhSWot3uiJJz0oSzQ+txJfn4yHy2xKQ+rqCMh8vAovrXuj+VwfuHfuGcxLj+U9RDtjNTMeBpmqWmn2eFtg2oX6eATmwJFwVEYM43UlwLD2JAiQu4lfzBvLqasIpZUvJeYMQjPl8Bc4Y3KAung4nc67zjAWZ1KYkQ3n9mbgy5C/MWxHBXbmSmLl/Ip3/PAif0tThVGA/th5aAqPHx6LC7UU0M3Eq8rh/OD58Dx6ZO5Pr5SawfIwwjEyew9tlUnGNRhOPHP4Pdj8S406plfi1uJls476zaFcaxYSoQL7WOMq8mEAO9Wc4r88QxWw8Yfm7TXhvgSy+6y6BxgB/UPs0HDpz/5LN2HmgbBSHuwzroCB2Ll6IWIbFKQkUHLoIQwYtUK/JCKpimvjUlJOcqruJPRqzwUrOFnrWncDFS4fhiu9WnLVBC6ZWacMqnSLs3HSPAuddop3phWg1UZOCqwVRfOZNeikPYLrDECf6GoOmuggdef8ORK++ojczToLn968kJPQa1eclY6idCoeuysAjj4fB/mlhKFrZAivjo/HWr334sK4OPGfl8VS5XjyxxhGWNgcBlKnC3KniXGwcRnmtpzAuMQ09CjvI3WIL3bjyjEw3+uHWKmfe9m4UfEscNcQ0heT2eyVEvNOG0oggbi8q4BN7T2JL/g0ed34F+1qYQNbkU/SpI4wP2VzG/aMFuELqA3w+JU8F9qa03jWS/+gGowpYQufGDNhnPoeTCixwU95GuLHdn0PUS2jYg1QYU64GIkdCaKaUCpSkJ4NFeh/0rSpm551TcV9ZFH+zGs6Gzxy4YOY22CWaibxrKmTGzoFjNQuHvD6aBHdpUueLUdxq9BxWtHlRXNVXMp89yLuHq4D4yjvc7rQISWISt1fLYNrLRZTcVcbZwktw3uqlvG6rPT3+bxzkSvqwyisLVp1dA1/Mx7O96gh+LreUrUMUUOp0PgfeaoZqJREY0XOcy+71scnsWnBvCOPLyQ2kdk4VJcSsKcdqCbR9Hsfl2fpgZPkA7CrDePaDNHBbMR62Nr+AUxm+MO3+dV6U1EdjFPeTfLs8iASqwAOfGpb6mY8G/V/Q/UIrNvkr4jXpveSdbgsx5wvQ4jPChrJGjGucD36bn/M8kwVYai4LG681gHCEBzvGa/B+Jyea/8YYZn35BXNNLKHc3Z1DbsTR6/8uc5t/ISk4raadw0Vw8qfFZK4/ESqGmNnvykGes3wZjM5bzAWFk1H/yCEO3hsN0PwHi6YO6XmnJPwVz2K/pfmY82EPzW+fDYlhJRB8N4PEHS5hrk8ijz0ci/ZrlSFcyI/KFxngHMFfaNt7i29hIJ6bMAHSth/FpjehJHnWlPe/VYRxZ3dj0JluOKAbhN/dLHCXvz5/Uf8EAslmHP3uLXz9uR1PT5YHW9VR6PPOn58OSpGRtS5NSyqGpWfyeObpLt4kZ46+FS+4VF4J9MXT8LI7Ufc8Q750Io5e3onBffvnoedRQy52E6L21hnceHAUeJo84rR/TZAVKElO3y6DwadD8DS7HFddUuZhG5aRzvQA8PllAraKu8j+zDVctQ3gyFpF3nW/jXLHXIfLp+Oh/+dmehYxF9WeKsGB0rn4ltahffsL3Ft8jY7t+QtSuiakUS/JaRZGXFW+E9//NYDZfWWoYC8H1q73YeSCNyj715SnLZhDNU63wUbzDmS03sUKRWW4onMWWvKKMNpuNTTnioLb9CoWVDan1Qrz4bFfFnt/uwJP5bTAvbofB58kY+JlQ3w35ji9eX6P03A4bti+GWWF5dFnSQ4o/DCH2hn1WLfYA5dtNANJ11RudV0CZ72H40qBWmrYvgjtyAvTu9SgIv08tsgF0fxrBfxlTDysO1VMpS83k8HuxbzU9wAoxazFX7fHg3BtFJaKW+D+l7K0YdltwJhQ3JBSillxpljma43jsrTxsJoIpG62pVrzH0P77wGJUXGo/V8/Vqe3c8z4fKhuXE0vRJNQslkaivXduHxv4BCTTGKVeXpwRuw7zZUxximLF+NF9VnUJiyKMyo04bqyM997FIXFNargouRJ1n/M0fS/zThu/yge/7YL3qxygHMmEyDkiCs2zVjKTdlLWLDJCONiHLjUwJgLHy/jqjM/4VHgcLS/YAkjcraCRC9A4s0hXrtYBpMqL+Hp2L2w00USnaN0WPV2K2eQLFT/isHDLsvQ/ssWEN+gTbX/ZdK+MUM8dWcLj56QSK5ignwzVg8WRB7nru4JuNpKmwfPTKBejfWcH/8bypVWYeQsIfSOdqb9rQSf9saRlsUYFA4OResFulh30433eg8wfHLin8u7eEWRGLWPGQ9LAkrpQe5KPi3yCv6NiiMb82Eo2fGb0uQYFcV+gP+DFrz2WRz++DMkrfpBHrEaTLEfYCo7ctz7s0jCb/Cyrw8or7fgSVtGwcQwScix+oaLFjyAZPF5HJXwgZMuPMbks36cOPiY9Rc7w3Y0hnYx5LI4ITQemuXasF58oDydNWLNgI6doVaTNr7e7YwR2eYwIFaEfm8Wg4L/OvgWeYp6Bv7QFkMD2vp2CRQ/WkkJ2j7stkoHKOolZHwmPN5/jG7/tMKW9AHOULkG85Jl6V2UDBZ4zMUWGYJDOy7Aa9teUi1vJpGv3+EwycPglxfw/Ukn78+rhUL3VL65VgFUsj+Sd7w0b5JPx81R3hizURH7Sn6DobU/2U49QMPyF6GIKUPu7mC0D7vC253VQH9BN/4s2kpH5jTSB71u2qj3mYVj8ijIbRgU/pEB0ctvaO1LVXJwOAHrv03CZPlEVPA+BbIHQyFuRRwk9E2CJU9PslmnGRor24G7zylSaAzEldLJtGWtJUz68wwaQqdAa7AkjHDcDsf/yqCN61j0iEyFCzEWUBwixrMWysMM6uS11/XoqfQo6BUPZ/P29VS/ohyWZf6G6aOr8aXmPog+EkYbzh5AWD0GZTLV4H1sID2uvMB/VtvRLS1HzJ0qjQVuYaTktI5mGjSyl80l9IweDldrx9DX9eYk0dPEAk+KybpMjYvFJ6OJ/Vm+E56De8eps4q0BhyLfTLEmGYk+/AWlKen8s+92+FR4w2cGtWDm7x9sfJkDKL/WOg9vRIn+t/kpX/tecLPQVA8cRR8u/+DiypTQawiE/ba1cDxNnH4fmEMTU82JeV3M/H5wA0qaZtBm0v6aFHPMTwV/4FvfFhGT09OgWMzJCE+V4LiEg7Tq/z7pP7gMQhO8YKXp2bx1nl2aDbpGNU5iMCXpU2oVtQGnodnUElBJGlvlwKHh5oo4iNLonP+gOKd0WAiMw4sbTajecpkSPr3Fw5UKVJe2WIamD0Lsk+uYLUr0VSU2YKZR7RhQdpCKDpkRF4bFeHpuu3MkiYwZbw8v/TJpoTLIuAptZyV2oby3FUZ3s6Qp8kNnuS4SBKcg0SwavobKD4RjfFz5qHUTmvycx8LCnZHMGDeWf6yrhySvgpCXNJtGrvZFYNqXqPADxMSHveEgqUMIfDSBM5qN+fqpVNhueN/lJdXgzaFRbCz9ggcH5VEBVufsHuYJVQvDkKrzLegsDOGPQqm8ZdlHvB86S+IslwM27ztUPD3MBKuGwaK++JJZfgdOtDXTMtlGvn74Eyy6ymHAZFA/iJkS/bjK8G+Swn2zPSBpojJ1K3bTB/Aki276zFx1S2coegJiy/cxRNq1/iw2YihXiyNOsnvyUFOH4Lnh2Ga51bKVOuHPXE/WFffk7+afsIjOmbgVtuMzzcEcvILI8zo3E1vZmfD325BqAro4t1LZFnK25LU5QCmnxqgSQXbcO7tE7DsohDMiMqjJHlDfNHcw1M2XaeRVwrpbJkRzA0x5VTPb7BxWwE+k/eguUOZhydn47yjjTjuQRcW0x+wOGcMFvuGkdqz8zy/IQMCA3qxaVw/Xb/1narJDMUui8NJuygWXKkOl2ee5UTeBLp+6bRhoIKva0eAdNcmdq3uI8d5SWT4VJP33JSAN+4n4JmuIcRfjaeZLRGw+uZx9n3YT3dVHMDEuI6iVx+AgeDRYI2rcVWdDdodt6ZfM56wX0EBld01Iv+X6XDMyQKyBswp3swC5IZ785kyczQy6GJtkwvQcC6ant6bTCk9juTpm4cmV9r51hZxaNqpyHt2r8f6dH9uO1xKqcvl8JbsDr759TwXdl6A9J8DGLtdD/6ZFFJhvAZqyXXhxhTi8z0huDtJBvUc1UCtr5qsFPrZ4954WOzziyJKbdHJ9hFOHnUSXqVdw9zmADBvf8Zh5IPqe16DZLo8eOqZsdo0dWiZ14M9k9bRMt8/dPcIobTaMZL+XoLei4PgzqLhsOtdHyQG2EK2tTTeyRrOV1x9cEJtNOyWaePulyMpsb+KrvhpwYTnvzGKszBpYxNcOF/PPtJmNK9zLdWccqW4lE66YPGWF84Vg7FzlsCyPnXa/O0SDOzMgmWjkuDucFvO861A30c7WOz4ejR9Mw36Z0RAtXQSjvaMB6UAY9qtpMcw5hkaPv3NJ48Qm395A4/rJsOOzRbQ+A24ZuI70kzQwOK406xo9o4k89vw5cYdtGyFOwvM1YV33aO4wzWP/ZTW0MmAk7DTpwmuHRWBXz9PkEOWOycOPfuMjDZIlyArVawHTQzk3+ZzebNeCNT7/OCE/5TBY9sK1vjyhJvXE6hKicB/y3bhQMI7KJpfxkeHGP9KuAvt73pHEZe8yWexI1wdgbD93Xjw/BDDTcoyMLsoFD1q9HHKRy/sytbBjUmiME9lIcd9kYRX8pPQUu40/mYluiSUyj4/hOmCbyeUP3pMaocWgtna5yhkLA+zzf2w/8lwqjQ5SsumTMFL15OgzqEf/a4fpob9xB0RuWh1fRqU5gGvkzch1W4h8jplxPvNfHmF30jYVD2b7PSeYFD6RdDIkIW/oX+gaqI8mc3wwLM2Z0hMVQ6cBCfhvXX+tNzDk5+M6+CU7skgXT2CpARawDL6D75r38jO+d6wN9iNXNTGQ/39J0N7voUNjpPhmk8rvXuyBg0ylnKfrw5K5HyCht4O7KhexMtr/MF10APF306E23anuSqtHiImXkXNLcNYqzSQk+aYstfOKq72e093TILJ/ag8HDwoRBvSRtLlvFx8mLcBpF6vwY6DNWQGDqB2S4vNu5/y4sYJkKr+m2wb5kKdcQbMP+uHydJqaHu1jKdsm8IWJVK4/+JOSGkeDY/eDJBR4DoIi4ymyeLIB+rd6EeDDocZdFDWQ396GZ/G/0fReQVi/bdx+B4pRET2zEhmkrJnCA2JIi0K0UC7aEmlQpEWRUVJJfo3lBQRWZWGolDSNNKwEun1nj/Pyb0+13Xy+wbZTgGRVgW8uGsWXjOrIl68k+fW2uOyji/0wzSIZ3y5RvuuHgO171ow366Eo4reoNoSAb7qbsBXdZdj/dQtmLZLmNrmKvGXa2VQNUEHxKqXgdx6aXi4rh3Oj3pLy/QqeG/5XD5tWEcZOSupPOMRB/cqwVfl31S76wN2T7OH4QYuaDdaBpx/CoCWiArdnTSAs9+sHGKw4XBg9AHanWZMpsau0CMjQYYT0vF18VFODsynBzfXsK7oI16ykMChqJdilutQx7vPVKuXxVb9CqDrdoPrWibQp+F/cd5WcxDuMoBPJYtBP7liiJu7Yc/X8bDNRIIuJMjS4Z9/uanvIk9ZOhtf6pmCxPFhsCNDGW2VouGXwjwaLqBCRxzs0Ev2PtnIXcEVep/h/axR8PjcBFy3yJv2Wb3DPe+tMWKJH1qudkTVnTkYKjQWpOJ6KCdbF76s3IN2MitxVVw5igVGYsGxNiiJkySbmcFwxyCEqpqVcOsueZCaKIymQUUc9m8SRL6ZBz/C52PDsD6sFK8BuYKpdGr5KoaHmhCZk0l/i3ejoVsLeq45SYalc3jRUH/mStXSzj1KoBDVQX0LhsHXySJQI2aAb9+GQPXhN+Azt5ojE+fT2RNfeZzhDVrdeojYUQSufGyF0nW6lJilxfeJ8M2bx/zvxl2qVUwA90eC+E1CgsOSDMGwOIozy8VQqX4M5R0M5PtVN+mx9Vn48ScVm3MO4ZO/zZSSJAOTDktgrNhk2my2CB84zaUl4hEgcuA5PfLLB6mZdnxPLpNNtyqDXsx+sHXciS3pQmwoaUGHPqbjor2DsOCWNGadmozSg2tp6Wd5mK0qCW9WWeKxZbdQQGYabjdYx69++aOdeA/Ngq3o238DpsZKw4sz8/nIBzs+5SKAZR47eZ1MNxarBUGyYxmfzv3BlR+U8KuoCKx5eYU9Jy5jB5Kmse0ROLpwDucMvw5TZydy/9IVcH/cEropKgPho7/g3mFG/DYgE5YbJUJ4fR++MZsAroOxcOXrPL63YjY5dI0BmaFd900L5EXT18OPzK8oLOPK7fiN1lT789EjPTBNZTp0TBUBc6lfZKfeCEvGPaCxT0/Q4QMD4LlQjRvq72BY1hlsmt0M3n2TwVLXBzMiOqlyqI5TQ3uxYYMY1TcXUKtGBhdp3eT/hE05NkoSzIpmwTNjX8rfFQgC5qLcIGmFNxSnsJLkch5cJYdX7myDzTXiIFn5nr6L+OHxjFi0CwN8UvERzC4u47uWEmQ0wx03SXpTz9dhsKrfFEzn9PGLxngcyZ/5cPUHvJa+CK/oq5LJkb18YYoKNcdLwl69V9TovANU5r3igWuHyXicFdedPs3jTBby8lPusGzJDYo0lYczbV9Y4I4JrnEP5invbuBUh7E84fR/EFDmC0t+NvGy/onw4osIdK/4hzO8C8nitCDvTRjEW++GoffWWMpWeIHvHELp7bUYblAbBQfVgd+K6JF6fhU4vUnEDbeHs49CE6UHFuH7WhV21kM2LJSBp1f3wfl1BZi/9Tp8FOvAh8enw4/dgAlyNnD5cBXwYztYP+QkmkpzQV30IE1XXwwmfzbilWvMzzZ+5kvzYjAqbh5/z1KjqAorSN42Cttz8kldOInl9mbjo1FyYPXeko6bPwHHoCvkvd4QR6gKgL2qJm8a/g6MmrP5+jAh9vv9GrY0ZqFJeABIdabzBWFXMHOUh7RNu6H4cgF0FlfjQFQThec3sO6ZfxBzRo52tTUij7CDIyWj4R1KwsunsvzvgCanfvKH7IAdpK6tjXarDsKvV0OM3LEYt5YbwhcPXd7hbAOnRCbz2V4NVLW/j1uumXH8paXYbGvHv23/0VFRA7ig8RVv9eVR3K4YNB30xaWb7fm+myU2Z8zm9Yp76eFJWZomqwHlFU6482oqSzcE84JZPZD9wQI6kmOhcRPBZ7xG0zX+wwkPrUFpciHKr88n7YkptDD+N6ncKaXtkUGc+GwoW29G44Gdy0g1XBW+61fi2DkreOarVkrTsUeNPc0su3wA9da6YiSP4LviQtj8WRsy3/zBox7WuMF9HYo1nMfJZ1rhnkYFi2paw2GJIeawMOHJC9Qgb8QjPKUyFxe5ieB+1+egH/KFymeE8r2I8VR8eib8WKsHgXOUYZdhE9kl27Gw1xRa5RrBxybI4/K75rx52T1sVb5KKcsusbiDNKR6mIGXDPL6KRZg/HQ+BBuJ0WuV62z8aDodm5JFz6ZIgJaOHByhj7xc5iof7iuilpj3cGKfEBo8Ogjlfvqk/G0dq65JwWFR4lBSI0Xz5vvA2ykXsLjoAfrdM4DErI9oWqWAARdaec/QXL45NBmuP1+O4q5jceRGfTwpXkIGlqlk+dcbHFpXsG5pCS8N+4EF2gTX9kTDtTVIgp2RmJrZTdoX3ShqPYDHq994bLQ5zvoQT1+G/FetzxpC015xevVdPjJeEF1UP0CdSCS3X0qFhq2neGLKFBpubg01cUex8ut0Di40gu2/q3haVjuOuLIZ1md9wXeLD+Mfz+Fs81gM1J9VoGZMFpReGUatV/2R3quS21OgM+eP42WjKlA4vpBsl5jDgoxXZLfNnldONqIxS86B7PiZaKycDT6zAtlorjDWSR2Cfdu1oeFPIfw5L0tXdevg5C4VVK9tpIbNi2jE0G57lG/Fx5OW4g4XAJnSBRzW/QbGz78Lky3GQ+DNPjpno8d4Wx1fK0fDvsvX0f+iCCiXO7HzdE1+7/UMHj+N5hdrYil35hk2om2493QMzL82jDfoTIBNThn02OYn5c1zh59aidB4SgrvDt9EtTOVIMxoBMjKizFP0oTp+tP4zOxO6nA0IuvhuhyU/xm2gAHkCVfQuRNnaEajALGRJIjviYU7+gQRQQ+gJDEJfEzs6MOoPLjz1YgGyobBvZZ5eLbXHGIjujAS0mn6qTRuO72P7ovs4WR9D57YWEkfc/PA/Hw5ZOQxqNtXsdzZyxQ1xYRi9F0xKtgDms86ce3KSk4epsWpNo9J0dQMrDfagubIAZI5nE3/rVyJ5wtX8LinI2m10xBb3ZgHCbI36J+5BoQ9ussmtx7Qn+xAXtjqhO6jy+lwjCroCn/iOcWlOLYyksDFAqZY+ePvWc/5XvVE3nC8kQWfxYN7iSvuKphLr24uZO3itZjzwAR2Dc2VcHw5bknSBZU1lpC90JUDzn9l97Y/UPBYGQRtZ6NCmh4MKz7JrR5l8GFeIVf+yYYdk/dCz95CujI045tMvXlFQQPNuMBQL5eH929e45WVCdQhM5tcC17TuTMyeExmEloK/EKlGF1coGcGJr6muOrhau5NjiLN57609idyhfdtuCTApDa3idbFl2CZzng4sCIQ7Q5Uce8Wc/wxLZRaO+bT+VVjMNOqCW/latP7ETEwLm48pOe8pfJ1fjzrRQknHZmBYjX2UCNuDzKLT9K5jXfYYe4SiCgSgfk/V3LU2woW6HpJ7WHXeE5TBry+MAsz/gaielIB/Xo8ihbtkgDHvb181/Md6cbtwPezH9LxhBA8YuJDd3N34h2Z19BnocPG6ebQruROW/7T4h9NBlA6+w4HXTTmN7pZKLDbHcUOfAXLFCUe92do7nOq8fAtf9wcWwFPXmyEjH2L6O2hVXywp5nWzFpEL3W+wMnvY2DTowbYJ/gDlLM64d5JNQo5LAyLFMaQib8y629ugqrjmnBCQBp0J3zF3PhNFGsehZ81gsEi5TadXvxgiJunwFN6hsFh9qicpwsCe1bDpbPW4BdhRtq5PRRtswwmr4rF8Ovn6fSx2ag4TRCEnivCni4dUj10Gz7f/073151i/6VRUDuggnEbAUXH/cSKRdNRpXsY1C7czLHCz6COf/CDr9JYYeKLA57jYHZPBG4MLuXOxUQag6awKl4BJ6y5TyOERmCCXyC8T20mCekmihHRorv3zvCvXSUo5iYN0dYrSWJqEokm1ODpaWd5rO8c1FogSTUmW3CjvTjvO/ofmGtrQNrWedg1sxDHzbjMa/ZdQq2ZTpTB3/h8yFpqvpIDa0qbYPcpaTBQPYcdQUzH1IXY118QJWPrqEnqGm76KQeR3pd54b9WfvfCHC7mF3JggAqtfrQIxSxHkm9BDFmnSvDa0XPo59el7HFIBZzPMJRYFqOjkQCtihrJD6xC4ejDk/jb7Scfvb2WFKALpW4bsZOdNCiPu4hljhfxYsVsWKGjjDEbXDiUT3PZ5Q+UYjWbFMJ3geDQTRLVWIuz0rbhxYZ5dCTsCX2WlEIhyRm40tkFLeUTcc3DYLJ5rQJymoPYL7AYe4Om4rgPI+HPzFrSSl4Ln5ccosD8WzQxsJzfyiOcqvfhHvshr5b9B3qr/9LcQ2IkeegfPup/z+5OF0ldUBw7DM2gU30Pjl9sBJGtPuybNglrnTKwNSiGfvq78iqpb7j97xOwea8PgeIncIf/Mvo2R4yhUpFOP05DXaVrdO/VLdSeHkjJvhk8/sWQ/5pI0WmVcLZoa6dPO0rZztcL6hvfQGvhMxaU/gt6kffQ748xXPUbj1oSBuhYUkqef1JwwqAO2U75wCfL/HByvQ0blzhgfSjAVIsMGghWhel3pCnGdjO/67pAMklSXBwWR7W397F38wAnLBIAAbkxuOpKPomvq0KTrDDQnP4Tvu5ZjsJnBjGhzJbbIo1J6p8QSKZNxb7u4bCtqA3jj3VxUudnbD87HUPMxKCls5JkE1zoQbcezA5UolfTXuNHyfdsW3aC1qg+xYUpe2GmiRzn1Z4Bj3dALWdUoWjgN4bttuF74wQp/Vs3Zn7vAsVvpnQ/8xUumXIH6kwtoXq2OnTovsd42WiwWCaBn8a9w3OzfMD460e+qaAHB46Z0AmDPDhhN5RHvdZc/s+WGoSSuWGTEb9rS4GxpyXITcGfjl7fCE82fETryXKw5HkNypxdS7oj66H7yJCbfZiMU6bXouqGnWTnEQ+uvz7QoKII/DNyAk+j0fyquwVao5rpyIAvaN+dR8UFerzY2B4irW5x0z4ByLrcSI3qI2Ctpg0uHPmM/1Zk4XIxRXZ9GQ0jvTNR4ncHGMgCtARNZBylCpbRk1Em5yl3dfWh1ZgFpFI8wJetvkJN4D9ceV0H/qUm4v6A6+QzfD8o7x5PmTOeQNTbTtC60ArpnojDfQL49LDR0FR+CxRWfQKL0plcOVRHp19pQ7nYOnR/mTVF1DFUTxTdfTXgcOJv/Or7j13d/Dj3bD4XJzjDhdWDNHfpZXYWvkhvFVfyo/uCsEbeiNdXWkKVmzMdKZCDiB//eLz4Ol6XZg8dczrpJTWCWpEkXKm6S78senilyy28al2CqYdGw6EQU3ot1U4ygWGgPn46nN43EvY094CRQgjePtWCC3R0KK99CpyoSqQrfjk83LWFeo/q8AbzkVB4SAcGRzfRjeWC3Ow+GV/HXeKdokIoZ7YNDYyOcmPtFThuMxLyvFZBQqgNGu6fTl7qxaSa2E0iAukwwjGHhb95Y6hvMhreMwO5pzbwsOgYm435QlatPqRp6k+R+fb4TKwVHx96gaNcvnPacR0IEa0B/1thnDpvPYkOubVEbB2POHKBs8o7MNvzJC1M78C1LUrgkXQQfq60x2W+Utju44LXbDPpxOV+lhSfze99BnjPlwacd1gMlm4JxKujTGhDtTN4yJqB4nFFlsq1wvcuqVS9fwtdX1CPXWEAPp9HYuptK7JIaueI6we488NN3n2iGS98f8j3PaWpwuUUKR4cBa57nXh2dQrXznPly55zKN1QjAp9uzGoNQ21V1/lhJ/ObKUkApNmG8HIv2vh7CwizXB5PCpzDc4ZSFH+qq1ovcYXLQMBBBUNYVv8YehqqKS/3jdpx5s8kNlynRc8Xwkrzs3FJcnXMH1tF0UfEwMp/yNgUmlBntu6cG/fQro3rg6+WXRiyqj3oNo7CXTf3sNSHxs44D0XnD+dx/OvEY7dMORlA1PR9IEr9ih+oicratjx73qQ11SDmpeecGllJvxz+w1TOmezuKQsqvq4cPGQT8jl38AHAbM4q1II1FS16fFYP6ydksPHizR4UXkIiOYKs/atdZAxvQWOn0jmfBFLCKl/Tb8+2eGfjY+wcrcfa4X+oh2Xe1llGeF+n3fQbvOXrOMZbtjkcLxCPMXgwSFOQDwc8pf7MgywepIdVTw/gBdtNCnqiy5cSxGEl98S6InoL3xppM4hAVe54fU+lja8zatfnsEINIVPK8yAu7TY/OkBElP2wqeegVD++ycFPWlDWdfLtNv1B+84Lg+9BZNBSvsP7K06QyM6GyiPf8PPhBDyG2YDDeP28paOmeAckoGyrwFSd2pyaSzg3JN+ZLqhjRb8/IgKmcvgx61b///GAOx99piWV0nA78EIXPTiPN2ecxLdB3NwQmksh0T0gXudCkw1raNRFtvAzQ1BbfRmNBYrgdYf/+Hft6Lwb+Y0lPf+C5qetyl2VCbcH3Di/k86cDitlfMH2mGp7Q88+eAAqLvl8BqYx49Ls3Dh1Qs4wnIBPlwlDg+bNvD3W97AJursW9oGh/fJQfJoY3J9dgNqo41BGhahs8gYWHCuB9psHqHHywLsNzEA+nmSvm48RPs2/CGRjVrMY+JpwyIVSPjTSUsyr7KX+FTwa9UiFtvNd9+oUOWwGto79TjujDRl22fKYOgWCmfttMGgsAl3GIvS2enzMOftZL4ndJvUpE7gibmy9MzGHB6qPoWbd7spqWQNCLvLsbvqUlAUXMjX0i7CJ71mzpg1lHHOI2C0hyc1zM7iULDk8p1yXDVCl7oLfkKgzGTY5f8WdDtv0iUtOeh4aEG9jz7i3KctKPDVBrY3zeDW9x6UeCGMxc2F2f71PjTokICyUGPuyR7Hz8Nz6apWFc05+BcP5Ouy+zlBCPhgDwbdi3BnmyjEHlDhEWWVsNyzlhbLtMDkGA1sV7HAgLfH8MiS7fRk318QXC4PQbIF7H9oPqqWbeP8antu2mQNU+uqIGumKqdEfAKl6WPI39MSJubV8KddW3DY+HtQYhrPmvNqKPxHL6fdSiP3NSfg0A91vDvEa3tK82hkvjOMnPEGNjgn8/NJthS8PBu1PqnBN+M16PqsY8iNxsCDza5wmIEDLpvyi531QPazSDbIABOTNPDoMm92kPEi4UtasHjoxmg4jSfnGj1e1+eKB1+cxoiP06Hh/mesc1SDxLkL4cZhIbjflouBcmU8VtGbSyzkeInMdO5dEgx9OzPxrdZSaK8zhctVOmB/YjUdH6WLnvN7+fGNeojbkcipslugZrIEnlhP5JdB5DqgAo/eX2Q9K3ea6egNH0eN42DBlzCL3Ol+SScXF/rBBpFG+D6kZjE6gtRz6yNKunijTMk++BAQxw9y9OE/V0V62K8LOnePcF+dOFQI3+ObVIw7agfBs94ZDpdIQtGSPXzWfQsaK/4kwRHeoHLYFPbrarHshW1wLyCa080jOU11BS4QP0izTufhDLP1MP1oJHfJacD8WCmuvuJGMV63YNyNWziXffifowBnTO+ib315sPiiH79OHwte+o5wbjWjotcdThMbzgqJGrRobPpQHf0hW2k7md6+w0ubxoLC41A8P/ITWqxT5q3PLsHmLwsxKPAm28Z7oFioB/8tWYvh1QKwYMUBtJjcwePn6fHCsA4W8tlCY4fcoO50IBc36vB3JRU8O3I4lAVqUeLOdgrJvM+nrGNBdq0neEiMp2c50pi8yIW3qPWR5285+Bi7C/Yf9cWA4HsgZ6JHqk/E6cC4VgrLVGU1kXT8djmDXNLUYGpiLl3r1KEh16LZn9dQ3QlvGhnWDJECR+BlTw79c5uLCqoAO+x6qeqkLByaO5J8Vh7CeKWXfEGtgDTO+eITGXX8Fe/KzydKgZjuGFIYGU+2nhUMS/Pp3sYSErgjTBEJuVgiMIfWJgyyn/hwWPakgmMqqsjM3oseP5Gn1jvd9PbDe3I4tJWEeibiqPXdVFSIsCTADB62dEF5kBxAWzetf+PByte2Yr2bPeb7z8FdO6q4U3ACRIW0sGfwcuhSmQF1+3VYd54lPruqz6NMBtGhegm4Ln+D5qGikH2uEDKjbVlb9h1rjquGqlHB6DHBEmY7VpHHgQie+cUWrWaIQrLmUkz0yILponPYIn0f2syLp+yme/QpRp8qM16TefoRCN4kB/OtDxM/WUyVxstp6rYL+HVLHVx/foGPaEbA5eFHWOLfAvS8MhaaN/Tj75di4HXhCbzW7MWqV8fA88I/7EEdSrrtCVHe4TxlhhX4m4wniS15sDMjCaP9X9K3ACNIq+mn2JWR2D7QAPWzN/LjPllwzznHrV0msOfiV3B8rMXuu9p5XMAdst+mQusD/GiXlTUkfRwGF6MTaWN3DZ5JiWH9pdc5SnA31QlUkXZ8H42ZakC+Ka/ZTdcIFEMAju3LQfvGGiro3QVNgj/Qp3wni9s2kPDkabjjw2ds6h0HDealdGzqSlSYOgh3m+6DztcuOro6AG1iDBhS9DhnbyZtGakHd/w+8/nt2Wz41wy+ut6DbU19PCqU+aVODykfeEf3wt4jpInC+gX36F60FNQbOWNsnA5uvLQaq51kKVZEl5f5lrOeQTEmlpuAvnM1J11dzgsn/iZcNoYT5j2hhNnX0W9VLu+JyIfCvXZoLgnwokScsiI8wNc2Dw9K1OOyZdq45XYI8r4kAoE2Ki8L5nXdolC6PBlP7ZWgOtlwbFsyh7LHzqR2n+dkNtkdb7a349KgIip5rQAHQ97ijA41XNkkTvYV7/mJnx4dsYzm2U6jcaZaCMr0TYe4S1Kwe/dYmrElDKonu2D7bVlKv+WBpWOy4dV4V9B5OQlsJuVxe/iQ20RtAPuftzgrLBDalltTx/pL+GzfLzavmAa47TJu+JxPJec1oayij3YaPRrKPSP6FTSCn3r9xAWpe6Dd+i7d9dzD45a7oLW6GAiULoKvD0aThpwZbpxVx24VK2CDRTVYHd1CljXv8VLud0xdZQq3zc6i0epstO5YiKNkU1nF9if9vDx0f0dmwjGXGzh/7FLaoywBZ/WiCF+HwZ4efZzpI0Q1OqZg+FIObmc00F69oyz4xwH6RynCgQwzntq1HfKWd/J65etgKuvEYzxvsHiiNsZL6uCLO4M0KlwG2oY/ZIuUeNzgKMPNHxfgAVlbvibfy14mZbRqlgtlDGVF/g8V6JxOMO3MU5Lo+o+VMIUGLDvpYfto/iA8hyLin9JS8ZUw8q0srCuPZJ0rVpywbSM9rxRivZYcqrV+jzsfLycJTycSVOnh6D4DUJeIYl33JTD+9CaI61lJZksVyc3AmZNv7qb01lpyz8zhK5ay8G+zEskUvsCWS+EgXf4Nuq0FsKpUBfs9RCmxZT/XPbaCaQ0EGntsYN7AImiu8ID5IYag+OkzBPqo4sLXX6G41wf+Sm3lA4OjwHgQMNginHZtHIGiBrfgcG0yZWpvpnrPGXw65CZsCAzHTwUToc/jI5w20qDOYDFuW6zPLcWD5ClUgp4e2XxpngC/MTaGm24EOw2vopBeAUwpX8ixM71BK/skFc5IAEeVtZjsoA9nFs7DqCAb2Hp/OdInHQ7M1oJmrRS2yo6Ej8d+4tPgYXg8PpIVLTN5ZtYkmBP9A2davMKkV0G4MXc0fLf7wzmb0sE5I5qyHkdgwXYDWHxvJLzJaUDVNknY5qQLOU1u1HToLW2OOoABX7q47U8yJ05yZd9CXSDZY7T6gT/tOVUDPUtc6X5oKb2rPoFJ/+0noc9e6DDnO58IUID2vfvw8ZV+XqIzHrw3rKcXCvJcvv8lD0Amjt8RQU7Vpiw7Vgxm2/8Gw4YSnGgRS0Jaa9kh+SQ3BE9k7nyPIhkiuKColRoaR8NxLmBxszTweV4IF8dfJCndv/RzdBeoPvdGLT8BeH+vlAo/jIcn4Qr0K+kxXF4pym9vGWJ5uD3+sg+Cb39CYeu5YbBN8C+azxsPl/67gceXGtOvfmk8qhuKUwTjuWXrSPARbObrfZP44V5PNk/XA4Nzl+lGfTSLK4TDykNevIV/kov4UsgpU+cbkY6sEbaSptsbwhurWpSoUAKZhiI4N20y5u/zwXBRKw7fMwvk21Mpaa0qXz05GSTr5pK4vR51/FRDu1lr2PjgXo7wugGvToVh7qnPYPvBhcfaDDH6Ig8297rJFaMJ6h1F6PvdmxB1bciRhi8mJ50h7h73luU3iICb4Gs0NRfD+4fOwNWFbTR74DU+TteBO/ZXQHhNLTdtjSXXQgWYMIdYaeZ99DeZimHPD2LGlEruv2DA6t0RdN5Dg7rqhoO8gyK4fzmK4VJMaspl5PTXjB1er8Oib/589IsCRnrkYpVwKMwrVYR3X9aA2QaEZ2WnsGadDt/Vs+ZqkVxqCbzKRbdL0S8rnKZ7C4J0XTGWLguB1kmeMNvrGpVv/IGK1jU4PlSUrjY4UNyek7BtjRjYTrLFPItV/C0hlt/JTKMfOY5k8foV7kncyLvW5NFkYW8WmCsD8xWcMX3aV9q7VIgUX28jp0eX+Xq4JZ5acIGm+t4mvYgv/O+iBUjsnQujM+vhT38L2OsKUFxCFT5at57jc3axye2/KOb8kMOmy8BWuXsUa5uKgj3N9P7tJhjISIGlPxsxwnsOFv2agYuT7tKeCBO44rSJ4k5K8dcVcnxlgg67pBiB2uVePL/7DccsiKEJ52fiR/PxoHcwhXYtVIBpx0JxbtlGvr5YHz4oL6H17gug7sRu3ibwkl6KqoPC0xYOsXqFQYb6eK9FhFzyj7D04z9sPPEAPTrym9c76pF6jCgkFQdC/awgapknBBSbAociptDLSY9w/KMpsDNRGju+zOdv1iqw/KwPJr4YSyou+XTfcQBTTO1wX64Zygm2YunXCfAl7hsUqitAbK0bvfeSxKsPVeDBwfO8aWYFTx27mqL/nmKllwMkp5aDgcHyoG4XiYK8H2YLHSSb/W7YXFzJPfc76ZhVPLbN9sZrLztAMEoS7l4ugrLeABiQ6eUFF8J5oDkAi/dq0K/gVtw05ImBKyTwibYeRKkb8LGJ36Coop0uGT2l684H+OjRJrid/o/ik9PJ+spX0HNXhvLxH2jOeUv2yAog8/vJEGZpgM6ZwgzL/OmV3GXcM8INA3abgtnOQ1jyRYLdqqzp3TAf3p0qgk9wE0ZNk8S6jWO5+9I8DJJUgMGJK6jaywx3hVhi8TkjSFUYxxby++Bx8wosfqnAns6M0rk60DjGCH4bq7Nq8g6SzzTnI83u/Me4hM/UtvHvGbG4JOUJGP8xAIs5jejhrkzdiTfhZoEuF/kRlhWos0yXKfRNu8h5NUNcoKsLMrkTyHZvOZ2Z1Yr+Uj0UMUkZ3ssbc+/mRSzjNxy/nT3ExSWy8PelLNq2H6dsh3n8dbU59h/aw63b6qkg8BRHpvThYPA0XHSXoDS3g3ZdciD1ns/Ya36CRDx6wUPyIzbYlYPEy6fc++4Spi2WhKyVh7kjfg3pWJ/Exo1mnC2nx/st54Jyid7/n0SiLXEj6PuB/7/nX0Y/r84iC9c3XPncCrZbncZv8bvYIUmc5umMwwxNcX7Xj9DpM4nmp7+Dgp9+mJD2nEOG2EywKhJVOjLR7vELchlirf3ZgrDn5gjQ842kC2gKv/emgdh/K1Ht0ivWcPhHB0cUw83M91QpZAou7d94TUQobFzhgILl29io6gb07w4ig29n6ePuA3S38QTU7RSAm5Ne0YiyNgi7oURffpXzNU81VKl8js9W+PL0vhictikTVkxThjsLv4O1dhqdD6niGcrT8LLuA5ax8KQlFk/Ad1cp1fuGUUq6AeT8dxbNp8VA5ntn7nbbjc4eJdQ8R561x0fguoVv4GCwHVAJQfLnOIK2qewZrcEWrwp4e6QQ6eYP8pa2rZRrVgFdQWd5Zr8qLJthy2Xnl4DwnN/kZp2MKfH3WG8YkegvPUwb/Qusv3XRL2thmO70F3Z3hvKS7jy2EmWW+bOXPrasp7n2+njlTTKnSi1k0w26sLxvFXfc/8JnAxOg59AVUD+3FgrO/sK9Uxdjx8GD6PrtBc3/IQBKtsfgQ8xL0Boczm9nCcI2W1FYlzyeyu2qwexlJUauGgkz94rCx8+mFDD/F61OGoFrb62BLT07cKxHEcs9qwb07OUzcXFohZoQ0mIBLVkr2LZ96A58FefvHYfZct8gPKqZS5lrwuD+0SP40n4cdG9qorkTAmDGzb3grnaQTB3GoPhtB5bYFkfh2gE4W3Mv7PmpAeMLCyn5mwz/XOlEF85b0/ktKXyzWJYKXjiQoJw//ddXSsFDPrigQJ5E32rADft+VD9iBO8/9NITx0UwvFyZ2tXVafOfcrI6NgmiVjfTmSNneHXLKbxw2pMnFLeRgFgcbaB+1tLMZamoNxBjqQgGJ2bxaKlBuqVzDJpfWLHr1wqeEFcHdhXncPvN8dQ6ehktVbWCrFUrySZGjCeJhUD4lRPotPoltc0I5bWhy4k3d0LhdS/0+qkHlgcNac9/UvzT8Spj0HUMqJ2EO55awHzduyAoIE9PH/hgSt8k8LtSQlq79qGVcCNXSp/GaWqnuNj0O2VHmGNC+RRcRprU3akGC6+7ca3UIDZ01ZO9zVGeOSufF75y5kSZV9z79gkL+I6CD4PKcDt2DJ14LQBV8hOxJEaALlvos79JL/hv16al15X5zZNFtGCOAPw7cRL2fomnkq33cfoSJfwWeYkOhjwFm22x7OMzh2/FSoBikDGoebji6Y/XeJbaBI44PA4HT+zAuXm/aX6tBPjlK/C5Fg3MFpkIndlTUMtdgP5mCHPCgfG887oOO51bhzEzZsOkLaFsdCkA5xaNBs0qoqMZ9mTeE05PJlxDwxZn+mIvC2tar0Lh2gVQuMyS8s9YgpJuKVh5ipPvCSMydI5Dw9QxXNU7mdOrduPca5GQ9+wH+/1Rha9hI9krSx50ml1426bj6LUyCJXT74CxVTzQImfKFvAl26wJsHIwCx4ZiXD6vTiOdHxPg1L61Onagh+77rHjq7Ch/wnAZl010P1jg9Wea/n+y7WUcn45y1cANtZ6wAEbFXjVawQZN53hl5USVHScwTfdofi0K4t/OAaDcWcrrqoaSpC7l+mt3Kohh5iImbdNINkaKUvYCl5t9YILB7tprJQrP//eR6PXIETMD6PSlH0gYGEGqicfQNvGfzBD7xvrWhxG7dsXadV2Ark7x2B7qBm5nHlH11fZQO88MxRd0EV//aMBNuvAuF59srrZjGa7FvPc5o184pIH7Ay0BrlfGaxU4EHe60az7xhvTFaJ46Xhjmg94j347a1FKdu5XCghCUW7LrKc+QAuN/jMUKVLveZpQDru1LGhgP/NyaSzw4L4zuAwiEncDnBuNCZvdQTbxy2wNaCQ+9fPAsNvj0n69yAuzXeg/qsA6iXv6Ok7f2qdGIh7LE6x7e9d1BVqzb4j1cl/4xUQaK7krbeNARZ9osXpbkO/v8t66uFwy0kNL78+Q7QiiZ+rXcVTd0KpN0oUAtSr4aDwM7hkOBPeVBjBUi0d8FNp5aoBbfY9q0mR+rOxMnck8N87OMteAi/menFxwncaZTqBnymPpgtjt7Pss1ksJJDCE3xHwBTboWzL2AMXCw0xIuMHftH6RDoDK3Hqwde8YmYoxO0+jo0tDOMO+pFUwzXaER/OPV7j4FO4GK+ITSdUMmWHv50gnnOJ1ZXkwGn/G3o0Yj3hlXxym1oDK9IPoH7hIWwIz8IZPR/Z3XE552wdDoKDfyFAwgGC6ydBk7cYZ9y3g7aAWrhQuRPbtmrhv1OX6PpsSTj79DQ/9d6HU699oqt90rRzrSWkPpsOFy/KssO9XtqD0yn8oTDUvtgGk1Kv0trSA5yUmIXl9//gqAoB0jGS5qIaRzy2pQvXHBSH0lW+EORuyPUG37Hqbivc6R6A0QX5VDuTsa/yNG568pKtd02AyYeXo7h7L70r0uH+swsxaqgvbhCAmf53SPlTCuhb3IP6BBMIrevBDFMrOmcnRKa1W+lIjiHbueqA/PhvlDKwEQrsV9EjQTnQiT9NE3Pd4MijbTQm9yz4tmdC2LQTEH76M8zQDAW/ukJyEFEHRR9NntzlhKVVh7BnrS+3rNLkpdMUoavmIvPVhWz16jbmOltA0d2ReMzuOooF1eNlC0c6vOsfPVoQC2WX5OFqUhnKPM/k3wIA+7P/oyVtQ7XCOJi86AWdznrD+Zf24UsRcyr0XUc1nfXwMlMRDuYV4pUHN6j39kz0WSMMX48ocZPsIXaUKcDWTfo4dslTvvRuHHgVIAnn7celizIwK18Xc41b4PKyhySaXwkX9dZw4dJCEpwtDiHSMSBxZZAMjveBU+4RiCu2gZL2DLwZMgu+JI0Co2f6KDfWCu4NiHDeVgX6mhwOni992HGYGCQ9skQvs0tQNmYMmUZfhPDLQrDzZD6YW1eQtNIZmHHmAqiNyYOYswUgPShBfn+aWOV1G/16LA2dTtfRJywKpZflo7SMFuisPoVXLk3E4vm6vF8okA11Z5KjlQDMeKoBh+N/cWSmLzb2B8Gfu5GgZRDCmof06bBFNGjtOwX3ZQxh0foUfjfyP7aR/YbB93QocdoIVH/7kMnfcSizLuDJVW/oifAwSHxrBt//ZoP4iTC+ZrifNm+3wqxLW/Hb+zm8uOkOe4zT5JZzlnDlqc3QHngTXj8Jc6ZchdBLBjijbiFOOFKDL1o7wWpTDO9ql4OcS1s4cJod/9BpxBt9zAF3iZefa0OxcSKsW7EbbCttaP6ALEwt+kkvZxnTit+9WGXyi+JcC1H/1G8eWTgPdketIcOp2lhvOAGWnNRBBU8XGJzkQoeGPPPdj60wqz4fvsx7RZfHnkCL1YdxpbIIrDAdzS4vFIb6fBiG192mMIeVsK6vDQ871eOKVhkw87wGuRPN4fzNU/TF1wBzHwrxF7F2jHRYiNKKQaT/eAGaZIwnQaGx9MTYBI78U2Lc8gwUK8dCV3Uqr000AOH+dHj/2AP2Bp8hw/JwTGsVBbHELzA6vh3Nte+ApvAnev6qg9vnPsIDS/ZRQKUzVP7ToWvVYrBa/QbM+aHHhxIWsYihGUR/3M7fLh/jnXMWgd2ao3RTTJG65ZVhkv4wTHfZiKaffpKEeSP9uqXEFW7DofTPOWx6F0MoOoHkL2hAx7Dp4HG9Hwb2rUFMfcBn6jxxTrIzengK4eSPFzkzegvFRssDnjAAd/lb3LjyDRal5sHrq2vRRjMaqtdsJjmzJSA/QxLXHbGCoxrZMGhURObzc5A1arFDfz31znlLZ3Rf4P3YRbTwpTvMW2oMK+8dgFILU1DwHIMqYqXctPcRVnwcoM3jR1PEtBnwz3wpfy4aB9411ZwgV03tXqtxxVQTTgqfhXbf9cHuuzMuk6nmEwl5eEFDGQo7nkKJ1wReMhswWeYQjjJ3wFFHWvDRCB8ULTShczdGsbjcZLgxsJvr0r+AZc42eGJ0BB+OUsLbQZLU3dvI9YavIPt1Gdj/mQD7L+VxarUVrjX0IoX7GvSuzIEFv8/nTQOaHGEpjCLTUmmppjoYPxGiTxEzcXCLI09fUTfErZpU0p4Lkmr1lNHwi4YVREG/sSiMso2iqlHfYPKFVooZEQTN3l0QOOoqat60pmjHC5xU8REnFQvCDoMyqOmOpy/P31L367Ow238bn7+0EFd+aMLcpbf4a1gr7C6Shdyf0/hBMEGq2hXgMw44q0obZffk4/uit+TiPYeHUIwOh8iAsJMZiGc64+KcHbx3zSIS7b0OWoe1WTM5gWducqeVyfswQHsc/JbQgeq2DIqcuQiiirxpqWE5aod10JLpxnzZ5TasW7KdJnWJgWppFW7eIY0DYRm4LUkO99wfAcdnDaDWaQVM/dePdk+mUmfdBLAd34UvaQ6tn5uFn+2Csbj8AAV5J/N6gyNU96ePNzbEs3WCKQT1veND/pG0uTsVb/5LIPF+Ifrg/Jx1JJfhbrdxlBoxEs4Vj4HZU5s4aOITEl16j4cPKONoh9fgl3cDHesVWemRLq8sSEfnBmEISLNC2bSx7JG0gF1rW/DHWXEWNzDBkzqtcGaBDLCLJlv+ModXjvlYfeIc3Ez0wvrXUrTbwoH9/ypTxuo4loFX/C7lEdx/Kg3HvO6xTFgj96QugibHu2ywuYvj7T6R8tHh8NdqGg+fU8RoLwUVe75y5s5x9H3xPKpLDaEHXu6wyvs/3rjlLT42/8QGfQfg7igh6ArdTXukOyDtfjO8lhKgr9IR5C4lxls8G0mhr4DvPD0NUyRGwtm/uSTjZIx9dvnk8N2JpuWVofA7JQx13gEz4zvYuuEyOiQpQv+9SjbY/ZN6fyjhSZNPNHn3OZI0WkfO33ZAonIjtVwdzwHiYvC90RsVvZ6z9mEvuHhQmc51HuPE6BrwaxkOvt0ReK87kU5fEobc+cuh89Ajqmi14BKdIBY6n0AnzyVyXsMvPFZmwutny8P76WMgoOs/fndNhx0WBWPi2ToWXPCbJBwe8/ozj6m2qJwTfy6gLWIEU7LUaLVxBl1+NA50dj4izYkloGh4DcoObsDncUkk6/yQNsaIQm3wZfD/s5V8Mq3g/pNh2LAikT85JnC691oWGfEfVXXG8w5taVjmfIN3XXsCEfeH444n6vx5eQrL12Xhgyhxfpe0HTpCGD/SJPAQDMSQgs8w/qgW9hco4ObFESD0eS2IqefQ5OCzMObdHY5bZAXXWrRx+YslPH+kNbzye4Paaxwww/8XXdpTiQvuJnCGpANB4Aj4b/NHPDvjB5x9NwlWvDiKAtHRXL38BSV3XobHcQU4WTyW45+OgC8Nn2i9Zxmnb5tGYzY2YUpdBUd4TIVr56bhgQJTnDjdgcakKYPh+B+wc4cBSha20EzNQNhxpQIstEdB07exuOHEWZixbCZZ39QF/ZcHMdYnA0SyQqDt2FNs7qmm2Oq54NgRiCUz0uH152A+tH0MaDVqou2kJbi5xoe3zZQEoRNDO/HgC3TH/QPlyBu4MJu4/LI1zJIR5LCYq9wo9Ril5MdSR4oxr9+lQPVztPHu7jtQUX4bPokypBqowa6d06nc6w4GDrem+Yr3eVL8Ci4+74OSeSug5fMujlujApvU1Mh4ijxuO/SWL6I9JsWvg/N7l2BujjA/9rYmb71gSEmTgbIJo9FGNpHWiSaRctY6uH5vOQXsVkG3+1KsrOFClQX91P/ABNIq5oL9WnkW/xUCm7/r8ee8h5jabYiFn7NZXC0calp+0SchYzi5KZjLXD6x3glBztaIYps150lJPQmfXU6E21e9uSZhP9tLAHyoD6aQKg0YfJIEt/wk4IDPITbrnUvG7mp09EgUfVNqhW9BkrBq4VNyMqimPQ790Lq8DurPfUODjVtA1Hsavn00lvT3ONGuZiG4sCGHhBKz+az0WvaSdoMHTTnsHpqKymfH0pQeNar2S8IwTwm4fTgKlj+fRfflprLl41goL/+GKQPnoGf2Dx4bu5UbSw1wyn4R8Dd4QYZabyi3ZjFtD47h7of9tM/fHxWPHEQx6RMMsqEsUmcDfVN/k/NMfXg1KZUKG3qw5XUEJk0Wx3u7PUizfBo6CS6Em88VQDLDlkc+0MWzeedB3aABNle8IyGNIKhaXkCmwUm06NR8mHtLCFT0duJtMzX6MaIX5V118PvQrv737CQ/TjGkrkZH1s1Ohpo3w6DAsx4aw8/SqZRo0FcQ4Qzvz1DfUMk75n8HAftH4J6mAv3yw8Hv1nPIVR+E6PxGehbvDSNP+uOkk9vomuxG/FW/lUZtfcGFi6zh1BgPEPtvgLTjgmDkaiUc29KMIf6r4JhBPF0wCqRfdulIQ3M1N3Yh7NxjA00uiSj9Rgc0F1zgZWJzIKskEZXyWuDoCKK1IaoQO9SzggXukAZBVNG2kKpXlGG1z0qutZoDGuvUwOztWfg7xNlCN1+x948QTA1VhfCeaLpx7DscvGtKMm/XkJyyDSX8eAEr/g2DuG0/acxOTRiIViCBE0ncOsOB8wqWgNsfV7Q7V85fswUhNHM0TLDtpyz9fRxy/xns89xO+Wky6JZcBrMz5vIH+7U0PlQOG9PVYf9wAbTZIEmPj6Zxm4co1QXGgOQUIf6wYBJv0b5Ja0WuwMjsIY594sVT6t6QS0wo2kVmoatDOcUWreDq4l/wqVQN5s+4wptnWMDW4P9Qd3UyitAbTL3qw26urdiwzgR318fy8VmBuP/rHsbNNiDx5wG7ymnTw/YVtPOTIpTr+pFVVSjJ52zEzEgtePjkOGdPE4BzFoO4ReMXvVm4AOdHZ8DmK4vRetQzDvmVgWevB1KWRD1HJyuCfPpr9uuxJb2sVFjekEdZxnG0P2ACiJqqQHmFEU/bfRHN01Vhcs9bjJZ7hTtfvIJUuRIaOVsbFBLW06XuSnKaqMW/U5TJ4qgojDuyD3N1j+Fk9dOQ5rydP9Q2som1Pd+MU6VN53bjkeIn5GzHEKK3mWuMbal6xzoSiV5E8/Sj4eA/L/p+2pma0q6Alcsw2FoqBWtn1JNB0Do66RPMpp/yaZqoHjnJOVP7qQnwwOUKRLuXsN0hRcjyuUUOehKwy/kdfunX5ndD/RVeEQCO213woWowFrX7sFegHCjlrMOZhv2QcFMWF+/vh8iDQhgpVczfJUP4fehhflJpQavXK0PKE4Iel0uUdsUcbP08eJ8w0YWnp/iswnOWf/WAjQY08JQBwzHNVejiOguejlbH/5J/U1v2ejjaEUch0SNYoaKS7sRNxtj6saC32oTFZhXj+v6J9LThPF+6cpoUpgqy8c8guJCcyU5nTvPcYeawTUcOnrb2cMzde2ydPpHXJfey7aV8fv/oCp82Ogayam74+bUy+I62w8mrPdBU34B9hFQoNn4CFNacIKvSZwh55XTbNgqnjR0Poy60QqxUAs4BA75r6oCwzAnjp/ui7OlPdOSaITxyOgX+dfIQcPErztnURW/VKslizAqS36mMF9rycfap4exy6ygE77WlzT+NQOS8G8+plIdIj3ngq3CawwRaeaZ6CTcp6ZN7TQVIdhZz50MpuDZ/G59QrWQ9vwTmQxrQs10dI8udqN+hGhuPT4OJgxkka68BGqs+4HmLaqrd5QNv3Evoa7Mat0it5C8xepSZtRXKN6Vj9g0AE69tYBc+nIUePuUtHfnwX3Y5OxSupFlLPOHIqiL6GLKfPkeZQlaPAagpbAUD4aU4J3glmo5T4k6tdMw1zIH31Sr0YdswKl5lCXMPFtO9HBF6ZS3BWw2KcNev29z9QhjO/LPkGzsW4RKNaLB304WV/Qtp4c4/dP7QGXgsFA/hW89gkKw0djYcg8GrU3G+z0R4bzYSrknIwujaOUgXNTFKWofHzqjgC6XSkPjNCQ8PFnFyeD8HlRmDoLkmmyk9p7qbq7D5xD8atD1Bd9PiSC9sKv9NnIf1G5Xx1DodcCp7CxcDDXAibcDEXEX619FGW5uT8LZeCUyXlwOrJfFcs3csdHslQYPhOi7R/Qjzip7QJ7PfuHnmFF5g9YG2mq3neBcdltpE8O7nc9YrrIemXBNWr/qNpqlDMySxG6dkn+TRrVaw3+IoP5KZAPVN1iBTZsYeWV4sIuZMC6qGQ+7lS5ggGwXfhHNhQmEW6aRrgtasYH4oNIxwuA3BCGGa0LqdiruLaW96KU7or2WRxCK4oKUFDgLt5CAwCTaNX44nhrytMSMC1h1bRY/+lmHygkwq/heHH75MhN06dnz7pwkqy12BHd7Ea4Ju8Ye+vzT8/9/cVX7DRt1+oFMxAQbOrIXMg9HwJvIbrfsvhb+K19C+PxfJ7c07ODf/De8z/IEfQBuiVq4A4T8H6bhyEYkXn8WYxSKo+yAN956zQLEVn/FGfRjMSjUDZ91C+t5oiscneoPSGE3+ItqO4g0zIHPseQ4t282WgxZY80QSHDbpY1uJOQqqzKAXisHwJs0cFv73CiAwCCJVxTDBYBXq7wDoytpEp/M66WXOQWgQuM9j2qRo2Mzx8Kr2Lg67yahwPhvNQRQ0yleRv1s8SDUKYkW1HwjEepHPIStqMlMFzfMDLPv2M76aLgepkcIUsiqFJGEs/BX+H3H33ZDj/zZw/BiJ0i5tpZR2aSkpySgkUUZFQ6GiQlZRyk4aRGSmJEKRNopIyYikJUrISCGFEl9396P4PYPrc53HeXxe77/OxzhhTQ4255zCcT7D8MbDTLgX3Erf3+vCjoj/KOTkJsDXSTQyphcDD80GylWkmgQ3CPj+nOQnVODumgkwdrMSW7k8oIimd3zk0U50WveFTv2YBerPJoKaxGiuTfCl36/kwdbmDm4ZmpGO0xWQkXsLjw3c4KW/Smj66kv0cpse2Phn4d9iHei6cBNf343Csc2KfLwvDuJWGbNAvR/O1NOjzP9SIF0qh3/mjQBD6y84ybCX1PTnQVHUZJY8Homd5/fh8vwxNE43lC/viIMxEWpw2ewT2IoF4bLct/z9UwovO16HP1x7seHuMso6lkml4zahjrQNPM6eim4uo7Hp9wRsaW2koNFv6UzXI550TQ2WxFfzKu80rt0tCDvs5sK93FD2/vaYRwtokfjSO+AkoQ2SHcPA6Ykm3pcphJWqmvD2hjhWzVqBuzfsB+8oYzihmcN+f0sh7bwrXus4QLcPviWB+glwfJgRbhyciB/tr8CsmbrouSGA7ihn4+PJbpi7LhKyZx+mX846MHbLHYokY94m8hblh4nhrUkVuOiDC8LoBF4FA/xglQl+G2kBN/cGwzaN3TC4Ko1WGgmjqUEBTndbjvFuP9FtTx5a7FClugkSIHw9DXziymmO3ydMkFeE0VGWnB8WAA4KarQtwJ183jnigD3CMiqFl6HBsOGfFf84oQYmC/fQua37aG/SZhB9uJ9Sdqih5l1T2P4whI93jIPqwI+weeps2pbghA2vIlBbYT4Kzt6D+xuP0eQec7C/VoKXIu5y76h+zKt+yz9aNalWO5n1VifDbPFhXPOwm3eXaYHinApe7BgDZ+fL4NaICHhss4IcJonTxeXH8FSWKnWnBYDsK33YHPMHtbCeZktNR7zriGtmzIbl2+3Z3+UvSn0T4jcXvViqQg98f3pjTMgSKk7TZp1HOfjy1FHw/jUWZ0cs4pQT7XCgXAZ/WCnDq54GPvXSFdb5ldDkKyI40PsIz14RxOcB3pgVLsSDSxLIN04ZRFqv8LaxvXDzhBKNeW0LY/Iz4ezBYhJQ1OaY+Fz4T6cMZwqqQWbqZRiOmVAi9wXV7yagnlsXzZ7WiyERNynr0gIOzriKp83GwpOgVvg0UY6jdqdhR9BECHzzHLKmbuT9zmehMDuN1H1vwpeTavA0joFm7uG5bQ0w2NxFLzGVtQtXs7i1ProNhuHJeeEoedwIdDQv01nLIHQesKONf7rxZ5cLL5nvjZtMx1DRdUc4IFQFM4a8EVReBYNLnpFwgj65D06iXZcyaMPlGJLIWoUj2lfBwsFWPGBnC0EWi9DS2oNMj1XB34xDtCE5GbROPseN25bCcaX5bKPcDTvzxUGhfzW9mXEe5uqrgPuj6+TwYT2bT2zGQtMa0PWShcWfRkHIIxVwKrfkwbEBsKL2OcOlm3jfdC88TwmhMbGXeJIPg0PTLdzcbg5O8uNwz19JmtZ0gT6mFdPpuBLacn4vec/qZAOhRsg9tRnNbceBY5E2D9MJhepHr3jDUzNSdE/D3K+ZrJW0nL3L17D9MGeQVdeHsq0zYflLFRATVuJ7n09xjOtEyLqxFeWUZuPeH97Y6NUFvy9IwaSLrnz8kwzUmSnggMp2XMX34K19M3gUFWOl9C7u/4TkIKcNCvN+01P+w25SrVSvPZGF87Q538gKR/4nRWU9UzGjXhYeLhUE65n7QKlchD8nl6NJoh0um2jIqS0isIPuc4/UbvY3qOWzhJCm0MEHRgrwHX8/Xn7zCFeMrKLbGn8gxl8Wmn4YwWbhcYB7jUHiyQpubb4FwknLkYKu09SQDrx7cBffmSHLYRuWoPc6Cyo/KwDiU6bxIi17bHz0C3PDntDF8b180nUHXpsjwWcehmN52jBU7tOHzyk+fBHv0viyLNh9fTpfG1EB1urroBbasNAtGzrFVTC+dzJovzBDlaogHr1+PvkHBtJuvQKcMuoipLzwRMFdlnwrJZpN2mVBPUoFtXUPocSvdBRYv5dvFOej9o7DVCCZDKW516mgOo23CmtC0jkRSj/3GsCgkCy/HgLXp6/IWvwzfnXr4S8+0/FU+nTsGy8PipKbsOzDOgx4nEknj29Bn+enMSjEl0bMccfTguH8QOsXR9spg9PiOTRJVRPFtaPRoFcds4JyQOSNDo4w6sffwTGUd/QfTrIbD6SmyP8C/aimOAZePHfh6rYF+DdqEZw2F0SJHfqQl9JDVxVNITJ1LHW6zh16Zi4877QjPrdNglQ3K1Be8YOVY86SnXMn7XmqAi6iTqjcfQ/KJo5G167LmPDwHb7xsqQ1poU0cu4IzhE6y/OkhWCTlDqMbCPuvxfAK1/M54zpz6ndwx1lPEbAb+USvndhETxLkoAPlp7w9u4pfGEmB/lO07hiSwZ8zxXHcTLzYZflLbo7/zhvFRsFD1SGQ0xBDUq+cqCRqrrYc3cSjI1u5yusT7vzgtCmpho+ezG4JA7ZqDYSzmfthexdC2DzGQfQV/YnTJwCDm+tuWaKKLXkDXXwx1V0Jjcdf4wpBZsfhvxe5zKbLyX4mtlEcVqACluU6drzCf+z7/8u5P0UaduAYhJNIJ+8nQV6GsDtoQU9mKECgoUCHJA0mSs/AWxN38MqVzt5gl4/uJxsxClVz/C/KnucffAc1n+2pJAmcbh7Shk+RwlTeeYZlEkBznG5RI3bxvHHqXZ0de/Q/DWrs8aUNsy/ZAs3z/nQpKc36VDPaJporwZb4wpARSeMar/c5c9f6+jQNXU4/F4GVsjfgBLr8Wzy1hdSNLtQ40UsPCgtZp87t+j46HYs+TcHTI5JwyjrLKh4bIABnnXM0YWYmJFDZ8vHk+TVidgTOsjVZ/Koj7QA9hvQ4ZAvvOnp0FkCPGle5lZqmp8NInaX+W3UJxa1yGezmZpQv/IXiCzJggffcinPLAEkHuay7obVfNkOcObqDaR3X48H1mmCZ1IiS5jM488esnjMyoaWXw3g6ROms873DBiXnw5qCnNp42Jx6J47gWZ3vcSvlmlQYHgBofQefWsaxfWJGVxqNcBqZfUsKG0Cf5aOxYAXV2DSugsYO90VRv5xAos04lU3n8CdZHco8trI5yrMwV3CFAzXhOLG38LUeXwECU+xhWHx3WB8bT+NbTmO7gsX45rNWvDUZz+IOHXCLls34OqROHuOGG4X3M0r4lXw39rlGHqumtK7zSGiOZ53hAazzDIDHqVmjc7GIThuyKIo78VTd3hgxo/ReLrbBlQ/zSD/6CGr+1XTjagD4POwAfzaDvLwC0UUk6PGHmGuJPfWAhIfucLdgMUgKNGEd6PKuEBzNW0aFUob3DPovKADvz17ibPKdcBAqIDSX22iypQMPOciQooXqujfBl/Y1T8SnN7v5pKre0ileQz8HV4DOlsKObG7ktwkptLEEyawOG8s5U/ewUUOpRS10YG+nBsOBRN6UEN2OFRERXDTtjqcaNKNGyY9RCPve7ghXYga6kTho4s+6DlL0m2nw6AjXo4iA3Gg2dGP1fGnqPjIP97o+ZBWF//jaQpSMM+xCsZdqOI5syaA9vvxZHTSmzaKf0d/gQ/Qfu42c85RPiyvB9JJ2ri/cAu8XB8PI2xOcZwqYdk4Qdwbcp8v+WZg31oF2CVvCO8f+dMF83g6e/cfLRytz1MTekFaxx6OHbCnqoY3FKMkRalnJsEyvAMRyVbQvGQuFFg/pgUpUzn58HYcJ7QCRBVEeUt4OU/bpAJS0Q5UOOoZq7c74eFjFXTBUJRzMzbA3MbjkCI+HdedyeY+MXEI/y2NvXO6oPulINvlx9LaH9f5o5EQ3rNH9r1URCfcN3OktShc/rMbluRKglvfX5L2z0TcsAW2p/8F7r0A7y7uJQnxuVRtpg7OSRbkRmUw//cJrIpNBtFSFwgt1Kd7W19hcaIvhD404wGriXBJ05vHrvwAszTjSfzwFJihfgCz/Z9i1dZCcNkdybyujOS+SsLdhTmQcxxw7bhXfOXKILqodMBS4dF0YMkrspL+Dr8+rcATKerQ+dIPJwTXwD3XTFD6NhtfNC1GpbXfyXTleXwXe5BHXNhOB8+YwJLH52Ff4QsKtP2DYc1lPMk+mP7/7jyQfw+ljvdwQVE7d40eB6N1nXmL1gI+fvEQvbb0Ba1xz6Hq839Us3QZtahHQWKTC8SmGUKnmANdOzqM/i2xpIetwVClkcinvnXiluFrsLZsBibbCNHhGoLykcMwOn0xeBjI0caWRrg5axBfhcnCN7nmIeP/YNj5giL/isD42kLsD7xO3g9kWbN7HheHyoNOpB5v3mbKHglxGG47AbNspMFHThQ3P3xEPrIumFkZypsyXrComySszA3n6oxhlFocyKs3aMLa8jkwZ5U36N/7hjLCcTz8y0wq+mdGe2QaIe5KMSWe3IAZQx1fR/WgPL6WCoQuQewrP9b8tICvVR/EPFMz0klfh7Pv+/GqGoDgR8M4X9gGppU0YoV+ELzoFAdJ90FOWmiO5ddj0G/iLqwIVoVPhWokWbKSLCw38JZViO/6duLGu2uh6r4dG+gU0PkRjSxkpws6FycgXPvJv371gnrMetYavEPHxhaDWsMduCXogh/OLMfZ2kIQO0sWZT7ugp9pb/B0ykI8dieX7r+sJc0dYug50Ih+JytZJ90UNOpbQH38Y/j6/C7aZy+HG2HDaWeJPq/KOI3OZ4s4+I82VF1UgbvrgsA0fTNPvPeAZqw6gTpXHuFStVuwJDgMLWUVwC6/hcOqhSAu+h5+OjITSt07YPfLRLZ5k80OnmfIMVmI19y6gwpRR0hYxhzY8Shvf7GH7gm10PPPN8Fu/Fx49SiZvcbHorylK3fOmsbLj6vAC/N81LH3hQ/d72iybTNJTNnP23clg8D1Ci73LQWh4DWw280ELOXMIbH9EMonnkHvR+707d01mCjiz3+CYskzLIKP+cvgodPjwHwFU9rdWOzTNgG78mdo9PwAD8Z+xfMy3zH2WgLnBrrTDxEpsLIsBaXwBJoXJIKJly6irupIKBrVzsk2VTB1tAVWT06Arxcng3TkbdQfFKewaGnu/y8FQ+O+g9qlq6gXa4PupI57H4jgsTIjWJOfyiuMEnjqiDBITuni3kcnIKmmG/cU5rGRriDmVr4nmUcaUPM5jqXv3+fRip9Q8b4PNX9/ArJPtHlNwlp2UT3FxRWLwfbp0Dm+r6Gnno9Q7nE/7BwLoCS7mBu3rSWdDhda7XMPZpitwGVoBI1rq+H6gRpS7jpPEanWdOH9X7rR7IgHAw5BfRtReN8r3J5jDRO81PH2mftU+fc2FL6Kg0j7NNiZa8v93hp0/stSvFYhCYHfAM7pvEK75htQ3VMPlxc6wpjmFJifEQgBNbFQBnFc9UYB5ap1YZRICv6UyKcqPTuc03eLE8Zkw983EqB3yRueuktCcuJySm9QhOxH9zjqgAO98q6AZz/rqLDjIz54uBqHaW1n7cmrYbOqF/1ZbQxxM71YR+opnFquyC53wllI5xe9iViMkddbKFNJk1WM9aD5nAKITJqPa5aMwhohezyj+gI+9A1AV+IhcH5vg/mLGiEz140aDoyEuP5wEMajWNx4Cc61GoHtHHUoN3PAVsFanustDZ/XbeL1S0bBz5d/4Vh2Lm7yOsVX+l/B9TUFvDNtDp67c49ej/jFfcFHebndaJgmtBSurQymmXMuoeP1cTyn9h3Whyyl2SW3uD53KUjs/4ubnk8Cy48j6GLIFRw98xwovBWByk+3Sc6zjyXflYPpfQX8t+gqlN6Vg0Wh4qyOHqz4LQ9e98aDvcoZnj1xD9VLvafjKz3w42t70LmrDDki+vB0tin7Lasmh2+3QURHiG5/COeu0k3kq3qerKYE0Ln9AlCyUBS+pyiCu9Ih/B4rgXOvlmFb4UzwmtMEljX+4CPsy35L5eCD23V0XXYZor9sYFXXerZ0k6F9P7+h2PACmL+viXY1GvIuEyHQr03nP8HJlGuViOuiF1P2uyB4JpRPC1zbOTJRAERMXrLZ7bEQ6/KblzU/ZuM1neh5/yXGnPJkm3ANbPyvi3VPBEGdkQcF7VKEezOPAdn4csKHNXCpcQe/EkjEOz/3wjgRL2qRleKjgxqwLkwZvl6ORvGpFbAvQpk+re+nwZybWHTCnIeNDMfatEUYI/kCnB6NAMe/d+niyigqO6rHG+/48QsBM0y8dYfkY8xJ9aA77516Hp9FGIJShRkszrGk4eHukNMmxO3XNtG7Oy281aeTI2ODcd6eFN40SwQ++PRDYtAuLskz5SXzVNB4tBlcCzaA6h3TMfDdK8i/MRY/JKjDjORi/nPkEJ3rk+RwkVXwbu16sB07iJevZMF05xMsd8uL7CvFoHrrTTbdXwyyXS446OxCliPTSCbxDoyJ20ttInYY4RLGVpmKoCD6DlMNO6BRuxlG1yhAYLYohon2QJVmE3ntL6H5+hZYtFcG8nVrWLLnAgkfcsD7rMzfxNdT8NEKvmJSyvFd0/jwKym0TFcDOvQIy15I4T+zUp48bxw8S5DDKWKpcIx38ubkC7SyUAlzpMVg463J0ON+F0+qz4U786Rgwa5YPJQtgYfyF4Hn2tdwa5wSzlyuBuka4vw8sAJnzioHz+fX2TBiDEd3bIXd/h28ZsIRSgkop+wTBpCRWwNTtevQ3fEKuvoyqujI8bRz+2jzUFv+LP4HYGeNuF0UXl06StMkLcDzwn08u8YN4v12caGbG1Vq3cODU0JYJuMC7/RTgHDJGJ58vJP2lS7jDnd1VvQUpr4dl+HHwFO29rXG99uN4eVuWch+0o0KqrthUjBC84ajaLTDlwOrkujw+4MoNr0SRsv+gjFjreCijwyHdNXgya8JdGixDW+VyMBPgWY8ayCb3kTVg8Wcg2j40ApizoyAmh/93Cwzk3HRfpp2ayM+rXAilydBuLIyC3o/EnzIkwKtTlc0OX8Ly4bc/3X4WpBr7qZko6/8+NJQB66fQu2xZVh6Qhj8a1Koy3Yvd4l+whn99njzSQo7uxtBZqcFJBuNxPlzJoGeNMPpQmd2Gvcftl3KIMcV60n350H82fcK9tmOpoOsiGkjEzjJdyy4+k/hmjPLwHJZBr6/+getwBB2ZuxH8l6Lc58kok6qC4DjZHCpWUrl36JRv+YetPpFwusrB/hGy3/w5lA4jjBzxyumG/jD01GwhQZhm/FO/nuhmCpXnuNC1yXU9NUR8kYkY214FQvMvEWFMxgEdj3jGQ1y+G7bFP5Um0pp1aqYNdmRQ0WkaeUKE1z8ZxqdyjKDTY9NyVl5Cxr26bC57CZ0iUrA61eMed69dhC9q8kfY8RY7RhB9t95FHlmEW7+7x5flJjGfWaleKue4ECIJke/EKX3bipk8GQY2G76iHvMrsEp+/WoP1OBKrYK86ZGYfr5+TIJiATg7hpXPCKvBNHLnPickClIK5aj7tY/tFx5GMo9N0O9TRtJY/gKaEs5j7NvW4CcnzZ3f0uGs8F29Fv2ORSpCpGmhRYVt1aTZVc8ek5XwjcH5OD+jBOc/Wsn+FXtxb6oQog+ZgwCk2ZCgfsx6rx9BPYGdNHSHfLwaGM1rnm7Gi4JB3PpBzlYO+M4/e5QpQvZkaRXaw5LCo5A0BpJCJvwCO9++YI37zjDgJIlP62r5jj5EvhxaADGD1tNLV/MYE32aHCwegtvZodhzUAqivuVwbqGudBWEIVNym/g588mTp51CuVuqYBikhH9JxGCc2LjSb03nbdeWobFs47ghpyp3NfnDh1BR0F/rjZIH7eGz1amUGE1my8kAUu4VtEj6QBIGOpph+H3ObFBgd6+1wMNvYnQ0fIQVlnexDetvTBTtgp6/hPGvKxKXnnOE/cZafHHcabwZJQJXHmkRE4fn5DHMW84lmWHi1fsRauKbWS7cy3suuXA29+MAhX/P7y4u4PxP3sUm+UO9Wcf8vNQNTzaPYMubnxOH27+pEx1IxhckA1efYfIIeIBJH95TaohSzH/SiA/e2FEos8/cdCFb/wxTwV+zN5Aif7m/GpRD7XfPj/kDUnseFlN92x/0DT3OPSaZAiVqyfBXsVOKLUhdp66D5+5PqE4y3/k1hhLbNvEgUX38HO5HC4/Mhyemtei2+AgpJ6Pxzm1ipijJ8ahPq5QbapNz+I2c8G2TgzJMAS9V1W0pcSWo3dkcb9lOkoU1cLtSOTrhqrweX0syavLwk9/OciaUMS7pYJwx3xtPif+lzZaJmP88B5YpZSNc73+I+fkvzB9vhmMv5LKyxcm0twdP+GvRiSezFGnfx1yVFBqSbtdiQ7Gq2H/cSPw1h5LwdVzIdM7nqfYdMKzeBvyj5rK3hvvYLxpGlT9JwYm/6mDrkIBfHFJx6DIfpQ1tgXFvzFDOysaO0cKkHv7U3B288D6ZlkQnOvEbR552FUvjaO2puC2DVNo5K6dWDktD25f/8jBk/Rp1UMBGF+4H8O3tnDx8hK4uzKIVEtM2SVrLtZH1KN8J/ClldNRLxBBedZ5jqmZiAcVdfncC4LdOVvBz/AhBxoupr9ngkGmaw9N2aMHjoUPeFnqeJo4WY/nLp3FLb/G8EO/l6T6ShW8Enaioqc1vLMaA/uiqrBIQIHkgxZx7ba/KNoRAaE75/NV0T+U/HIjvZGfAaHe8vB7ZxokbEpnY7fN4D7RGjUmFuAptTy00rzJ7yuM6YBfDj3wsAW7L1O54b8UGJb6gfdrx1FL437Sx3V4fXEphMT343MNA5p+VgS66nex7KiMIWOmkl/DTE6yEYfRC9PBvtqRSlI7QPfGJOwYj3BiRDje/1NCrp6mEDRmGUwRXY01JzzwgOptLH8Xxr+F8+nMiWFw55oSzE8+T2fbNlF1oQ28aY3hypMCuOBnGk55bk2RIs/AeAzCGMFMjHjmz9vf+dGV76moWviaI84ZsKzkY6gKTaHgyeIk/kkYrufrcH7gDBqxfR5JlYrSavVk6t8axC/inkPQNknMKwiHrUPdU6hXgNbnFnNcRiC9nqtFJtFhsFZwMnyyLEedSE+MCRvDouYq0GXVgIIzwqnwwjCe+GQd/Nz4jxxUX/Hi+E569nU+DvhI4evXCC2iLRRh5oTCsw+x1S1hEFl7DKPveeNvxXF4f28MVyncgjGjzMEkuBELHhrDFZCAA87v6euPcfBcOwGPe9ymnY902dRnLZl/Y/jqewoUbkmTquYJECt3x1qtd3w0pZdWGV/Dg+H/6HRECq56Kwhy46fhC41iODA0I7N+DdAagzuQnVHI1W4tOPGgKdZfOkmRSyxAUCsE9betQCWfcLq2ppdK1TsQrbpZWS6aw629mBZ7wY1FujB6njuUrYgmxwWl+KfJCjpndvHa9DrQLL+HratDQDvfCAduA4w7+ItDE3ey7T5XXpRXy7ttRtDxXAcKeXMKy5ISSfPhDJK5Zw5/yr7C2ukGLP1wLQiu+ga5lx356ldJ2DRbGD2cfShBoY2dzYWg0moXFM3sQYeCp7yIJfiBlCPEBaWSz/dsljEqAzfMgeNFw+BI/EN0f12AV+MNcVCzF8slKvj8tE14e7w4+Pw+zIemaKDveXm4KuTAfV98QLi9gfU0bVjwaR/E1BrR/Z3r+J/MBo4pzsCefQrwLieAPOx2s5//Qzgwu5jdfk8DXKBPTi+W4sb+eywRuYklXk+AM70O8KL3KpKJPrgLaYHy7EpU37kHglyTaM/BfJwRs4U+ZiqAhsZc2Jeth63vbcDb5TONUXhDrpYWML33FPgp3aHm9OewKJphjttheLV0NM19XIJ3+Rq0OOqRtm8nj6mT4+YDKnjklBs+0BOA2IXqrGnsiSW/v1Fl4jZe8jCArNbvQ82r13mpQAWOLU0C3xQJSDixh5UTn/K24vV8rCoc6y66wuvyRrSV/YV/vryGz3ObqOaoNBxU7YRjYu4k1KPLRz+P53Z/cV5QlEO54T/RUXoSJKzZRd932oJp1gCMjpamLabl9OOxNpf3JaLbtcWwaq0FK9SfR7e7yjhwTw26TGNg+4Z/eO/BS4pIvA/qrq1seOQYHVB2wUmjjemjmQo5Zo6CUsN41m9yIpPDSSD6+QUvf1kE30+W402dQ/S1qA+v+r2FMzMZOlL/cVFqOCtN/QGD5sm0eNsHDlM4QTFiV6nIsxSf7/Ee6hAVuKRez42ekrip7Cuvycln+5Rq/OzjzKry5yizWIscf9hA+vYxQ07cw//eGLJOeRGExnvxvivBJLblJXz8/AcVbqTB2yWdlPLPGrRajPlraS8ZeEhhn3AmRHwIwBuGq3ih+wfOFA6D20Pd37dcA6I+moNaxXGSsfWl5Wej+eiEKbhqoik+XTsV62o2Uk7lCC7LlAIV4VP88mYcdghZs2yjG3erNWHOjGC6+t0FLlw9i1NuCJBBnQAka93BPL0BbtS/RWXC8/jkLi0+UO6MLScnUO3OWoyOSCS5g6ZQHO2H+XN9aJ9jGH/ZMQVzR2wmq5EH0Tp/BLxuOUpxggUk3qoFns8m0saqT+A44gxf6bjLMgpy6FJhzrJ6hiDakEzRHzx44xFB6C8aD1XPgnB0QT29PXINfl0WwO1p16h58U1cbN0Gk/P2ouwKE3DdeIj8fjdToHMqSxdpkVeXMxwdiIODDge4vV4XEsvmUr+RNozuMCOP5tnUkSEMkyc/ocQphDMHBjjzfS/Jdu/DyfeZHd6NhKiBJxT4qpVGRgfSkYvPSdtmL8THWYP/zASe//QGTJwcCdvAEpZuK4OF4sz7DWr4fU0ehQYUcauYA6x5rgnhssn04uROZkGAH/vEuGZjJsoteEreRg54O1WKWy538NmTvlBkcI0Otz3haG8d8A++QtIKafzkqTAduZxPM2traEXsBG6ZnUh2f35x8X4bmJOuBb03FDHM8BL/lysJwavPkN60VL5qK47yRbLcVj6TuxsiMEvNEgpKTsPbwGc8SuMTZyYPzf+cofZumE+l+2+jyFlrrD20F9KDGFID0qBZ9Rfkam7Fhk22FBNlCV9WLaWYETdhRPx7dJFLA9Ph+iD9eTstLPiImw9vYuXUQbYtdKMZ39xQ3asSlgyfDd4/v1BHjya8GF6JQ5TBDbbn4d3hBtxm8Awsyy+jdNgGvig3mzdv3osxF0aBWqwiNxywIoVeO9Z86U/rjDN4hOVk+uR/iVtPiOKwZ+aUsmoCvN5oz9m7pfHcSA+wWTecz8m8A7meRCrKcUHTPbfBsWA59H0ygXfW9rwiZD6blD6CsrN6WHjBCl6YCdKvwDJ0393D1Udz8VGwEPSmi/PazRdZrVadxTf30yXVAlgtrs1Snnkcs2gBhYS9xeN5mjBtzTHcLFOAb1K/4PGPijhxgTpKLvCk8qo1aFfwnTSVZ7DEZRWwVcnijXqn6V1VHmbFNfK6NY30a/Z7mq2iib7KMzD7z9B+/yABWRtH0cFT7qza1A0vbXagS9IKHH1yEI/ODwDj2gi4/cSTWxu14cqZXPI2lgNjKROoM1egkO3nocg8miIH9gHmO3LcWUlWK5UByRdOXJ25BztObcXQ47vA49MKFK71ZNEtudATcwm8PKzBR8kQVjdbkozucgwqjcb9VodxZaAthS/Lw7eSR/DdnrO0c9paWPpUDQ7H6iPgJtpo85MErQ7RVM2PuOjLAZrXWg2j1JK4cf4BUEybCDpi+2HWfzPp/Bgd8rFU5wfBMjQi/hKPPC9EfRWLYW/jbJAqkITwh83QN+sUr9k4DJyG62FsqwOV9VhjQPopfOq9ntcFxuGEy9Kw4849bnpzjNcdC6K8KaG4S64MGx5mUezuYrYQyUCHytWwzlEeLK0GMKWygtWsg1Hx2QFalSeHffdy4cCD4zBZ5Rw3LFsHKXWCcMHZBDcvsAWdx1ZYWjEFI8XKcNW2Mez49yOGSpwmR/0SMtuvA7FD7d32egOtNOiB7D83+U/wEzyfdxfe3DOnkp59/Gl5AdwzkISsxrusqrwEunUtcanFcFjS9pAmRhqA9IcWcpyyHI7u+APZJ83A84w4+I++ygKGn1n263jceewLLPgaAz1Lu6FBQZw243S8/GYkxJ5TJKdhE3FNoRBGHNoF0VWTcKKkB7eaPIXNlhtYHqTIslYCToZYoO3WQLzl9BhEHovj2uOqOJlmo4PiZbq/cAtofBZAa7GxcIINqXlOMbZPMYYO8Sc4XDmYRkvJU6nGbraVXYk0/jifm46QVf4KbQMMMSvtOXj0pkKubRr0Fv7jo3lR+MrsC0+rbcXrVmqQt7EEeiY04WhLP7zie43tIt5T27RSNnTt49rbT/nJJCP4eFsWdl5biF/MbMC3OY9P3y6AXI119ENwKZu9nQS33ujxDnFTjnUaDoc+HqLCjg4q2/MA4x6MJ9Ufvfx5yQW0WfmFnl+LhPPbuzBhriykrzwPAbfv8XrDu+Rd+ZValVK4xNcflYYPpz9D1jcNs0QZK4SNJXvg0642mpKxGdp1naDdZyMOuljiqthLsEnKDL3bFVB5tzgYZV+gqQkToOPvd7z+0Y/iaz6QUf9ejJzfiBNC32FRnQ7k+prBoxdvaKbTYb4/6SdmLZnOay4+Q8/mqUPOv4Fhd1Zj1PQqPJ075KYbbzFy1kTWi1xKgQcPofKsCNI7LYR2qVNIw+kqbv2sgnOH7omzmyax/aPT7L9SGcJCBUnn1S841Z9Cf/1OUkJbCGd//EXhagLQMb+dHaUP49b8EOwyfwCql4vovsZYcPZcgIdeV1DNsUWwcp4s7DfJx27tXlyUNomMV1Tx5PYSzHUtgvJ9TigXJkoWyla47qUk5NuIwLNjR6FfqQks9/+jnMEUEBhuDC/9g5BnSUH4JkleWUXwumQ5PnE9x3vLWujm433YIvcWXLPK8Y7/BLS9PYkrP1TzR3Uz6GgYxVevDaLtnJdwX1OCk5xDqSTMm55cPk3OPSVsrP0W5EW1QNR7J65N2EZp3xC2TrzBUq2lKNZlCnW1syC8tYOO1A2n1EQ9uLhZBB33WZCD+ljY4ZQKr9os2d5/MRTpTMHgPHdM1anDk+8UQCGvgv/bJsNFYiJYn2LC06ergkZ7Kjv8/MQdpwPxzbW3aGkoB/OuadErgxxq928nh08zOUA4GER2zqU+D1POL3WiewEIjx+OBrMHDvih0Jr/CIyjKqXx6FvTg47TxWns9W188txwiC57B67b5eB21CrQ/baZbRbOJQ/zHPZ5kYzDv+rD/PI4CDCcgD2jJ4PHeHV4n1mP+VIW9PCSK3iJ/gFXpSewImwZpn7+wS47lLn3/ln6UzAe1gjEkpJNDa0yWs3n/cIJl7jT0wcyXOjvDFcFdTnV1hvTmhVhsWsu6fxo4VFPptBW+XvcYDqHV+qXg1SENpgH7uPdl4/Q8hIJaO5SwNum02hpnhpZChiRpKcu3+xshtT6ZHYMbOdYqVCUNFGHJRMdaMoxCTxoZ8djlL5waLYj32x8TVd8V+Iom4mwuXg+71W0AZHVv2jz3+N8obSEjrgChxpOIUW3MNC0DsCAxm8AQYp0q5ugK00XD415AJfa6shR3pFeCI3Ai7N9+LdaFpVZz8R/Gq/JRlYNqqLmcZ7aeorb/B1qrWXp6nxhyDH/AyGDgdhwRJDR+wyHdw+DHl0rMlC5iYfDSuCwkRXbGH7Hj3ZioL7Km8qeDPBkQ1V42S0NeY9uUf9lZZbHo7ThsiGe8zgMzTL16NEeiX9j/LFwXR1Ht2vB3ZWLKdLKCY88EwAT0zdQYuPH0utuQp1AFo1YuwP9ZE5S0jJDKB6nwsEBrvjZXxum6uuQbEMSH3krTEbbb6Bf/1R+WZiErjE6ME5kETg8NME80c2crPGVfC5UDO3YDeSwuBjMs4/zZ70T+LJXEzxfOtLXbZ+oRy6HzbsX42ejB7jg0VT+9NEH0mVeo93c27w5cug9ctXlM3tWgVF3Gy2sLgP3b0X8Qc8RwsaIYwFtpX/uehTlJQKxHpoY6fuHqnKGk/n9EPCX6WaVfZmIfyXR/0sv/+xWAbfOsZDfcZ2nNNbjwhX72W2nA70xd2Dt51EkEzoIbz2vYYV9BGmYjIRTfbPx2VpNXH7EGgyMHGlhqAy6SPZQmspGVDKyw+un35DPbn2o/pXDtRqvOKXsBhz0eIsHh/ZwnuaQE8gTBHfmYtpHA3AaOQbSp0+lQ64afJHjuercARgpUUd3yg1gv70Rba+Nh5jeduwfqQmzlp3BvCWPuOVpDB1L+csmUd9owHs8DYxMQbH7s/GNVBqMWjcJcF0dLbeM58GgzWB2ajXHnLLm93+rAV+fhEDRNv5hUQKyN21gWakb/Hu+FBZPb+Q55tNBY/o+al8xmT2n78f4hyvZJeUvZhogXO8sw+VlT0FarYtbU9fQtOsP6VmDPfumjSQs8GYt2XlQ/lgYZs6VxC/3wzA/NQGn3veF37t+wgGNK+A4YzGsu3+fUXUbJC2wgNwTu3h9wCToSr7FJ4yGuufmE3KpsqZFV8/R6Yrb9D71Ob5sGweZs29xsVIDxiu+h66HGnyh+BO8DnoE3y66sMGROzjzxBeC/VJwa+J6MjzQisWfc+DWlRy++1QJtF/HUO1NL+zVns2XIY12rZGHeYcIthX+R0cOf4eHGk38oLiFtOdGk2tOEAw6psMrp0+4X8AKbpzWZ8tqX7zSpoomDV3Y+7ORfyclwc2bp+h7fxHJf4ln26+j4cY2K+zo/Ej77TyoZkw+dw7I8opdSTxvawuYiOnxloxO1KtVgTdNv6E/Q4n2abthhJcFvjseAxcSZ6NTbA9cvBqCb9bdBqHv6pDkNIOOjf8PBx8G4Uv/47A3UIKNvsyjk8376EPcK14U3DHkamNI9OnDb++C2GT6PVj1YxgU1KwER5fh8N8OX3yy/DpWiBOoWYyFluROrByzFETM7XDr1mUoerKeK1IAvkUKk3HTIsZdJ1FWfhK8c36AK5aY42JLgSEbz6f+CXWU+LmMgvRL8KHxUD8OdrJxlwRMe2oD2c+uoXDUI76VHM0Ff0RwQ3A56TsOR5Ha35B9MAQOujI8tjtMvMGLliUkwcTEq7gieQrlzpEmCwk50Pe+QUuXi/CDcgvI98rn8bl18HTVBbijPQnaxFxh3OlTkDVlHfqpbQQv+k5T2yfBtIBJHGU0CFZLz7J/WzSPujaZRu2ZC7qO+3hnSDeUyE+mN8aW4Di3FZ7ZzsEFLYq4/VkvSIxZgqNDdrD5JBWU/j0OIiL7+Yb8WFj4QRoufzqAW1ZdRJ49l25fEwCNc1W0Zrkx6vtJkqvAZ3YTnQxKu9xAySCTOxt+Y1V2JGPBbXLqFYH3ZTtQ2y6Rf/kU0ZnL+lD8KALif1rQz7M1cC7yFc3TvQ6hnxHH22hgXoskr7vYTwtPyMLaenWWKTuAH76shAszpOHwS1se334KvazboehpM74WfctWPfowqDmKS14ngPH4LJi/aDXf3PMcD5AC/n12m4/fDSWa6sYTxpqAVV8QrCiRpxnv//DatSFkVH0fN0it4lKz8bi99TKHXjpIJ04IwPdaGU7Qt8IDKk/J9MloerFgA22yVmP9DG2e+LSKhePH4zANE/iSEwX2a1eydogjzYsOpRPCh7hJOx27O2fB1OqVFLSeaE2EChhfuUUWT8rwt8kPvP94DPqes8dhTaFDv88RrHdmQufWGbRNTAIqks6Q6sjT8HxzHw5bP5b0Imdxo1c7ONppw/4FawA/zoei7cLQGj8Kvl9Xx2v3E2DO8GRiCR8oeFuAt545smDTFg6HxaS13QYyxHpxWfxvjB4/mSrDf5LLvUzU7rXifXcT2KjSHRTkdEj56HDQ7iyjtJ45vKJkDD97cZUfF99CZekQlKo/AV7Vx3H5/ImgfGQkGF+zgoMOS+m9UzbtePOFvWxKOLLfAWZ7BvBr+zqU2mmNQvNVwd1DFParzWLN6QIQZexMM5IWccG7OWj4LYQ2m2ews9EM6FSzhdDjM8hgkyycispA2+ZSyIk+Rc9ZFssOnQSLuStg4WMJ7DSQgR22U9mi7TXoVKRxqtkCCLNKwZmaquiVq86mP4+R/t0SSBoylvPvOayetI/+rJyO2nH2pNcyn7ME41jZIIzyk5xY3kmautv0wLn0O7UY7UXvQ59Id04qh4ZWYUlvJHwwdwH0+IVr19oP3d3W4CR5GUwddnBstQfurwxHob06HDpZFAMmaIB5xju2/LcEM3q1oM/HkaKWplPDejVsVXkKQoYWkPE+nQd6V8LN+N9wOnc3ruwWBpHoLq4ZpoB+j0Lw2YkbPHDvGl2ufgvfr23ghvg4uKvZw0+9LKDD5gFvN0ygv+fiya1yBO30PYUCRzfSftkH+DLdg4TiXtBApzTMsg0A7zOBILE3jqQUDSDw3wcsfSJGr3+soPqdQeBZlAtep21BMtAYuodt5ySBMRx1NRatVcVx3IWfoFKbQ4uEvvA5i9UwXFMFIkc8wrVfa1Fv4w8Qr9wCVyt04Ze7Nvi16fNprQSIPqAAmr8NQffyW3p57he8EMmn6Lw8mrB3OU9qe4zrFrZRSudj+OjbQUGKo6HhSyVPfVfNo/b6srjPZnpsL49+Q93QckSAhA/lYOqXNSiTBDDKopVe64vx4oAZaKVyH0+8C4E3d/rxe84d6tBJgJrFO7gjRQ6cH/7HEgO+JD1iOu6V16OqFcEUtNGSzvwLAom3E9iz6Aomj9EFCyUhmhc7nx7NkGdN+W7ernQTjgR94vdWrRw7YjeWSqTT+IEJEJ3/Ab9rTKbVI25Tp/gDmlowh5UlrqDuiW0oue0Tfn18DT0EZcF+1UTMLQ6CTe/E6cCYJvqBN+DJni14Ztomev2H4H1oEk44YQBaL8XpsvMWGmX8Ak7pT4WmKmkOaJ5HgQYz2NMnh5R69lBUuCA4PjPge99t8WLDIMRv/YahIff54qF95LTGHh0qG0F4WiLcbNMCuclnqX3JXNoif5DT1ZtQR6eIKgv/4YSRHqga8I7P2D2Gb8Ha8DkxihI2KOGIBdO5bCaiYZsTFhcvYEfZkez75CLPCnFiozplWGG/kn/ryWG202O8+cAUhXc/h1UJq3nKj1006JMB2VG6oLNhEmhbIM93yaHzdZWs23ODpU8c5oG4ZzSY/wYrF5XiK7tJsHDI7WPvP6BmkWVYMbMOlEAVPrhfpxV/6nmtUCvkjlvO4V3NpC9iA2cy32O0nAbrtQzDU20B7Ks9DcuebKBrI8NBauYDutwzhUaOEwaFwse8cm8BLD2pCGxnA0mP7XCa/kz8NHU8/MoKAoNdfgzThUHlah2G2F2iZTP9UDzxFeppPoZlWTd46csClDcniHP1horvZmA5+Jm2b7ZE5bqjaLlajVRdPXhTXzx3nisEyVe6YPoumSqqRsH6fxXY0OGEO3veUsvDcXxI/TXVRvyHCnFzsOGiPTXdTeT58XoQXzATVTaLcfPiZoqVa2T54zP4WJ8q7DIcsuaOLTTfoYpeiGlBs50ABre3c+WF/TBpzhI4FlsA5/4hdlY00QpBFVJI38NiG0ThykILyFpVCiYSFexv+w3lu5ai9erdrLtkKu+dt5MM/mVgnqEUfG48jC+8z/OuqHIWrwoCeWNzSnu4l75tnQpHwnt5idpw1nzNcLraGRNmqVDmsUwIzdEGL59t7FLVBRFOFiyyZQ62Ry/AmtsKkGLfBF5nMmFw4UgKdRbkzrRCqNkqSl8v5MMdlUhO0TXBT3UasEEhh1ptTSA0PBI6DO1Rb2UPfBMZBqFOGSRiJYuGB2+jkKEt9CgUUuhtexCO30fLZ+mxo1QXDI7ZBwfxFFi9/gyqwxeQ9MDQeT1Ok4fZKDoUt52vfkjF0MVWVDz1MgQe3sjeH/bwjJNOuN1iBCx32Y1lwuNprfMeSD+dhUtuhuISP2vIKB/yV9h2Fh/lASFuDKnrl/EOQxGYdksBHux5i0mrGkEBilnjwRHMVfXEqWMH0Pif7FDH3yd1vzcsGvuVD1yeAurdyfC8SwN0N46g1vmzwXD4cE5fZALCuuVcJM/UuKQCXbXPQ51GFHacd8XxcyNYTNGL+UQ99vmLgIx7Ob34vgv3JrbQNuE6Ch+vj7GvB+jWhD8s9TsWF4neoz+ak2H2Gk/2N14HHYIeNJf1QeevIRclXwDP1vkUvfYKH1a8A01TVEGDBfFseg5kV+zk5yu6aNwJSZZqm84JyZJgPcIIvhFgRYcBxOidZdU2ebyz6wNbL1SifFMfNvmQTeWPQmH0zt+8PzEMFy9ShCoZxG1eQbTB8zAuPnqQLFvSSLPmFxrlXeVtfbLgEqOHZ8UUQDg5ide49qDc2mf4bvcv3L2lmyrWivAWxaU8veIjNNHQHDgowYoBA76YfYxpvhxV5tixYGo9W5dqQa5kPt3OXURmY2+RqgtB58FxPCXMjd0Cv8O+d3s5bOF+zPXXRIHKe5zrdRBnHK6j4pFqQBfm4YeBWfjpphNFXOmkWMsWdpo2G6Y4OrDQ6uvgFfAOc/+JQepEFdxRtZBvPiyEgMX2dD7wP6hw/Alan33x9SUr2jYMoTJCCqY0vuKA1no6+bKMpFMXs0ZmNTaJuFFA0EwS2/USj4gNeVHCALIMTuDogee4Qr2K1FK3wY9mZXxjGYJ/4xfRqDxBen4xhZst9aFr62VqXWMGuhb+oNmcT393TePix2LQPejMe08G4JgyHXIQAdi/7wK/LTeiI9vNwOeME58/4wrlOqdgoos7hK3opeE1HrigXhhWqrhCvLkBeRXd5Vel5tDXtB3+TszH4NXzMK7tGS2kBnBfNR76b47kjqGd+zFHDNvD5tFnmzPgtq4OD2EB7q+2h4PudegibgMD779yT0A6TFI+BxviP0CceS65siiKfDCAhVpzsNDUAIjEIfumMv/+UU6bK/NxtNJp/rJYjMP/+4KBauPQStAcZNumkvy2UbBKyZAbDPKpLFQBvg2GclKCLATZ7+FtThN5k0075En9JhQHCBDUgx0fzUmgJA+lm7+SbYUZzdGox/HuCpzyiElWO4a7DulDoP1JqGh6hhb7ozAh8BuLHh3D9Ydu0X/rCe67d7NiozQ0jJ4AQqZPeVa+KRx54AQ9Qb9AyPIHfZ5aBY02EQzr8uHHu6844a8R7P09l67824W6JpWga1RE6uvPQGx8A9yK6mMBiz7+FSvDK27qQ8IocTzXoosK5zNpvEg6tVZmks2mGpj5so/zhMdQyTxPSPaXAy27HlQyycbtvV5oP+Y3hUfKsrrwCtqT9IsOPo1hM6FY7h8zEmpOLoTTRZfh/NNPuHlfGLfPE+Mix16Q2/EGjwr9Ace2h6R3Shmyens410GC66dV8Jakc+w56idXrzai2ldx5HjenQP6X3JA22RQt4mlL3WzoF1fiU8E7+WGOwKoZbUEr/95wuuHjQOFShVoiheF5FsbSYSmk+/OryQ17SOv7PgOS1sF4ajrIRbytoIFdeL0Ono02LZloKxANM4tXkvhEb7sLHGD9tw6DJus5vHzN5X06+5MGputA2FanbzeLoO2aOyjut0Ah9eU0GKdwxDjqsKZL6ezh4AA3J9qDtfn/UHtqBsUKePP0YlTofxoIE497kPCuh+prrEZ1ifrcNXIUTBc3AAWlMmiguYAlhfsQo2ienAmNzaZLMnpzv64Ew/zi2UaMM7qAH+6MYAhORLYohkLTi9mUWbmabbNn0quk1fhyH6AySYKcCgxlgp/TwModiSj5z3QpPmFFIIWgZfidMLbzTjMyhh3hQnCThFveNC+im/s6OERrzQwv94ZuqPrWfj9Z/Zb/Rpi1pfxi1sjQGnPTnBR2ArZ8/vxxkJF6Je6wLf/vYYF05Vw5DobLGsXpqd3tEFEdDqn3jHmtqH/z3X4UC+bycP48as4O2AQWot3Q/zF3XzYYQwEPRkGpYsE+Ed4N3VtcAbvcTnY9H4zBRmdBtOvCXxioTW+FdWCi7/M4HONNOguyAev/g38ZsI6vBobzJem/6LPJzJ40gJret2D0DYyD5ZmaHHqzTbScs6A+ya2+E/ZDcdP38bbXkbA/l4rCnoiAxPzX8DGulEkk+PDKm2fQPlbD2VZEy7TmcbBYZb/R9x5t4X4/+//OTRESXtLe6dSIUoIRYNIElmhYaVhh0RvUjRJRpJCRkSRVCINKTSEEgkto5CU/Pr87sT3Blx/vc7XeT4ex3Udx0VG8T5wWFgNmlXO0oKRtrDcTYxne78CGiEFczaJcNOe92R+/h/Pyn1FEVJC0PvWCf/GxrHDgWF04o8ZaeVOxrvnu9hZyoZ1dqjDCIF8fLV/HFSsUOftLQ95tGE+mEfqEQUposDtJjzG4/jXkRGg/qYWx/oPh1w4zLa/3tMsuxOkgEcwa0kwB/Qk8L/JI2lH/2cufrqI9SOlIUh0AINHz6ElkdZcUO/L6xYuYd09IazUdpZ8v+dw3RNlPJKqDtHKHSBvOoU6ek5wf1QBOuxcBf2UDxELvOGNnzutqqzHp+kCsGX3ZGqasIeOVd3niiNbSGHdQappWUe37B+Tq9gutgm25dVHTSD5lSbCXE3c7LgGQu5uwvnPnXhZjgddClPmD7eWgYOJIrQIaMP1ogT8E6mHnx5GofKEDEzMv4enH6zF3VM20JPLDWRfOeSGLdIQ6NIP8wRCyGteHAUcnsjuEhp4sM6ImpJGwa+KabB9hjC0mUqB7Z7p3Kb/noOEP/Gnw4m4cdpyYl9Rav1Tgmfd1VFNuQztVymC+eXd2FHRQ7Oz/zD+u8x25ZZkefwzDDxU4rJPT9BxRBtsdyCwfXGHXC9OxvKKnfSkvAy2bzPjZTeP8CGlZBx7YT77P9LiLJKFAFNfOBN3kx7NacQr9or8SkGWIqdPwokpH/m+J/Eey3O4dsjnHiTHwU7J1fA1+Bj0OSZxWoMyb/FUwQqTFoobuQ32PouFEEkE5TWN2HkgmwY//0BZq7+8PUKG4r7GQqa/HOcvaSN3IWFuuW4JPra1rK8pR3I6zdx/1RYur+6kU2aVUGNqAlT3H1xVusb7z0hDlH0GNm2JhTzxYl4TbwBmf6axqJErTV9QAzaJerxMbCyopepD6xVf+KsigNOnl7Pdqm1cGP0Z9P51oererzxidzz2JjpBTbwNjJ+fy2JjBqD5ajduPNjM3rN3kZmwMmv9UkSPxOn4tHQf3VI3hfUxE0H45HjW/aPMn97dh4yq9Wz/7gnnjqnA+Q8KIU30NviVqsORp/fZ7ogmbB3hT8+OZ3GIeAN83upKITZC7BZ0GAvm9ILLWF0YFl+EMmck8JH9a8hJWkCWZQq0vf089Lsl0SzRLA57roVpoaaw1fYD3AtsYcED/0gzygV3XcnjF5XbQbg+jzbYt7O0rw/vWCgIv/2cYXDMZ7xrfhvnq0/FE8J3sLgonxbIXGCdC4BRR/vJ3M0cfrZoUne2Eka5TcfjEXKoVakMux+t4+z+Ueh16yZtDRcG00h9eC9Qjn9FpCnonxs+OL0OpdTi0epIOhY5zgQHp1V07+YtHP5SFrIvWkDfmVGYnRYC6amV3FuyDK1VyyFNVZ1CX6yh02s8yFFjLIzDp+jseJaFxe9CRPUiMpyxH5v/6fDu02YYFPwL9/S64IQKYYj5LwFmrZtLLUVmqDuLwHluBrwt1mSJf7NIpTYIf3xcjx7NI2DLxf0UHPAEYoZ4pt/lOLTFukNVYiOUhnzG+NpavOSXDMfnWoHp5o/olp1JkiUlnNJ/HrK91oJKw1O2eTCDL4n10QhBc0z9Mx7yS7rg3+OpaDsnA2T2IwpNVR3i9aG73nKRv44Kp+ZrvRgTLwRXAttZdFwZ+yXFc8lcIAmzN1R6VYoUMzXpyUlDdFcrZ41WVchYWYvZN6sg500drCuuobbfh1lgtB153U7hkte+uFKhj51kLEEVN8O2GwEgmPccs5LK8O6wBfzq4VzOF3rMA5ofMDd8OjrfVYRB/QX0pFofRzwwoRnPp5Nc4wvqWmcMM7TGE0f/wStxZ6nMbSQIFspgfZUZj4g04QHlMIjwu0VNxTMoKWoRRHAwVicvw/wwC1g+sAhX2irBf7t/svPMQbx1cCGcfzoaZp7eQ/ad2nRz5Ezsz5CDRTCR061th/pWCoS3+/JP9zTe6LsEvwxbA1+hgW3c1vCwewoQk5kOZk2LSfdKKfKdYqj6JUE28dsoprOVBzXtaIptGBrGycEYlILGuYPodfsv6D/azMc+juDbH/Rpwn0Jeuf2AFOPHyf3NCO4fPUd/XByh+XdWwgVlGjE5QooNFvBe7V7+fniNfjPaxfWfxIAk7hHFHtOhr4v2cofVTRATqGVIuXOUPYkU154LpqUbOaDYe+koWfDuGp3PlffK8SvoXH49KIezCoaDva2d0h+zzymn/JkdNsKRvwMQDHvfFpfcxyuGVXxnNw+/nuyET2er8Vg02r64HKBtkoMg1vhS2BRmw2s/BeJ7ZwG2w8Z0M0rVbTtySraN+c+ih6NYpEOMdCFefzkRi8XrJfj65tDuO6qC9eV2pJM1Vg2Xb+CZ8vZkO9VJdjm5Il1pkWs2n6ShF2vQ4DAfph8XwmiHjfxyye5LFTM8HCfGqyQtcGOY4CVT+2oPFICA4PyWLLrCPn03ubrq8sgvSAXq3qGPGpVPnWtDmSS3ITnpF7BegkvDgspI4U+hLHb8uBXVghf/KIDz1YF4k7LFAi32cYX3pVTwYTXFP1DGI1F83Hb8/kkJ7sbi4JGwZwfX2hMcD0smHYZVR9vprQfXay9OQ+PBdRSqH00924+RTdTzeHtJzmOn/+PI+vncoz5esyPFifJd0Lg/6SNyfg63R2jQEnvtcHA/gzolKdgbaQExVivY9OTjvBiUSRrj3jA5hfmAVY/Z8skcTjUqAcV2mWs9moFuz9phqZtabDq7kk6eSiO3yU1w+goQT6wRh3+vZhCBxdKg1e/M14qisAPfy+AdfFvfpAiSq4uHfxoyT/U1x0FDr8vQMxXKRws/E1CR27BvkvTUGTrdnjxXpVWH7ViJZ+ZtMRDHErsLTggMwhO5TVB3h53Hii9yO19lyFrlDQKhsSi8LxhUEd68CSzFO2v7IE7dTlYYbuU1A/3woflbVDlY0WJfbdROZhp1j1lcFr+CmacW8nPl5lh884JELjLGffMVIRDKjK0PrSGkkcZ4P1XDK4lD2E0q9OOgkHoNLcmldY3NDdPCi9+G8aSOrbc0niON/01geVqMnghdCrMVjiIZhdOUFqYKf5MFKf7tWe5TqQQ2tOf4BtpMTBO3sJL3xnD0jE3uPdMBmTVT4buBmfsnHiIXUNG0EjfCCyaKww6PUVUMdwA89KN2TlsiIuULMHlvAL99+Aqu9S74tMsSXh6XRqmTpyAptp69OH8cuifOZ1nKjhhnGIsu7kHweG+KfyhWBL6Vk2BYBdL4uULyPTIMtqy9CRMrJZDvRX97LfNm13CjMl92X3eUzIObra8pNvLD2GCugx395pB6tfr6LlnGy3puQjh4XtpV/ZJMp4lB8NS22DsCW96UHAX22EivtVZAYctboPD+jmcfViPcmy/Qn6MKkSdqMd0aSbfyLVgZFwD02E9acvM4UbBSo5Ozebg7FIYrSQDz17V4dQLM2DY7e3s7d4DL/NaybtmLF+Ycw+XjwqC7iPjef11FZge1EzYGciegaI0ftg6rv4XB38i2rHxziBdszDGptzdOENMHVZnK7JHjBUNnLqH67yvk/+ry+iYdhTzZn4ARal5tGnFAfDfjtChfRA2lj3j1+FqcNTvNhsEf4Jpnav4YXYYlSm5cHfHJPayEwe7F7Y4P2QuRWbOp/BvOjRwzR6nePbSrc8XqH12GDZ5vKfQNBPYHZ0H6uJPeWDWdXD9c5NTDNzouLwE5xQuZI3cx3BfNgF3VEqCiX0lGdldxPLRbmSw9B/cl18AsbfSWcNXEUYMrGdV0Zf00V4O4vdOoIsdipR4KglHbRKj6sN9XGf3kV6GPIX9/l/BXvgdbLhDsEyuF42GRORN/TL4aNSH968MMOfN5nk7PaF72lhUG9wPtRpmcGCHEn+vfsAKwyRZ2ViYzBZLw7XU/Tjzmj190PyL265M52GPJOHvtUM0cfVtNtVcDv+elJPbsGC004ggM41m/NVsjf/tk8OKF8owSfU2jdnWhm1NH0Azox/X/1pLfVbycEn2HjgKMoq3EZ7/MtSVvh14AJyhysoc23/d4zPzVsKoz0tZdxtSr1M1l37bA44NStBscxQrRvVi4acO+jj9O3kLCtE5l414xDaCR4g8R1UnbTbP1gGj9RJ45eAu2H+oAO4XXCdnr++kWjEAjXnBKM47yXdrP4zRtwQvP2nWzjwJv9Va+eDNKl5quI9zFBZQps4UkD8hDFWLmGPjVCDSuQuLVDLJcoslXjrvT03lN7mzIBTg/j7Sv7GNVf9GwuO3OnBisArMyzfyxOGxnHDoHLRfUMCTG6SxuagHTmxejKc0QyhSSBUEPN9i28EbbJmaSGbnF+E63SI60CcC6422Yb+SAsxTmQ8zZYRAwlET1R2cWTk7mzNqv7JWmAV2PcpGF7VlJGAxAjYkHKLGcQTv5/5Gi3uf4Uz9AbQ5rkgu/abwKlubnnzbwSX7gFE1E61HaMEXTWcsODwOXFIjcPK0GlgY5EsSczqxtiyIZy72IDNHbSjZIg1ZFxdhtt8xNHo0nlfFStKuK7vRskeLkmd/QY2rIzEnNYxn/xSHaQ4ptOvBMTYWDISGrUu5JustPf9QT5u/+ZDJn2v04qQErpqpBOPU3HGt00jy1A+HzYdPkeHo/yBWYylJXZ9GStrBVP0rjle5i0B6sjlrbd9MLpE/OcZ1B6wKOkQZZk5w1XIahYouY/E9g3hTygaMPb5w//yNOM3TGwu+Lmfp/koQD7kB9+ZdxfNfL+GHo/tgYJ4MqHxazVEqN2CSUxIm1dTg9ylD2ZolyQPiQ/egug/2rZmN4WuVQevbCrRoMOKcphr6ee06OP5SpJMZO7DaMwJOF1WASY4UJxyQh8UbBfGDkij2puTQ7Q9jaL3iVT4U0QuyBy6BnI0KibUspBfjDWBD6yCtkRJA4xeudMBEHj2j0zk8IJJdNiqzsf8Rvq87xAtH9SFl5kRq2UZYIJMMiQln+P2ZLho/spjCJr6A0pk1KNaym9FPA8qUt5FC1H74ffEuBpX9B76R7Sx28jY/68minO6d/PdzB1TsUoc5uubklqABvuOGtl43mu/tXYlXMqbBsAkiUPO2CzMOO+CHiilw9msWNKnr4Pr4AbY77kKrGv9Dm3WPMas4BtOzj3NOBrHNJ2nwfTOXZl8/hvz1D4uvaWWjc+2wqX/Y0PmtIJHas/Ch6TL1WjPEBcjiPAmGQUkNTHm2moyuCuGDNQvAeNdsXHGpkfH0FtazGAZGI7LRv/MZjUoMpYJOVbra0MJj5BJow1VD2LfQgGhhCbl6T4ZePUHQ2hcKw5/9x7l/Y/FtvCVZO7/AXX+H85TOAY5rPsauPw0gpXGQNtrmkHBfM398NwBxbqI8QWMqPO5xhaCmJUxzNmBUij5Yjs7BwIJKmHRBG7r63sOqveMRdw+jpscFMFH8Easfl6a8vepQeswaTK5uA9/JS/n4HhPU92mjE/liYOK38v9/gxqhNosPXxeHh4s/Qs7beXB7yVPU1O3HW9qHwc25lQajD+KaSyZkqxqBxXMYNr68gOz7i602Daf2tQPQM/gCVh5Jp+JzO8FLwBIq7izFgrLR0HLdheN9r2Hhmgj01bbDDzNXUpzpFNiRdZ49jpljoaYR9/YbwXgahhf7pmL8uxrWLLehl4eccZG8D+cbjoKJ2iugS+wsKN0ZAyPyDMjJ2gVjQvu4YaIi9/c+QhOPL7QuRQlzDSbz1+iPuMBfEsReiPCNxb2o6ufAFC2Dj1zM+MyEeLh3PYwS3y/FDoUyvrNbDPIOnqZ1bSpQc74I3N4+4zxPGShuXIyd22u4vcuVDm7/wCK6ovBq4To61ONF9wxVefPU1aj51x16p5hgugWT1ScX3p31ij8fGwnC3jOx+VcP73moSxPzSiHjyAI2y8wkG4VIXnXoPTir7wT71wieSpq8eoQUnXUdhgFe8QiSn6Dn+w7u0mRYKaqE4sNU6dl/gtBqro4rH86BDUcZHbuug7zjLa6MWETyM6wh5+x8+l3+lDO7DGB1/zgcSP8ARkfc+cGdeLqXZgs96a3krmnLETOOcVSOHq1rtYDKz4q4rPAf/z4hB47quihPDiQz9S/V+/7kwthnoLumGkxHi8H+qWVY478VLzX/Q0OR36SvtpHfvl8DPd360JHvjO9KEX3jbOBnqD89uz0BYWQ2Prz3hKboyMD7s/K85KwvaFyyBfe/n+jJRBuYXWvLBn0O/O3vTbg59RqZNkazd/Eoev7Wl/Otw/mjaBlmr1GGxUWf4dSGl2S+VB/nPxoN387NhoKEw6h5RhFPZNxHMZvbKPBUBvTONvD4K8VYrpLJmg1WdD4lEkN7P0BD6UQ83HsSTylfgEn7rGH/ms380mcCWymZweM1ibwmNJMnhObwPstjENDyk5OOr+e5dwXh7YOjIHRdEwVfxfLCywpYsbuKg9420YoVjSRaZ8B3hJ/jDRsxWOn+Bi7tOMICs/xJMWY7mR5VRfuN73l8yTkomO3KNi4mdNwA4MqBrfT6qCdnWmejU6kOlF1oglPSr3FVhyWk3z9Hx97v5GRXVdhwQg1+nHBnNSst0A97RoFTi+Fe9wAHneilTVrDQelbB9dukAL5Z+NAap0cDlM6wUKtt0EtJZanCfez2pYsDBRBjI0ZS7U/dMFffBZLOwF+v30GmkKl8fDR+VyjF8GGlf9IUECAE0+J8bU1JuAnUQ53a2+xyOSLKNSyip52uYDrYhl6NeMA8h45EKkcjhkSZnDGfhqHD/nJ11MV+Li1HiofNuPzsA2YJNTPL+Z18d25ciScYwEO960hoESdf3hHc9ivfBzuXIQX9aexaUwvWhgfIcuI0VyjoQzmRmX8bn0Vub2tIBm/MOB/MSzk7kihgUsob4sJVHvm4hbrybCnSYirO2vJZ9Vm+Ps7APoGvpAu7aTj7cvhzaF5BKairOQsA49XPuKCp6oYH1UHRX8/o2zDXxxuVok5zcakPCCFSbsecruYAPj/dx2XlZ9Frxnb4eD3DVRgeoBYyJc6jXLx/KNpuDjCDu2GG8PXFzJsq6HGCnmPeHqZIz7/rYFpE2qous8FLe68xZnN6iiSYAyfQpvoR/AIXLfClVsXbIe65eno7Z+Lf/Wv8zbhchAVMKPTO8fCjas96LpDjdcFnMBnHvU48+Ny3hVQTcWb8nmpcyIbPpOD7rET4X3obmgxEqT2wUksqGIDw0tn8/Nv+zk41BmkgyXZIzmZr1wQhPX3kmHz1TF86Hgin45ciOe+HYHBi3vBv/0gDtepgnjZ8Xxylw2YnBngMbIFAKtdSeDZCvrSu5WoxQjnjjmJN6ddQMMT8fzsmxEo3Kqhm75x5Ot/CzYu3wFyl4ccYKs6JNvdoFc9k3gPOaIpTYIfzkm0bJYlz08L5q9jn/LMCFV2fj+F/Lv/8bdveyHefgydw2EwctJa8BjIo5Pqx6lY4AzapvyEr7lqsNbOk+snreYdkucw7JgpGNR+5Lrruhzi0oFxHS/Y9u4oPOh/m97I30GXqR4c+nQkmAUgbGx25pexx7n2YDG9bFiNG+4/5823+qH4v2PkOrcFCmy+QpyUDPzzHM1TW13pXKYav5wrBOsX9dDE798hq/kj/o7qoLE2ljhQagMl37+Av/020tEWwoC93ThfcwyVx/mz8TdrrtlmAx3H7/IrXwHwzFTBzFJd+GruR25Xu+ntPEv++KeDVM/epSYhH4Bfb4Zc3QAKx8byj/5sOnD5GHVWx6DVSj1IzleFg3Cf5ZOWgrFkCEu+0IbaK1MxR0KKhbNVuC5kB554O5MTVj+GDd+u4PwlqZC9KYTniU8Gj732oBFewTd8LTFxtik9lz9IsYHHKKFDD6zv21P9glFsv0cTEqK+4C6puyQ0bQF8mf+IZhffgN3zjtHaVypwMN6JDW9PgcnKk2CfyDVQjbbkBbu+ovp2G+pb2MbfCk/Bntn10KV4gJ93dlPnlsmw6tQoXLdMgRuS5MA17h0F9ijx+fXdvGjeVKhdqck3HbKha/l4uDj6Ev9+lIzprw0oYO0ySmt3gfGmQri9sQGaU2bykfrTvP0Mw9pJObTp/DHM1fxBlnXfQUt5FRe2KZPYEjH+JBkOTophmLtCDFZFiMHssZWssHcbzHqgiRuOhOB2j9GstMITtHpFKdy1jALfS8GUNSNxyfMouvfKBqfuPwtBEWP4T54Je7eVcZvfMJwe6cOmnkrQ3lvNYwyKcFToTBabAqwwMp0GgqPZS2Mlnpjxgv/ueITSKVaww30yXJ8mQY2i7rQ+rYnvy8dw6bJyWPi9m89fXIoTHrXAXlsh0LF4Dd9vaUFy1U7mVFHcd+YVOt3X4AmRQWTdXYP8Iw5fVghCcYQVnziiAxICU7j5YSpXRGznjCmKLPZ7AS5UX0m3rg+HXqnJcDhxNIv/kOdH/wxpn3QRyggZ8Lz6xfDSfgS39vtB0KQe+iWmA3XNIjB69lpS+Dd0ZlMcsE/8LtYe8KWH6zSxsS6cM4V0aeUVAwjKEQaPYAfKuqEKJyIng1GuCw3s/4qRBqYkPCUK8iLP0E+j8dBkYQ86NxdQrnMC6NnV4GCpAAz3eYDnR70HHcdJJGWni9U+WnAl6yfUWb2Dxg+3ocz3Oyzd+Z4nmvjhgak25NokRvOdA9j6gxloPbxKAv6ObOfUyT8lXEHiZBL+9SijsT8TMG9iEIiue0np8ZZw0lqOp2ythonbU7Htwgyw9OmCsY0LUM2nD1W2LmA9iWJcsnI0rCg5CHIv02mSlT2Ly52ml/mL0CFDgIX8nuPdB/oYVpqCA66SYOgmSPqbt7KeVwttshikEx3XeOeMVBqfLcaJqQF88Ko6DjMVh627y+BpaQde3nmJZkhsA3k9T9q/LAWFH7dxuMk1+Bz0nDd+M4RlVpXA5e8oeJYTvRa3pcqJjaD2oBvLX9jwGLFdaF+xjd8E6YL4nRJYbEP4p+ca6gmUwZdAZTapiuLXQRmoED8e/Ban8Z/JlvBibB7pz5tHbnr5YBS4nC68G+rwba/oQNB4aJd5DVGG2Vj/xAbeCiaj3OAhjjLMgiqpHWisKwmOP9vp/eNAOKdfxaueOfIv69EwwiQCPjzfjKbHswHspmNH5AFcM2oT7D2vimVHR8CF5VrUuWgUvNRbzA/3r6INf6bC2ncNeEQyh7TwKWtsMoPd4c64XsUFcqIFhtisG2O8uuHoDVmUllLGl+8CsCk0FT4NeOJb0/Mwb4YBnbhqBJvWq2LGLWVOhWgOqn6LMUUlgKJryeS1MOTMMmP1YbIk8k0EOlPF4dnmFWw4ey3/SrOjrQcy2VQ/EAdmTUM/dy9a3yTLu44KA0w25xiDmfB4uwboBq4G8c8XOc3XguMn5pHpei8sanSjo94TgS0FyFYwG+ocFkGh3nV8HfUHP38dzY0XqrC2LRDvT/OF1/sYbjZHg9afZDLWCINNGVr837OzcEtNhFfeXY2R0/7g4oOn2aHSCByiEZ9dkoRNOldp+hpXkp0RiwfkleCLfzxnSD+HZgczcPdXAbXdB8GyciWPGFNBXkv14FmFC5uc+42D5r94W0gR63kEs+VoC/gnbwDjhU9C/r0u3jkoS7lTvWmi0g5MOJHIitErIPDuWGyPM4BJqWbQKvUSw8iZFy2Pxe/DFDk9PISKt0ZStM9SdFBTopSSyVAW95Yerp7BbmLrINPdACP6boIKpNKJR2P4Voc+u94vhwbdceA6eYA+ZuuiY3QvJET4wYw/x1nufiXOCeimqCvHscL9JN3OM4XnEoQPLneSzZ0qbFsdxv3fqrDAOwiGn/mLwfgQ8/POoarFCDBwVqY011nQmzkc2q5nQYinKmrZKvLs8Ed0VkqXPCrr6FmDEKgtvgX75jynWy0v+fXIOjprcQncTM7zIr3RXOx7HFrrq2AwTQM+Rj4lj355LCmtxhzNreDdoAULbZ8wTpJiA49T8ObFBLraMxJ0/juFbVLiKCA7FmpmvSbfU45c9a0DkzYyvO2q4XQ9RxC3GDfELcvRJziO93oqo7K1AU5PGgTfOUvZbWcmKTZchlMGL3l0ySQYfziPH14UA5ffylDtPMiDhz5hsUI+fU43gW7Ra9T8VAObZw6HkK7prLQhGuaG7CDBL25U7TcTPE69ZvPOCzD7cgqlDHdFwzpTuHy1CF+LPKaKGG8+26wFdUv/wrkAa1ib0sFH1hjjjA+63LtGBz55xkCq+hlakpYPn9+v4pnTiuiWpQNcPtiC1/vceYvlNpz9cxx0H68E7ZBp2CXzCXe5y3BQ7Qw89PkCDndrxYQpP1lVSRNMXo6DR8abcZPTMTSUS4LV89XQuscUzj26j8WZlvxVZSzWb7BA7T0y0PnLH2esa8ALfZY4d7gVOrSfJsfLW2G3xATQaHejuVJuWK44Er7niNCWH7p4bOc42quTRK1Ph5ilsBMM10VyUuBHGuW3Df0mj4UJ09NRRWkvzmv/Ag3TAui2lAIuXR1DDg53OffybvY+EUZ3b2iAQWIFyt/KoNOO9+mLXRu9uHCSuvyM+YblLv4emM19e29g7SdZWDwzhZZrzaY3pVNY+o0c3Y6uhReKwSxyxgUmvZsAp6elwrGlhlAh6gb1wp+h/OY+zl68hY+MWsOGvwvBQsCc3dYuw0NpPvh57BS4T7L8/NhhPCnxEd0n1pK41gWe+O4aZ5afpl3ucdRVkMLujgiC1VvgkfgO3vVnH531fILNXT94QfcZsKQr8C4ymcI/JWPlHl1QaBNB65KFKEuadDJ7C7++Mg2M19iCzwUEfbFgXvDwHoy+IQDXlDrhuEoAyodLwPUdS7liaSlD6hPQPxmNS1Ie8tatc2F2qzb4FCtgZmosuQZmwrISwhDn8+S4VgHPtG7EvB3VdPeJLh/o0YJ83QEU8ltGrxc74sdpdtjlWYnmRbeo22cBWeVKsb3/PbQVloCq1vXoYVtCvttUub0/lvRMLeCihxyU/f6Le799o8wfR0ljlDTY5eohvflBPR+08WbXcuwrEuXNu1+RR4sANYpYkWV6Fr9vs4RNn+9z/84UML0YTGw7Dk61toKSbySs8f5L2aeyKGaNInY2KMFZy1Y68McT4o7Jo9FjAxRcUs2RkdNw3Cc7wJWZKH+sAu+JaEBFrA0qC3vyvcPp7NqgQO/NEiAz5Ryt79cni7xkvB6bTQt/CYKRvgTck34LTZ1vwVRSjifpnaHbRYSjTU1JMbeQ9lZvAFcBEWid9BYd5k/BG35NJHlLDsLNKjk+a6jH/wlym+FmiDgdjt6VIvDp5nj44+2EGUvlSX/0K6pqr2fBcW/JxOkeXU4yo7QTgew1yhK2dynQyJsp9LHVEY5dzCTfLcb8+WQYrPgeyy/757PRf0/od+9I+DilHAwDp9PUf40gqtQFcQ1ncMsuU0JjIdoleQnE/lvJL0+Og3FjDtDScydx5+uFeGdJGs676A/hrWtZNGA0LI85j49HqOFeBzGYGncRuhuG0YQjffRNrZLGPTblZ8NG0gmTQ8zxDXxpbBPHTRWCE4YH0X2fIj1zqeUPfTNgfGgJuakHsm1uKKdH3+KtY/aAx04ZmGP5mR0ftFNsuCeq3D2B0w7EguWGGZgUOkivEm5A9cV1eHynPihcPgNjfqZwadUishg/QOFzJpHRJllOUDyPkX/D0Hx7ICX/U4AdUyfwlOctHLJlDVy58ZVm+AnCkcEyOo8iuHtxGKihNN/8JwmmnVkQLHScgq07wemTEc+z+kmXbydRTOl1jm4XAJ+TYVQ4UxI8vt/gio7fELRwGJ+98YRnCKtBxJTH3G6Vx4JzAnhoZvhVpwXI7HqJVntPc8zla3Tjf+632JVvdzhyQb0Mhki60dOFtrR8jjlo1TzEPZn7QCdVAxzrBqBeRwbZdhmmyL/CdK/LuEwujPZv1YelDz3ByTaaDv5ny2+/rYWWDdM5ZrM5LtE7B1KLhfDndB9o2DsBFLKuUZiqDWmKikDQ7kpMsk5Ao6eBuC55HikOcUba5Ct0+IsyrDbsgfKsZlCeeBcHxjiy/UAvr/oVRCO0euiJvSv8EFuGTlm6sEAM+fFKF8z5pYV/RAbQbZ4hJzomwI2tprBUXR2Nz3Wyj4wELKhaSZMebkSDmgwerjSX1aaLgdnFSbBzQR+n/puHJy+L86IpBAWtl/hFsC1eHAzksNeWdOyyDK6e+BMSHIGrFhyGC6b2MNXeAPbt7sbHa5dQQMlonGc7kgczIlny6SX0rRkPTg4L0df0Gp7ergWd4wM4ec12Nk0w5XyBXLy09wvYzp1P0w99oLuf5fhWchtPDRcDscEobl0zkZ/v14EQ7W+oMKafD/wazqrNJRiuPJx3nL2H/j91YVSxCMadjMPz7mN5kn4t1Ewej7KeXWg3oYZO942Ed1W1fEpAApykd+F361WUuiAaQ5684lGWVhCXk0u8aS933tXFdXUS+DhFA9zfX6UFKwRpy+5pqDlCivJsV4P7pfe8cmcWr520EWacXUhvH8rDctssdrzhh5dKskhDuZj0k0rwwR4/sFqsi89LDqB4SSG/m2oOJkdSsOOFHOtr2pBOlxep3oilpfk2rFWzmOo/ClL4hL3kM1Mc0hbNpCuGj/nQrHIk3Wgo9ayhgIzZaHf0GZ2c3Q14axuen6MNTU4HOKBwAjtlj0HaspfOj3oH9cPfoM7tWahQgXhnSx+L7jOA7IeNULhrEtgsz4HNeZM4R7aGfmxvwZU7LvO5vx8Z3/XgeBwJT/82cGHGZzY50ET7zi/gnpSF9CS3Bny8sjlz7WY87T8d/zYJwI4FoTgx5ylbdQTAnsYnLHQ2FZz9Z9C+MFcoEUyCA/0zsSfbHA49VYDtF6XB9PghCLsoi2GrnuHr9blc0/abvVxPgfHRVB7x2xrOf/KHCWdnUP1ICU7XDMfyXbdh8quv0N12hj4krSXF1Hm8tk4cmvzD+NuwvXxu1nfKyhgJgn+kMPD4T4g+ZAGOaRIkeCSBj6w0ghwHdWpyKMGYi08wv1ENba4kY2FKClnJzuXQryNZ4MsmSBnig4EH02Hq/96TTn+NccpOrBDqQfWaAUP98Yrv/clko7L/wF1JDM7cHQ834o+Sz+M9lJGsQvFrEqFYMRS9B75S/PpCii6wwfvaFgCpv+BqaB7fdy/FLr3TYBg/huZVb6Xy1NcgF+EFn65OpuoEHehYlYuH39nTg+BQnjv6KM+uD6FDilJDPj6LskM9ybwwnjrOKYFpeyC5OZ7iw42NMOZUF/nWP4aeCZrseukNZwjJYYuVGHR1KEKpRQcctPxM0+2MWXYmsP/H9VS57CNHJPSTvlw33Xy1ki7VWMGfojAat2MMDtwfT0c3SvHX+yoYq7CbouboYGL4bzgraAGLNlqDQ2YFu1ZH8HG9EG4LNAevsxGoIGiPycukUTNiBledTMX1fyzBQHMmlE+bS9oZe8H5jSRZa+2B1vOLcMIIFZ7jNB2jdgtx3z0puKtsxyVGufxL0RRODN8KdHI1rP1eAI1DuzgtWBoC+x/in2RNqLFLQ3XZTBxn3E2V/S1DvNcN+5VX0zyPOLRo6kTt5bb0t0gCNjR/IC9FF3CaUs5VN/7g8hpJaD0kCq0nm/FxlSXdbt1EQrpjwe1XDDjLLEV5yXgqlU2ig1Gq3AgreHjkQtD5fB3SF4uhWbgu3O/YxSukvSndIQ4qTh+Fczycq4XDSTh4Gu5uPE2NXAwCa01gT/IxfnvYk6onyWGAkDZOEf/AlLsJprUX8HL9YgjddBrnm5mC6WJ/fv90BF/bIEyvLmby88r/4MVMEUgUEuIZE37BDsk3XBBMsNi6mLS0IvHG1hbszHDFmyJPuGO2KedO92cv6TrePMyIjs+dAnX5DRBjdxQShjxio7U4bxhi0Gtzj2Nf2yU8aroIDPfHg0mGKGzQTeGKlaM4VkWGdy8KJyMVF1aT/IX1So08Z/RW2l19kqfNk4GWs4loY2FGGiO34szwbbTzQSKJLz2BH6xjoc+oCHvd70Oq8ygoW7SfZ2YwSM8LpUXT67E//hud6Ldjf7ub+GB+Bhz6so3S/g4DdSMP7Hgih2L5zajuZIHleVVY/CSZOv00KDEmng5KbGCvZ6JQXF9PUtQHV5eW0sFuO5Z7mUDCktLYOXE0JfiZ4/EjjMOMEXoTd1DZ/NMYsuAt0rcYOP9lG7v7L+aZCc04IyeZRZW/gJiBJhSWC/F/lhqwNnYUdQWtYYNLUfy25A3uOtaOF7rHktuYNvhgpAE7LWvg7NQTsGppNVz+l0zBnq6oYj2FP+WvB3RWg9b2FFxxxgQODfV16sAdvHfvCCS+2MXVJzaTtX8VrB/jDdE9c9DbSgI3W6rDxKsnSUnLC9Z4zoLGuhQcq/QRqkO/0QGNIcdBJx4ssoLOd5IQfaofZNuVqWxjDuwao8Yfgz35iMRDalKwhrpFK8Eqcw5unUhQv7AH/z62w1FvBTn1TR19zhPk07LtlCuyma79UqENDb3w38AImChyjO5W/aaUxGk0epIkDT4P4vD683Bmz2v8ceooiqz5waKCyvAtUw7nOm+H/JYV4GZ1Gs/Gr0EnByXK2lYBqocbyeygD/spa8Nm9Wk0fdEHepF/jg22JIC481+0k7Wiqm2G8LkzFrWdPrJOtwlEj59LYw5/oj/uu2jDg9e0JWMtr9v+EiKMd6GFkRIGuJSBk6EaLLwdQdOkdVhEZTJb54hik1Qbz/k1k24mvacrMQWUuVSONvwZCcp2Fbz07TlK2WEIrXusaZJjDTQl3aXEtiuYP82UPGZ7wAdNCZB1zqCc3nBySVeF7MsrKN76LT6388JylzyqmSJCrf4T8dw+Scha2QY7X8dRbaUby5f4ocaLP2gg/h/VdktB4YsMVBM25Vg9K+j4sZGis19SsX0mKB49RpcSg9lttCMIKF/i2iZvqth9mVs9lSAt+xyZHfHmW/U9ELt6PS44sJS+fnZiRalu7D3rA9K5OXy3cRgY1P8H/Ufn8R2vVfjg52i89u4ObfuhPOQlBuztN4m2b74CA67DQa3QiucpnsWSkYEwkLyZ3qavxlk1dtRbWEI/No/mru7hLPTAHHI4D++dPkjD3tzgSyJT+IvTWJIuj+RzHkqYvaCMl/mMxszlBOPmmELmVDu8fHs3tpcb4j2pDfg59jbfODcF7l0TIG+FLRg7zgSqlvvzbIf50HX4GxyoN6dq80P4FFZj4ZMlTGbT4H3iAhjdZwPXnQ2o9kYXzzK5SV+eP6LakEm8e/ox3m89Ax82zacXWkkgqmIANh/TUOhbLdwdl8Jbr5fiyv4DeOb4TIosreKfp6th8lZX/jzeGB5P0of8nMP8UlwX02oiadVKhMg3NlhSGEx17mvg21FRSje1hDfVzmBZN8BJRd/R0mM0jCJdWma3Chs83kLWlGBca3gWBJbbgNuS8ai3WAxMBU5R1qQJuNskijSHNjxt509eelELXD5chMhyJZj1wZj9JUPgWfRu8PixB14OMiwfq0d3x3mAzBaFoR05yUfjGT7PnkxnlD/h0ywxlh83A7EnCCU2Md5+J48H9GTx1uFw3JanDWPvBsKM+fm8sawZBlV8cNW6Gbw9upxb03pYabYDzS1p5rQNsvAtNZK9FxmAsaI+O4Qlw5dLubBg12J8Z3CEPtXPxLVHE3Gfnw7EDvrD1WNFFB7gCJPyV/LlGgvaMWYi61/8wrYOgRTz8CPcWW0AR1b5cM1pHQiMEkJHCIJr9BITC0XpjsJTfvvAHAfnFOPkbgk4rzAdDp8K5s9PW/BRgyQFJrjznalXcLdOEye+l4Hg/YXgoa4JKvuWk/IbCWqr+MUTuuywe8lkkqy8zpt2iOBVOTMaFhIOIjtVwXuRPkn9KmPFjqvQ0RJAvWLK/Kl+PLUKjIK2/3Sw/ocRv5EQgbIRKnjRyQ4ztBkKtX6jQ/dC9ni7iQ068kluIJIthjlTQspkiNrxDzd0LSRhmcMklz+DRurvQJHV2Zy1Yyo+nHWOow+u58hgMfj63y32Eb+Kac1n6OPDqaTlY4FfPvTAbgULWKfWg+8yRXA2W4LhvVMY2neUe6YV4FgRdTz+zQ9HaKewXqsKSkZ9YeWCLjAqVoG8FSl8cJIpK92z4OS6ybgwcDE4KZ5lwRXytOz1MTqd7Mwnzw6HN9d20+5mWZLfcwLHhslSdLQ+FjqkcFa8FR5d54V/ha1JScQa3htZwq8t/0hvOJKYfgKtN07g3bYe/MD2O8zv2YfeLoCOe1VAuO8hG7p4QXRuJRUfjoD0q+UYWb0NX2xaBGVjVdk725uPrVWDu+PV0MBsAPWz9+GVQTs8Zm4K/b1aYDR5LSz6EIp2cskcryQMGqKJ8OzebXZfqsii3fvxaeoA7I+Wx7vbCevjlmPqKSb3PzqgSC2gvucGxD3PQLkTuuy4fQKl68dw959A7OoRh99KDryxUQH2Gn8G/fvjKKL4OoQvmYnh3/PBYI4enE015ajtvqC2Q4xrHUxhgv1l/jTxDUZ3PeeBTwqUcS+ZwyNiuV7bEcfED2LAcXk60ikE82/Ig9d7d5oYPY8F+y1g3sXp7BwUgJ1BTmh20hoHl0XhKmUjCK8NRx9TDRz43szP5cQw/XIj1K28zM3esrg88xuFZqzhXW9GQZSVMEWjK95OlsCqBc4wXnsuaqVNob1LLsIOr0oM+K3Evf1joKHZmZ4F26D3s090QNIHygcaoWj4HL6hdZ2qu5eg6NDG/BYfA1aTh+DlxWl+3JPCY54nkWrdLLb3UYDzSjfYVryVC1uS0MhTGuZ/F8btInvAJmM1rvTxws60fgg4UEa/zZaAeV01lQ6uB+siIcD3pVQ/6hb3hF2ARdH3cG3wM65UPAL3LqWhWcN5Khj3FZbpCcOHh9K80VeRGupE4ZawOy7vrqLvw77zdM8e6itNwMnWDbDCUBdaywSJ8yMxLKqDqouayVEuD4VTrgPm1+C+H7rQ8l86Ln8/GWJ98/+3zzgx0BWNjd7jwr1v6M7C75R08xoHhi9ngwVnoWXWeAjc/wRWiMwn91uv+dSdhZwTshTS0m7A4ONFLLdVFov+aCJe0YXc7g76aj4TCmxr+XqdCwqsLOaiQkfsgOv43DECil6MpZG91hBTtoFiTi1ix11OeGfDWF6eIMwPBBzQvakFfz07B6KFo6DJ1gQc1nbD38YEmC5lCR0iqjj2jDRY2Hghi1Tyg1s1NKcyjnX3D+Vg51leNUyEZb20eM+qIJoWcxL7isTA/ogjCt18j/afClFCcfRQjvq4skwepkQGQunqcZiTIQZjlNXoc+pQ9nIm05WJRzhkpSg06TygXcX/sf0VMVhv+JLb3t2AkVsfwtj3IpiUYgJz1CbiNymCj9rdnJw9mqZl7qP9GwA65C+g355qVKk6wL03J9B+7cdYu3QSKHyYgSbKWXTKQZ4sP9bwzmeN0HX0PUmYLaXg7bm4YPsUFOzUgX9RP9lyeRu5XC+D0c3d8O+HBq3re465wipUvvUWHdv0DaYWAmQe/sJPSoXhteNU6FTrBr+yEfSjvIt6d4+CvoJf4Pd3MZRslIGnacoke7+ezj4+hiO2ifAyBW1O69rIPk8XYJgYYEh7Bvm/sIRG74vgNEIUL7+2gCWyzRildRSaIg/ijsvSIBN2mTPeO1P8U22w7XElr54FzM9u4+KnF+izcDi2Ke0E88OboP7xJ3bv1CaNC5rwI7eAgrxk8HbiBAoJj+GY++3QUFAKQbNuks0nbXRqKmCrNgHwTx/BRzYvhfKSUgq+eAqK4/voa/9XGDyRj1YJ+uyW1Q27NGzghcoZdHxohpt1nvCuywcRi7+Qbv0iPP87EGdvOkKn1j3h+BWmsDJuOSzwCIMZKWHwT24WJ10aCyNWmcGR/v3wSs+Q5ngl4H4RBdjz6DjP2VJADerX8Xf9bepLMgKvf80wVUsX5mx3oda9+iThKAwHIx4jxj/Few5lNEbkG3yR2koTW4A6XlTgrANP8HDqNhShkXBnfS16+nyhP72jWeOUGky3l0NJ4Y8sLa+FKy470NZJbhD+ThrMn/4D4ysK9E/mAzYIxOLddg1406YN4CnAR7ILSAC3srUMw1mZCo4qukhfDxGoSgux84pQbEwrwXUp5vTi3TrW0lTgE6YTgI8sYaEwaRLfZwGTVc3Yuuo8gUMUHEyVZ+HhLWT26xCaLjCGc3e+kKZREQ2s2sS9wqE45VgYvHxoBZtKFkLOL0t2slqB2vFiEDwhC58c+IvphS/pgPcFSns6metFOyl4SQ9ucq8Ekv3LMDgC0kOvwew1A3zo7kReIjYaxt5aCaGTFqHPn1HwznMEqq4qhxInhtO552hNlgaEHq3GuQt/gvxLURj/0J0GNV7DPG9/nntPCHLDxSG2YDoMv/AdIr8s54qQVdD+0o68TQqoRVcc50nV8VT/SMh4MxI+GBjDwkPr4INuFRuMPw8bMk/Af7k+aLB2PT7eORJOLdhIIUu0IfDFPbSvDCWJri6oGdyDsbM38sL+C7y15wqHKonwiynapBNnBvo/NwO0uKL0lleQuDkaNuWPofVxMbzmRi0a3s2GbtOJuG2rCRxDZf7xsI+urpXhX3EXyDr+H7alfgVpp3L0i9GEJ3ZrsXfItyr7zEgs0BqjVpfSimG/SHySEEwYt4J11EeBvMhYNgl7yMK/jEDBrgmnkhzu+NgEJnlbaMWYJVg5TICvdaeC7AWkd2LWpHjOGD61jEOL/6rx7MPDYNgwAfX++0MLNcdjeO1K4hvH4Pu4Ak67MRkaQICk5gZBxOxPEJrYC2PNY+jCWjHe9e0jZD0OxtrNw0nLdTy4zxpGpqtL8dl/W9hyKENNfm6o6/2czpdLgcj4dRDl85BO1YnA6YxsGt67lBboq1IbD8PgEiu6278SUz++4qtKHTRmyWJi42Fw+ssZVh1viTfu6nAdfmOOeEAHtL9x2+Jh7GWUhyff7eXS92qwOcKW948P42W5s9BFUIC++E6HER7beK7RaHp5257O94VD9FUxCHU3ZfND06D+bzB4L/+MV8Mn4ewQET6WPpl6laNIaEkRu3pMhru3DLnhrDgd7HLDqMuJMPO+MiWU1NHlSzfYM80W/VuU8XnNBCi9587tzc6gPBDCBuFPwbBwNl6ZEEu2WMvDBfZxtGQgaNweBSLP7blMpAj+3HoD169pQvqac2D+esUQf8xFucTpONspjZtLVWH3kxxSOBNONw6MQNv8t/zQxZ8DtqiSkYYbvoDNaH0xhld5WkJ1axZafk3kw/551HF6Hk7w7Ud/k8/wLLiIazv3s9/n4Vj3bzIobz9NCx8N9aPnVpDJ7OCNfxpR7Vkgm8u+xWD7QhjhMmPofpjCG/NmOL9jHr4JnI/Gd+KxS20hfY1bDU+WdYGeoDjNyY/mmQdN4WTcXBZa/wCMVe+SpOFDyP5ZRisUNKgrIBrOz+iBJtES+vRaHq71iPHVtDjojg2gkt9/8YvOXg4psgPB/CAoETvBF9LWcZaKBCQ1f8Qw4Y/kXh9Gf7v7OOnaXoi8f458dz5hlcb5qKa3iaYYjYN8rSeYs9qFfpgJQM8LpMCp9rQj1oz/Bp6HmzYnyH9tH6Xu1YRJ0naU3uDEJQPPaMe+WVi1Mx2iv/nAlXd3cF31IVz0JRwd91hDR1Ic2qUbc39IPiT+ucnCb2P41i9h/N4IlFgtCD4XC3nFW2kIvJgETkp1PEfLn53nnoICdTH0G5NMBnOr0SdlLj43O8j6Fur/Z///lW/txGXp02nq72HUUJTM+3KfsfnJUzz75QmyHelCg59X4Wo9PRD1+4xuEXL46Zsrt4d8gfbV2+kdxsKjRdMxuT0ZY34NUHkpga5oIw+GG6KtswyK695B9V/yuMitHc59iafGkE+0J2k4NgeogIFSMtQeFKWq9GZ++VIN8k9f5MQhty/+NAfV1AMw9M19zI8VgCgxDTr3ejM9mH8dBuUtcKlxGal9vIROs56xpnc6zrwUxGpWwlA7oEu5vxrAvCMdXJb8gYSH+yg8eBMsvOlFOW89QNzuMJxQ1ADpQ74ovrWbitRlKXtkGTeKvCNhqSKaduEF74iZg28yxtHpLllo+CeKIqFf6P9RdF7/QP5tHL+GiCQrM6OQvZJsGtoqSkpCRVEakkoZkSghbRqSSrSNlkL90FCUSEVWkhBZ7Yyn5x+4D+7XZ71Prq//l+WwZGopeEaK0rmI1+T8uYT83c5xQcpiKniMUL9cDb451uCwAUHUKSuhTvktnGt3lfbeeoxbm96Chth/UGejBj2RcbjCrpM+6zvCBO938OWKB0WWOrH7W22cMXY+P59byhdLAE5d+41+it/5o9ZjfL4mFfSvL6fD/XWsqLEEnsed4Acvr9C6A9qgsUYPLDVlaWmZJpWFHmKVv+10sGkOjLx9mLsmzgDJT5aw/KUcFL2+in/U7uM+9iH32HzcsLMT7zsU8t7ydfh+XglLqy/G3GJJ0LsYw445s1FGPRatFQFUHurTn6pEePZqA56aupF019eBR6IlTN71EQsFF8DCg7+46WsKLZNaD2daLkHG6VEo5OUNh0tngUuMNtjFvIKctBG8r/MtrBAy52fuXdhvNBdmb0/hskdFuKNCBiOHGcHXvnKcina4V+YZmIUe5Y+7ClA6VgLC9vSQeNsxFNQHSN5gDA9nZ8LNx0Gw3OwOSzmL8Drz/VT1YDbdvauKPbvq+GdZMhUpTgKLn8/QXNOAdyac5tnVp+DYzwdUMlIUd68cBo6Lv2D+b3c6FqAB1YFXqDJ+EsSudYWoHA2sOxhAoy+6o3jleD71u47y1v7i3HZBaP/6Fp8fceM87WC2vOtHNhqz+LRHOElLHuPSu4E8v+My+dnrgZhXBupeGA8rjjJfnGVF8ocn0CbWJ9UDLShy9CS/P2nJr/MlQVZyEp54mAT0yY4GlbrQUFCRk3p8eVvXKT7XfBQ/HHQigUFJCHDWZNFZ61noStU/rw1AjlsyzKxroj0uWjjshQGM+NbHMSslIcrEBM463GRYPYeXC5xA3aJ5NO6BJP1IsgTrZbWwQuEt5NwD8IruB7X981jzTgY4rsjF1HVDNNtqDL8ck8AxoUsotKeXx/cg2DsOxymsQU26ctSzSx5rTDXohWwx2HedJePoVbjSSJ8K5lvC0juGeKnfG7xOPoKvsd2g0HeSxZy8ICutATwXbSSTMGs+KqEAn+1m0sUtG/DGq3Juy2nn92ZltGXcEvozdhEdfCKHeh2n+c+r4VDzMJ5/tBYzxBnDu0VS+HCuITs8PIVTY7zprbsthJq2w9M3suA8x5L9jt9EuzNC/H7sCJbHfVi7q5oKixvZp8+cHZ2WoXCLMZyqioK7JuJ0jH1RR1qU6w/n050rB2DF3BDKbxvOT0WIvItUAEMIRsxZz+X9j0Ev6iHk/JIFOY1iCpIV4E05AaC5UJxtLMTAWMwXk6aosu7OiTCkMxteVy6kF4MbIXhoDdnpzORSjwpy+2AFHp7rMXDUCD7iEA8F4pqw7LUDK0E3uTwQ5V2fJOiR3Xm0XCAPj96k4MsXfnRhagXpx0zDxydb+ciReki+Z8+/0x/BTXtnetg1Ed4rbMKK+Z2wsseffJ8JUO5nOwor2UYDC/bShJ5gUBVy5YOPlWBlxkWs3z+RV9kFsF3qE+j42Yy7An9Tz9BlUir7w6L3u6AsYBJUmllz/Z4UzLotg20rA6g18AifE56LP07fIOcELV6TtYT37JMCnj+ASYqZfL9ZniQLc3CScCyqfBcG4+FuaLjwBU1M8IcbK0yh4dJvWBsvQNNTS3lp3gbUv9TLZ2d94f2PbVlZKZ4jTTOo6w1D4JlldOjREn5YbUqvjQ3I9/U+yKBUPDx9Cju+9KIEsfX4ZYcCfJR+C4sWq0B6yzXoeBzNdQM55BgoAtML/oN4SRl+/s2WzW4owfwWSZwSE4aZ4Qn0zlKIWxNO0u0Hd6F/2SgczD8NF9dfgD9z9EHvQyb/GfuXdp32B585F6jU7vy/rE2jFhFV2nBkMhUoTWZlYWmYVrSdJrvPp+WP99HTR+N53CJBcLh6CI++2oXFEsKQtOUo324xgq0t8uj4+Syu3biP6qw6+N7rFOp4F8M3JQKoYPAbyhqUgftKUwh3mUA3vAZIrm4SRa7YDTtWXMN85W98bP4yEvf2gzeeldC/SB6mKF0ErzfqzNeOQ/iltXAFOmnFv21r1CCJfjmuPKozj57L/PPbYDInKrnS5EBJkBweiC3dLfhkRB0cmnoSb8YL4ZtzJ0m0Ug6+3h3FvmNeUcYUoMlKptQyzoplhw0j118/MCXChrt9dqLQOx0oVJWDLXk2eK1aGj0/5sO8lQtZWu8Cfh52gw4LSOLyO/b0JsUKXk9dCF+E+rlWWxKGLgzCpRALXhIxEvdne8Hr0nqKfb2Gl5gLw3rNFOy+6cgeG47zHF13cHffD1On7gb5Xato3YgXOCLWC4osZcBo9RtOz/+Fzz2EUcA/Gow05tG+JyUUXWCGmWUVdKV5BESojgWf+ZKU4VcK3xWPkq6MCYqqOcOE8rmw0f0wCxe9oBEa2Sz/1wDGHL4GGj7Aqc2mfE9QjG8sPE5bw9uh9qApX21oY+mRQSRVZgZrYj6BRlcb1d63hdn6DTzydB9mPsiB9VOfcp6SHL+cb0lbXE2hOjieXqn78znFG5xzqgqeSS7DPZazcH5KK6iutmI/24dkmD0aXEcuwg0DlbROxARqP61g9Q4DqJD/RM/z0slv6ALfxHEYosOw7nMn+y4zJjNNP7SWq6M5OomQ72kGeYr7KPiKFjY3GaHlS1F4uMkC5Upu0NnDH0h/yUKYFeaM96QewPfmlfTqznK419EOkq90YO3vXrS+1EQjWiooOjMUJI7d4uwTk8H78Rl61pSKmk43SaV6OEwbusGXZ16Bn5FxVORbiCvcB2Dl5WOkIAmw41ccfct/zJ9vTwBTO2lKf2UMKxZdZguxFv69ToMDujtAoPAx3sz9BWf/mILoimFgGe8B9kun4KkTp9B5kR6PfP2XorqvYFX7VKp9fhbS/C/gHnMjiCzpo5DIDnaOzoenLi6QUN8OOdM0YcbeJphWXMnPRw8j+bJRAAN+vFpCG5RMkuhDiAB3LlCGwlVCKOdVAt1N63nmUVcMvqkNZk7yIPX8OS3MGol/D0+H4hJxdJFdjtNKRTjA3QcWqLnjo1Eq8NJuGJ4/okvtG1egYZ0glxiNg0GnXGjXLaGCPd346UsW6fy0g/1mrhgTGMPTpC6RAAXTjPxbuKxZFDdjKQvp3cTio1IY3DUCttROwBOuXrjx+QNK62vGJv/5DMrCKK28mjqmX6brm2wx0FIBfsb2QNmTOK6J9KPVW1/ymQt3cFC/DASuhrOnszQf/tvH1eqT4P2Nf3xWOoTde+XJauUpLHHPwKVdr3jffkXuWrcdvMOq+LbEeHizXgA31WpRzqwx5CZmgY4Hf3B11zzcL/UYkhVkedusNvgwchxkOF6HfHOi/xJNcNnJyaA1RY9cP7jhprpiGpksSAv0q9h4hz5MKJGmIOMKMMhPhzX2xSj+ej9JJdvhzL7Z7B2wleCLH9f5M0w+vxOc0hxgsd4Dmml/ig3HPEWTPAW8q3wbNgT5ooVdI9YMJ1gdasQWM0p5yW4PbM1ewfzpEn1ffQvPnWml8GM6+F/baPqjMQHuTP2Emqs6UWEVkGDcPA7M6yHlq8kQ+Tyb3t2ohoR+C9I0NIYbXR+o4/B9Gr/9CQnU2tHrg5J4KqON06+c42OBa+H55Ts45r459JiI0XupQTpz+hc3ntgOkvI3UWiLL9J4BZqgtgr+60xHzQoVGFobjLD3JE5c7wM6abK029COExuuw9+7u3j3mm34/vdx9BljBS7ojReD1UjuTxGcm/yvDyXLuf92If7mAHZY5IaWSRvob4oCzKp7g3Xfa7loYy83R+Ww7uIgcLi4BT2DzFnbyg99fL7x1sUMWbPewV1XfTqzcwbHvV/JK0dGg1nHdmpZ5QyYUMm37jwGh7saUGPwlHut+mjv8jbqpv30I38zb9bIpsj7gax5bysem6+Mr/7agbfoH3AGwhuCHfBR/CnZrV+AJcm7sE+zDpxTNfjLQn8++dcK5Of8Aher91RSr8Mmj9LAbosBJjcuh9v/9ZNq0Dx+5CxHo1RsYHWEPW1LnoNREev5Qt1RcnGS5KN+F0lq6UZUtdqL6YOWKD3GBOZGKPCekydo+sttkJS6Fkes7MJf/bpg83AhZP2eyxkhV7DWXh2Eos3x5IIC+PDMAgMWz4QtJuFovC8Eny2aSAn6XpBQMZGbUkbALZEQVLQcwgszrVlISY8Ly835qOpGvj8oBRZB1liyrYI6gsaBZV8Hiaw/S2qq3hAdOw/MQzro65tDILh8Hzn0+3DReFFcMCAAy8KHcOwHTVRId8I9VY/p64eJ2ORnAYk5neCrU0E3JRZB+3theJ8xGh/rGlKD3naevcKdqo1tOb++lvSmF8PrVYM88txa1G8QAjPwIt22Zv6dkUEbzGNR/FgaayXPJJPlLdg7fYCF52TB+VRjeHZWAx6s+I4/V3lyytkWjBBw4aj1Rbg7W5c8o0fxrXcBtNlMAdz0p/P3mn0wtKyGUg9MwbhAVSzvkoUl2nZ8V72Jyn+qsIiaFRww2svSEVkUqBtMOyv1+XiOB34MfIXe/hvRMRk5yOoih/0yhy1S++HI01iIrkwEh68VnPJZj8P+zKVMVT0uqF4HoaLV3LX1H0/nvoEwt0LonHcMk+YX0Hy/UyBiF8PNB46CV+9rkJBTwAoWgs8BpmS35TvGudkTS6TSN5m7+CPNGJdq2PG1e1qsrNDHraOM4WWUEEbmNaBL6TjIY4TGoELuk7qAZ16q0fsFj8FHYS4LzdaFKmUNqnq2G0w6x6Ny8lJqyH1J21NTaOGi83jsxj7QRVvcFyEPB7xLYKBlMypJTyDhrSV8x6KeA9sdIVCvhePuh3Nh0S7YqjcGUhLT6Ir4EtaedosdDs+kWZ4VPDoogIQLjDk1NQfvn5wDDpMUoWbTHnCQFID0GYk8z9uA9955Slua5pLOmGSyW7eYbbZ1k189gfVWAFJ9Q+sTEiC6yhhef5uJ9QsTeeJXPXIsL2bB77a49LAEnI5L4UUPvVnA6ygnmoZBSrYT/jynSGdkC/Dtjx3YqnKQvPsQoEaOg1SeopOqE38pEObqp7/RPTUTR8vPQs+V9WQZuZgK5TTARtwOI9ulofHEML5bHkbTDN9hibMOis2qIKHjgyxnpEAdQ3KQ7eiKGDyVdM9PxfiwEez3Iwm/yszh9SnaMC5fGX5VW8KCW9qQ2yuFY5XL2V9cA59vLsfkkxmk/OYNe47+jAUj66jxkitd3jgOpqSNZNHG0TRqmh7PVC/iyek+1DbXkcae9IfsUHUw0ZTHAmUdSFjeD3tHe9B6KOHBH2ksPiucNk89AFsqpHh64jq+9mk6GW9UAcH0TpyWeJJGN5wD4dnL8KFIJZ8M+8cgcdWU4DMG+pb6gpGyAew9c5nXtY2CPybPKCS0irKaFcBzSAZHf7dg0Y5V/BZD6VinCJTf+8trcp7ijFcTWflAOl74c5i0X0agec0L3C3xD54bT/PwdZOg78V87JslxpKfNeD2G1lSjw2kHwXncE/rbjiS4kLrc21ppKgm+Dclk4TDNtqbU46HTWs4JymEH87rAvXi47BtrTzlrFqCkmtt4MjCH5QZOpxzchbTcp3X5NqRSYezs+Hk8ickuTQTC/5l5SZdcxA17MPmlVW0I+oB+R5t5UWDjuAxpRnLpuzigeszYU3wAlo7k2ChrT5M2/kUDWTHUJbjBgja3wHu483pRtVxfPctio9kZlJ+qhpYnrbC++9/wc6Q5zR+2CEY4S1NMEuQ2nxiOKZlIWk+dcXlHqMg/d0CjBn5CKR2e/G2gGt4ZM1FnGrkgCMErCh7jhwUfmOqvSkAB3r7yflsDC9dVAg9Ie0welM7vXo5mZz4Gi3Siue4HfNpliGAZuMXLpd0BP+1inw3/wwNRNwnw0vmHK7XBvkLfOFJ0Qu2u60EMZcq6J2wAJ1v/gF12kW8b4cvjFLogbbu3eAjWQc3O5E2HVSBIpuDGPS+ERqTe1kkZRxYnfvIXoH+OH+4Etel36JncwQx5r4QzPs7hc2XaXLG0eXstfguPqm0x/mHpfG5ugHbLIrg8L1ytO3WKPiWPYJyj+Zj2IAPSJsZUm2APkj8PIpdoVf52/48umgSBMoeE+Djs1w6PqeHu9VWwMSBsezf+IIbX43EzFkf+OUCU7LUkYd7mtrgtj+Kpi7fBZ/dtMBwRidIrUM2C52NM+KecueRVeD9NJEVQmwhdqs7+W8UwOcC2vD5QTVPmPeaT8zaRNIWbygrtJR3hK5Fc10ZCF36Fd9PnoAumlfZW2sPKshE0IwvkdjXJwx9hjOh7pU9xS/VhVk51qhi9g3/WuVh3qIc0vTwpd3+PvjB/iZKnb9F19ZeAtloG9j7dSNz8AxQHrMd12S8J0U7cQzaZMSXYhKoWn4zTV2xDeRXaUGs4FQSPu5BVyQAZZwjqf9ZDge27SfLI4yejjVQ/T2dxDRNwKvzM+dLBOKGxxtRt74Ef78/hzbhV2DY9jJqlImlULt5fL5/OGxv/4tNT0+Dl/kINk52otGjhLjyMqN/4Qj+3beTVvgLcr6TBYh0b2Phi12wsUcOTBvOUMLzQLbeEccSUj/Ar3ALPjdppzvaqvBsxSSYqmmJpmNryHfPZw5Nfcl5Y46R7LnFMBDojRONv2G4kjZoCifD/ivjeNDvGj+QzcWrCmKoe/o/Hl0hxJPdijjz9kqSHKkGf9d4g2zcEzB5dpirbh3GAZ1QKNw2BubFHOMHP9Oga9haWPfJGm68HEMpJ9LB/msA9de0UZ5HJmQ+Po4Di5Jw3+pwjA1zw6PLjCDT7TE/F9kIzp3SUOJlhadtZ+Pon7vJxDsYw33H8L3+XfA6SRVy1YaBWZcTuQge57GNBTjmihN3HDiEG61uYMJa4pUXCljJC2D7tGuk53sbrsaHoqnOLBgZdYHDR9bQMZXLnDO1gS7cVsOBr/KwcJIDX8gthllDzRy1ZxbOjFeCdcqAWdsDoTdzAXXjLH5TZQvvL9iCX+YLsm95SGahXbjFOgFcxQXg0poPbH39DQvmnmY1MxHw3BxItd1DND++iJ4HTAUZSUWu37wQOwblcH2W9b+uVYeFfWqwaZwZ5EbKQcDeXsDgKpb21ifVhJ2oXKJLR3YnstYVMZr62QKGeY5C01G36eOcAxBHvynKJRYiqz5j2FAyXny+AUdlJVPyk7Ggnu1Cy1bOojU/E+k7DUO56qJ/rLjt/3clMdJmLk54VopVQoJwBYvhyupSejqukfuXJEKsVDWbi0nzx+xnPDg+8R+LTcP/DqjDmS/T4XXJH95u7AcPzkfgjzgl9PU8B+O7laBhgxSPlPjIzaVq0Hpdmp23rIXBk2Vg6WSHk1tsYcM0Zcxe8Y1v+8TiOJtOvNluAicVCiBK6SVU/EX2eS6LJ7WVWW1dDH7YE4svJ2tTgqsMTtKZBK7nCrjfcx2N/NZG1y0aaI+sAQ9EJrP1w2Cw3fOaZMRTaVewOnyxF4SZ92WhquEddVeXQpTdC9794CmK97ngMf926B82nTynioPTUQP24e1oavgUg2xS8XWsBCxL6+PxyYUsqCsFH8fsZ58fIqBZdIyXllVzdFE0qZieZfuWfqgp6AbNg6t56sVpfKNnMYg02kBz/02OffwLBc/48deOEJwfV4Ix03zQe2k+LbXbhbMi1ElkmzqIL/MDmTn/oVjEQ7SJaMWlx9WxafpCHInNLOOdhS9eTaW5KzVgttAdMvyaR/MldWFZjiBsfl3HM0wCMfRXH4SovId9r23pVaYxTP4EFN8hxWVbn7DV/QGUnxxKol2nwSnlNo2tesFvt+7gx39E4Orsaup1nkwqP5RhTUAGx8jL8f4z/YALtTnvUC3JJIjjHTUpqPt9AsOdVWAROnLuBeSPgzqgtVUKf2pakL3RFtpw6y/iFDFwuHOYXy/pwOHdx/j8vyzPn9rGb0te8UKPLbCKJ+HzxlCoybCAHRXqWHJSigQ+LgUhi2Fkm3KaXEapoLlJFu4qb+ZTqbNxzVQVaEoXwYxXAyxZ+IlKzkyHDeXAAmeX0JT4n1wiaMzzl1eCv7gxeGqb4ts/uyEwOQbtKq1ghUscncOLEPVdihpPifD4rvXkIiYHQ1mToSlhJn5I38s1+b2YfTYbxTZNol09u2j35iywuvMdZjfqgs+K6egh952j9HRxvoMyfxMxQ5OD3TSsPIQXGLiha9MWGr1JFc7+qUTbZ0qYo1dM23Qy0GGDKo+squLH1S6Yb3oXH7WF4GJnUZD1rOMvq7Uo8aUULeqVhR0LM8DkzwFyj04F99A0MM8cgf0m8tD+4jg3nj0HXqMacUWxA0y38ODZi5di4dscajR8CtFxheh+Wxvw1QPaL7GUfKpm44VRKfzh1jio/i8Snd89RrPgTWi0oIocbqlAvNNivGUuRFfSLf597wP/rbcn9d7l4D1WEvIfzeTxx37Doc3DofneO1oveBouhDyBRXMz8PiLmdQuPRmfnR9G5vVfQfdsGEd9s4ag0bdB0PoixVb6YHqcLFjcrKLRLQ+4oGYlxHSYwBMFXXrsYwgiDVNwytB4aKmqwQ5PW7y8vQcePZcFyfZFcG6uMi6o7gWFQVs4a5+LSlIetPT7H/jhMkhV43/Tx5PDSKJqISUvrYMN32/jn2uKMN+ziAxXb4X+R4V4WiCMBNVjOdGkmYdVTaG+u3egUyaV+7oJIpN66VbaIB18fIm2uF6C06Pl2N7qOz95PZLFFS5yX9Z5/ppuDe1lM1hz0zccyh7EHq+rNHLyZPow+ImLQxl/HbTB5ExD8BXThvbMXkrYuBPm2D6i9IdC3N7pyRdPV+O5wHbWmxIGZusBX86XhcmXt7GBSzY4TAiCU+IfWDPiDSxY74uzju1FmUgrFhl9DN7tnASqmkZoOukr3VU9RcUzk2jJh0ZY/caVWvZ/pGbfc6g4YTzyFnlQ0akjAZUilghwhDTvyVjwezXOWDZACRuEQWX0QfT5Ng83OSP4ltig+foZ6DSslpeHR8F06TXg9181Tm/z5Hk1IrSkMgfmxiqDbakAP9Q4BkI35oNTwyL2kPHG3IpPMCVPDG++dKTv1UNwtRRgwrV8bti3CrvSr/KzVGk6ZBADWec/wFU7Tyic8wKWORVjfbYYzBSuIidcxh9CpWCgqILEVD7i5m95KNSnDko160l6uDmWqyFkJ70jK9uVMDsom8UKPXi67BKOGK+I+RmVmKVjiBdaSmhugR10Oj+lR/Zr8ICgDcutF4VrF75imocE5qwUYKi+jgGD+0DeBUEtOh4LgxXZp/MQnAraxBrHj/EtxWB0v5VCm9vOY/ebS3jSWw7mapwndcdJ8EkulTsfjgLe2kYTrwRwxnIi1d7NXPbfC8KcYTB91mgU1flJTpPXUerdi6CoIwQei1qgxEQHSyT/45fSZmSdBrD0lzPHX0yhq1+tkDXWU8/wy+DaNhlbA0to2xgZEupQwSf/CcG3A7pUql9B/z32x0jZQTQMXI01RXIgIpVAIi07aFrUG8zMGg3PFErZKceRLvtbY1zDcU6V7KG7QfF86dNXrr76GAyPTeN7IgTfV9xHqw+dtLh9BrmWzqNjzvXQU/kQJ99fy9ZRHyFVcyX1K0pC4uEOCF22i6Rb3WCoaojWi77Cq+fq6FpLIN3UGclJR3sg13A0bPnziNVS//Ldu+6Ysk6cxGZYU+xxA1bdLsI7Y6VIProa1xgqgECrMyX7m/OKIik4v/IehJSk43k+C63D9vG8VT9Js3kQixz14fJnGerUOUhBh+fAVUltsh7/jKRHFkNW/R188nQzdA2lQJURgq6dEF2tncbmhWqwekYyrduWQu3qunhW7w3nLd8IM6dVY/kThGixqTypdAzmP83ANS+WQ7+2wb8d/4DErwXRNJUEnnLuFeYMWoBASQNMqIpD73PGdMR6GFRPv/hvV6pS0UJ7FC2VY8mNFf84nUFCYzHKva+kEL9tdDzhGUjqJqFL3T5uf/MeQw5V0bTHP0hsmCSU/beVow5dxXBwR0nbD7goMhl+dyfBwlslnFZRhJ/jBnj82vFQNq6bPNe+wWmhrqy19wlpClbTI/PVlFFeTFE9UhxcKU6aVuoQv0mBn25ahz5Fj6Ai2wlsOgbIbddvsDCRw470mRC2OAddRAxhw+QlmFn+DM2rP3L8PReafHA+Gc8y4HO24dBePZK0e7+BX5EqvPBUwrJwpsWT69jVjzBSYStW6h/n9XMrYf+wqVxWpEI7V5nAdB0VDNgnzL+mrvu3w7dj4NXbeGmKO1jN0YXZT4dA+uxEdPioCkqGHfwwYj2kXH3I7wV0ccQiZxb2LsCqJRVYoi7+j0PysGfvOLi8xBP/Purnqb7EZxRsoTc5jHdHJ5Hlzy1Y97SQz9604BkDBMcT9NFQK/TfLq2DT6NzuX7gP9o75jS9v7KI7UpX48cXiWTxRAlELy+n690j4cCb+fBOpQmKCmfQUNBW/KYE2Br+Fo0XavDiv5Oga/AkHWm5xLnNxnRa+TRPU1CHz1XGdFn6Pk6tP8yx9kJ4QFQTPi0spJXfJIFumwFI3MWZ1/2h8N1zHD//GLn79fCGw2NAbY0O/Je2kg/9l8tdt9UxVDGEXfW0yTynlmqbw3hNhTWN79TEST8MgQ5MoijblWRyS5BNN65kBWsT0gyeiYpXj2KxoyzF2HqhmvwksPMOwkphIbA+ro+9Tc+h1nwV/ZL5iLe/bGOBrjYqXGOGu/doAoTPpHVtgXhwWQ47d9ZzTNAtTmRHtpP7jAdmZ+Kzm92oozgCdvX04NZNm+G6mwKdXh6HwzOq6KfATAr8uwpkXfP4Q4Y0yp4QgtNuSlTs0Emt7Q78Tvc8ON8fRR5eprA/TJf2unbByVpvDF5sBh9V0yHAbRn1prnx6BB72hhcTSpBVTxcsg0q3EQ5/1o0B7/RgDSfxdwbehxbLg9nj8e2eEDPDIt7h7P48HcUOW2IB9rXobvyKHg2UpceHvxN11PHgJSpEKUrSJFP8TKQrRVn8xwVaBzujz9sxkPBNSkyef6H2298xJ2/3sDy+Xn4++deEty/j07Gd+Oq0ABMKRCF2BBz3Ll7EZa/eoxurc3suG0QhrTfs5v3KZr7WgB/rX0P6bUq8LfSGcrlpkFW9z7a7tLDJg++U0T0K0z0/coyyvf+eWAI58eaQYPKEXb+fZtmfduBE5e9hav7BGj65be099EOtnuVizJWcpx6XQqiIyJw0xIT2K7zgXucn9Dn8r0omypM/tUfSKl+JP4pSKZiT3HIMizHyU/3UZ/tbnrsfwiKP8nR1rwBDjvxF48VaVF2/0TqNRKG0LR7NP7cEU6/oMO1A7JQrj+ASwYL8eu2dlj+3yy4UlfIKX4Mh9JG4ZmIKfRJawzvmd2IZ7Tmk+fAb7Z0mo/yTxfQ18IgDFaxhdO7RHjQwJ6TTp6kr2PVwd9xM0563kimA5m0c/cfcj81gjcv1AW75nB06G3DpXNuw7qDZ+H3BhGYZBuOW24F8OT+sWyme4FPE8HbHfZUHf4Rlq79SOI74zlZ0ZAqz/xknShhCnb510cGCtj0RRZsrPaw4/Vc6K6ZgeN2xOIL6ccc5zCNPHruQ0nAK/6UEY1b+vShd4oAd53UhOUva0jJTw+M5wnTxsON+FM6AHZ2JcMZ1UNU5CwOmzoeQneRCKNDOKucDqWqjHGYPXoAj68VowkVP9l1Uz5XiZjCnpnX+Nq6Qnybl4EPHeZy2Wc1+l05G34VutMHDR8S2fUeCx8ow7j3NpC7JA1v4FUQ2V7B13yTcMuuSlI7vgR++epAoEEgBEfpQNapKFDNUqS8Ldf53fHLmPkzigS1DGmrQjsJy0zExBmq3D5pNPRpdPHjBfvQVSkOAw3bOWSojNRmboT4mBdwMlWdrQ+u4CMZ+rD64xE4YvOQ1lgMYuz4Fr4vpEp9M/J4ybTdkDZmNdton8WYz2PBdk0Y77W+Siq2f/h6yVdItYukK5WAv1v+YmxdEFqHraA1/3RwPus6as25xmedNKmiW5NGHVGAoElM/a5CODfxII8SHkU1a0aD3t/XbOqqDTaqP8lDHunRyTbMv2OEpVr3weT1OkgCAO3tJtCg24HrDtnwwqV9NFyxGUu7m6gp7wpvcZ3JR6VP4/Cas/hrjhpc1c1gi4oUGm76Edb8WYf75DdzkFYFPloSRpe6fOGOSwg/eWsNdRZt1LjXBzQXv8fzrq74cnwISZx9TvKJ20koroUj5RLR4JcgCIr4kVruCJ571gvMvyfy7297WaP2I566HkkvnifjbW1nKnQZBjOVcylA8jt/8rLBG+Zy3PbAnnQckuhTwDTyjj0MrF/PPbbqkKv7jK55psP+E1sh47Y5xHuXoe/NEXxtLVHUhuFspq0GH9RHQqH6fPALmcJjLwIHj5MGv9W+mPX3EB8PXkXNGQvZb1sGBu0RhKbWb7DqmhSbTlxGN+/OxqVfkikpdgqKLvTiR8H3oWb0FCobYQcHVZHDl9thif4MOlz6lMX3FfHFz8pYua4Q+lNd4N6VKzj0xBqWsyQvFmgHsYpamrhmOgRsHoaRcja8fI0mnIpvRZdVX+nV8IlQ1D0LUze2wGCWESyxmcMGX/+C3dZD7HhkLYx5dhUkZVz51mIbqAy8T6kiUVw8NREilkXxl2lrMVMuFaJ32dPJqbcw26AIVJ7ZgN79QBjxW4oSHEdh7jgV1PmzB3bHnCOtBlcOrdfidoMRcMCO4PDQFhKNP8paglF8fHIop19PhmffnXn8hWSY6zMaqh4ak/9VS4jXVKOawOlseHiINT0VsMjbmIZrbYW+DxmQ/7wcDL5fRpMkdQgyUuHNT5y4bdph/jZ9B3dFb+Xs0EYK9XqI08ts+erDFdQ+VgwmP/fC3cFW7DAnGx1WfOa5pz5BQYUZV4ol0KSvF6BqbiPXJcpC4RI7Mk9N5+Co37xKaTg0SrXBlfBmvNdwjjdITYd3Y09xmIoO1NR1YMVRASyrWsq38jahd95yjPxSyr82xIFMlRacXx4E8kEq8CxlD+48+IjXCo+GEVviOC5JBaM3jiULt0CaGZSE+8f50dQRpmDZ+5aMRlbxaP2PWF937p8mheDm72WocdsRJyXF8gTrB7RYUwF0kybDqe5mzm9qgdIfHuTqGk8bX36liLBivDN3Hpa8G8ap3lYQkjoeSzee49eGorj4ZwuPiL7Eyjcf07U+RTwxUQJkg5r4Qo8JvOi5zNPuvoUKmSs4TOACTj8JXOW8hxQShvCtYQJvcurF637/dK7rRmWCeqhqhPhrqyyuH0jhg91HIcCii8uzp4PR3DH0rolAb1IFP3+4FLuWO8PwWdkghRL8d7UIJyh/4Emnylh5TQ3s/CUPd7Y+gSP5DXhxTz0ZbfFl/YYYOrZ3NhteOIrnaQ/99xvYXMoEFlg+w/BRh1Fiwxac0nWA/1ufQPfmZeDBGmvwyPgDR0oVuVFOGtJ1UylaTJmOjn3GRo9iqEhvHDbdTuYnKal0WmALBMWtoVtimiD+7SV+0tlKC3bJo22/MAoeXgu1s3S57dgM5G8NvMTRGmafl4LX6/J5Xdw0Gl+mSGcierDpij6/yC5EkaTR/PNTCVwRPYTjkhGMTC5ze5YjRPucw5Fa90ku0gW66/5AX50CGXTcpg0zJ7J69US4Ey2HKeqv8f838Fm6hqTe6cGvdDGs/xVJQS53eXfZEnqx3A4S6uaQc+QDeGX3jQpP3+BTFr7wK9yMkwv2wMb1s9G0sBQP2huDbuEODKi5i5UXVKneuoq23vSlUWMvYOFNI8ism4R94cnskKkDR5eoYqnDFL4/Looq9+Ria2Ih7FdWpzbHBlJxTgPVFdWUXzoCzh3SBc8PYrQ5o4jizpnx9m3xuKPdmyPfxaP3THE2/PgQXlxUBbHUGjzk9x/V+lSDwlAIPkowwZSwnRji/hwWXGjAmXO00V9gPFxzWUKVTuIMNQ6kt/oHLIsoxQbzNjbSj6CyiM9kqfaQlXNNAJ5pobDwdJbYfwpcCvrw/H9WtDmyhCaKG9HOx+o4ecN8eNZpBusiOuBZegqd8U0lp5Gx0Jt+gpSTZ8ANibP4R3sylsf9oJcHlCAI93DOtUpm7QxwFzeFCGNt2C29hzQmJkFy4S2ee62UZtuNBq2CHTD6azBcv93Kdy/60LMR/mykOwmSqhtR19Ma1G2+0g0LcbCXusrJMkVw2rqFrmn1k/yWvyT2Mo9tVE/ASlcxUI0XpGofCRgyeoWCmwY4/H40PBxK4qySCdjmYgZXtn3FlLR5ZKYUS6pHdGHBjtX4coc0Htv9lGSXOdMx/VYuvfiA/UWLUOqADu1YFIvRey0gZmMhhTc/gj47O+4Lf0phgluoMVsYztl/gOR1+ux85SqGTVKBn+tWo9rG+1QQVQsCu06w4W1fMPGXZJtn92Fi4mho3O7Fk7ImgI1/Fu8bMRqn5cVRsVUrShzKYkMnFwj7tIcNH12DrxPsaPQReZB8MJzy1bNQct4feCRSgZd3KMO13qcgfCaAp8t/AaWVZhSwRwa6D+ng5aAJ8Lk8knW3WWHLxzY07Ong03m5rOwkStuuSGNciwmsDvoBezLd0ey8JZ84dhb2jXfjhZ4TKSawEm4OL4MVPf24qUcLOsoWsLL+C9h7sQYmPjoNmWW3MCIkh8cYL8N7sx7S4j1zUWeaBJQIbqW8JlkcSEnArhIvEHmqjarasWjcIUiRaXKYmLkA44ONwHl/E99NfIp66/v47YUZYHFBiHI1ZXmHYx5UlRvA6uOXQfKWApzxfYeemWGoFHYILqo/BN8rqtS2OR9agt+A3uo58DM+miXK1YD7fchv6wdcJheP6jUHwPxrMIa3HqPCGT/YcM8KvBATDTJuI6Fau5U3GQTAtl3ucKh0IonEvoMhia0QqvWvN1EJtAP0oRwNoCJkPGRvP0TVZo0sPlaKHtwLg1aHhXhxoxBdjjjNA3PTcIO4CDw+Z4pGwQgTIARUJ28DkY9BoKpzCTb17KWiukG46qeI7p8tYdfkLLz+UYHurtxEdq6K/HPjIEdK1NPd9x5kPJALpTPSoPSRERSNuEr3LeR46CXCi2ITTrtohC5x9+D4yrU4afcObg/5gcUuGqDwYwV0K97DwZJPvFVeAkc+PkgqBifh24PplHQqnENPvuaLrqZwxzWGbPfr885LUZDqeJ7vz4+nHZ5vya/eGOlQAYb0V5FtqyQsdpOCmUFusMrmIjYHmXKE6nBO/4xcVyvEB9zegpbHHHq8eCy06nfDkisW0GQZC37/MsXKvoyWdN6hHe9f0QK3azAubBfqGItAmIEU2H8qxLa3eTzr0Qk4fbyDveKnQ/P9bDgxUp9s11wG5aUaMD4zmGpN6vl7SzdPzPiD6/PsQX1BMtjmvuDepw9gf2MKis2TBivJiRh6+gFfelUCasZN3GOZypJHvdBkuxNanc6lsGf9MNVZCjaIfKJ63RT4oBtLK236MKxzG83L92KP3Quh0cWX7CU/4WYFQZgdWgv2wToUdu8RORRrQ/uxLVj4nxNNyH8PoWGSYJjYSEustGH5OWEQBiuOO/cLS/fMpV5zNcprLcKr6depfkwrvNp0j8vLLcDOoRZFx/4gg/hQvmEgw7UFEeDRk0/b/C2w1uEvCUv1kWmzHWQkHWf5Ox5Q90yClHf14fxOeQhqjYBZ1ikY/cICM72isF9eGGyr9oFvsh9axjnyBHNf1Io0B/V6K4gIW0whhyvI/YoZXyg3ARnzRtx+r4YcqkupbukDaJt4Fs5+d+XFKfNJ+P0imiI2HXe+N4BFipm8QeQah244zgIpofRXbBVPW/GQMqfdIT2LCpaXU8Tz37Sg00CdBZ8NYMPiN9R38Cde8yqE2WIDYBNQypY92bh8YTIu7VCEVzm9tK+mCfr6A/jk20GIf1LCf+zdab10DE3emQ2dq4t5qpAtGNp4s1/LRfZ9d5btDs7kenMjTlmUhErH87FpvBQaiIdAWp4ChFwO4dV7h9F+9UgsCgnFmLp5cOlbK+1s9eMFOBl7Fw3AkcPq8HuHD5VoNkB1YivXjp9M4fKu0HTPiXNNPSH/5ku8NKjP0SMVYEPZWHzYXQCFBnMwY78QqDfPReN3B+FO/RbY/quBVW+/g8mLjcCkYhbeigrF22mWfFhwJ4H1aZTyycE1u6po6IkW9vrq8Pf5qpCk+pQc08z5/QQnMDgjxzs8h9Oi2j/4reIe9rxfwcfP3sOSsRLgsq2Dl1geh96l83HadQUSlnRkJSEFVKsU4dfukTjp/ivwNzCAJW53IPrXg385ModrI1WxuC+UHa0yUGaqEEp4eJLslTmQqGcIf3PEoDhIAX8NXKIdxaPQ3ekP7w9fB4a2fbwJEUbUVUNkkB0off/ADWaOZLBhAta/TOCzn4QRptdB39ZSEow6B/0LtqBVqCi4aVdB1bK3bGRwkH+8LcWPVA9tgvGo2/YFe98a8IGO1/x83CQYF3KfDOyzSdjwLb64HsvTgy/w/ZB57PbHGdw6RsJ90T70nTce9I6bcr90LF0+OB/MjvTgnOuz8f41dRhfGgE7b2tge+sb/nTCECYoNsEIx/8oL1sRaw3/bfXz1/Co7j8u+6pOYy5PZV/f7VzdMAFaH8zjhhX/enfUEL+LNYfKg4v4utBrzuhdyTNlh9Co4Qle/y0DGk6VPO15F0g17+M5qVG48psmyPnv4+Z7E2DxP91dij7BR2da/+vjFLD/5kJ7n+jwTAzG7Xe+0xnLaRiKImgt84XTj67BxlAr6HYrIPSwxKtO72GK7QmIOp/Ogwees5uKP669bM0V0jPIfjvDnU/7SVTuKx2mKxSvPZ4u3pkAMXqGfGrwKcWV3kEvi1JofKEP384c5VLFbFDZqkMCmXI0dcoMTL0igC2lA3R7nxTJurwivUwb6E+cz8UVl0FIMo8q+//CecPDWKi6FCJ22fOguhXH3wgEn+OWcMuuCdFqLxRNCOE1XxXotf0DdLiQiCeaUujyXQ9mO0+KjlaAU5aSsPvzZR4jtJVvOE3lbdt/k7LzX4q0Hcu/l5bT0g2tMMFBB7aMaiDPTco8e/UgPy2LgWud6iBiMEjv3EQxReQQjm3zpJVuovBdNBaVn+jBqQPi3PfrOZ1r3cQu26u5RewHFT1IJi2NYlgw3QKeT0qnly4+9EdXhqO+7YBG6b0oU7udpvuYo8P2cFh2tgNyRjIsa7XhzqQyXj9iE+5a5spf+pTJ28yeujY3sPQbhJi4TWT7QwDqR93iSzn27N4pyk1Nh7G89x3uN9hBmx3voPSMETDx7BtIu2EIn7e68oy0ffxSVQ0/7K2i9/XHYO3nbeTSGMqyO1bhjbzvsCh2AvzeJc2OKS2s9auEUW0FzdaXxoEkK144bhjMfN8PgcmFkDVBCzKV/GHowAWcUH+P84ekwS9LBKPfz+X27kT6+MWbfp7Q4HuBJiAQuZYdv9ShvNg+slrYTvvzy1G07yzWcA+4Lp3FRht6SPmFOIziF3hgVylO7XeDiLr9HLBKguyWZ9O+d/84ytqZHv2QJ6yW+8d5/38fRhVcZ0URTRqBdFcac4yaYd3q23CroQML73/DgiY9uGKxhJqfGuFfwz6YLqlJzkUqpOFXTZd0/UEl7gfWbklDaRgNpWPPkZydLK2Nn8nvcx9xkEwkjNk/ldwb75G6dSJ0FHnxfUMV2Kb9iqPip5DUKktUuXkY53hZQ5bIRF7Xa8uLtwK8dYvC8JGS8Dt7GeU5fYQN7UvRrsiedAMNaG9tI3w/KQgZdpZ8fb8HevQYgEPiWd49swMMf+3g05YT8ViRKGbI5fCw8jge/24tzzr4F/p6JWHNW2fkJ0kksqwRGqJ24+KrBEcPfiDF/oec4myD6heX0Jsr0jA8+zju/e8wDP7J4eCMOSwa7QZbF0ZimXAY2C0J5xIJK17ToQ5GyyJYWeINVE3YgE8fK4NKYycMfH9G6J+I7SE+FBBwkoJFTKDm2EoW/+OD735J4vN0T/T1W0gjT1/hZqXxOOGhOZ16eR8XByuA37o1dDLlLY9dG0yWKYNkuMudHFR8uKViM8usPkrnrKaxz2cB0DjQyIOrhtGXBmVy8c/FqnN/cEqLF9h1KlG5FkH7zEAU9h4Ft6ZGwFnVPbxgWA19uRfKZ2MaIWSmEo/3aweHg3pUb3CA6m/ogKDSejp88DH+9oqAjWFLeb/UfNjoUUg3ryqTcUEBtM0aROOJDMbFRvAhIRUcx0lxnoUZzdCfw7mReqD04TB3lrbgGioDjQEpaBg6AAZbmF3vaVOQhy/GSL7E5/0JaKm3ib8eeUqpIRL0/ogxmP/jC/u2FbTt4jUQ3hNFc5TV0O/1N/jL31HkezWKxjryJmlBEG+/xM0nxoDU3Xs8+WERjV4uwinZ21AtbR6+u3YP59ne5GNS0jArMJ770vy4oHAiyWsuwM5jfWAp48o7NkeBS20JQmgOD4AxDAbPwFv7vkNGvzbKJY6EK8+96bueD819GcoiJU/RJn0DtGZLg+IJJ47IGI1/RL/g9VW57PVIF2qaZDhd/Dh6/FzJi+5FgV3JeChbW8ZhBnF8MWEdFV9cwVqx8SBdthga9WVJ0/EGXcp6CSruxnAzM5AUA+rgbJciBWd+h3mrxlPJAXMIqd/F1tpu/3J5IySoisDU8w08MdOfvu635hVJTyBrrgd/WXaGp/8uw5E6t8FF7AxGtFvB0mopXja2FO6nn4SNBzvhe3w1qnvMpxPfHoFRgRpdHHaGFhWrwMCrThjcOBZygiIgoWsX1gtrc8mIKTTuizaHT5ChzX6qtHGCLcx7J4EzBA/C1uKRvFPoEW68K0lU6Y7DdZbhf2p2ZFKYDsOTEMolIiHQzIFfRCTylfQCSH8wmssPdVP5rX143fASNhyvgu2f7MDbfQF4totTssZyqm4tZM8F+mBTMxw1eSyGb+rhrDgbtg+1g17tMH73ag2dWazBPeebaHpWHt+9/giG5DbQxtutcMppKhxq0YJHJ3eS7m873v4CST9tLCU13MEItUssn1cJfQrN/ChlExR+sgbl6h8Qa1fOsKoLbEqiYYvMG9I2/YY35t6GGaWvcayCOpdIMdzN9MWOXesxcy/SF7PfWFtzk5b83cqbBXeyZUcNBCpmwqeL48BL0pwPdyzk5MQM2qYlB0cK5fFCkw1c766H32fE2TBOlpaNsAH8moemERdBsfE8JOv00U/lifjlQC90PkwCqYlrMdt9Bue/UIRo4SN4fF4PxuifxczeNBDTXwER8eMpOvwaN+y6wH2bHkHuIS0AjKQxizTBLTsNR5xrp7Q3rajmlEQZHyZR11YRvBfw7/88tIC97SF8wTMChr1/y7OF+7mo5zMlOk+nD+ekSHdUHTud/Uy3a4bDw+na3N25GZRcfpPm95NUb7UEe8WH2MDXBKWuLAHH7YvJ1E0AxoZOwjYPP67ysua1Blp0beldctYYAcX1sXguwI5UbSbQ3ISxIHqqkmZsT6OOY7t5ekA6j1q/ne9YRNKcN8e5w7/7HyMc57iFyuClPwX0snZRhsc+LPu6A0+JGPNwi3be5n0WT/WZ8PDpzVycaAtp3vkskiCKo96lAxie5DuRTnhD4DttEOygwpAwqO+P540XlCDqTAtYZDbT1pjz8LN9O5XuqWGNB7dp4cMK3K1QBv2tFzjNaBg0p86n8Egh+LPIAFumdEHdESUOGfOFtMSM2TwwGd+13CG5rWIQp3sbm+Uu052CcZz6Sx9PywmxoA/DsZZjdL3zBJZnJ9KT9yYwxkUJ501YwiNWH4DqfEN+f9mZfmSP4aNj6zhrWy1nO13H/p26EDrDgm8mO+OBOlP+br2Ym3t1cGOXAX5dqQK5z77yjCWHWW3AHPTaVnJMUgL/bNOCvm2bQbizEhcVV/HlPToocEYKlV+k0tn9qhB6wJX0Lxwl47BTfL/pB0vc/k6bUpXhmukH3uCRC5tT5gDfF4KASfb84OZT9rq+lPbtsKNI91jUipmMfqvDWavyGnxdJAbzbfRgUcNq9Iw6QMNC1GEyAdW9vgFnfWpxUpMU3TUVA4GGlXi6QAXu/o+4824I8e/C+BnaW6S9tCQNoamoJEnDLNkzilBJhayGn0hmGSENKUlkNBSZRRooZGS2pTQlT+/ieQnfc59zfa7PX/ecBTxav57HJbry7tBvYLr9LjtI3aLd7ZNAx2MFuQ+I4s44GVjqwGx81gval5/nM7OP4jh3PTj8azF8M45Eg7RmyOtYg1mpw6Huzm0IlamGvG5ZlpXswlHH35Le7dGQ8WY3D7YChqdPBM/ZCJtyFeHChiswJzacHTXfw+Yd0bhv7S0YnaeArdcWQNPmDzTuywT44rsXB9SnwaK0dDp3zY6rsz15o/AO1rmcTFl+M6HK4hwf3CQHlX2xfGriYZhrX4oNpn+hRcEc2zee4c6481CpqwSLlzXQsnIbuPY3kZtVMtFipTFkrbMBheITqFG0AF6uCqeNoWbc0ikOijmWsNx8N8c++8P1wQW44401/st+zM3zgKdXSXKNQzmO7LTHAZ8hXm6+jQUWW2Hhoi7atECalMXlSW+jLpzUlQBnpSrwnzkbUkaNgNNqg9BvNgIK4QGlXvnIUXvPwfU9NyH0WzucNAwD1+uCLGllBNV79qDs7W6QmS4CKScdKfpjCcfGvuPH5MZq6U6UFb8Mns0fCb274/nBq1EQQ8dweNpWtrFVpUM96yBoqhdnl7TyLpGpWCCvA04xp+HEO0u2OhEAq7tXI8x+BxevuPLrirFgpXiUf31RxmmyJmAz6xkus54EYb6WuHVbGelNXA5pMwdZxaYIj9ft5HrnQdDdIA6uxWIca7ACHuWWUZWaAVVrLOQW7cVoba/NK8vWQH37FHIaqQ4eH1ZwSl40PdxZiz12l3HaxQ7QDA2jtLxk7NqcQyXh/9hqtxgoWN3E3dlBOH7bOVx95AGpVmZS19NpcNnBFAxFhehk/xh+pK8DZu//gqWiAtjMPUTtSwypWUEDDS5so/BJ/jxjqwT6lXnzxaHe9JcVcegLgE3gS2w+aQyKZfWo9caUX62eDntTPrChxGfomqsDawSqeJxGJcEUZbR4O5F+7PKkwbgtMKtoHovrXQGhkxVwapgqTHxUSxcsnvIGzT3Y0FLD7lf+QvaOFFZ7poAX9tzm8LAsChiKsgjpN/iwcBncP7IBHmZO5WFJzrAvdxEOFD+AjMTp6KDmwUHLFWBO8ltyHS+DC+7Hwbq0FsqpG4Fa/aIcf8Ie5rrJ42W/oftW1oIvJrqornySb9pF0fmfIThoGgUDFq009WAkPA5IhBOvlWHXQWHY4e7JBlXLeeGjLDzat4LXJBbinT+9LLc4F1wVT9FJ9Z38JmQ4nPA4CJcqBln2gSpS0lKUN1oAFkERrFw8jtuPKWHPiUfIbTqwSrKadB+85oooMf6z6BebSxuRV9Epum36iczH69P1DxrgeX0YrN1oSNeXKNCnqE5o79tP+zVUOLeukd6tU+JowUquxlHUu3M0/PH4gA07/0JeaAWPygkGtUFzzLRTIp+5e7j+6wHYe+kP21zTgra90aRsIgM9mY/IaJ0e/6xJR5cV3hho0E+Hegux+pcdSIuJwWuJ97BU4gv7Ofnx9WwrLNGcxL4Xb8DRwpkYO3QbbkY3KT/MBMIM1EnoayC8TLLgF3NV8ZT1RHgkPIARal1QN+sPThI4TTcO6sDS+D/YblPEi2fEAYquxXNjHmFeXitfXmXDTwPfkELTTLrdOQw+mryF+YGT0fCQHwplpfBVUws+2UZsN7mOU7Vfg8KlJLj9WA7MItdjwdVuniY5BdYo3mDne2Zg9OYVLQg2BbnOLvb9ZM/r20whYo8WrFjyCjRl15JYXR5IaedQjL8Onwg8CXcF7fHov276HA/gHyJBTx3fgvGTl7hg73CsqljHsiNG0ALd3fhvx2IeuCtFr50JMgKV8XabAYdJ7aLjGSe4/14/LlplQ2qb5uL1e+P4Sv00upZmBGPexNDH9f60+kkl9vU70RPX7WTXr8ECcgewb0k+CupJofaCcSCWMQP9E6T4oZ81tHj/xBoLILGwK5iruouKdiahyr/N6OfIkHMqnuaqrIaN2034YNdy+Kc1h2Q874HZz0l0xu0fr5KZR+k4Eup2PKbfcxW4xmkEWZhK0P4soKDoZJ5pqcD9v7JZ8sN5/FM3HjznJ2F43WYOPLSXTs0UQOWpYSg/dz6Iro+A/YVvwDFbkhZkWIJ8fBJnF6mA3aUSLK6tp4ttjaC7FNnh1XBwXTVAzmdy8NpIhLFPmujyejea79yLwgXjMfoi8UavkZAjJUh6cicg5e0U1ogzhGA1V15QMB/Hpuyj+YIDtNYxgf29o7HtwCF+eCkW5juZUOwjBTj5FuCkWB/qxEvwuhmT0bbqCL2MrQZsNQHfu3FY+t8mxFvyUHPoIH+N/80rPbqocEwxle+sx7G6/lQvpEQH2lYOuXIIHjE1gC0DVjRraxY+7NTC+FRfFh7eQ9Zj5+BYs1p02bqeF8vf52m1E2GuwT18sfAQfj8nzKMcWsj99ile2ZHOT3W24IwN0Ww+uIlLU6Rhbs0pkv83HewPEYhW+/NVgQXoXeVF0avW4q0SCdiwaCmdbheDk5PU+dE/a3LPtQa3b0KoO2Mf7rk+kfcOE2ANZz0uep3Fz68IwzLFFfQ9bDbbOXwBox5njP88Hxy65xB75vMCr7uwqzwQ2ho04XHEUbI4oAOChz5idGg05x+dDFc89sPcGUGYnmTFB6qT6Gc0w8DtHo60l8X0YbmgerwRlM0IixfPxefzTvNKjXMclb0KdA7JgU+FEgX8UGKNaj+0as7BM1IFkJSVAJafmUxP/EeB2wLR3UwDQvTz8Vm4OGuLRLN4dwy0zt7L5RHlNONCFLZGGmHhEzGePV8T4uriaYXnQVYdFOXgvaOo7mo0Bd+OZqlVFXjv7xSYs6yPOpX14Jq3NpzZ1QBrzKr5tFYX60fIQVtMEMl1W1DJ0E483TAVQk6NgKiD9hgeMuR4dT18yNWcmr4ewXP9fTR+bzeezGyHcUYKsHWrNvw1/Eqq215QxYdt4CP4GkLV8nBJkys+3XgNTTzFIPN1GvpetIGOYTdo2MxmajYPIxfvYtJk5Kc7xTkzQpJk0Yf3qgfC/AIxqN02SK8qv4Lgn0DMuKQBJ6odQFZdmSJHDgcT8bfQ4VoH+44IwJkdorxiRxQGZeXw2DM+YK9njQfED+Ktf57YIH4Vn9YmwAtzQwhSbMCHhgZ8VvcGzlmRgfF5p2CYRSauzLiFknLj2Vr0AeDzYVAbpkCri0XYfZs0vW+cw8cC//DhMfp4IHmQDS878JSbSaSVOxIkZi8FXUsR/vJvJjrXB6K8fw66NZ7gJvUsvB+lS6FTrSBktgoYPc7EQ72rcYpGO2wpECLdQ1cxKX8R3NvxCYLO7IfZNX9QI8AGPqXk0Md2Fz7yOZ4O+HjQU882PNavRmGxUlz6QRgEdghh68Yx0BW3HZbOqwMnUSm8sOwNJd7UoCuGiWy5M47dVswlv7vzKWe3Fcz1ckeZDYFQfGk/GHyupKz1sznOSBPnpM+HzUM+eTd0F2yLNQXr+Nv4x24Y661YS38Kt+Bd7ub3C3X5dNogJr1yZsmi0zCzzBh+n1uKwTZjYItZPF7s9OKGcG/++9idDSulePt3C0b3D1ijogXB6YuoZ7QT9M6IoQPuCTi55iPZ7Crj7/OesXYQkk/KCL5xWQqaCs/gnj0rqPz4drxv2wLW3U5o772dZNK7QV7eHm+qpMI8HRm4vygYizwew1PfVfQ8MZS7DzWiV1AZH250wznnRsOyK8fpuqgGTNnnCA/T7uLYdZ+5oluTVF7J4sDmVbjjnD1u0hSjAzKieFVADL64duH1FdG0Yl4UWXyxhcqf5jzW9Ribmd3g38se0BLl+7T+1ESI7z/Ndz9K4+D0PdD6/hDa7IkA1aHcWkHHqSTTjZfPPI1lluMgau0gzlpxELOeJVOUgj7En1bm1H83WKzlImRv0icD91u468cYaJQnMpWqodMJE2Ca9xRYEX8S5hZnYZ+EBax+qc+JCRo4otgEApTrMLnCji8fayL15wPkpiJN0iZviH+p4YflBfg6OQmtUA1W18qjYMVnurzyLN3Xn837GjuJ+uYjHD9Fvun3yO2uHI9+KQb+Xzuw6u5DMBR0g3D5mVj0NBX2PFjHho93w5OWjThxqQvKOZvB550mJD7qDs3+WUZ/gqRxQ7Mxb7Wz4/4Mb5azkyAfT0M0LhsOu7Z8ZsOMezDqggtcyw4AN/nN8PpjN+uLd5CAZCtMa/3Im44JQbNbOu2obePBLS6QdrmPA2ZPBhXtFpqlLscDohUUZX8JuwdFoansN9+I8AAsaGHD7TNhekEwj9Ye2qm91TxujiuZPqwB15sAtuEXoKjoI3/5ehS3/fxM1v4jabH2CdgbspEmJGmQ34xuumIkDppzjNB+zyDX69xj88uacGb8FFYPuQUq7tZ09qQxO4h9pURNa9iOvyH4yVW+0rwAlmpp8ga5i/zUT4FNj1yn7y651J3fh5u0lUHtzEc8f+0yKdRd48+WVWQ5IxXkzsSA40xVvNR9g8ct9KWE9WJglZaKAudr0aejAq2q/GHv3A3QL+uOqaXFJHThDiT/FAOVP1ag4dQCSa/06e3rU2QjZI9/dpzEMxvb+H2sB3Tt+gotbxg05LUh3eEM1jjrQ5GhNZqnLiaZFXEc8PExHt/RRyHLncnf1YQLZ4uD990c9mn8zl01hbB5vywc+veDl3UEwX7RDNBbvpFOxuWB9ToFODFzFe5xHob7m61QqsEZqlyq6T8JH5p2vAsHlujRhYKDbCZPkKUax+/SgCpOpuCWfh9aPl4YV0yaR5c2G9B0ZRfMvDwdCj5oQcekEppjpUF3enezFn7m8ZJ/wc3pAnqOU8BRKY5okLgB25NHwL02Jeiym8MZaXEYlT8bM15O5bN52/HAj1f45Hg0cB7BWxeEPqlnQ1yz5MiMmVCjOYu3qWThrxo1fHf4GMgu6oEjdfNQyEMCxk86j7qj9NB2jgk0zm/jeM9PoHR+N5b6mdDT0f04P9cIr7RMhOMCh9l8WRgFH7lBtX6K6FmhhrLfP8LwZF0+NquFdyZ/RWMbUZAK2cl25nsw4fYoerC9GoLvhuC8LhOCdcJgwONoQ2wQvh6NUHw0E6uuJtBMXQfYfuoKT/YLxkFy5DF8EcviN4B1hgb5t04C0UmvcPMEF3QvaUdfOVtcsrKIIps38l6d+RDYY8n3zH+CmpsASJtLoLmwPYUHeeDP9J2UUxCCEdvucetVVxQq2EnTBRP4zRhBeJfC9CVlJ+vp2ODuRx9BsX4z2312YpOrRTj+6T3MtFzFmhcFQGaLLQR+66F3p/vZSvIbNq31IF2xnaQ6WhilEq+h1L8XsKd/IiRH6uNjFSEWNWvkEZF5sPV0AUw5Zo6znXL5+9yHyEfrcXkcwveMhXDKMJQ3dj/HlkhD/nogmB1qM2DB+Uy6Ot+SbP0O0jJDA0i0kqBwR2sK2VXC0q9m06+QRK4fawqZRsnkJf+W7+pp4vFKESgI+43L8vPQMdcRayvnY3HcQopelofeOzK5SPsaZitdI5M3CIdPv4DxC7/gDzlPbpysxUHWhZgZnQ/X9shyuUk3xzeUwaMCU1hcMxaut6ylESd68bVHOu6Y3sIh4xElI10heZoMF5s68a6jGpC23QAPXThP4TMUSVlrEb0KS6TnZ5RJY/UktD27gbKkk0guWhDy8uZha50X+wXuwavTxKhbrQXaDd8yGwrQm7QlNHySAEWEi8PFkseQlFxMD3+UgeIlBqF6NdxmHQF38p2gQVCCF6hH8qyhOzK8IUGThycQ+bRzakQqegyTZ7OTIXhZtwnXaTURXnCg0TO1YZKbPF9YvITNlzdg7mLAmKcVLGw8C10PDmLefkOKUPsMyYVKkCKVziaRJ6jGSpEjfh9Fh8FR5HVnDYV/yaf2om6kJ84ooKACS1NDoSxwE06OeQLRRhNZ7SjDtHvKGOA9kcobbcEur4Ij4ifDvLE1ePLCRVjW9RnkTldS/1U/9rzvCHV8Di/Vn4djNrLkpzMK9qa7UKO1Oyo8+U5/5zix482vlB12ngSeefBFNoRP8Z0Q9EQAnito8A+JPfT5cTAEevbRdfmF3FfURSdsl9JE+yDWrSjF/aaGEFcaT66+XvBgyHud0zeh1Gw/fvVwKacKH8K1RS9JfdZliNkgMsTGX3RaVgMkxjTgzVmH6HvwDV6p9o/DL0ykWRPLKXzIJ2SSJsOOm9/IqziSpR8F0b4nR2GkhyWn76+Gc9aEHYfl2P9DNFsfVYesHWo8MGkVzOA1WHbCFBZ+S2CLs69xkbwmrJrhy6LhK/jTWgGIb9lIBdtS8EJyNr1V+EjryiPQxMkAlNeaQJqVBj60ayHBM+qQ222I9fvqIbXiDNtt74C48UogrmLMy6Wu4cG0Gip6HU42mjpw1XgDF48R54V0D79n9MK8wiHuW4hgl2geZPjOo3ebXoGJ4Fhwde2irjsCvLz/KfBSe/aYLgoy6/bC1xOyeDMyDcKDN2B+zUhINB0JeRXiIGykQhrvy+mnqx81OcwHndRP3LnNjnufbwe3I4bgUnoatpo94JcdrmQ08iTeE67BK0frWb5IHFX//OZ34ypgdLIKPAz6S7mH39PYhBsw7KUQPBM8ilUullR9wpocrp4kt1QPMlMRBd/pC3GhRyBq1CbgnBwx9JoRBvcq3WH/DTea4mVDq7rWkXe4ChxZ4g/nm8OoubIddPzzYEd6AEscegUuMyMxetl0LiqMZPVIaTifqYnzop/A9541MG7pK64KfYoVN0uwLbWIXB/fxe0Rd0D0hjBE2rrgnzVPKMqsCaTT5+Ctw6tYyWI4mpn1441WSwxdO4mz1irDo2OteCI4BT5W7WYV/W8gFC3M7tbteGJdObzty8QjUhIwL0QA5q33oslD3fDRyzb6ufsSPFKcQBPW2lOLznIIcY3huabhrFVhA8uqz7CIdwf8yroLz/SdefUZZ9oaLgK3Zn3gxLcPOUlgD8adQPghos5BQ5rIzwNId3QNHoiNJCncA+Jb1fha7D+sfKbFYwNsQebrbeqWe04yrk6wykCXPA7P5evdY/CslBRpLWnAmf2dXHxMDy5djiCt7tUwos+NpLK8OGDFNHhhsIuuT/9MyW2v6fvnpxjjZw4/ugNIesdYvhnegCKr+2DY/RjaMT6D7GvL4Fv+AtR9tgtSnITgguYINJ88wI7TWsjyaRl9artFQa5OaDV5qGOMPYS18Vqw76UmbLlRj6qXRkBtch/crzJGd3k9+lK8Hu+Zl4C3vyLdsgrnP5v14G+1FrYuHICR0+YBOPRSqJ8AtHzfynPLwqDllBrWbH+I5tljQfl5JR1pK+GaJWlkvUKB+u9fAyX/YJqw8whKP3ZGt4yrdKCCwayxAS7IzsYJXeZwrD2bLAWYX++zhiqLRxCgPonWrb2LTcvUoWpiHNqNmEq7JKxolMpGnj3JG49cnE17JIXob/k7igybgN+0JeH4zcd0rH0G7DYeheqPp9DhpQu5YziwzIk57G0TQ5umq6Pd6sngY3sdi3s88fDVpTTucjVcvxcLu2o/46IeEzrjnoIa63pZ69dwiDjgw7+MLHFZTxavOiIEUQaA0y8r0N1T9pymNgXq9Nz5Vaw1hNy5iXcvL6cm5S5uGKbP3/Y9wBgvP4q0XYBWFsv4W5IhSjwfCS9/L6AHD1XxtsBp2NJ2guSOilFs7T/QEr4Gz1QyKNmvAVN3CIDajFKOsXUD9amdnKkhAneWxdMLWTPYIdpHtasbuPPIYhS7ZwEjzbxwU2TikLveB8Gkhax+VJ9V7E3A2X4dTHR+AvmQRceMdKF5zGe8JmBNdwS38j+HItz3KhU+yH7DjCOX4b+wJrQVnQSvcgHePpfnQJWZ9GxnDm9XNoA7v2/D1NRgmqL1CkfsPEeTvc+TtxrD0llb4KzPdJzy7xXc/rkRBJLSoU49ErXUQ6nuwht4LKBG9wONYWVzBh8/I89XtbeBoYMEFlgmcOaWblp1op0tpZxgsagidwzNOWh8F/2neRAW/9dBiUt+4LSdD5H6GZwnRpB9+FLueKaGyq+V4EudG0+a7QKj9t1is6XTaPnTAvJQjSOJnHxMy31FhiF+8O6LKdyMOcmx8YvB31GKrVefIm+59bgowJw+lxzEC7X6rPTGk17mExRYrsHSigfwLFiOZ9c24/6ya1j+3JF2xK4guQQtKrmwmnc060HnLDnQKs7FRTOPcal+O3hnzqPz9SoollJMJicMeFKtGT25KwvuqgPwYZw4HDdJ5S83/8GuX3J4ffwzeKX6Eh7rvyIp3y/0wEwWjq7R5BylKFzZKgxG677y+twtZLt8DzyK02Fz6xzI9n0BDmMs4OuTfzRlmAs1HL+BhoaaWLnSgj06JOjO2Ofs0DYeZMbL87jvBrDsoiMJTf8MLtKK7HPIDxJWfuTsZyv4g4EpaNl4U1HDBuyfrg1ZdfaoUv8d3571pjS/ftrk1kA6xj2UWTYBHoftwuyDuRRaOhpgnh1uHKPPYVUPeNnAJ1bcHkPXlJZjduhfrvojgT37LNnIVhM+75em8qudKLa5lu+ffsp2YVtg09MNdJ/m80xFRYjZV4vDzmjBbFlFypNRxa30GSZN0KH1jx8gN6+HYm9tlBH2AWWvtXDsjg70d3ayR4Y1bhfqxbMug9yAE7H+yHWkvAr6O9OaM52tSOq/CXC8wh/Trlthd8M2zl2mzqk6wjgr1ZSM5sey2e84rDCvYBmHYdC81pkU8kfSar9Cap5+lZT/u0OOImepOnwOxhZvo4XBz9AneSIoOG2nAzFh2HZJGUKaP8Cl5iCS+BjA31eGwUORAny3TgAPv5GGHXsNcf6gHpephPFYM2+wLBfCtPRBWG1vS5n643Hn8YtQuNUS/nN6gduj/fCxbwMY3U8GYetlNO5YM6+fsYdSm/7he18fDpSTAo3yEjzMx1FRsADjjQ7R8rDZKB41BRZK5+CMF0yHeQyO0JSHhAex2Fm4kTd8eAdYLg4Hkk6CrXcFd/81o1I1Hfia4gClPw1BbO4TxG9H4YLLZL6/fRoazxnNp9ILcUcM8bR7HlRtZI4PLIaB7s06LozSwbuWc1Chbjnqv9wDXYrNWDTyNtepqXPAjOOYNksYxjUH8Rr9DFD5qUUVi++w76nreFCnBAZTM9m9ej8JaTSQcpYBDHMTI8kx69Czr4tkLoewmcpCnLb5Ml6ZYM0HfIRAOzcQNOImgPGZXzxy2xwQf34OrvbvJhWJ3/B5z3eOjt4F66ACY2pksMjHGpxrj8G0zCCi07Vw7twHTL/Xwp5B4RSsJQlBrkBp/+TQ8IsFyF61QrHSazBP0h+muNyAtCFPSaoaDRLeAWixjkHv92fK3DIRIoQW8XwdNVpw0hRCCpuhPHATNfYO8gHjOVR5QRvuj/xJrvukYOSdQp59QJ3eF+mxXN979rJfiv0FW/DJqCDY9OsgTx0JWCIoDTpD7/1aUgu2FdJYeWkjT1eqok8Bw0HiWjOYPFyFUzffBEE3a4i46Uy+LhmQfTOYOsL34q19l7n6QBj/l/YaC20ALcyvgFqCDSTLVLButgCGRWfifP0q2uxZhKrfr4KWbS1u+vEeryX1glS7LswUHQVxiZ5QtjkCyuP6cdnxHM7+q8EXKhdzRet4TNWthsPKSuCbeRk17qpC0GsHMjM9xyMiGnnu9i0wpy6SHb/r8eZmMXxRYQtxx8x5qspv0Pn3j5Mqfah94V8yKk2Hw9p1VFC0F/lsAGw4JQ1BR3+T5t0K/rHyFTpKHoEfMXbYIjMCIyQTcZ+rOibM8mdrSVl4f7OSyzMEOOFjG055cZJWp3yA3fuP476DAnD0cjILNLtyyThZkBNuJ4m1LzFL+A9e6MtFxxMn0GfVW578xoU0Tkhwq5Eej5VRhUXluWjUcYsdRh5lSThDKn+CSTD1O6evt+TnN3JJ9fNIpO1yIPdmKiRH3ecpEYH0UNqQnFxWQWGaB44YqOdtVS/YZeYazHylCnJBBSQDamQQv5Qv+F9l6dMRdE8jmg/3GsO3A5F0RsMYbIRE4ekeBboUlIZWJzNomdtU1ne0gLFyo3nKrCpU+bMAxvUv5KxnJhC5Zy+vP+bFNpdi6XfiJlgjvIgzrJ5RqfQjMI36QkdkbWnB7/EQrPoe5fTXwdavztDc/xlMDu6kF+KH0LBsMwYtfknvSl7jhB5LkF2rSicytNm5dx2XL1EDs7WTyPNqLFyZUotujX/pnooWfY2QgvDQHrDZ3YFr979jk1o7yi5M58rDw2mvoBhceHwUN92VYPsefRi2bSY8nNWHrhUtrPTPhfK106FA5gX33Q2H8JRj/GfUbIrfYACF9R+oeqc8bc5ewhFXxVFv7C78GDkay0POAXRu554PofDimBVM2XuFx19JYpsyLZ7b9h035zny/TmlpO40B+cPy+Z1ORp89y9A2g/gNUce09MCF1RWGY0Hvz5lhXce6P09ETpureG4gOk0yscI3jtG8r3uk6BkFsYL/qsA1LoED2794B8FediZPx8jKrNZRUcKzrf409vNqXinyZVVQtR4pX0DfVgxnspti3GzvB31H1IGPmUMsTxIZxc6wB754zil3hcCHyRgWJgjWny24Pn/nYUzInmQnigDPycb4bqt78hUvI7mhKTy7mMhLPHtMI0oL4PEcQtxrksw2rUrg47IdN4VYojqfz+CqG0F9skJ4RfTULiv/Zt/7nAjv3PzSKVnLFyrn0aaLfbk8U6IjsYvYOO5tfRjQwHkuDyGiuhQSFrVibG/RGDvznGkeluYNXI/wdx1NnjaeynlDIwGq4A2yN9lw3Jlc1hrJ8MYdRXONd4E/oIvSUH2LAWV7SdBU1Foe2BFTROroGjWWu4WlITb+57iyXFxuPKOIv0JfcqbaqV4Wr83BkzJQDWRPPIrLOXYXkv4afYP1Z1uMXxHzok0xjH5bjB15wOoWLaJjA/MwO9OG3DLHCt4VyFKs5fb8g0PDc4L3ohLFouAxPGn6HFUgKuKIuH9ugoOdRWBkv52nrFqPdV5e8HngOU4qmgLHcy/jU8q/uGXvcc5Z1o61VkABGzx56KDO1l5bxfS2eOUrBTDZuHP6XWoL9hrbcZu63NcvcAIGhuWwjlPB5ReE0KtHvIUrZMIWnu24CR/N4pMfEvSwl60ymsyZI1q5dtrP+KD5zmwX7eRr8RU0YaJWbzwiA2I/7hHgxO3sIOmENRZpMOPf8/B+uYCCsfpdNE1FEYbavGpoO14QN0VtX7I8bvT4+FLkzX2Wc9lof4cTKTL5J1nw/MyA9D3rDstcSmCf/n7IeE7gRfWUFONKpp5lsI6mVccbJ/Fq7cRXC2dzztF5VlrSx0NVBlAmFQmqR9QR49/nvj2wCfI29LI/e4ScCB+GsStEcfl3yz5dLEE5DZdRpNPErBlsQyveC2M3spiGGv3DuMeZFHqtkA+ne8MY4Yyx73/FAt9aQVJ+2CWvPCSjCMTcHfSWTro5YrJ05dhjOUt/teiByte2tBE4UjQybzOtY9+wouKZ+R3wpLktb3gydGzcKc0lz5ZS0LcRWu6f+c1dEwJ4b9xVai0yJmNFjyBjWOSsdezhNZF7eQHh7SgN7WRowby8PHERlybEUsqzttJ+EMD3fdOR3g/idZvLMczDUPz6z8MYz7J0/LWMVDTg9DbG8n6ce/Jz3kVC382pX9q5bggRwSE/PdRyPxseLstH/PPT6D7sxKxfNYZ3LFmB4Y1KrLZIm1evU8amoMPcl9TAK0MsaOMf7G8PW4lCn6u4+QjLXzm/G80G3pr4DkFSPnmjF221aCZgyRa4gjazyrp9Gwn9D6+kFenX4DyzYu5e5kVNDybB4t1jTBMWhX2rwEW//ObalszSbhJAOtvDOCNXW8o4RzBhy3z+Eq4FDTrl8KCYgneVuIERVob+K9QLAr8C2CNeEkYqScGdhss4MtPA7i3+zUdjp3DdV8N8JfeOXj64wX5DHPj0H/1ONVfBbq+HcP/blrC6MXJPEb8O7VeLGc98x56XyWIJQ+n4sWvpvzwgQacGHuUlJeHc0JCBMsIGdE7iXqYJnYfur8WsNoWPZD+fgYyIvThYpMem56KwcUZ5/ldtDD77xvkwlFfacbACzrSqYs/tV+y0CEROL1nOXzaU4ApW8Xo+J31vK6xgCbuv8cKrd1omyjCPxY2UUyMJXQcauRakdFc6m4EAqoroP5oBL86tR9+0F7QOSCD8pXdtF1GCJo3d2JV7T44vHcuJdZvA5zynMecbIUZ5VZka/Geo5+Pg4KAkSDWn8gRs9fizsVW1KyugUGhiXixzpfyzW5S6JdUjlk7nZZcMYapN4zYV+4uz3ZfDWlrLsOl7XI08GwXhjib4ZiybTDYdwOO3x8GKyb8YM+royhNNZWW+n1GvexgOqxDaOhuQn4eJZSbr4f6QwXqtvxTFJ7+C6Ut3cH/TCqVfCilvFPPoW3tYZZ2eAirt1+B5jBRUJEX5dF3zHD1hy4qzZPDJdViHHpOC0dZb+RHyXOwzfIwKG/Sh2emPiyivQ2lDvnCydMKOPWdISSN/AFSTwa4vDwVW84l8PWtulBsvxNf/u6gSioHqSOtoP9HHG6vSiKvqaPpfTVjsexf3KIgA5O9WmGaTy60vOun8JkvUffoaZJ5dJb7y82hdGwMdqfqoq/+RPAdpsvdmrMgJncqPzonxCDlxAvM2qlxSi3sX6ECXi73aGyBNFwe58anPt7kaZ4ecEdkCdQ+2Q02gitYZkQnP0Rf3ndjD56uUgSXHZ4s33UMv36zgEgdcygRn0++Ii6QOVaSoz0l4GK1OgxbLwdpvi34pP0trdwyhh0yJ4Fm21QuWzQJpix6RyduJFCvmDMoz1WE1n47jqz3Jd2ni6Flawc3BVVgcpYm7guvx1MqH7GuoRfeLhME1TBJdhQohN4MXYqV/ojtVaX0UDcTY0Z/x6sX/8OL2a94YKYk3PmkTNWSzmDU9AifPD1MS/skQOhxPpdrpOPBMVX46co6+G++DMhYBNLFB1f4cs13Lvg0HIcdXQ5jfZ6B5U5HEit4wVkTf4DBWRsIfrWClXytadiLPXTtyV967pxEs0MMsGDnKehoncr5l/IpKccURM1NccWdD7Bp+QporqniY55JeP0/G5Trj4QRW+v48uElODpWCdxcamFJ5RnYcH4sXhr8C+9/RbPT2xgabVfFibvXs1qOIojbmoGRB0HbczP8IjAV2vp7ODfeG2xeCdKK1EAMM95L/bWXee4VgPaqRRxbd5sS/zWS45IoCnx+n7RaNvHjA/vw/bk9VHokHZ07FWBdVxYsWXKWV97vRL30A1CwSoXsjn3ica6W0LmnENc6J6DicgSV3r9YtEGKn3sZ4nj6zed/JaP71zl0veYefTwykq7lrQfTqsmwuesEivuKQJzbdYZvSbh681UUbNhMuzxusVp0LD0bPZw2W2vBJOMVfP2mIbSddueP8cr4rsABRsYeYkfXDRAcnY2PzW/hrys24GP+DTzHjICA/O9cOEKRxip1sExeCHs/sqI/HxBvParFn+8nQuHFNh6QnMMBg+pwZp0Y3E+exI7qbXD6UC84Xp1PwwcM+IiQAfgoTYdW71j0fpZAFioGLHnCHGIG9vH+tA7qmT2I7VvfU3WvPIxzteFjlRvx8ueP5DlGnI88NOSM9BM0qtUO24eHQM1hFdD8MwyGRylBves+Ct+yCLIcxrNFTwTXbRtB71Py6NDCMF7aewt2FowCtfZVBBues/2k//jDxD7Y9q+YfCN/oaxaN+R+UuCZ86zoaKkMmPus5XdSlfRi/FVc2bCK323vpL9TevHq42Gk6nCPfg7MArsCTdCQcoAIYQJVhYm8cFAfbcPngNC9OwRCOlCnMAenPfOn9bdNQH+4Ia7c+BA3DmVc7C4tvFvoABuDj/BK60AYdWcYBo1eiHdsNcBIZDPv1B7DB3tvs5PpLZpsE8ZlKf/w5Lz/OG57PTyoc0RN/7GgsWsPSn4uhkLjn/wp5xz4FLyinSGZbCvQTseuDFBZ4V8akasAl4qlGA3bSbbrCO648JJ3C53E4o0fwd5BlbYenw+TX0jzzuJRMLbJEh07H7Neey0dlSkjkL3L/00fA+t3PYc7Pc3gMX0Ur9k1HiJcWgCNx7NO/ENKy3Khq9Pi+Rjr4lErYpHAUF5y/jafRnkYXHMNm4YdwnwpAz7IUZBwQhAD+8TRxUYQZ73ygBJdC059YAsTakpg3asW1uvcxUbK9/Cx50p4tjcPn8tYk1SfBTq7q2HNISHQzXXGCrl40HR+CIYe/3BhoRNvDMjEH6mH+W/aK14dtht9bquB19+zcM3eCtZ0ZdAb/EESmhMocI0ydGXZ0WjRn6C/7QReV50Mvsdc2cCzEOsqSun3fle6cPADXuqdDdXjN3ODtx/U/Z7KD5OtYbibPYZGbaYHN25x0GZD+vN+I/6IMuLwU6d4+KJ6DFHZQ3HPxkDrBUGYkG9Op0f0smD1XLhUtQU/vJnHNj4fycZvDcP+YDR1sIQbEkc52T8c9jglQsLFApRVng6/T68BraBknGLtgbdxO/taG8EpV3MwcNSD397SQzNyZF/9y2AWdh2v35wHViwC4/NNIPTMGBjpupI2vfwEEi+WU1vbRQq7dJhH5DOfHX+di4/2c793KNs8NoH20bOw68Jd+lFqBYvyxbHMYBSlnr+BZeczQKokitSlh3qnjTJINomht8hs/DBCn4PWRNPMjbPoYfJjNjSfxt1LAtEkTgYbVIb49k0RnllMBzOj+7huri0kJ9eg5hchvPvhCS1zTQFc95d/mVtBe8w7pqhArFv2nWN/ejEYSJHosTlcql7K9XVuWLrYGtIGzWDKO3fUW5WCSwaK6eP0TvqnHA01temc0HgOSpKycV/HF5zsNw4G8h/hprUzaXSrI28PaGCJ5mUsZhlBTyfY06MfJTzK/xLMDh8NosfToE38O4bKJeMju0P0n8Z/2GS1lQSn+MKmi8vhYHQEtN7QAsmzFnhf+iPfPO0H4Rm3SXHjD5h+7iP1DEqQ5NVx8CaxhJS/GoGWiTZn//ea4vT0STqqlx+Y22FgxTgaNqkF7i+7DhkYzDeipeGX9VKuOplHRqZP+LnFFMJuL4r0K4XF087gWqVpfP1SAhkdM4XZTyug6cE3rozto8nyBmxiNAb2OX7iaSnpoP3fH8z6kQaL96rDm+xmUum8wlfboikoqAiNHyzhUy4jodDxJEV2mnPH+hpct0MTYkIbqXzTLcJZS0EwZzlO8ZuKtTKlNDj9Jt0OzQHd7DZITxsO+6ufQXPDBcxRjEKrPA2UrhLhlbH/6PXABh5fsR66z76HqBwZKJMfhgUiriR+ZiEP4xYOu7MNM1OB9EK+oeWZ1azi/peaVmpDy6PnWNimhN4qyvhj/QeecmYxJvTsxDv7Oonf9UNP227UfmwLkRuOsZLAUU440s1LajvYPXkZagr08MzICFi1yQm85Nei9Bk1+KyyG6rVAiB4yxn42XMKFYIb4JGHBgkuH7rfJkvadjoavC4bws832bxEVYlONY6A1Vqq8Fyknxd6CbGz9Q6IL3YjuaYDLH9tAvx5eA2EXNZQ7rWzUNf7kqbMzCeF02uhpuMsze6WgJErfFD2xQjQ9h2aVVcgjknJ4As2t9laN5Wad0pj2vdCvnbzEGS1T4dPz5SgzNsN+3YPYumh+bCgyQluaWpiir8iZFtOp/QbyF2pB7D26GR4kVSO/9U/wj5FRTRqiON7UnL840oz6n7I4+fTu9hH8xdH+U6A3PfqqHzKlzRmpGOCUToIn2+Bhr5sWmE8n/OCXvHlkhSs054AQlo3OTPxO5sXmVKc2gYsTPyBS7T3o93orxhZbst9fx7CpMOSINa9jc73lcHI0xowtsSOp1urQuU5A+jNuQSL49eQyL1I/u0qCBYf9GDCjKGufXMfVivmsEPAcZ6avpQPdWaDqkY9au7+D6+pasDLC2sx7elBsE6uw8PDA6kw4Bf8Lp/LNyz3oljSayy99ZyqmibCocoUuLTPGZ8UhlKO6Q9+FlUGMZPHULf5cQi+YUBbJv1lP9PR8GBsPge/Ow2TKiI4Lk4PlrhHQ9h7CZzbep0OZazlcT8EIOeRDdQcUSBF0Vq4drKG7+SGo3DealK5FAzXH4yizjp/3Cp5BG6WqcP6+bPAf6ED1zjOBAuTiSB5PpGEg0Noy+J4mBj4BBrXzOR5c03h24oy+NerjJ+0RGjFkl6++LWEMsSvQaz3exwUeIIeVi8x8IEiPK/Yihnhjjhywnc6tuAkTNrejiMvhFGVw0/u+/ofXp0xjV6Uq8F+JWKNsEiI/HubUvrkUUDkP/7ifonvqJuRTKMF6muW0dWk8SCxsBLdA2JQVHUNlYfeBNd5TiAX+oECb+AQMzPp1gmm49OE4NGtNNy2/itPdVnJBqvcQWTiUri7KIA9An/Bd+eF8KinGjIDrcGy7RQ8Lt6FRU+r4bz1Ofj2gMEFbkNC+0iQGdBEAboBL/SV4E5kO7f4+NG1Z4exTfE2lfhmwHlxdzQofQOyKpJk/Pwn3FpoBAsFHXhNwnVWbr6Df7/dw6jIS1zbsoHHZryCmVNuY33WKFaZKgfl5lPxZUkTb6kL5jbnof1oamGlQhuUz/SGBPG7tG9YAErpGIC0iCV+/uPKj2800qg9L9jUSBFy37bR3JrDVFSQye0+stToqAYQH8A9C4/hsaXaUJv1EFWLfChopwEctHpD1baT2SnGB8ocdWDOQkdK3P2Nlao1OGaYIQwsWkpLg3RokXUWl+9poEVaq/BulwV4bSii6v4MTDXWxZMtmpjcmETDKo0xGKfA3L1xeE1GkfPDTf9v//9NOm5Lf4SdePLfKB5z1pPHXFIH8WkEorUz4fuVYtTMHqBHTiPgVmQLRkitpQaFreS1Rg1qxk7Gg4ECXBu8BHrLKyHejwhEhsMUubcUrNqIjpt7oLGjgw49OAAfTabjqoIfaHHLB3dvXUnRWyzBT7cDNr4+DmqvzlH5nQc477gSuVuu4tbMvyT35y30JDOt/y4B3+8pQZq9G4+XOADdV11B7+o1WhJE3BchjZuebcBvm1L4eqwijFg3h9rd48B78k2Svh6Gbq16/HZZHRhfskFZ2zc0TigcbKpF4deOM5A+cJ8NTluiy5tuNE6QpTE3JXBJgS78fiVKq/WvcqyIFmw/ZUyPVbNp3+0uTIhWpku+FWD8yw+zT9zBHqdWVqzOZ9EDE+FN5gwQPuYAZR123NFkQ6/XXKENv0fx+Q8/aMFme0h6NuSYk0dDsK4JSxT/wB9VMvxmaEdfrKij64/voMQvU5g0+iCZPTmNK7rHw7oJe+DtZBEyzrXnlxuXglrkcn43ZgBu3+6G6dmauKx1CU6TFoHho0zhgP4IkPdpwO2NdSj95DOvXT4DhJQXs7ZZLmuEbGT/J6KwZEY+HRkmQhljw7B+xUbYGzCfy7+vZ9Pq5xDaMYFlFYvYzVEZRKcuow6/Ek78foz9W05z+rgAWjS8nA8vcOW8jYdpy/y3tHi5HGzRNIZH4sGY9fIOv78XyHF/dqDXjvH0IriW7q/dyX8ar8HCSmMorh/AU4qXuaXDlIvtzkPekC857FiDe0zHkGLIc85LmUiylnKQXW3DE4c50avDb+HuT0leOeowfDd6AJJqfXjqSSB5LMjFU9kyYH9oMj2fXw9r7jCP23wBXtTGknjOA0y7XAqrpQbxxigb8lUwAjltBV7d4kMCSf2Uv+QML1rgDz7DR8OXP08pvtIOKopMUW+JJKzWlMMksoWJSYdJOXc+HDscA1OczPmyYwK7H9HDo2nm/GXlKJj5xp/+mz1INqu88MVua5a+0AedXzro2fhz6DvbBhrn7sUX5QbwZV8zHBfxhaWbf5C2ygPWlPfEMX1PqUawCBM/HgH9xDhOitCGW5XyUOU4HWafr6b+sRPx7q0UmJwiTJ6Dl+Bh4Uh0nBfFUoEmECyjSpq9cXgosYdWRtmCk6cFpr+ro9DqLSyoyyBwOR0cDZVgjc4H7LTfDqvjHvPFh/+wZmkvyK6VhAsvy3HjU09I3LWILDdbQ1H2QsoNluVTnRfpz6u/IOVlA4EzNWAwcBG3ZAjQFdlcXLxmiHsR0mSd1U3vJ1+juoJP1J+zHme/9htytx3Qbx2A8bmfaVaACqxUjOKtk64CWc2AkhkDMMHgGalfWUddRndwZKk2pydrYfgfYXhWPx52TAuHI5sq+e6jJjapnE5Nm2Ih9GYlvOjfDHb29dy/WR/s9h5nM0lZTHJ+Tqbie6FUNpbFZURRIrYZlu+dyNYGthBzawJk5n1kjfheUvFqwL4XzhxTuBqDjr/mTWElOFpHDb0PbOAyAT2IszWnX4X3YODUE2iZdxk2HFmCq9tu0Ryfbbz5pBLunrgSBb/YQm9RCdatn4iCSjOQm0V5/1ZduuniiQ51Z3iuYRbvrldBEzlFeGpTTON1J0BLlxQ2f3+CCpo6NEOrjk80f4EVU5Vp2CIhitJWgslhjZw5TgPm572Cq3NTYGCXD/oolXKAvC9E2p/C61H+3NqjDLv9ill25i9aZutG827fRIGu+VB1RBesAwvgZ+FOfPDABhbHCkJPpjRlGoZSdPUrqrgiQB5PB0mv7ApFVr7jlXc8MNFDiMNkR4H9cm9aJedFky9t4H5NO5hZNpVTN2rB3rHm5LT6MvQ2bKd0AxlYJTccEx26cde9YNg4ZSlZBXlhXnYQn9ezhOtHJXB6RAfE2VmBv3EYX1NdR7v3LoS1qwvQbc0CeFrRjFu7bGhrVC8mbE8A922mcCoqhAaUx/COtf1cvd6c19alQm7Q9qE8nIQFfvlcn3CQx74ZD/GeZ+Ho9i4KkGihTtPtXF0TBkICfah07Rt93TeSNz3qQq03qvBTZzyMPaIFS0YOwp88pqDA3/w62Jb8jO9ATJow7khr5ZxjYrAeENROltO+WRvpZ/UgNaYEoembZVgq/xZfSE7lziu/qK9VALImJJObxX38MM+bXUUvwpj9s2lT9RVO1R7PL+Qcqe6oG6xfpAFlY8bzIu83rHTyL7RskMWqc5X058AGeF12nPqex8PFY6fhnKoIlPbOo8NxCWS77x++i7qIMiGScKt9JgdmVJBviioN5i2AM2qj4dPOyTT7wH5I6o3hs32rcW6LJMrHt8IXk3NskHuf6qPmkf0uPfjQl4DFj5rgxztXev1nGX9xSIOfq59y14ZOsu6bwgPV3lDZZQw3kmu4T2EmHd1bQcMaW3hjYh4riHniZI0geKJ4j+dcn4NTjlnDU9frFPN5JB1Iu8Bxf2sovqYdR83+jGcWNYHA9bGQWCLIFdtMIH/aWhw5bSF9+bmM3zyyB8Ej08CsI5Reft9CPaajUM7lJG8bLwe1Pz6y6RF3hvRgTu9ZiClXiJysJlKd8HxcNawbsw1T8N05NdCf34NdB8Uhs+UwHgxWQHOTa5jSfo9tq7fxzdsX8L/lq7khShN0noXAjuoPJL/LHo496oQ7N2O4Y1wHVqd2QtXTHspR+8FWQvrwxKUMKyurOcrtOP6MC6E9lVrYEm/Bl5Z84sG70vw4cjnGfxwGL5sGaelqM3JYNQOdKoQh+x5wh2knVt1vpAXi/qgbWs5V3QwWCvOxx/0AW75KJ1ssQsXfvXxpfQxcHmLT7ooDbPbsC3odtR4qRP1U298HoUuP4hoxHe47cZiUSibAm5Ny2LF0Jl3u38pLfgPIrnbC+NHAO+6589vPYmiVvx8aDW5wjvhvFl4/gU3aa+Cb5GRYoxfEUw5FkbRmBunv3MMK5TNo7C0fmPIolZarPqagb8rw7aM5/Ev0RLHyCuyxsMEP7q18efc5zumwh+aSX7zi3iDKSrnDQ9AbyusBhptdEJ+8h3X8D0Pehh206KQ5JAcPZctsH1764jrm7hCBp8btUD6rAtW+ePOnBlWs3bAORN61Yb9GBk6fYA0dbh+4o1QdJrSlwTw9cZKrCEKhlOF4sX0y7n5eyNonm7m2uBRGjhsOXVLDYL/LPbgybQ3MfCgPfOYYrn63E3P+KIOk0DKqPlCFZSlEoqAEo//HcHlHA/VAcfwOI9KyEjILkZGRlZVkpjJLWkpIPxLSkFIJhRSSNoWWkUilSYsUSqFUVCqFNtHw8+8755537n3v3u/n8+sWCu+4hx7PV+D4s2qUHDtAM8cR58rpgXvlbN4xtQ/0CzTg2fW9ZHbpASwf4p3lgn3kvKIYjf5u4Z/22ymiJIoraBeZzJsIlj9TOFzcECV/+nML27HZbV16IB/L0WNU+NqVUFgfqonD40bA/k4p+v3dm+eaNuDwgQx2i36LKSnbyezaL9q4JZ7Obd+Monq6cGbfCxy8NI6lQuVgf9VNSksVRA2/atKsn0UPzhXBO7HHZDBMAXrKrkLB/OV099prvL+4AF77ZLP1g8uQOrcGFlvnsGnlff6hLAGrMlLZQeMfFO82gaS6MSTlPYtbC6oxpGEVjJuvw2jdgJ4hElDsfgfri12he04wfBVPgmuXgrk3WB7CNirQEXNLOrt8OGSojoHhXpm0U70dtVQMIcY5ALZ7yGLW81bWcBRGRxxDwRuWgt4pgMvt9+nS/tk0z7+dWyp/w9dYOVx4vY81+Awapztjw/YqOGauAn8VlvK6J09hd/MuulrjhEfUx9D5KkfgJ96cfcyI269YUVmjEgQeScITupPoTBZhq+o3kJ90hs2mC3P8M3c41VJOMzJm0BV/CQjO+g8POGpBtOpfsrOchCI+Q/9Mzkn6e7ma6boSNMyN52lnxOHhAQVOPKlLWo9recXZGyDzaDJca5qDFXPS0WtkEbwfkMHtj6ZCfOhyysDnXJhcRVZ+1miwBGipXxe+dx2O0cNtQNtjInm/EgXb25+59s1MErfZz5arUviG0HiIFJan89eCYNVGVdS6d5YmzjeA6Y4PuThjNPqvvMVHzF3AVy0ZNYx6CL5ns8BnX/xb5UyJYjpw4oQoBY0dwcOnNOLtrYZgMuM/bjhjzd27r7PgxcM48b81dPWZBUzpXsZ+0gcp5qsGD1TG4o6Li7ApfSttPwlcaqZCo9RUKCCQQTguiZN610Hl5VK8/D0UcnTv0/jx+2HttNlou0ifnvwpRVcFK6j/7MV3Cl9RtVEwVcgN0uDva3xwizhNnOnFsm8X8hRNTVw6EuDul3z80XGFxV+NgqNZRyBbciz/J/ierhVVonusCYcIfIGML8Kw6elTqAxRxgd1ahCxugvrbl8jj/RdaHJ4JPY1nUNh4Xyo+QTw37BW+Kq4j0dt3sk+686zRMNGfPhwCR8SjaVfQpcoOEwSn94Rh5TO27xp1Ed+//wLdretwbtZcRj2ZR8FmKzApy2y8PxINZkkWoC2BIJsaxbajx8OYspG6NB5Bk62xoFs5h7696weC75PoqBaSdAdyKPP6u/Zy8UXqjv9eE6fOsb37sLGNQ3kPS6UBpvaKeD7NFC7MI0Ca1Ow/LcoBxl1gd2K9xApMIZ5YxEYGr+E7sFalE+aCq5bDKB250bui9tLpjtyweVdIoVfTuCVCzuh+tJRzFj+lhRbDOG6wGKeZ1NIL9QF0bNnGenWGtDt5A7WWODOv0bIwpSD1RjUNRk27w7lbTavebP0ZL4lrog1ZhngnefKSQnz4fg2V+qq8aQH2qPhVaMuJpvcBukqTd4ldwYCzjzH9g/dcPucJprOucllxQcp014S9i+xxt8bDWHm6wqIKxek8VkWNMZ0JHpkOuEI3xCMvrGL7q0bD65D3GXw+S5355iTyMhYPPd4Biz8d4zPx37jyQFOnKUxit7UToPOTA1OgEbw/5nMn5sHKcB5BNrZ3OeFar+5/DZCWHAZPsofASkPRelv6XrqDYzmwwWxHGZ8AKITglFA9hNK63yAaT3rSGO1APTnH8XdecOxWDCIz5aH0/2afOzdFEKDUzajpKM8tTU8xL8DOnC0XBsrTrwF4RxdiHtYg7prXiI5S/LJiMm8vCScHZt68Xy/FSzYosbXE4u4r2AiFQgEU4FoHusfd4ZUByv8qH6dz0dqoqTcSLgbPA+e1CaS+NFDcNTvE6asauMwg0Oc9WErah/5jbmzD0ByuwLoZ77AyF4TXn1SDxL03+Ac2TugsG433kv+BkEP4qG8lfHON1U44C2Hd4tO4Zi+YXizuYd+HMlgv+I2ULyrwB/r1/GwhBcYrmwJvrIFFCqeS6UbU1DHZyu/f7QVx00dza11efSr/DMtmylDX06qQJNNGnw2LWIfQXv6NaIHlkXo0a96x6G7t4t/PziFdf4qtCHUAIp/6/K0jyUgarYGc4cL8uh7T3jRNG+yWS5D1Q1LaLHKafCOnAKqIXVwS3s7ya7R57JpxfBNsJHlxniSUdRD9Iq/R9uEbvIcpUmwx7mZr3R3QqWmKDm2VPO04y6gmFoIZndCyNK8mOyFrShCUBUWZFrzucta2HpVm6rv/ISF97MxZlUlxEovh/dzA8Ay4D/uE9EHBamVrNZcQHt3psJePS+u2G8L1nnq9PrjAay/fYW+eCwi18NqkDohmNNkork6RhDm+cbDoU57PCLsxv3gAqWXEtji93+8IGQqNH0w4VDfs7TJaxDs0hby99WxeNP9O8clLGTXoFPsvi0WY0NlIGHEYhi5bQCX1htB8XtD3jbLFofVvaf6rkPY9nQO3/v4EgzFRkG96mdKtjABz7Y4lNWajOenI2Y/riC5rPkc0TcI+gIlZOasBrFKDnhvsQLZfrpEkz3XceK6ajx0ZoBqe91o5Pij0PnwP7a4rQKFdX/RxWsc992ciAN2wvju6D9+f8IX3GunoWTEFBKZmoC3j4qA2p0DnJDE/NlmMasd06W5rm3w6MQgz9wZAUdetNDgyGxc4WMCF/X8UWTlQf6y7h+Mfu6PTyvNOGtKOcokJtNSYRVYe1cOo4XMoXq2Peoob8CfMBX1Hp1C3SZlvtX4G+5eKIKHX1vYe9EVXKCuB9Em1rzGQYM+KimC7zB7yh51jT5qX4FpY2WhQ+wWmo/2A9mQEaA2S4J1cw/h2ac3+E9bE5pvF4Hmng/o9lwNWwvS6OuIFvhlrAwRlVqo4zwL3QO8eNQpXXQoDubRrqPp3KR8GLBfRJtnlMKTZAEQGWYJZ5ydcbd0H5r0L6d2/2LcOmk75t7M5eqTkfhh/SyIPicL1/SSsWiEI3ovEkRFqmabxetJN7KfN0y6Tg2DK6ll9SO0rpADc8vzaLC+nU+oOPHIpHsgKDuWk1TCMUvDAX9lOMKpEdLwRHY8vPZqxPxPH7DziCyJX35Ht431uUFmCb9IzSMMEuMtTuNg6plJ4Oh6EJNro6jr8woo8cmjddY7qXmIq/4tGMu7Ug7BeUV1Pv5nMgy/sRC+dXSg67xe+l2gC17Vs0lh21a2XzGFj/ww5cO3QkheWh4mNdrQf9eTWX+UMjZLBVL5SwYBiblYWp1ET/KDoOyFAB4TU4Ypdd9ZvHwPpmxp4P614nAsQpa/jHEFNa1xeONaOsUva4NbW6wgRNGVJz1Xp8K207x8WjQJ6E/Gq9/L4PwkUwqi5+hZuxOelOrBz9hI8hcwgQdr8vhI+nw+qyFMn9LHs8W6GoozPE2PPNbjRVN1iHrtz7GLbvLKg4IseW8oE8cq8dfAy5T9vZvbTvfhosHZVHFnPFi3mrK1pz1tFL/JhVFdkOefgzZhyRi1zJGrZU3YY8oNsLloCWsLJNixo5M2LPaBtAOmMOpbHezMDuW6TEOOfusIPh9GkEPoGCifGsRmzxNwVPE2DD9RRifaj6B01QuOKhoP4xwlMfKLIsxuGglXm8x5XvE4ePVRnPeUZVPjzlJMdXPlCyoF4LJfhNKGPF56ymRoo0e0RvkNBWar45ML//BlnipX+lqw2Fwz1m0QIviQD7BCD6zDg+DV7HrQHcqpuPAH9Ma+mbV2xlDgdHeA4ufoYiHCwsMFoD13J71fsAYChYZjiLsq7ytqxpXG4dghup1KL3jQOe8tEBYKILnOErqyt7B+/AT89CkAJK+v5ElGQtRb/IGU5TrxqNouyJpuBIF3Y3j++W7oWTWAMyvbyeDbTDif1orKzR9J4EUtFPzQ5vLFxvBLZjl/TzqPFwLLUedwGeTKReDYn2oYOL0R0sJfwxalTNb104Xr83az1ZIEFl/shDeXTKGFjysRNL9iTfhGWDAwmiPXtsHShzIwecjnVv0Nw8Gp9zlSeQOsCgzgy+IDpDhUY9kVz08V7uL0mCE+3TMAFzb8Zg3/DJLTKWPXtod8sHQbLlV8BVv2SMOwyFKIdxIA993zQG25KOZH3aKCoEtUsb6ZDSJa+Nm8mxioXo828idpZYA+2DxYzz1iryGpcwcWxg3NoVMI1u82ZZkT3mA9x4tXC1TCNQcxuHrpC4hZVeDujh9wblY6bTfN5rmzt+LT9s+o7zIZv8+bz7M2moPQnhiQvIFQv0iFXNL6+WpHHdodvALuqq8paYk6zKz9gZrjJsBLXQl+nyTB5KPE96cdpTHvy3HOjRRK2e4OB1uGbnNTOA0mT4Bj5S3saSsIOx7JYoLDEn70bzrbfw7H0HctpOyrw5cyRTDUSg9quy3gfPBnXvOriqZfLuYZea0gpb8cQmbW44SWHJCyrUBhVAbnFaM55+lxePdgLFz1nMu6oYU8ViYOxGz3oOjd2yC2xZF3jRIDP00h/G8whkDoGF5IGU4DGiG0+owc32n8y3V2Z/BhWRePyBQE0/vLyfLndvh43wwS3n3B3WufY8+jh2y+4wfemfAK/BJOwj5PAXgv/QXF/HwpTjydS3dPguFRHaC66yPfK+umL46qZHPHgbYHjoUMS0NI61oNYe4ioDzvEReJrIWlvxPomfBNONPxjIzL20HknQhM8zhL6RnxRC9L6UzGDf4wJpEfbjtGcXmBsHddKNWHpvI52VGw3XI97k5M5g9XXCjT/QJZi+2gd9JlOOgzA3KsdcguRAmqnQWh5qMD5/1agasaN/GCedsgylOCq9vGkfiVDAqQSsAXLtXot54gefU8VDpkC7PnfKOXfzpY6nQPnpyWiwnxsxkFP8C7E0+41VoILN+UkUy6Lr8w1aHQFafglq8pHI7OQKXcbspqIl6lmcuJY3Rhf9tsQvOZaP9gFMstTKDMekmIjf3Dp6UP89FuLbr2YR29URKCh7amsFu1jJ+vSQGpqS8gd38ZmvdXwf0to7Fq8zgWstfDjs4RYLKoG+32zocbRXoY2L4ULnq3cNfcSTizxRf6zkTjpt7JNGmxEjxdcR49zB6h+pw6UDw6nl7smgbS73aStUwaCnv8pXrx/2i2yCSwNSzgRWdGU7TiWbrXlQSuLWbUZFFI6f6RGLI8kTw1ymBTjhVsFDwEMw1OwbtXT6l09ZDjPVzPfYITWfd6MN166QquyzQhfIcB/D4znWc/ygHBt4I4rucWRN5cRb3zSujxj0TQe2xFm3vmw5Y+gCUzt0Gi/gmynvmCzxy4jh7/VpNP3kUMm5FP9btTqDD8HERtE4dDT1xJzamELEa/g9b0OHy1LZbHkznbiaSyb1o8R6V30KiJwmBtchllXZpIzWcDicAJFnTfy6rboglGHIPwiGUoJzoRvN4owt8fxax7fjHLNFfANfNg+O42HnNOR/Gii2no7LAB9RT1SfTXNAg5VAFrwQpOhKpAbVsbC2yUgO1n62GUVj5s1jgMnnOSYOdnfYgPOEspDQtQOeM5LO2Qh+6piTSOpOCIwnD6+fIrzS+uwcXtI6A6Ow2sJM/ws6oQlNe3A2PtT5QQ0Q8PfttCy7ES9vvZRRmHjSBBeBWX/j7CCpdMsCjRDJ+ccsCUoH5aPyeQrO+OwSiB6ZA/iyH2ghBtMozDmOI9FLPyDT+6poTJZlfZcoMIHlDZjkpTFeH5GUuYVqWPD39X0FYnA9IZ9hs/HY4Em/VXye7HYbCJ3ogWo6rQJFkYbNPfICgEoOW/B/zTNQu2RQ+HsRGHsTNbjjfKSmJo9mSAHn3YUNLAe1evgc+nV3AOSYLW6dNYX7kYy7Ktad6Sc3Sb63FpuSy4boql9PEXqMK5EkbNKMb4+FPo2+lOwzr1ONvgBsnqibC6pjasl5LGczrXuCHvLat6XoRPTtIEtZqo+WcWzVS05WHKsqxiLgWhma+gdUcuXRuqO3dgN1hxFzgJloFHXhS6bVjGblfl2bTVBBb7P4NL8bvI56cHGnu40y47OdrktAMsjEaAXZMdv3d5yevvCsBzs4d8q9KFDIc/pA1G2jCx5zyk2Mrgmg1XYfKUyzRG5j7MmyoIRTEF/NOgDL3UxGHUpHw8pJiANRV1fKr9IEU2VkFZuCVNCBIDvaJzGOGyE84IVsFe8eNcO3EfVBjW4LFzrlyQ/hZEZf1QqnQapHoWcX3oChIquAF6bsfJfnkeSev14WLLudi38zQuWKhNO8aJQtmKSGhzGgvBWwgr51jy2oQAWDAsCH6cSiDSJ7wR/wa25yrDhV4XbnFlvjkliQvWqJFFPsEYgZfo/OslyxdtBDeLTIgqloGfN75x91J1yrp9BV+tFcWDatJknNRP370uge04c/L/eQxtz4yFPB0LLjldxBPrkVJ+voASuxZorhhyuIUH4af8NMwzd4bgFwCaQc04YdgCGL5bAaU2tVO/xgaW2f4M3u6dyxPedNCG1ofQbKAMsvWb8ODxETCnRgq+2l8gU3cPurxxM5/Mt8OPcxeCpM9VrOlXhrpX49B78BmbTjjFe3zyUDfnG383zaX8on46nS6Lu25/ZIOvevD4VhhtLXmGM7Kf8ZnFxyE+NICdzXtoU/918il6iwvKrvP81jGgm7sME/RzKD/kPl+TuY1TnlVjW0MsFba2kH9LAHav0KGtZlNA63Y15CxKojHr9kOAbDv7js6G+K9d3OORgBfUPuGK8FSGiKlgqeAPTn80ECQ2gETWU54obAEhJv/4/lgRfv9Ji4yNn+OMipHgLjNI6jQXCmOGvPPnS76z+ggLrr7Lk/Wu49pnM8HgqzU6pauBgt8VFpdzAY0DBiBashfXPHgN4lG3UH1jP2uNnMQTkuZBl4MxpElOw2FTArEGddByZgJc95fC3HRZKlO5ifpaAdx8PwSWv9UGC9cm3OIrjWmb9+E3fWX+19+MIzUMwG5tNI+9kMsfd10COy8JqNSWo1tLfemtUxIlWviy6s3t8CVyPE5KjUNV7X+8p1uaar7Lwo6wEviTdppuN4nRXb23dKtkKZ/2ScMU52h89dkRSrd/welKwqD5dw2vi5kHMSbW6HZKHo9sjqXDtX/QqMUeY0Jf01P7WWxxfBq0an2h1TvHQJn0laH55ONgkCOY37xB64qec0DuETofZkcX7hnA1cTV9HvGMjxWsgQSNhWS2QxjHDvtK6b2rqS5r9rgd+08mKszGYormqAi2RjPxSfSt683YeGOeo4pu0zKu97z5IwD7BayHx4WKEOSVxF7tkdA1mIdOPmsG/xickF/sRxeV1KC51dD6eEkI8rZJADGk3ohT1mF92S30cxjoRzzLRMdNA9Tc+9RXKN9imVf68IYNwKLJT9o6cBVUOupxIJPE3jnvjT2GiMFDUYptGjMadxQfRqmT5QFTxVfOH7fGDrsR4NRvDc9H++HMy0XQkmZIUku7uBZ53dA9EQduC+7Eeo4F2oObIFB4zi8X5dPztVqLDdLhcxyrkLE9WcQXzcCyrsCaM7weFz16BXPi2yEr/drUWJKO0Uev407g+qx7dtHnvpRDSIeisIuJU9qtNhN6zPEMPD3L3jzSQzaz68i/d5poD3kDv/8JeFUuTXdtXPFvVV+tC12DCpEZoJbwBsweSUKePk3bnU4Te/0dMH2y1wY9yaXxg62c96e4Twu8xN0DZsBd/SugFfiNqTOuRh1eRx8ictlucPpJH63gkxau/jCyncwTeI13WwfDVUHz9CixjZeEzEcNh9cTNJy01D4SQgeXfAJVx9YDct/iPHdnn80LDGX7zTogL69GFhYxVC7ynHamZNOOio2uOjXbKzUiuKWUj92UC6DlIRsyFyrDearPoL0tw66E+yPTrcDaeCvLda8T6Q7C9uwbIo+LKwwA3mLYaBVYs5Npdfgp940Whq2E+Q8hUDg7mIMdtHgH2+IlGLyse28Edw5roJ5nc3wDv/h6WAtEvDPhZvPvHmZ6jtetbgOYi37cFOHMKxZdRKr8CyL67nR4qca8OKnOezhVjIVsuR3A9rQH5HPO/cYwijbp+RtGw2RE0VwfXUV5ozQoVUruig86gdfau/mSVe8we7XWLjkpYZjs86z4KQjkNr4jqsfKbPYzc/gKVuGYo/1uTbrANuGyoP74zz+4BUOMRNm4uCYu3zkrQAccY3n8qwECnFcxJkuUfzxPsGBshyWivmNanY9NEpBlDUXxnLXvYN89JYwtq55RN03WqFFyQiWfc/C4r/hoNpkCOlDLu7j1A3hURmosNUVl915hanHxbgseTykTv9D9rOW85ozmVgm48pLSkaitFk9vl5mR8l3/2HGkoPI1QLgneEKqVd6+NXyONie6ApPX9nzzh4nuORwhaueHcQJOjIomzYFpt17jq5672j8zwno0KNHJ3/FozO08cnQW/AedFC1y44gSwTc99qSJZ4EkeGX+KzgM8wVt8DrayTg2bid1D1RD5PLT+OfQ9pw7Wcq/zF4haUlz8B16m5QO+2FVyavxWrrcJQv8YPPfw1xxZyhPa0aR0cyLMDxzDzatF8YPze+In2H1XB3Qz14/qlC7eynnOomC98PmFPIaBs65ONOo+a8AWfHDLo3cyvUSy/i+H6gs99rYJqTMcQ0vAHrD2dBtO8EiHQV4fq1NjzYYwvrA99g6KFgXHrgG881ZAiVUqZfC8IgtdYbqhZW8OkZK9lsXzbs6oviz7KHaYzUX274APCx5BCXL73FPcpiPPlWKfX1JWNAhAydCkkd6u0NjtlgxTt/W8J3fzfSfLwclw4uQCv+xiOGMkc7/wD4Lo2FET/0qWBRA16omQhvY2SGOEOSbz9KJ6/Xw1F/tAm8khSi7EVWEKnsDnOflKDdBWMIdRTExOWfsW1yNuZGeoDYyqcsFHKKpletgVvv3lFg1HH4dUIUliTOQdVjR/Fs3E6oDFWjER6L2CTmN399cAUNaxUo/dgrmrVTD1wSKqBtZQe9cP8AugVjqOBgKi3KmgnLPEVg3C1rvvXnN0xNFYfQXbKwSLMZc67Oxd8zamDZcoQ2V2VSua7Kfh0N0J16FiUMASAsBE3TUyF12H3Eg100XySZw6oG8cD37zQ/9Dd8cYrFCf8RtHhGY1TlWrgzezKZNb/A6lEFbGpih3OWHeO8m1qQcfAiZURPgNK9eXgypweS9Q04sd6BPucV85tZ8SA3Lw21HjwBYzjNA5FTQeT+HaicHwzBUUv4jmARG93ThalzutFjkgwZyaZRVMBCuvFPHQ5k59De7iLsr3TjmvY1ZMDrYeaT3RQmTOTYU0DH8m6y8DJRcLeTgDqrbdReWA5SnwiPhQej5eFYWOuqgvkcgXEyxfCiYgTcXFUG3k25uEs7FtU93vLIRD1Y3bSeJC0aOIRXUnL6IzZ5MQ72bl5PT0Wd8LO8Mgu+zIHTNZp8YsJO7p60isx3GrHGD1uMOSgIS4LHk7L6NDaFndyfHwsxlW18/ronS93RxSuzEqE1NRGX3R0HapL9EGGxFRu6prKebAqaXNkMagFyuPbAFv76WAuVAp/wOFcRaLjaAGMtt+L7mEIW3BMHigpFsHJiAep+n0Iduxqxm57hj9HDwKPHlb7mJ2LjASWeOn2Av96oYa2nt9j5YBBOy/qMk5tMedd8E4jdn8jS1zdwX0U5Z3d/o96tztj0vY+nWKyEDSsO8MExFyggcBzc2JwNSxpfodyWGfynM4b2lu7E5xPvo+XAfJw+eQyNOZOFRVsRjgdc40FUpoSxa2jK3gWwyeogJY6NG3pHEj154AttDVtYL9gIFii7wRv112AnFYDPlmfx+BkzOKWmAF7/08LrY+9g2zFH3LDYFHRu6MHHsZF4ZZ4VBWmMQ3+hcPhY8AYDr1jC7E2N1M/3MHmOBpz5K8CeV95w+sxIdq7ZB39HG4Kt13K+ElAD53LrKbzoF0gHi8O6l1qcOek4fX02Hhr9b5LTYDi0275H//lBZHhYACT3OXGxixT0eAfAH7EUGrFdnSeN7QCduBtDWdJDc3rrQX3KMrS5bkg3ZIXBRV0RWsT62O9PFazdmsnZ33o48tNbkHgtBN6WbrRz5VUwdDCAtkW56Ft3g+rzVOCwizyW/osm/yI3nGszDG26n+COlpWgcV0TxgnaoZ+mFyQ6hYPJtESSk/pL/3lv5BuXvtCDBV7UNeYSjjmlAxfa7nPK+wEK6u7nfcFaUPe0C7YlFaONViPeFBsLDicD2VxQHnb+8KPbWpncui4bL7jswwCJGoh74E3FJSNJ+3AA1uQ349ybclBww5tE3M9wrOA9GLfvEv+wZ9ytdBtzpatxxtFwWjzpHVZIDoepucZw+bAVjVCdSOu9rkH2qngSuHyH31+Vhn9rHoNLrAAKnRsFmj3hKJQiBM2rgnDgCPILtfck4x3IEeeNeMTuXBJviOZfx/XhaVoD/Thwk+++20EXNERxZ2cEVdRH0WnvOJgzyoY2HT5Cs0dOBfMsTVxT8oWX79/ML06e5EPHqmjWUnt+53MSLTN8qOf4FU7W1oGurnTs9b3Lo7L3wI4P23CK5lZ0KLDjvMZMLio8TTqXhqFdgjxUuiWBiWoEyz5s41wnf+gdnM0r7A+j76bffKrjOQeVJ2Oh5Wiw2VgG2SUa0BC7nCMq94H4NhfIfy5DSjf+Q6XieLq/aTmrKSpAnbUD7hAdyV2z2/BVXTosza8kEcNjID/tD1fjdfTVCIXvQooQOicdzA6cYFkjc3j3NRlGz1vNTtMK8VNHEi3sNWS3df/x3NdGoH8/FOouu0KcuS/dsjnJwosnUbPFUoocSOUd/bnUmlMOmfskYdfpo3RgjQnEzV3J64t74eKvjVySbcljtw2Q5ggXdO7ay8lZQnC0cIAWDS8Cg31f2OXsBbw2IMY+f7xpZiGweVAArDGbyYqOUnDq6RUuGlwMnWZryNLXk+JiXel1+j9q7y0lm/o5mHT6Phj/04ajDmcx8Vc93m72o63N3lTa9In+TOxEn/+cafWi4bD3zXVqLxaCcS9b0f6CFC5QPQ2fAkxZxsIG7+cHc6SAKCh8SWfzvFDK3CEJYwcO0majUdzxZR3Yf/HiO/mdWD4uFQU01lLMyG14zDAM7S/KwnjjZ3DeVoFNX63FKIunpPg8EvJL9Dl9VhVqerqSQbU3hC3Rg1PeWlDwI5jmxmXQXLkiuCz9j2cKFeI4nTbobbAk+S9yuCBiBBx21UCxjBEYKOSOu617oS+5hH8+6eTpzl/IUfIRflUtZstABXhRHYE6/4RYtWETGH+14wEJDThNs1jV1p/UJbPJPGQ1KDtPg8qvd0h9oQPOPXyLjlV2gb/5Cy6eGwNpdh+wMbWUeupVoG7kZJBMEGWwyqMdY5fgg08DYGPcC7elvHFQ24Xe2EeSwJ02ejh9ONz5eApdz8+CSxlxZLkhmv+51dHIQEvyGSmP3oZvoD9zK4w+bQmB47eTx0QLvHcyi4zT6ijV/zCaB6wHxZlj8JVSJ7jL7iHJoX38/ViOneZXcbfjDc7QtcJDe16zTPY9upCdDHYlW6DdoomW9eqB/V4dmpG1EzSFztAlXMZdJTag37GWtgXswAr1Af613x+2KEjAcEFZrDjRwOm1f/jwGk8+1qsC9pI+LNHkyytsXemN3w20dzSG1Z9iwEO6hz/ppmCAfib0PZ0NmjVpULXsB/bK7IOuqFC4eUMOzNdMpFWdaRxqFAqp4R6w8dZQH33W3KftS7Z7bMCz2xkXdk6E61NXQNmbCLDvuE9lJmuoLXIle3e2cOG/qxySNBpet/7g8fWjQbfTFKQXO3D0+2Ca9HgCfxnwwHNmCjxumiVtkZnEZfnLSOi0BiSVPKC5WbrkJvyQyr99oLMP72J4RSKK3/0AsVmLMT1+M1/+ow22eQFwL2I3TQwzgY5SAxpIXoGD39eiQf0Y3rfVHy4qy3OOmgSkv7aG2aJf4M/BvxR7U4NE30uzyK3j0Cvjh2h6CJ79TYepVwGaBUz4lmQmbyo2oeqV5vTLVBkzCuQhLuYD+aTMgoBdG8ggUgh+2MejC6Zj38hOfMAj0GeIc7W/bueb01rgqb457pvTiipNBBGGf2DqsFgeOXoTZAsKk/Q2UbrfWc7f3mbi+VWd8FbjPwh7pgKGXd7kOjsK8wIHYULOMCqK+8lZjeE81WgePZHbww+GSGxdniFMlAum9u4ZPG/AC7+MnYgpoYvhVM4CmmswG0a+zsJM50MgMVsJFtZ1Ue2It9zii3Rn9SAcG+7CpcFC2P9yEo6t0sKSfMCIgdGw7rM/bRMPg/9WTIGreitJc4IDT7BaSje37aJZm3+gVvlL0JlkBGJB52lXWwLVDZOm+Rs6cOevd1geY46jbv/jB175NP/wDjyfqgvpYfehNzcFLz3/yX7xx2Dzm3aUsB3Dp9efg6Ua1eg5TxU2bjOB4o2F6Puljf6czsQl9RvA8cEbfJ23Dtzm+dKBs/0cck0axHdMgM45syFilCbePxzHP/J0aYFEIE2bkgpbZPN5bPRIvOw9E1TvAJxWes9C6TboOLgOZx5eynltH8h7eBlq739A+au9CaLt+JLCZBjpexIhbwue+rAKa//acGfiaxoZKoG3tzLHF57DpRMFUCdCFP5uMobICdP5tOQW4NoW1hb9xEeaz3OueAxMumSNCzR08LukIjwrvs4mJYitvrksFB/DJYoFOKzjHX34O56X9SfSO4vdvH6cOFRP6Ybji4+j9Y1IVDg/B/aMtqKzg60cNGw+fY/xgzWfzvLvTVPhWHAdhoQI4ODqKq5LHANXwlZwGdixVcI22DKlk3XeEjpukoaBy9aU6PmMG8se8uaAOrz1qJFHG/rwpO3b0fPKZPiX4c2fnBShtGULB9y2hJ1OBFubzlCdVg1cHmcCJ8+q8/tH40lYxID9k0fB8WZDqmjWoe45yuQhHUb6xrJ48dBOqi2R4Aqd6WAe7MK6ezVA5PoH3AGPyK2kDk8vL+eCR0/IUGUHN/yQ5cwTzTjx9Q/KztSFYaPy+cIqK9LMnI1J8mrwI8gFFy05RX+NPODMqfmcMTMbN9lpw44HBfj47T+6bi1Cjpv94fcuLZCqOkf/+bjhJwUTcnbZwNe3qcOssELe6u+E8vtshvJNBtuzx3H406e0J1OX9uxUpKdxHpT7ShWGx72CsvZWys7X4DshdSiuUAhvr2ylv4tD8UXjflwS/oX+dCjCQodJONusGX18NeBCRxYve3OB3gvr0FrXdVyYm8HhAvEcdksVPN1b+VLjSFglugfLEpfTMOMwurT+EvZtXYAqw45i9fFevjZfGXZL/+SiR2JsdFefytwWYEz8WB7bJYdicdmkpzeH9QSOgMGM4fD60mWSGCB07j0PwS3zOPFCHuZIFfL0J5WQcDQBv10cqu02hQFbX9Q9UUfyF2pJQrOQF6ok4JoQoIW/jfnrgTz0VrrDaKcIUxwesulAHM6K3kwtfmr47vEJHul9HupKZSD6ghy0h+iz0gIG91O2OMMolz0E9lL9yO34NyEOXSOWUYidEt7z3kG/3fQw+O80kFZPIvuWY9TVrYTideV8dq4sC970ZnOR3/D0wzMy99sLH+2MoBH7wWBrIAYqXOHdr69hdMQ6CPvYR6ujxVj3UzJMtcqnW3dN4J7jANlJV1Lyi1gKkvhI3wLf8xaZAl6yYQpNV6oi4dA5vPazKRz7KwrbVjwli5PNIDDXCypjbUhay58bZqXBjXhzaApwRPd8dfgcVM5NySd4UtRifHFYnqfF7IJXRenc4lRDm/PtaXDyXqw5bAarJN7z115xzpd3xrneFjwnVgveSMfB/t0OeC/qFKn9mM8pfmJQpkkYrpBJhQ4ruOHGLf5aWcwDOnv460NXTD/niK2yonxcRAeW1a7lqpWyUNL0hcxGNOD2E9HccTIODujOR7UzWRw5bRdVmyjBzue/+EhCHnh0zWCjd8L06oQud9c8px1yVyBu6ikqyNeDtw9Gw8Pderw52oi3DCvC5RnVuOzYY2pp2wrznsuSzbvLvOfcJ5BbrwL/NE5xn/sWKvyM5PuDUPfRI0C/VrT9zxh8XQe48ZgDdLpIQ77bHjJz+w2vHW6S13UlElgYzpnJifj2ZBEkRizDhfVupJJqCVUnzWGz2ju4vFAJ38SnQZLtRGzKdeFAtWfosSqJNSyqWSdHBoL2SvCGssd4YttLlPc8wAsvbiUvqSBasi4X6ueuIj2jcnL8rAo5tnYUeSIfpUud4WXuLBKKOkJtH9PIdpIKtb5cTHf6YrDBdDSc2ClDsSWBtPH9Y7QPMYeRw2dw7avdKKYyi5N6C3HtsJM0t0AbRrySof2vPDivYiQozLelK3cu852wPBSfcYq+bPNhTdnxIOo8AYyjo6FfpxnEx4LAVNeR/NKnAzrKOmF4z0VuurYNoo7/pbdJU+BSWDUW3lcGKYs4cL21hB44XIP4orlgoDyS8o82wKU54rxyNkPwcnGwjbJitz9NnH5/Othfu8evI3ZBrJoxX53fChG/z5LIJklYcfQ5HJIfhmanb/OnPcc5ybINC7ZVwfapWVw5w420ixbyZQlj+PntH+ks1IcPRvuJEheyglcnmuXdpEqnyfzCezNbLfsD475qQbOBK03tWU6dGyKhzvEi1CR9xzeLAsm26SZ+79+Cb+staYOLKezZW08eT0fil6+JdHLvH4jfEoYpEaW4JewEWLSvB5VXc6Bj6P5pDTwgO01bTPnihiNqH3LVhhuk/v047JdRpJT0BDY595PXnRaCKz8P8bzfbsR/MkltUhhmCnmS56NwbvqVAif1wtlBKgpfJ1iC1IpqErwtQn77jlFd7jWS2xWCTlq1YPlRGIY79nNnRRl7nxCHZ+0bafgcQeTQp9DRYQxX5zRTwMH7uGSLF2esUOVh0TK4z1IKHOaqU8JMWwgy2kB1qrpsbqXJL8oq0UohGfbP6Oakq3/weKY8ZM+Xpz0Wo/jn3XLw7D8Esj+SwKr3E+fUepH+zK+0pc0RPbfKg3HJIpr8yIB6bMeRq/5cXBp5GnO0pdBi/khc0FxKNRtS8fEOfeiK6YO2plBq/nwAZhmdhwzh9bzo8Wc4pbUFi9w2o77ddtp9zAiu2VeT7NI9VN0jC0qHnvDkYX3kviwGLq86R8OPD/IhF0/WGeJT0zAvNvvwgxwU/NBVbRCu95vB6cnxsLFGnhdMUeVDonvRRcQKxugnk6ffUfgcupbbTBXp1caHdDU8BVbneVCIcRqJzHQiP1dN2HziAZ8VOEAxs0y5bPpsOnjUb+j5Pp7i1Ewh29+CwjUPSFUzgfVuMyE4+iWPcnlOtQY98HLMf3DwjgAYHZTmKwLL+HPKW1LwHA8dnqHU05wNT4QCKNC5Feeem8d964Ih0e08vLVvZ8ElwaSnowtr436S7DAt2Nf0g+Pu3yfXf9UwZ+MaLsmKoPNdW6nQ+Dl+qBKC7MvvQX/Ndt764BP9rL3G520HWcWgi+JsL2KQ9RkecauUL2uaQKrUNeguOkriOQF8cb4hfVp0hy86LoAroUq8dOloXDjdBx+XKcCbeddB/sFv3j98HSwc/g5H5zazfksZqGleQ7Oax6CpuZ7qDktBWNEfeFVainEau1lVwBmHhzfyHCdPJtUF7CHykZY06uEZ/3FQrKTAzp1K2NvjQnlhFXjE5zDvQgmIczgLI59r4il5oAUj1aHCIZFPRm+gfYtl0fv80PepuIwrZ1izSqg+3DMuBu/3KdAjLQLKxqugdnsSutxcAK0lp4ZuRwPl6pfS57ey9GWsAjYXFrFQgBr43xrNE8+owg2Zr7hkigXJN66Cb3n9+H2tCVcFnEOnxj6MzVGFq1nz4MxWVdhRdGYoYzeDdnIcLHWopbRoTVZUP8leGeX0YbwZ3DYNYveDWmAxaxxVVmbyiL/G4BDxlovkG/m/5DT+oqSDN0tN4EeLOU4YdMS08FbMjcqHvK9m4LXVD8bmXIWFRz9QudRIorXSEPd6D51Y4sEOwu/giPQJvJriC1MeV4GFxDZ4s30FLAtSAn47Crp4PDrXtWF/XwfDIxl4Jn2ZFRcep2rxGZx56Sj/CZmEv0+qwMx8Y2bFLfzhdTI3RwdAl7krR8XcgsCJF9GlZDNMbg3jjxeMYVOOCVSfs+H4bE3y0B6Hj6tDYXrBkJudb2WrP81kIrqN3foVIWSI+y1sy+jevTvo830dvn+ym5ZmtvDpaU9ApesEPEmL5KWTJ0O38Qp2qT1Ik6KSoaJXBLJH1sOrE39Q6Q3xRsNCDtYawRGDk+CWqj8Ztm3BZuNKOttWRhveGkG7fh0ES70lP9Ue/hj8Cn/aGsLxYH2++30Vlq+3QuMTUVhuKsEiQe7gd2IM3okcgaPer2KN72Pg4aIdXKdsS04ygnit6TRWyonDPblwgMBK3GuwHiS8dMhlpBxssRGlVe1tZFBYBgWQRXtEx+OK79K80j0TpRNaMHvjXpinpQ2LDsbAcokX/LhYl3dvCQP1ncvhatFqvPIyGU70fif74Qagq2MM0lbjcQgMYOdTS0w7uZG1A7aA3prFfD9SCDtcE1jm+Ho4PmwEbLWXI+/183i6yj72lo8An+n1PD5XAXbmy/Ir44XU8mwv9P00gZ93fNnpphi+rxeg5WlH4eJtM04cmr1HfwPfLfzG6hobSM9cBL50bOdS/bNYL+7PhZsV6JhkH4SPluMjlgvB+vtfdrjZzwnqcuDxaj/Fh/fhzflRELh5OeV4B/PV49p8/E4P/GjciqNFJcH2nTT4uU6D3tQ7GOOUgdWf5ODU+fUwW2QJjHcqQfuSRej7ci9JNRJk143G7bcmsN/4aVj97g22NMRD360YKohfxy5LvsNzXy2KvGgJM9Ne0i//ABw3Mp4+/NGFl+678frVdJwoVYN/xF9CNZ4jpx5zePlBHz/el+Ruaz+87z6V/Jf58DJJPbbTcOYNdYrY5rqLzpTogFFsFP24IUu7tueTasFiChh/hT01JEHl8fihvs9j5bNdaHxvGFSHLyaL1GPQmnSW8rOu8Qt1U/J55Ak5tf20Z64jFr+15pnzFGHUnteYbHALdgf30I9RinjMO5mrtO7Q1UxHjKB8cmupRzEhOdgx8jr2/BDB3FWzyOuZKJte84R5o4Tg0JbHsME6nwq+jGJQFoYckV76HafN3yevhctGXfxgQzet6T5I2oetIWLcYhTwz4dMUYSqi7fh0OqzQ7esCI9YXKL7T0pQt9WdfR5HsbRiA4RW5uPVneLgZKZGR1ekwt7jH9jeRIz0s36i7NRCOHShkbVulJBfegceWaENnvQYjj5Io2rL3dxyZRXBP3lqcDWAeq4iDftY/jw3jPYmiUO83CP4eVGT3Y8Iw1UfZV5B1dS1W5E/24fB1tbFvLJfEOYGWILtm60YbJUI7gOdvOQosZhCEl0+HcRx8stAX3wUtkr4QtjKoXzL7afLlV38TywIDOXm80EjH75wqAijJh9AQxtxPmS8GQNvCUDvl3Z03aYLWuuWYJn2Gfy7vp0NKqZA92U9jlv6lq3etvJHayHoT1oKDv0H+O6hn9SdPB+/D6TRneIGWD7pD61ruUNhndHQUDABxlQdxHTzPdAuOwd0P35AI83X/Pb4HywbEUFmRy9ATHIjVlRrwpOG82R5WZDVjIJomNNCtH0RgRbfkvBrvR5v+/KbRRUX4/hEMXgr3kZlD/Vw7cM/4AZR/GKXAn2KWIGznOfAssgN/DLMnLZFDTnJJVuWnKXKhaNmod8FCfwa1oAbx8VQr18TVEmZ04VHTUM7QxBddgaC3t3gnmvXaJZEF2w4eB8OfJpKHRJe1Lexjqpij5KmqiWMSh/GNH8yiEpOo22jr6D2xFiqvNLCgzKG8GmNLc0I/8PiK/TBWEiOl+ybRanTZ/Cf2Lcw5fNsqqoTo80ms6HthSu8TS1inwZDcHFGMB27maOVrbDwaxlNtZyITul64CF8hHdPmUgDqX/QK1gUQkSX03xXKY54X4Eph0+AbqgESv5V4a3lGdQcUYn2d7ex7JypYPasBnoPv6dfN+2ofc8OPvhJkWznEVTX7KIv2SY4c/JxbB+rDccVRdlSKA4+H93DPVXubHM3DWtnmrChgQ6rOVwmk0wtHL9fcsijdvNc21aYeEyNovVXgKL+MEqVdaN2/2aMENoBt5eVg4KWOpS/lOQvzco4e/U7GofZeOR1FXdce0QqBy1xVfl1eLHQkvf9Nx5C1XWpuqmSJ2Sa0UbZXq751YedoVlwfMJMUFidgWOL8si+RwtO6AbjzcjzEBCzjj6O/gBu08UhT/wyJl95zuJhD0B4ezkdvaoCi75tg/valyCpu4IDT+rhtq8AjsIZYFseBsaRFiTRIEpSD8eA1L1G9LEsZv8fjtiWpcK7U97j3lV7ufa4BhsdrmI39TU8UdAComRM6EmAEsk82Q35SYCdt8qhzMIKuVcQnvNW+q0+n3ecnwh7Jx8Fz3uO3HTnMXmo7MYPZ9Pov8L51GPtCiqfYuDeNUnsyjKB3v4hH74RjgLTqqjz8F041r+ELmd1wNbJvnxh10PMuf6E609qgFZCLl/yDaXHy+7xR3EBMEv0QHu+i3Jb7vGzYb9ggp49HtAQhjXDRdnzjC+ouLtRzLPtsFnaniWXRMODD5L4wsoW1vYt5Dl2wyDQMZ5PHlOFjqtWmJKnAP9Fb6Yaw3G4a1QKnprbz1I7xtAcp6kwvM4HF0lOAC/1lRwR2s0vBt1BLGcl2T+rpxPrW+Bgkx20CMtCjdYGKlntDUVLa2HROmNqGZ8GrjZaZLSggn7mfgXF3adhQ7A6JGwrh8USNmCgU0KHBxbQqNtneJlsNLXvH0/WB05zfO8qtuwdAy8vTQXnRzUY4DsHk1KOgLvWAYjyW0N/ZZ9w3O1ork6IpqkXrEAKFkCmzBR8v/8iWVU5g83UUuw/8JpPwHLqs5FgxSoRrt4lB6JlFvAnuIm7a9tIzn83Ngp5sN/hV0O+kwWXf1WCzaVeuNSmC4ZSxey07BQH3A6BIIlStByMpBHWX/n9ZH3Y880TKs1mgNo8S5j+W42X/6cFWid38EiXlyAcYE6zKtV42ZT7sHjYGMoML6T5Q3tVNCUZzD0r+daTvTg5Yiz0zRQD7V3XMfXjI1z5NJAej50DGk+lYefeamq8Mh0aXGfx+3mK2F48gSt+5cGsohC8Gr4VFSv0uFnGCNJc54NjcQZs/9eOpmHvAXbF046J02nCKobJFavxnNdNEKwSg5UjijkwrpP+zsuBgHgPWuXpgq3TJ9BObzGwFL8O/Y3WEPRqBGT+mAHaUhr08mchXtPtoOODRRw0Bkn1nxdtXRGCeg3m6FE3EsY+Wk11Ce/x1Z5swE9iPFGsivtSbHnz2UackZZEh15rw/4d5uBWEIJH/jRR6YqDYNGoRT6DlmCTtwYylunjsKwG7MBgrhUdBlcnaGKLwHTICrfH7QmK2O3QSQsXMkhVSCBX+cDr7cfA+tNYKHN4CmnPH+AflXfwuPgjnd81hpzD7OBi3HiqrV+NBiurcbDQBBQNUlio9RKss8lCdtfmKBsPurslCdeZufKXv1/ROyeaN98EWLKEUODZniGusOHf2Yvp8eWpMCxpM3qr7mKvjTPhdvA7KG81hYy8AJwSMQov1x+lLKVoXPtvBFdLKUNT+DKe8fIVhQQvxvA4EQj5fg2DYlS5ZN9SNB2cR68NBcnIkSjkYh+5uQxgn+o6WFU1GpRn12CQ7wuYnGVFSqaN/NXfEK4+9uGVdc78RHYjzvLXp5yn8nAoRBMKoz9gmrc8l159B6KeJ+H1pFXMNZPB7MQa1v+hBQJ9cuC33JkabzmSd04zhWt8hYbS0zh79jCwPbqOnv5TxDSBelriBzBxKNcytm5nd//RPOrna9ITH0Hxi3Lolfxo3PT+KJeMTsanEcJgYBTJB0u7aNPyEFpgU0mzrq9mm4gyfh4ciJvf7UOj2r2s3GYC99+s53olJVyguYVOqouTje4q1M8ow7WjfsGlBUth/vxl3HJCDSa9S8QdV0fCa63M/4k7776Q3v+Pv0d70R5oh5ZKUxFCSkhUCKUUGSWRKBFKomGW+UFlFBFZiazSzkhFNERoUFGJqF/fW/G7Adfjcc55X9fr9Xz+cc5hdcvp8GlrPxTvksD1UvKoPcwRdiwYw0Zn5OCU/CCVLFrInx5vQ4FTG2iK8he4froQF13+D+0vBODAlGacna4GxWUnMF9yEyz09mDDkyFwZNkdOiztxU983Wn0sBQsLyPYMEwFWizi8WuyDHod2Mh37KagZMFq3tCwmTsPxOPrcXV83l2Ujp4eA2+7bNCtOwYcbH5hUnEjqhz7TD8kq0jy/SkAr+Fo+mESlAoZgZd1DQ/rD+Omeyto//RiXJEtx7Gdr2i88jwsa3WmvbFHWeaxOEjMfoSfny0hfWd/mNAljZ3hTvQi/g+4vR2Lbq5XuScygS/WjYEx7u34deUn+qmXQx5NL0HCWwdNnhnRrp5U3uW5hCvGGaD8ZB1I7PjFr8IyqVlABK6Kl7JZtjlma02nh8PXc7DhL45tXcND+AjDnNZCttRuqpgWirt2FMF//lNo9rw75OZTyEZdDeB2dIAyTxlA9N8umKp6gcTjW6E3/wUGz9xBq88cp7VW7hC0YitcmuOKUd2WEHDJhCtnjcWGO324evwTcPwiiqeN9vKINlVa81WNSx99ovM2KrAhRh/ndppQa0cTXCvzgJvp5rRg3CwYnDvk/kHlKJgxlgeUEWR33sVHwsJsfsiHR7fvgRk+e6DBzYvUz5znhHVNsDhtB4sd04M9v1rgS4AHZXy2gpcXivD2clOQMZZBJWV7dn1hAV1VXbyiQQz0dX7wXtFc8EueBo2RrTyYlwkPS9aC0LoAXBDdRAbtRbipluGNiRz5zinlcNcGEB1fg98WNtGEPFm28stjmdu98FnYnrV6JEBwVxqMPfCLw3PS0HbmDaze4EGbtnyHx87zcJTsbRIS+gXuAeMg/VoluS2aCM8CM8igSgAXVGeQ8VC/dq3fQ59+R8LT7BimECOobJsNy7s/YmJQP9WaxnHJGREw6r2Ecck+KLn9MmjO1wG5hbbwcGUm2lbLY1JuDHSNOsV7gxs5M241SnwdC+evzKENjjtRp14CBmRNecYoJZoacAF8tpXhnwWm1DV2aF6LDGDRBHUop4sQUzoRVGf/hWOdP0jXtY+1zlhy7oM8tD38lOdBK59bZUgjroaBJVjAZcXpcOtPFg1b28ZjbkhQwdsEDru9nwK7R6CquxppxT6hF3IW8D1GAT+FPuJZNbd48qxMnlD4lSYFpcFjPQ/Y2TmJtT9M4tZZIhDb/pfebQKU2x5L625spIz6THqupwaXb3TgnDp7vltcSb/2ikHaoZM47dUh2nZUgFRsg2F991YOWJkFxsIv+Jz4JNBQLMQHNtJw/Lky3OhoZo+ZkfAwNBF9po+EQtEykt8/iS4bLqNt4oqcuVcBFjqsoHTXHNx624OiP6RzWIg4ar3XQY1uczbs2YjXg/L4UZQxDKam84emKNSan4ZVA7P4d/5LCjwmzvV396K5dj4/GHELDxsYwmmXXF6a5Mdr4vTgx45usA3IYbuDMRQTcQHWjBbFRvksEDkrD54edjxf5BMbPhShPX/H8twiCxyYZUqmdcfQcuNimpi7F9vvKsHugXxq6hOHDksfLl3gwFBF7HlMCLytjtKuT4aUVTqRv+4eA/N1HCg36Ccrb9GBKdeWouvaaSxgVED7u+z5xIarJLdiBajsHQm/5u4EjccfwLvJmJ75j6W33V9xb2IYXn1lzpP3Z/HofT9QKFkeNMtWkNHMGxAt0sga9yZh53NreqDgRb+ChVlfIxNUdkviJ00dSF16hdXmxfOVzvnQ5xRNxe5f4dCTlbTQU45typoh6tYv8H2vAS08AqpumuDVLILRF3/xux8aEDFKgObNvszvSgdh4KM6GE0ShEpKRu/Bq8gGE2GW3T5aejoOz38/QCtKPsMp+1qUsPGhw702MGyeG4roZNC97euoTH0uHBu4BgffZWDRjmEsWFAMr1YWU7KbEBxe5MIznp+BWhl38uhvw8bHHSAiFQybwj5DwQ4fHve1lr3idSHu2DZUWrKWi0PqqWa+FSosHoNjnJ/xrIh0Vj6jQqueZtMqMxt4mbQN5ucwlRuIkFVkCptmPsKPf0W5+9JDlNGz5jt+Aui1WQJyQ5xx7X+HYFhiMRam3cG5O4fuLEYKXcyDKXzqXpKwHcOnY8Qhq9+ezk6J52MLdrGsyEbQj11N1kuUyW9dCq6SHc9Tt0xlQ7OJMENAm2f7zUSDj5ehMUaeZB/u5RV/5mHE1hKY2t2PywecQcNYAM5Wq9K3+5Y4te8EndHppDWXd5Ly7Lso2b4LP9gTP8xsZddrBmBs1QEHLgig6Z5Gkhz7kWNGRvOz0HHUtWEqfKrP5qPSh/FQhAqEHEjA7ZvLkLzfoXqVHT5Uu4VzPT/DRsEfeEZsF/fa2eOX69oQ3iQ/xORXeAjdqELmOMaWRfMqP2naOH89ak0/Rye8C0noPyk4pm7Ep0YNdYpRJ37j/XioYTucWVEHkmZb8W2BKr1MFwerPVIwflQxrEp3wymJW9F6ViSrCs5i8Tuv2OagAdDK2eT/6C5mLDUCefMJbJDRB17BstTXPQdv9p2m082mpPnlOrjcaKURq40A0m0h49E/bisRYCvxY/Ter5uit86n5VFtXOeQzzdCHaDC+gR/m6gO56orqCTYn1R2PMU//f3gq7+JQyQP4Zin0iAT/4fn7P7GL71HQ1vBPer/qQtn+r3wtc1wDvjTgd1vTnCp4gKuqnmMdTCJ0nqNYNLZE2TcUY2SIfqgtHQje7wOxnt3x5Co52z0brGhnpdt6PXeAgT/3cagvMlQtn8qfBgnSJExr8B8ZTpR9XqyOGMM588JYH+rMDzZVkeX9+3DNWPc2bBlDJmNeI7/isopv3ArxJXmwvddqlg6zhQkG5dBaZwkKd1TxtC2dvg2ZYA9Vo8FIfUYFAv4wR0P7XCirAxUnDmDHfV3uOHRSYi7vhcLKoxoxS5fTNq8gKJSf8HxgCae2jgGDM3KGK+a4thbb+BxpizWz70Ctw1fcWaYO+fOnoDpcodwgp8+rIyMgeyUnfCdZsNk8WLalvAagp6bwNN16vRq6lJsETUi8teFvyIltM38AkM/4Me8sdw77i5fVijmujdeeFz5CJgcHc4wRwXMa6zohM5F2lsbgbMeKvOBkxHk+YzpSJIEFyRNhX0DS6nuuQ6MuqaBB5wnQvLGbzDN4Ra8V35BIwKG4/fMLBx9MJGPe/4lVQlzaOy5ymvCJvKikhIyTH0GHc8l0VasBQ/1qPH1FHnIVS1AA1kCmfML6L7xHj6oJs9j/pRyXu8hyFnYhvGTT/LZHles60hk4yoC/XehAFFbsT7PFb3fhdCfCVdw2KQXJKc9GqtvzYQArUQUMLYBHW8PvHoiA6LeJbPG/c8w4VI4B8eXsN8PGSgvmsD5k15Bb78xGHgbwtPyX5wnqcofJ43j27MXU/6dTL49p52NLYzga1gBhNYRNLavpUzfBXxklRiNCzfkyx/CSKCnADdOGE3sWoXmWf+4pl9h6Jrnosq60ex+TAEVn2ayzWthWOvpywmxBaQ5ZySO3fees69pQsHIf9hj+Yr8Bc5irddW1KlZCquz1lDl1Z/cdH05ZRy8Rc96GZ7aGuLFXR/I072ev6V08QbvBezd5Yj3xeMh+lgZVqqvwwplYegPi6VQJz2MfVVOlyaH0AnziTT731dQ2PYZfp5yRcmf/fRvpTHsS8zH3DZJVr+3m9/0zsIV0+8SRazg8E/lsL4sDDr/5nPJCHGwuT0ZG+UUeZeFMKY/9OL2Zgc4UPILxJ620XUdPdL/MIanPzKAD2ejeHzaCGwSmgmB09pZbsQOfvrgOOWHX6TIF8eh+7QEB66ShA1FM0AktZDdVg3tTWsL0slzgXvK++jPdcSE0jaMcHGEjpsW8ICANIVX0Mr7G7F+23y0aN7CXil+sExwL4ycnohpFsN40T89UI0ToIyCSaxwzBjafl6DXXdPYVqBD4bCHw5pvA/XHutThKYpaPzT5g1O+lg1KY+kdgrgrUIzLBteA1+uFsGIGhWW7FlFi5bawNhdo3neim8w68tJrt9uwlaRM2CaaQJ5yodB34gcMPsmzmRoBZqF88ntAYN4cTbMc+ihA+9v0Mxvq5i6iZtUQ/F0eRYtviAHz+3u0M7N3hj/xIX+aUrgAe4CM7XrfE4lhqZkdENE9y+I7hCAbrslXKn/A4QPzIaiMdV89E0oHEmdB8WhJ+HjzRUQ0TScHxiNBInBHAr5Jw6ilav4WOcq+i+wHC42vODJetlcrmUIE4utSOGvHoRdfAU1uj0cZbYL+2T2ob9NJr/6/JA7TwTzzKPSHD1yJ2z2MYf4edeYA/7jx79uwaGgZGyXfEMrxluB1n8bYE/wdK52+g5FwtagECTAC6VqyeDJcTq0tA/oeScal1hwuasZvhtzFnyDkviLpAgsqnqLl1X7QTUBoHZgLUXG14KI/mTQDB5OE4fbo2vwJvYxVAG5c88p2n0zjtKsgcy3GrR4VgpHNf2lh0ni/PP1ZB6nm4UFLAk1ckUQ8sqIFmMvvP19GG5bxUGB3SvYPX08CHVY0rTBTTzisjF0esiiR/g8Vujo5nDFS/jI4AX0fS9gCckytN9jz9niASCSaAq5kSmYZE6000GfE69cBYdfn2lm0Q9IOyXCL+8rUWWqM9ktFIH6JH307HnNy5vP0brVHrw++Bx1D7djh6uGeK6/h75ad8LkS4ZgZ5dJJ8Ok8HN2IZRvlKHC2dr8QS8dlzTd4qkvFfH9778sNU8Hjq+ciDsP7aH4M9EkGehHtoOfoW53Jv/x+oYjVO1QUCAf9HXlIPpNM3n2fAQ9oxk4YpMDJp5dwc/UV9Gzs10guP4CWX00w8iKkeArcg0N3t6GXX8GYbarD74fbUIavhuwzdObGipsMG/qQfZ1EYCI6W8gbm4FlJVNxXXfLsLAUVOscRrOZd7qUH83AD5Vu+Ke0P+96b4Ym6TmUvFOAbbMy2Lf1A+0T0KRg6OzwSwukoLN/Lhm/WS4vvADOQR7gZ7hd3D9GwPeyxEP2ojy9dddbOjfQMtH7+UABWO4czQMY5XK4EyVIkvO2AjeyRqo3dPDfza5kuq7fTh/iSyc+CAKWcecKKxQmNO//CbFofV7bZpp7vU3YC0YQRMkRVEsLQVue0+CuZZFMCjlhE/OytGUP3VYFPgTBo+dAP2dVxC116Lukz0UcUME5A884K9T5NhoRhf46dhQCH6icfHVeM+rl/IdCinKn/k/GQEwWmvCnyWbwaH4Bd3cpIwiX2bCJrnH9G/MKdjSvhlMZ8vgMNNRcOq7PItjI/NDZ2hX/oafhCRQ5s8CrEuK5BGaE9g28CXfPmAF5ks10aA4mzJOv4IN/T84hKzZVH0su86Xh285gmj/bwclOthASbAq2OkE0H7rxzzMdx52bmulbZuegKzGLHx7tA5+nxtG06PHwIKEdNoxLQOazifDu9XRmPHfalD3CSH3C31Q82capS29Rw4S40FppDxN80zHsbsvg9DXZag65yTIKV7ALSftsEVyOBfBZm55pA27L/mhkrk92999Ct0h13n4TBP6ueALynyOodGuo3iSjROIiYyDkR/KeW9HEk/PHEEi93JYQmgZ3nm8lH5amw8F22d+eeA1fVytDalRV/jWs2Ugl6PAJq8YH2xMgi35D+hDYTle67vOO+Uz4NccHWgtPcb9V17ze/sBlLWIgxPmljBVZOiczk/EhI8z8GbTWXTfqgSdq8Iwu8Ef0+dOpx+TdaF+42OYuTGOxh/9BQ+sXuENiVZyfmUI3yrd4adbMde7zufldgdIYP1THnlHE+4K7UPBuARQ+lKBR6omw7sZUaBwMpF2Rn+iWLVJ9Dl1PK+sdsT0xxvReP5M9tQN4i+/GbLO7SJl70rKvuYCcwIVwElsI7plfMLLR+RooZwI8uN02P3DCpTlnpJsZjgHZv+gSYVi+HV+GehPKIPvX21pmdktzq8XhkdZY6E6yAczhxWx0CqhIUZ/zYPHp3BvtBll1VSggtonOLr8NCg8l4C2hc6YqNmFogp9eG7fc3R4oooj25vA8rY8zsqZgc///iXdaiM47POYx8W54IabG0D/TzoYS0wlaXE1ePDLg1+nXaT1h6/yHBYGlegWfPFYAy8M7kUjhRJQzM4Chwgznum9DS8cNMUrpk+xa8jTHW0C8M1RExTZmU5Bea94UW0bHlp+ERL8e0BBOwUjdfbjm1wTCDn1kdZsPogfcptJskgNZtxL5Gmnkin81H6+pJSF+20PUZW4EBi/94CPJZPxZNRXiByegjFrg0ij7hGXehdD3fs1vK5kOEhuMoeMLeZw+3ASH9T4gAENuZgnnoT3uy+z9b0GPOYYDK0PTXGiliVEpd7DGsnZ5Lc4Cj5rVMLGi3sA4ybTw9rPeOLmLV7ZepHkPitArJo8qR5SgbYlifxnxnYQkLsIcwNs6YvzSWjec4YvHNgO/+KVIUZHAATFY9gtQAGK7NZgonkJrP3ciOfupML9y0JsP/cIyXtPhl1rZ5Chuz1so9EwPvgclyWPwreL6vlRfRisPJ9B+9p3sOt4NbAYI0EhxqIYX6eEGRnKoC0xHCuO+KFiQBJMtT/Muy7O48jXGtB39QbK5vejpkcx+xvVU1BCHW1bmUHJdv9A2FuYz7V+gh1XzaHJ9yeofdzMTivngtOpflZIsECrYaNJ8ugGmNxygko7E/FfjiQs+VxObQs38iudWWQvf5H9u25AxpxGzrVIAe1lerRt0mts+zEC0tcngKro/qG9VUIjnpZAk/E3sqz4AsuPTqdELIXcY+9ZIl4eGp7uArnXvSzg6gz108+zza1AXjFQhf5r/WAWPMJlEwVw0FwbzpefJuNZgliaMRUOJgTS+stb8FXoT+h5nUoG4suH/H8H1h4Vgeu1T3CanDoabKuhwL43/GDxUtKfMcBC/9rhyq1cSE7phXkLTMHyVwDkmg+A1+BrnPV3Ls2tXcyO4qqcHXMDji6woO0HVtNJJ1143jibp7oM+XDgXv55yI7eSWtz5wcfXq12kO6Pvwp/mg35U/tIKH72Gt9tsOWlVxJ4hvc0NHuvwF+KDOHXHxW+80+cg/W2UWWxEESvaKJQxSj2WvgTp9zQJsv2xZhePQ9npj7Hu4E3oTKzEwcbCHRdy9jUYxVGTFPAgpaFbKyWCYvEHnGVhiw7ybeQoHUPX5+iAJpXzMjZeT1ND33M71RGY/RCEdr4JgJ6HY5hnOMicnpiQJc9LCD0zBtInZOM66btxKXuRrBz2FseM9aJ9I/kk2tgKv2zS8OGAiN4KOmJdftiwXlKPbzUnUoztm2kUZ7NeCx1K8z1toF1Xh/hmJIuOJEv120rhJlio1j6mw1bjw9lL+UBnrV8kP6ORjL/WsHL3qoO+fE4SHi2C1trdtLPf0s4PRlp9eU9oCe4GvVeSmFG+iModjWFW2kONPjkMV6HT3jJJQvsu7qofokpdCSpYMYfIzZXXYeO+bYQ0BsIPY5f8VpKGUz3z+TNu53hbucS/irwlSbEBVNfz15a+8cG1p+XwxERNtgT7wEt0aH4694GuGXwEV5FxEKnlgq/mxuInQsInlw4AAMj5lL1DyU8EJ1NBwqfYF3CSGypTaetX7/DHs9paD5OETLdpkH6R21csUAEc1xqQXNsNIpWpdKcz6eh5F8wao12JtNAANuQv+CwOBmKrZ+DalcnmdTHwPz65+SSfQIOaq2H7GIX3jdGEq6rxOCXwBMoefkORDxbCcs64sBzbDZUfptHG3bmcX9gK/atV4Vb+3bjxW8SdHduGFUE9VLfFw+2w8f41ewS1bcO4vCzMewkBCA+8gWGXWB0uv6DncLbYbamPZpYL6Z9Q06ncbETXrxZyZpe8rDrlhUEqCTzuKxBKkm7Q9P0WkAt9QGJqmnCnNUvaKt5LhisBtj47wEJy16FwllvUdg3kC7dK+C4yvsoG6XNH2eMoMP6veCqqQW/7TdQuPhX9it/wMeHa/AckoC1AregNEWLKs9380W3KdwiagYnjvti7glEpzuP0FrnMKTHJPDtZZl887M9bgq7gqeaBClG3gSWOK/hoiO5GHPgL1q7dULTjhE4q7cFp571xKPvfoCF8EpU+i0ETe1HcdSFcEzbsgliz/lyxig5SLOeybMvdcN8c1+KjovjV34ykOSZSoK6eyhn4iNeJiVIyisr2NWwBudNFqN/zZd5x/V5vHypKYSeimcfnVOwd/4y/JafyhV9ahQUtgxONX3naUPP3UiuAnTPGcNSW036on0HxE714s5nP/j0nBEcsyURnJfIkovXeuwaKOC6wJGw+89HPAzV8GarA427OBLax+9DHyM5Mi08yGlHjKhgx0M6900XVCx7ONJsIxle2wzj6jJw4rpcelAlx9OeK/HHySM4aGkajZGxgqCM39Dxup2u1pdgy/thGFhtjbwrmbSND9FeAYT92fvBYogbVtavg7glMXTyehEl9PbzJZlPMOuROh86JMr9lhawvjSdT6fpg8OOEPR/n0EFVr/Z01kK+ic58vwZK1FPzZZSNXfx594GlBquDp7SHvijaSLu7rhLS6+ewH5NUX7yJpSaH1aB28bd/PW5FszK0Ycqo5Fov6mB/kXo8PfHFnzQ+zvJb7nAOw0VYayQH34+cY6DDUfChkurWbW2GNUkOijSVRSvkRY7GUzkM92bcMqaTdiv6kvWBjaQU/kOLxXo0veEJNoTGkKKrQn4doEDvhuWyiragXTc3xhnKFrDtDRd8D79F4pGP+eMwiB6Y/YOxMKvQPBiYT7Q10E6gevhcKoluEXVY0fwWJ5ssg29VR1Qqug5fmr9yTPlvkJqnyyNem9ON+yVoMPrJSi9q8Pk7iD6HB8L8hfbID/wPi7pP45v3G+A0BlbrjIQgrv6VyhtgRo3vXlGDkUPSK3YEfX959HSyyeouDkQJd7qsNzdiVCWu5AFHVtBetRjmDKqhBpy3uO6t2Hweos6vxQt5bAbdyF+sRHcvFPLDbkKMErkFhmeXY3BCQ9ocTZzZ9NiXiPsBg/vZkHaSIDFdTNRTSkazx4VQf/psrBnjSfkV4uQ+MQdLPs7jVXeGsPYFzYQnrGGbgd8Rs27Pqx2v4FNpe1QPPwUr94iA7T6PksYu8P68SMgxt6LVDMY+OMVPlq/FJQT3XnYnRugHPSOhvXeo38DO+nkxolg2NEHgbVqoCCQxo67bMhcfhIt9/tGJ7Z4QubCUkiLziGLFCtwL0ik/REHwFHoNO9Yl0MSR5dx+dYIMp/yAs7s1WIf6Wd0ePl4qBccpG0L/oPIxnrKfB/Kxs4TwORGIvn7LSW//mnQ13wHnTaMgOmJaZD5cQ/PfvqbpaxzyCEmk7I0zWlGQifpTLoPEbM34IEoS3C8rA0lBhZ0834PC2eYs+0EczJp0YJr4tdh5ehmmBTvAuXRakP+cY3/+74Khr/Oh3e6F1FAMRROnTrPbb9vguxOJXwFa/CcphUYP7kNay6uI9e0PXh3sj9Yxp5k36AsrurNo3Cj3yhrVARL/gyD9R0xOGxiDJ/P/wOPRVtgeBtirdI4KvZU45MJE8nC+jx8sJYC2S4T6h/mwEtXHIJM717+pyAOlTPfoOn59VCcksSDN+7Rpg5ZeFxhBRXaRynCjPCg/xw6f6YV4+yYrloCuLVPBZEzWrxSQhJC1F/RS9oGeo3ZcNtoAki4tNC8mf+BIgixSXgqNvqLYUezMvhZ2nC1txcUb1nAMbGOkHUrDrZM6cZWt0FcYa2FI98bs6fqcDix+wPXjR8P03bvoea1Bzl6DVPDyygu6atnh/peOvKfFP7eIQsy7xiP73oCm7ISaa6rEw2bXkSiVh+gU2YE+zUthMRf38HMYhxo5gsx1xXy3FnZVBwizkXm92GXyD3eHqlFj+MVyPGwHh0ok4S5s6bxfZUsjFPooxrLbDhMgrTpTyc1vZzB/o9auVVMEGfvngATr1zkmqxJENnSgtb7K8HPZz4caEvC3w8caN5GUz5UGodKt01B+2csVhb5s16WDn3ad5+KflXyr6fzKfhjGOu5LWeHFwtBer0S3Jkggzu2TSAvudtQW36DbilOgr2dalxgowLNg9q89aQR+e2xhWGuxTzVeA1yxEq2rEnlbWJv2bPuJxvvy+O+vdOp8owmvzQGeNWZwjuOplDasmY6lzyWJ+2JYOnXj4j7hanA2BSfrq/C+F/S4OihhM0zJrB7SD+INqbhY8sEUlzoRuuG/CMn2w/GFE+mdBMpiPCrgj9moVRm+AOah5+hY6dvYp52KAZZddGu0w9YuOYIeb+Ugv1Vo1D/aQNX6LTA9UggO6dbJB2ZgA/vD6C81kk8t3g8lX8xhTqhCXDCJIU7ri4Bi+lv8IbbdnqjeBGKhvJuQ5sdzD1aQvbv1MD+cxPA3bvoM+o4WNybA8NWusGuEc1c1nuczygVkFdjFkZOsAbn/ktY8mo6HRK3huBTydz42p5qA+/QmxsbYdSRPPJZvo6f5UvAFrGX3D5MgbuHT8YdptvpStwgWV8TgzV6LjT//GIwObkfcwLkoFOzgxLUfGHRrABuC7wA202GuDP6JyoKb6Zc0VO4evU5EBUygCeiB9kh6QJMebGcpstWseb54zR1yU++1N+ONkOa3C9wmtdUGEDe8UNQ7xVG96P/g4Yl20F2Wx6urCU+OL6Fq6bOoVVNmbCWRGFXgx842/TRyftzIOGxGY/zCGInUVMcseUPnd+iQukvM+HkRlso++3Oub8WQKJiC4367zufePKCCpO38MVYMwr7Ws5OPqkUuY9B4EUbqpzzgLbiKfC5HFn2PxFY+2sJrBwUwn13jKnYIpGyTinDRZ7JJ1uO8Px9YihVOo38uhaAjGs/LB3M40vlE7B7/3C0+AjQMncDeupqw5gNB+GBTSg+VU4cmoM+3raPomLhUBTQeD80e1145aCJwpIaZJ3ylqbNrOKA15IsVjqKfbb28u4MS5K/ksTrOzTgzWddXlsaQ+euXqOtXQ8hb/UpbjQpgde3e/CTwj+wrZXggf8s4Hj8PHZrX8YnEmRhXWMZnXTxADnHchrT1QpLJydhdsxnzNfXhXU/76Nbrgt4Hd5A13q2Y+jh79AZmw2vV9/Hv/tyQbhmC7Y/UoNvjxfh+zvpfPPMQ6wRvMLrEpu4cI4BFdWOgwWXazDf+DTsFhsOFXWzYM71HM7W/8VHNR3QceY4uvkultSPm0CFugHs2n4Vhd8Yw94h1ric8I9H7BKDiKiT+OrHZpzxSJMPGybSWPWn6BFvgPYLx4KNpAZrrI7gUtfF9LlbgWVtdMl8qSVKd/nguTRdxLY9eGarNmybboOZe5WgzUeOBytKoHlZENumL+LLNzzw4LIihnVMkTdlQHV6Ll/eUA8Xri/mN2PjcN6bVHr8WxEGm9VZrDufG54sQc0kI2ifcgPGbTEnhxmREKVgR3u2upBG3nLUvFNEba8t6ELLYypbbQR3l9jzg/++cbOFLB6tU8Md1StRxlUHK+Ynwo5b4lQlH8atLgIw13olOdV1wro+EbgQG4vzCufSkVf+eGt/Ph7jXhLOCSL5Tj2o3V+AkXEFcHLTb/RbfpM+tubAWtGxdKS3AsPt3ODcfm06v8gMXGeag3lxFC9Oa6Cn/sRrzUfjyG33qX/bAG558Ib8n+7kLWtFIHupA5UkGpDAPWn+cvMWPQorYufoOn534Qh/tpTCu2uncu2boRyfIw6Jnr48b1UrOikpUMD7lfh6ayF2XxlD44KeUcyheGw8qgyiikKkc0AEVqrVgOrLxZTeWkNNq+fjX9O1XN9xHqPHptJwwyGGsfuP3wdKY02qKoYti+URU55CvXcgxSiKYK/tIJ2svslbh7jE29wDRiaZ4zONaaS4ez3f8V7Ez3g56/Y0QFF9PnnfSOA1wTbw91AqrhAToEP2jnQ+aRk/zUqAuUoHoObaS7axHYn1iw3BKEceckqroEAtkzS8qlAhvIkFso5gkq0vaH5/w3lCx3nj3UCaUyULJn534PRpedLT2cTmFzqprHEnnD0+k7ZvN6PtjwHs59QxJqhC1G1/kj5zFJcsX0NdQ/0ad3stldVs58rNi2h7Qjd1lqZQ22VNSP4ZhFsEL/GHU94oGzCDjhekQOWoHNqta0Kf3NUxbE8pxkpowZcRZznccRXpL9KllhORKHpVhO0kpVhL6TprXO4D9TGVIH7FAhTm3sEHxcVEsxrJduVjfHeqDCskr8BOVR/cOHsaGZZr4sqjE+D+I08qUzSAmytU8etmBy4VFsBPUkqwR2McbBIcxW9XqkGxxzg4J9LGO1XuwJVeL3K9mAJ6kd34W+cy2t4uw5C7XTgvZT1KNAvDxoLNOGdjEa4wiWCvl5/ZefgvPO26EEa9Pw3isQ40YShDb+WZwISCHswct5QuVDyE0/3qeFRyNFwIDYE350NgsdFavnFyHT98JAp7J9TSR10v2vFYnx+qqKBrrQD9fVzDw22foMp/O/AVP8TYK4KQPHiYr02ZS2cOL8ZVtdtJPGUhyhyrhITGF7hF3gJdNZXJuoDBWmkO2Bm0ww27GaB/eCquaRgPYlPHY+uE91j0bSLT8b/s/kAPGifpUJeiHQ8zeAi/V+zFKyku9GfiTKz9DTD9oxp+Kl2Gky6bw+uN++jyuDEcv205Kaa0YurmaFpprsUxh/ay7/5i9pHZgIMmKiBSMA3NX+5lV5MHuM53JW7cWk2PuuaT+KN4iO9cQmppQWjnpQulJ37x6EOmiAN/eYrnPvqp9BTjbYd82EUFJStGoVdpNbYttwS/+nJY1vOX56QyxZ75AmuufIPUlB/kO0sRrY/cBq98S7TZaAZShrE4fNM4WmfzEa4dloVx0ftRYIcF5+jF4eQ6LTjW/JG7hzgn4VI4ee2+SdMPKOIj1xPwhcLQQbGXsrfUsfB8N4qsWsa5j1Xh964XHPyumLLzdsOLFVageSoWl9+6gTPupOO9w4N8f5ktNwupgFZ6FRtbT4e7Ls95ZexZmtrRx1bPI7DwSxZrNAwxVstCeDFRGQKkgkEVp/OHuj0UPtqOrX52spP0JQjpDYSa2ZtQOWonXlBRAY30WPQvCKEtWt+wW28FDeT4sE/oDVjcWIOt//5gr6MRdS83gPQx+TxiZQ5I276D59sXcWzoJjjxYxRqHljKLww+Udf3KfTirxKI1Xmiz7Y7oHu9CkuHXeQ+N30q/6pPXgcP86OXdWS1PBRitMcAawuT4LKFfCFJkCqq7SlJsYg1NmQOrbvAOVIz0CPwBnQOCsFC+14a5WVCE676s9A/ATi2Mwp7d28nV+nZMKFyMwSv3Qw3RQ1AXWgnvB9ZBjaZ60Da6gzMWG2PfRdk8b87N7jBfQoNP7iJsirHQL2REoT9uUTKfXt5W7gYC24TRDupLn4v/RMifz6B6K9z8ZLGKFBJ2o0l39/g1LhYjHIWgX/5C5ga41G9fA/HyepTxYsQuFchBZGzf6HTS39+tFEAf8ZH0zSaglu3LYLillW85m89JTZfokvRAMoPtrH8gl6eUz4O7ywXBrbw4H8HtfDE7834qzoapzoGgfhGIQj32ErCv+Rp54jjkPLdBisrQvHZrGowXV7DzmdkOWXZJVotNcSnz1+B2kglPDp8JAS6+8NooSzs+CPH87cV0IbDaeSrMpX9CmSgyLCBVwn5gInLHM4dNo/b1a9D8SU9TO+8CeF/YzhJQRUWVJtAc/BFSD/7Fw22nuaC3tfAIb9RvfcRfQ8f4KZnwvzC5DSLTTaAoNcbaXZaIOnfr6CDH3Rx2rvJ8EVoAK/XDeLF/q+w6XcsXuwaD77WsngzOQhLYrT54HlL3Lj4NFy2ToOxY6eD3/B4fLh7KjxUNAE7/VaeX+sAL+efhTYZW6rNzMZbj4zJzCefg5VHYluEJVxfoQWh98Tgj9cVisULXOU5nF/fLeb+87fZKD4UdoZUwF+ZAZyiN/L/7f+/VxREcSafh65aKUxtEaVE3TU08lw9rSpz50m28ZCi9wyhQhyEkiMoQ3IXyXaOoknhwiz9rRh2tIeiZJM5frlXRZNWrsCYUeJgKVgHpv8Wo/+UbM7Xq+SueXdB7NAWiDp7ncdPV8S83l/k+NoQDh87hrJJW1DD/R//7o7Est9dqPnRkr52PGCcfBVDTl7Fx7a6kDuQxWG1ZbTpojzUOg+H5w5IzvQbTp7Xg7d1q2Besg561U2CmFMLcGb2fOyb9YeWngrjQJM5GHzHBSTW7MZq8QoYfGtBOyLGQLm7GU/X/I+nBQTQ8J5x5FVnAFpOmVD11BDnJIXDhXkuWORnCZVbhNG0oIRFDApQpfMSZmovQGUjH/r3SBuSwl+AwPJ2SGmwBby9CMxuLkHJ2330zvopj1iwFmZt24UHtWbQaOGuoXyWwKBXhnBp1T3WfmrD2pePwHatHHAafRTyHC05R6aEGsN/UrvvU/b0UIQvl16R+K2dNHNdIYZlqnCvjQa3bxEg12UBcFBdjfaPm888QQISFt1C28kC2Ja7A9KtQuGM1Xl+5acNOnO8cYvbCj52SRlGGDJsKF8PY7Zqkfy4ZIyauJTsb1lRnFE+7l+2hBInu9MJjSJU+KQJqxfMxUx/GdLcOhErJkXzcsOzvOjCK07bnUGhGitZOGYZPc7Rh/NKzfjXV4Pn6v2Dy2nulBC1BSzUnPCy5yGwC5bF6DQPSvEUHXKExbh52S50rM3G3FB9DvIeja0uXTy1Rxg/u8qj+4VeCI5Rh4d7xajglhILKsRSxIRCypyWAeNHNGP24kLo//oVd1fEoXSlDPiU78InrtagVc28aOi8i9QY8pYHcXDrWTqdyLpBrd7p/EhZCTQvTyL3B5s5fUUr5Nj6Yb6REU3WM8ND48XB3OUZOukL8LoqCbDvOE3Zpzzo7apgMPW9BwkvmE9HKpDH7gvw8XoBfP8kysOyFGHBW3naumgHjVFfRvfMo1DxtAimFV+jssKz1DzjM8k7TwerawaQ5vUUre69xml2E9D/jQDeGeeKE58cwvEGBrTwrgukt0zl+PGioKmei3090jhwcRR4TbzFbSUz+e7JLrw4bhoMxFXheoOpfKBMBE4sdYewI8Uce02JNCPCKWHJ/75Xeh627hemG0dd2CBlLw/YCYGsiRPFplrCo4TD3NJ3AIrMl8GJiqH+ePqQvde0YO6aNEo2lIMXrwv5Stx1zvn2k/pt/qNxmyLwmnUTLk77Tc2iSRjtvB3tFWSgIaIa/eWV6bQow1zK4/J0ZSh33IMejrdxa/FoXrpVApZZiIDkocPY6LaRqoTTYOnXIH5mUQKVpX74U0sPyhz3w1XBAE6ZJwatuyShJ0SbG4dc3Ce9gVbuHMcuT3Zj5Do/2P50NedWBuLaWcqwaMZS3jWiD4z+ajMea8aT2TdhQVM/Sly1oNNxufQ2ZTE4XzGArb90eT9+J82MxdizNRZNol/BvoFpOHbebJ7XnA4npxfQ2B3msPfSe15nM5QlAj5ALcgip7/zHu/VaLTjNC/7doc8nR7wPnuA5qfylFrbTJmOz/iJrCote5TEY2dbcf/GRjrcV8idGY74odkcvsR68eYgA5axe0aibnEYnbsbTa+78x4JIdaPOoPV4TlgJKwCTl3LoUZCi+5dekL9u1bBMZ7PIqbXMWB2DXukTmHBVmmwj1cG6TP25LpLH217Csni7ByKio5FLRlNspGppz7fMKiUzyG/zPEwKaUGul2O47st6ayyaSb9beqA79KjQCTlI4uLDnXt2DwY+50g2lkOB5ykIfr20Oy3uGNV8gt6L5ZPa5pyecL1lxByMxe9fcfCwnvGkBJnjE+sbpDl98k42sEd//Rew6n7IyHQOhJy/FNhv54FOA8EofOGAN5m/Ys+LTwDVvsFMVZ+OPCiToiyNYKS5FZ41qUBHiEL+Gd6Eu7GL3izq5B0t3Vh5Yn5Q470kgzXX0BJ6Svw8JYa/AgYhCUKxVQ0TAm6m3/Q5ncr2OL8U/rhM8gKh4tw7YAsap4cCzpKd6lDW4FHanTjW9l8tPJ1ZflScbTPVsDGkMMk0dSCkX+0QXXBTlpbYMo3c97h53dtKC0wFY+fKOXn8/fQjuclLLrnNFenyUB3lgI8tymHpPZp+LQ4np/0afGG+r+gdXYRred0bu/yh8M51jCzVA4qdBqo0laHLns14GBKIF/8PQwNtr0D99T3VLlgLA+80QWhdxew1eIbdUbOw0IpM/gy7hp4xUZxilktHd75kMeMXgK/NxO4G3ykv5fCsExmEBs7D/LH8pNQdFCRLaUD8XPVL1a/84Va3gBImMzCZwKFoCSbzJsGFtGUwxLQb19Hl1eNp6qFT3h8SAafOGQKkrOO8CPbWNJ6MozLG0bibIUVlO6VBbPPqmN68ENW3BcACrW2sDFqGydoLOK0hDXcp6MJjhJn2G76HCz9bQgHlrXx8azTaNwvBPZvgWKH78Gy43NhqZEdHXJL5c1mQ5khYYVBx1fgZNMdpAZaYNM2mx8532PLz2vg3u1VdOyIFS3I/s3TitxY3ns9nJPfxr2xY2D/9gF0LXXCv1F6YPnVAsa/NAc1bwmYK/SJEtbEY3GfMF2QN4STdhlDvJlI0/uvgXrsA6orXI3RYlM5d2Q5Xg5Mg3PGe1COtGFhySbI8vBCVc8YDGxRJG8vMz7Q4QxJiU3ku3MfWJ4yQb93AEeGclK2/yJF6YVz9MhsPKX6C0xPmOGOrjwQ8FWkSrm9ZDRCF1pDiKy2L8apZ2tQIHUrt2sLYESzCZ+Ny6FyL2UOPniCD7lYQcKux+TscZG3DxjBVdODvMzdEEt7A8g1bxq/7K8jHWsT9P1hDB2PxGhhvR1JT27jX3UClHfgJbiF5+G4rMEhvthPA3mlZG+oDRqPXxDmmNGLcR/o6rdRcHPyctz/WJ2ue+Tj9fa3JHQymQpPa0NU7TisVM3nV2d92P2IM5cv6+Kz93z4yNMG2OmYgQ2Rh1nVXAUKt2/gNS3t7DPSGUed/g1fl7iCl60HCsmZgFl/DClbbiTVfE2wtBNhDb1q/r04ETP7lFG2YTMX6r/Bv+397BERT77GE1jolyFInY8hxRxRMDffSO8aBIFixNhfbxbnKLdTQaYoWuwK4ebNo2BCbTLYT24h9df6ZCnwjsNMdsDqtEa+MkOWH7d84pjPNVizlsFJ0IzrotyJ9x8hL0kXsJr+ivanLcaUwB68NHoyqJ5aRC+Mx8B4g3V0SnUvT9hSCBX+S/jnni62fi0MjTN3g8XoJnhx/BxfqzcHDzkHmrJNnYO2n4SCXAP4Mnc1q+q+prp7g9RzYAppvyjm+XeHwybxBdx9wAEGb/gRVbfSeyV9kooZi8HhV7Dg0gJus7nLU78Mg2rDZooe/ZCmPfLi28rJtDppDR8LKCeXQF84tXcjLfHWgRG+4+Fb2G+4lA/kOsaZk+uC0LPbml007Nh/gh91HJ1MNwNsaBZogjIUoFHBH4jx1ePv3fPp5rtwQN/7qCKxA7tvSMHOnbPYM0YLyH8ujDCp5OvBYZj+W4ageoBEXcI5vvw6XTvuylOXBdPfb8bwX2gw9/TF0eTlGtR7v57l1JeAcs4qXOtxli9/CQLdrA+sOmZo/5k95oXFKfRs2BEKUPHl9VOzOOC/Cpwrs5oMzp5lpZjZ6DFWCkijA8XPFuPsp384pew2zZ9hQM9LJ8FKm53gc6eED4s94Gqx4RDZL8m3N6/kvFEN6HA8HMvMc8li9WRyzuxHf7fNaOgzBRSH8i48+is/l5Lm7WLBeKljATiaTGSbah2U+nEOaMlF3liwjp83jQb5hzH4vfYAKYcPh6r1eiy/8ABd2GRMLgFLMVF9GMRYHmfVN0aw7IEpBQYcJ+l/epx8rg9nHXkFN76oQV3NGcq74o41j+eBTIwJnK35Cpibx9dfuNHo+AFUyhAngQhfajBLxpDonyj39wqEq+lCn3oZG2SLkmj/U8hvHsW+jt9omMUtrH8QBO57VkLk3VOIFcPASSqTaN4kkPr4DzcXWPDtcy946Q8XWBLZwJOeT8VG/Q/kGC0IRfZr6erpT/j2rj94Gj/nXYmpHKDPBLnf4XvhanDYlkxRXwzBY9QE2C51CNbLJOBSXENT1rah2Ut/WqJXAhu+HCWnCBtKWSMEpabOpEP3IFqujcs+zQDT2nCgt7dZ1/gBrv2ogJtc3oCCrTy8Wsx0a3YiiHWLg4L4ChZaKMy2+j842+kzWj9exCNnDKf9p0zBafc+XnHHh/d+eQtCYveg78MGOvM2Dxp3J9DbSelQLvWFbrQbgn+DMZtLtg3lqjyGLdfiAyWn8bKXCtvca6eRwRWQclqQ/00SBk/tWtTYshYNXf5yo/Z5lo/aBLe908nuuhTVzZjPi+8cQdFeC5DbdxnCThMmGC7hUPkLfO7qcnzd+oSqG2K4R9odJZWvYN1oY9ipkw5NjT8x9Ys3xVpmkcBgAQxXOMQSQ55UrbiG2uco8oZOTSgeswgWffTn+Cv7sDLbnu6lAXZsFgd5DuL71T9oT8Jk6vMf6v2cLTynPRBeJMdRuF0JtJAhXPnhB3P3zeSIiRmsICSHsqutof15Bx0cmYnzG0QwZ0cqLhFayC9trtKmQx9YKqAY7ylKc/sxMRA4/hz31MRz2oxvaDy9giSf7oSnV/fBme/+kH3El6Vuz8WjRw0g5+savj1Dl0VjJpL4qBng6HUYb88exIt3VKFTpZC/+P0Hb16og0vODvI8cpQ+vogl5xmZfE3fnpMsU9BPPo9X1syhj26W9F+XLuQJvmfT7CPk0HaDDw8T4Dyb2dhTpEQPZ0zAsL4V7CgWiFEWovBwRjIscjwLL7ruY5GMJ5SXmZP02b308+EYXHa/Cb63BcFdQTFY9/0TbAggmi34HBR/j6R327PwTrMBmg6o0/3853D8xBzYbqoIMfMB80CFLih4k3yCMVdO6OKe5HOkM8IZPZJaueJ7ARa0jgLH/XnsO/YA58zxwsRv1eh6voobhwmC3nVD8NQwhUnHXcD7qA3sHhvOHp8/ssPCVLZ6KY2/6jpxR9ZRTEnqAbf9+3CZ1HvIny4FimLStMD7CY7T/AQhm47jDXbjzbWhpLz/EWPgNErxKWKfOl2YZPMTAnXOk8XJf3R43iFc09dF0T3FMDMmGeM+ZsDAQD8++SUMuktbKLhsIXfEnaMnQpo8LPQ8ly52RpeGcLieXI8hkZ0QNm00FOj85s23HWGcUTJId74Ef+8eyN9/Bj8vE4NLAnep8KIICuqNBtnT0/Bt1m4yFv1Ht2Rvcf7gAZZqd8ErrtasHXOXZbe8h1VHbGGk41rigluYdPE/OjE3lW85VVNz2yCnCmvjSSkP1nK7TzGRoyDyzg8yNP/G67sTwWnoDOvKivJP/Usgb12K54yyycT6Nfu2GEO8/Hx2s9CgQy9D4VfmTPq9rIjqnw116bUl9FTNlfPcjGF6qBBsFcyip5/M6IN+Hdrvi8BAvEYWK6bzz5wl2HtjDv6cEIiax0fD8h8nsEnwL2/f6YnOT7qArwmxSeseTvztQpfV28C2R5hZRxJ+LlrFIa/SWfqqDldkLOHL6kuoX0OXFvuOx7Bv1jT+bQ5E/JGB5VtrKNk/k2wGv8OCrasogRPBaEUJS/j3sLGeIas7WML98+NhkWoSagWNAaPt/1jY4ADlq0+HUOdG1LdbQ7k97jSq+i/cFSZYNFWdk+LToEDainSnu6G8814YnhuDqY52tL0QqFzgF2tfMwM9l+u0croWikoP41r7i1h57ROusMznuFG92Od4hKYZZeJCLTNo7dkFAgUfOG1/H6mYviLHfWN4eHs6XnMIhkRLT3ig+x9orEO49ewO+TuV4NevctBstJUTjD+jhv07rk8PIuHAUegcEsZH0nShzSQa45O+cE7lTHgllschEVfokv8DSFjxhGf6KIPCPTvM95sEpeVJ6PZYkf/bchxMLY/Q8dhiCBt9FedcPYzVRsd5ztM97KUyAbodLsEz/3Iq+tMADnFbeXnUdh6ZuRgCvxzCQ2vqhrqwlBrOjIGBCT/p3JwTJPJamR5NWAdJV9aytlIriG7bTlFiBSxy5iVFlojBP4mP/0fRef+F9HBx/IyShpRSmpRKWlTaixAyKmQkRMoWEQ1U1leLiBRZLQplpGSkQUpG0ZAWFaWQokHJ0/MX3Pu653zO5/3+6YLOQm26kBBEw7428XrzTvy55Ch8d10BPVrfSSYimzDUEpyjJ1BCSiT3DbSza+5wvp7mx4vfH8AZMYY8PT4BH+16DQpGovBf1iVe0+7NRzX+UEy1CirN/s0xh1ZyUHoKl0lNpG1Twtju2DDo2bUad8rpgXvVJpzgtQCPPJ2B5RdlyYNvoeO/reD+7zN/KDME2rIUv99+DkWKdXQ6LRVGL4vAehEt/lefz9WNS7j8nRekzx0DT/OE0T77BF80zqePfglAVzLpUPkluJecxT0ehiggM4wmLbMAjd9yeBSs2GLDZbqZ9xe3fsrgfeZPMEEJWHz5cvi1JBElc/TgwkpxyHFYgu6LfFG0oxFWtH4k2+o98LA0gD8V5aFr5x0Y/0ENqj5fIueRg9T0oQWu/argX0nDQOOgF9vpWrPp+qMYnCwJr/2kYO+PYPxzuJJGd72kffL9dF5tJW/RrcHcvf649+ASqmyRhn1ZI2HA9gImHjwFIsteg5+JETeFK9PwxFoc3qEKb29GQongcyqZKwjSOStR/e0LWPJDG01OKaHb9F6YeXkS34qJo/QP5hTy2wM25KhC6o/r0OLoxuoBkaB37AJNVjWAtMBYwABpbL9rDhP22NLzEEEYY1xMtRef8RyxPOi+dR7yb8/G0MM3sDlLgSQclbAwN4C3djK8nxuI1ZGCXKFdgmljGT7ojeKZKsE0BY7jbhUB+u25lt8p6YPWmWZUO/YWRq6aBLZVLdCV0099wZfgmMIjUDgmgp+mi7PlbkUou3SUx4R+xvBXrTRcWARTbuXxr39n4HfqGgg62Q+Zso447pclnP1qAzNdn4GZ9jTc8FgTD8Vv5rrws3BSrBM/3VQBWDCSZ0bKwFpFG7i2M5FVc10wS+MF/BaWQS8XT/IWEOAKEXds33wHK7rMYK3FDbx76St/BgsMOzQHAnbPxb1advxioTPVhz2DBa0MM3+Mg2rnxTjpthzvmPMRfy4Q5yi5YjrXNghLM2+Rfawezwgcjme+joZLHW2U++U2X/4WTXN3f+Qr21fT6T8f6fN4efi4upwqld7x5S55QNv9cOXoBl5udQ3/XnUgj99VvKc7EO7JZmCUZBztEPdH90gLSJiSibBoF5y1f0Jnv07n4QHF8G9XEMVn97BFgQv8NpKkVdFKYDFZkrvDPWF5UDB1haiyy+hZeOLdfVTVVEK5caPpgfcrtnmkBDMuP4NC4VTe+XgtisZKEsh/wFMJGqT6egsG7DtCEa9NaPEreciT6+MCjQ0U+GAQyneIwAOL6zC8bBo8TVYHlTWfoefZdNabOBy8tB5QupQ5v84TAONVx/D9impI/zQabHpqOT3XHVVmqGDOt4lweE45GJhHkuLgIzQ4EALrFkbzIZ94ut9hDp+PG2CjiiuEa1nD5cg2TspIBOM/AawVnk5H07JZaNtLcnc4wmLbhXCPsTT4BkwEIdlhFD7uPU79F4W4fBcJTt1LG/bNJl1/P5icdJVjfvzGooUq4OFmSFidixppg7z9VBiMdLPHQ2/s4JBLAb85moitTQq8JmMSzLBkiPYVIsHFlpD4sh2boIqdHOxw+M1LbN+Wws+V8rC/3woat8/jjSZuNNHhOia/20sFxX585Oh/1KiryKPm61HiNSW0ypcGgfEb4U9TBPbnjOWoF/N44jNRjna7ybrz5HFXRzuLaUSApfM4kJstStrjF/OzHevwzXETtH6zFocdUUGbVya4Umc+urxdxqdaJED7wgdMy5yL+4OyqV54Cj4948nhZuJgtfgQVb19Cd+mB6B6ohDoL3qN7xz7af2uw9i/0obMVo+E80L7cc3uJMx9MBOd8QGs6NaBZ/q17N26ny+taCTZGXrkdtOTSx/EUU/tM7i6IIGU3/bj6korkOQ1OGfqDFxac5Ae3ZFEhcW5LL9IGBVWXKHvc1Lp8xRpMAlThMh3ilxVUAJN9U2Y7SBCt17aktwPC2xpeANHd5zAsPbdqKknAo+Ph9KppGQceOpJmSleHDfULbPWFbP58RY0ODiC720X59UXNcH3rDQtH1zKb5QOk93TBra49RTvNF8FA9eZqKd9kiap3yTtKQgnXByx5ZwlhNQH44XPbTBJWh5HKQqDb0s+rptmD3OyhCl4mwV8PaBCGQ+v8dx5k2FDyXt86FmOdwRmk5FwKZz50w0/N0bjxj5LaLc7wNoh4XSntxjUbnRSWDTj7aK7+N+AMN/VrqNv/3ToGRjA7uEGaDrfALbGT6Crskq4I6cLB1a/ImvXbsqb7w1eS19Q814liJfNo5av/tRudIWDdgVyrkYey0pvhRfZe+kNOUFtYAelWYwCa8mbXGbqix81V8HxKQ8g4OwX+F4Uwtd+zIb+66dpwSJRLoswhMKcSLDzyuL9x5dh7BMbkBQV4VpHZcqvM6H78ko4p3yA9wzTg/lViWwn7s977zlQUcMV1vUNgX/9eux8toBD6iVY9GwS9cySgMCyfyBkNYelSx6ibFg1uk3qZmu7CZjWvA6Ssmyx5PAA6YeOA3uTZSy58CNklgfT9ctHIFJgCRRufsMlxcXY4e2Fva+GD8nrFHgUC1Qo68zRM2W46S9x34nd5Hj8H11Ym0N1WwNpasNZHH9NBtQqEnlisCKmrjTiA5u9OP5PBa2ZPxl3vOvmgLnppJweTsujBCDkZB+tlquGWwGTwaH0K3+bNgovl/zGvmk/ef4pUSiWzOXmdA0o2N7OysGj8WypEam7RWB43wt8vdsPRlTYgWm2Go0tf4Q593TBVk+YI3KSOH1LOvto+cGdG9PRZaU/9z9Pwv9OqWH6mia6FCsA+0cAPPulB35D3H173TIOuzse4+XHYM2OX9j3vAp71PRJeKcyGBu8Js2nP2FYbB1tW2WOzzKN4FuLDtse9IGAmoe0WGQRLqmVBrXv6XT8YRYkzX1Jh8xHQcG5y7RqvB9Mq2mEisEySEwfgH/xJuDrIQcD2w5R+yJxWliexIphPjz3fRbnXE/Gr2MrIaZCAi5utQA9fxHAFjV2O1aDX5aWU9GVYP6qdIpc3GvhvzYBWuy9nf/ON4Yl8pYsJlIIx15XgTOlYd7mxRT9+Bo52J3CFzOHdkZ9NTRcMoJtR4wh2LwJ5EabYTwNhyP6wihT3cGeTavBeMkx/KYRzGPzx8PK+7YcYbgdTk1zprsdkZCfP4HUzCowbf43GhFiR5fdmujVXm1Ii0jhG8b6ULellWLftMOKjRv4dV89OcrNQ42oENqnm4ZfLiqB1dsq1J43gzX2JXNMxyaSCvnGU8J7sccmEV5triOZs3YcY60AA/JjUcdUE5T2/IbZE4Qo93oqWAyWQ9V0TXb0Pktrrc4N3U1Z6Cy8yZYnH7KTdj8an9xFaxW3cHP0Qr504T17Vl7Gd0uC4fddQ5Af9hiPLRbBnWe28bU2f1K/1kf33YW56cxCOny2hKMCzSDNG0Hwugxn1yzBiyWF8CWlHs+8CuXdP+dA2GlznLFrDq2rGQWbfEVgp/5ddlANpFcbj1JsWRruc1wNsgJr8aW2OY+IJ95ZIsGXloyD9pZ/oK1Vgv9ln4bcyd7c4BXLCWc2gYp7LMj8HImtPhakricHfofmYnipCng9cce2jB1cqP+UBS4kwo6EYLgYHMUetbvIzmEUJMF+Lu5YSXuWfua6L1sg8FkprZ8z1Knyw8CtYhvdSjnHNHkcnPMUoDNdnjSvOJWHFThB1r4MfOWZxAu0kqA0qh6ufNgKU5YbgaPn+iHmdcTDtztJQncMeupI0KhNK0HdPhften3BuW8h12kDNBq3cXNRJgc9n0R7dAah4/h6fGjsBcmd7riy4yPPcVuHVy7LwQgrQR7fm04fHtVzdec8Fr4hCRc7prHfvKtUlRmA91XrgY5MBikVNZi1/jUeOicJldF3+MJqC2xfl4lteV6Yp3yeLxuI4pxVivBbezyL+wfCbgMluLYog8y3ucDRD+Ox7FIhbn0pAMvfpHKUMUP65WxutT7Hh/piwNjsBicKn+K01Frwn7MdQ08/h5LXjqR5XAUaWwPpzdckdHZ2Y4PP7zjywXxSgGrOmiyJrcucwKX5FNR6K8D3qOX0NaGFWj3X4BVbaYr78o/qdr+HHyaCfC7BmXUjP2LBkpEQvbsHTcorOGu5PvxUnw7Ll16GhgXaeNpnCp2M1KLHPo8paYYgtEgMsWqaMveW9XLT9n2c+lSPIfE7ZTrEw6tCB5j+owe6HghA+4+pPOaTH0eUbKL6qkFqqZ9CUwfKQCf5Ft50iAH1iVZo91AKDDaY0npxDzZZJgx5iQD/Bu35+ImFlGd3F85n7MBar+UcvXzo+3xbj5dtKig9+B1bijjjascAFDcqRPExZ+Hl7gRWO7OFs+cD5IQmstFkTdL4OI9fLQuHpU/bcdf0bJb3XsnZSbv4SuEUHPfNCrSe3OZbuTZ0Y1UgbDlXi7tfhXP/aE2uOZZLoy6LgmF/OurXaMKoEX1gudcSHY8cAQEnV2ieuxdUk+pohpUw3PIxBSn1xxhnaATLFabjh2PFKFb5GFV/eWPmzzGQpnmDxMs/0uCyUHhmbAwb1xH0NTnTr7XTUe1+K81emM8yl3/QFj1ZPCh9jLZnddNJz2UYF68AJ6yeUZCuK8n59dON8e9JqF4T6qd6gcBcaTprvQjKZQ8xXJQHmw9BkH88FiYeFsOv2IKlf37SpX+vqPrzVvb48BrsfuzBr3aW0JCaymdWKcHTlKmgUjCM89ebkteXkfimfhftKi9l1YStWDCBwaZAmK7cNUNvez+6q3QcEhcdB6/QjSTp1gk7M18NsepojpikDqt1JCnJ+yrrJ4rhrhE9qH5YnfLbunmP8kMK9dzIfXuOgc49IdDepo+LveTQ4uhduPFWFmpf16HJjnIwOzgWNAaIkoqMabbBeHi9VRpevN+Cj8Lf40SZUxgNa3neWsTzD3dwx8J+HNMrBiJ/heBq6wsWfnMeLTeegU07xWmLUCleqzGm60FF7JKoglKSlThmnzBsGrzMl9S6aZOAHkV17EVl8Z/oHd7BYjn6+NfmIe5s76AiWRPIvahOLrq7UPBkCh4XbYGQEQfIXEQY/vtkTbP6tbA99gjXTVeDEA9Dtuzvg7WCTaA/vYdiNSzRZuxWtA6V4AvFkfR92gR6IqMCaXeyOUQjiUQPK+Hnqy/xjNhcqEk0gvh1auitHo3rfp3niI0Toce3Gz+1TYUsmoV75M9ix4TnkN/djjq5WRzG53lcuD8amBqCpm4x1G8xwW+Gz/jlmzdQLXGKclJ9qTXqBgQfPAAXB1bSqHFjYFNxFaV6zqXEo+9gz+kglP1jyUVvv+CRbQ2064UYZGtvB6XF8pA+JxeDsxTB8qUuftxVgUqvfPBG/2QOO3AZbsbZYFH6HEjaOgFOeIwh0dNr4MMIAex8FIEnYybRKf3ZsGhtMoQPOef7yZs46IYpKBw4QMEJCjCtZQFdzUvlpBtluDt7Je6cdIB07N/CE0k5DG20AjEjJZRYcBa1TROpUdWdnRXmYy/1g5fYHfxpiuBcYkfjDo2EQfMmKoq5xL/zTFFr1R0W/XiHBU8fpLpOL5CKn4OR3S9woFAF1jcYAMw8B1JiR/j1RkkwfrqfdzQMJz/bR1C2ypWrum/wkU1DOTrkgHXbz/KSXT9o2F07dBIXBze3vzjR0pcaFYzRdU4j651EGNzixZd3H8apr9dRxQ0fXlqjS1cHy2jHPntKXz6CC/5bCTJRQrB0xU0+9/gG2Ss5wvW6VTz1iwNVtmzGMWuYOgMXcor8bb472RL+ez0NBnJHwFodFbqhW8yDOU1QOHgURqns5ezCVVjyoJFS2sTg2H9b8eTGvyzr6Q72367Al/9O8OmRK6FgQTgaSFRwoOUumqFNEG5zl40VP8AGz0VosGQHRE+OB6tgFy4dmQT5qudgvu4w3CMkAB4CsjQ1NovC+4Vh0OMYrHQahv+m74AlvV5g7m9L/bv/Uu6icdAnc48nJ2yGVMtnqHZ4LkSuHkb9q4VwzfnPoH7kOhyubBzyFjnYX7wURs0tpS/+1vQr4R6XJKfTf1v+8ALTkWTZ7s18PIbG/zCDq3cuU1r+Tcpbu4jOST9iP79YCI3/yVNvDpDfzBv8n/kbFpaUBYPMTBaHAZqmeBfWv3mCNxUyOCXKga4258KiDa6867YITZ4jA7/nSOPdl2dR4Pcl/CP/GAU9yrnyqxX2Lsxjx2mzaF/EbhQ6JgDud43p2fYUnlztDP7rr2JpRCs575/IN3UbUfqpHZ7bsZ7PLUeQPfia1K8HQtFGZcgVicW6ZQRxG8+i08MtvEcgBg/7O7G5giLssJiKb+eUgkPjD3S7cxC+va1kH0tnan8ObJexB9USHChJRhgmJbTTHNbjWPCAgbfjUOqVGbyf5QdXhXfSbatq8JilAC69YyFCcQfPFThI11MWg7ngcfqefIi0Dy2ER9fPoFxSJFn9XAkbHHTgyYomsB73CyfPboStYiY8o1aA7kQ3k7eyE4y1zmTRJ5epVsQSVkwJxvh2L1S86MJr3pVAisV33CbRSkuGZYLd39Mg8HwedzfIQK+lA9QeN4acqTfpXaI/uETooviElbhRdwrZ5t3CmJ26FLRMEvZfVsXMQ7Op9uVBdB23n5+CKwYb1GCOqQs9+zuB3LwUmW4pwYWDVlAx8hJmTj5L2rMuwQ3vefRy2nicoSuPsktGkftqZzA30YPBjhm0NfMppXwbzddVffj4wfmwrfM1Kl4OoPqKCjY594GT8gQhd3sRVAvNYBe7HgqzfwwFOrqYkFwL4p8m0O7cclr1Ogl2R6iAk+ROrDdaiBJ/XKhAdCX8J7adv0wywUUtn3Egaz9H9yaQcKc0QEkTjHYtgttRc1DcM5565/mDpJ43eaW204SXhdQi8hBVSmXhfWcw3AtLoZNn5lJZwFOq/Xqapof0kfKJPlr3wRW/azuy0VC3v/t5iiIHNg15mRKMrr4AX1vK8b6UFt/5JMeRwfMoxywU5m6aAAfkzLA2sRfaKoPB99Ui1L+xned2P4ANGR5kPb+YbEtS8HefIZjc0+b06RGsO2s0N79IAIvXUWjUFQD7zvrDGgvAHrHdPOGRInQsM+XfpaO47FwjBFakkYXSJO5XMKdOx2CYmdGAMeU7ic4bwFXFVtDBjXwwZTzWe3qz0TtnfK/sjpVzjWjxMk00nXWTlzWYwzURHfaaXIvGfdn45o0lffv+HdtDc9g92J+DfrzBLW6vqE5MG8o+baLseWspxeQC0ssCfh13gXIqi/BD5UNK12mEiSyLk4e8doVwD47K2wgXZtvj/ks78bOZFKxargDyaWooKlSEsheDSaTPAuosfvPwMdcxNGqIRyQ24YhXOfw0ZTNMDlsPTrequFRoDdkU6EHbuuew+ftveqn/iip/Ted72Vp44PkLvHdlqHMi/+APM2PWVhKF0/NaYa7WdT7eEIfbOzKhQHYJ1to40nwbwpaXrvhJzBosdgnBfRlDUu1QQn/bId+WyYb+6RLQH3id9/lYoMPWhzA89y7YS6uCn/wteGm7FN1Kp4PifGFIFn/JwvK6MKv8K/N9EZhxz53maTLwyjn0QbYKX+2bgbMhFD9ohIHHpoO0ffgN8AZ/krd7xzeCJGHfxIdgXXqV/ny9TdG79OnBf6JY86GWd+TYsJLnKW7u14Oqq/JQ9/4uqmunUOAUTwzKmMKLVu3gzfPzwCNxEoiV+ePYHeMp+LoObAkdi77+mQTfY9iz9A6/e++OSbaiqH11BZx3Xcn7HdbCc381aL/Sjful/7LOG0lIrrnPkteyINBEBO+sFAPR4zugYc0piFWWgXStMTCy3YD0A7ZTueVjegg+9O3SVnQb7YFbWkbAtjGJfOaP7lBfd/EdwXdgneKKTbd14EbFP6qk07DkVBCui2iA/F2/qCFfGr5Zh8OhZ8tRKFOZj+RtoZYtkVjfGIatDwELlB5TypJ5sHaGEDwd3kYDmbPo1Om38O3hJJA1ayapZ9XwU+wvOxeM46LQERjbrw+Xts3CR3IN7Fe5l4S6r0K8uyq8f5bAw5L3g+zbclw/dRNMW2kB97UewYbMcRip/QVHf3hG0euW0vRbpXzaoIQ6S6bQpfdHoIDEoDv0Lv/z7sGno45Q/pb3fGHhHFoV/gxXf8mkQMMAOidii1WbNGDZkQa+u6IL8x3aUPXUHuzbgFT5zpj2T4rC7TWHaZzlCY6YNQ4UWv7QhYz7/GV4AtnPUODWibMRjULh/G4/3hWcR3nvXVHtqCiM+hMFU59qQ8ykM5BgPozs60phT+wWjD3qwCP3VnL4aHUYoaMLyy8vIKWdayHvdAQ0tA1jMvuFPfJ3yMnBCtpHWGDPeWU03mcOje1vIXwhUMrUD+iZVAQtPzpZZ1srzZsfCwELZeDi0QL+st0anNvMef7QneAiJTx0TQ/KTcpQzaAH7N+vhSa1F6wmu4AmS4uAzN9HvORHIzwOOU/rx1ngk1ErgJeMJP+MSihzKgSd2kecenU8xGZsp8cTtWnCrWJObDCltWs1YHO0EgakSmPNHSUW/n6bnS+OhkvNOyDEt59PV6njkymH0bX7BbnETYJqO0d2lBGjB18d0DxLFmTLEznzbC5q7yjgju4urql7C50PPXHHyLvYYC/DplIF7PdGBTbGv2CrvW/JtkOAvBUyaJjqE7rzSQMlHhdDqJM6xBx9ix2LDWHZqTs0Q3gxPRnmCVnvvTjrgimDsQokTJWjz+6dlN5tzU56qjD6707wa5DkO4V/OEprL9ZOZFqT3AXobYj9vWcY9r7BouU6MMJMFWVuzGAHgTlQnvwaDRNvccDHkQhPn0Cu3HwqP1tJ079Zg8eqcbg5qwAVvBtRo66bqo8o0zWzO+R7IwxSm/fhOp3pyFeUYGN+LhgK1kLog3TImDcA8pMv0CvBZ2iVdQ6Ev8pyjfY07potApVnmqFy5wxcPOYOjbJ34/lvxai6WJx263nQfc8kHN44iUVMzKBkmgXqez9ikS/3qTawgb07nVHZY5DeH9uG317PwLvZM6jVHOCS4x7cGqHNWQeCYPu/bzj9HVHCvgvkK3Sa72ocAP0QRQoSFYav4//QotwOUHq9m72l1elwgCgIWx9BGLqz9sf2gvTXLfh5iTYcaSoC0z9NqJ2nSUejmtCh5DLZf1sJc3xc8Gf8aE6UCx9yXmUo5AP8S1sSDBo8qcF1EdqMH0YOtkthXvQj/NX2hp6+X40hv6Sg9Wc4G8xYj4NTDSnu1VGumn6F93+cRRdW3KcQgUiYGreWrNP0YNI7WdQPn441Q3nySB0PBR9DQS4H8dOJdPi+pAmLTR3BW1AabqmcR+PwjbxzqOsa05Wo6pAgxUzzwrTjmexhcI2/7G6BO2s0oeJOKDRpyZCVvQe3P6qCEU6J5GgynouGbYc+8UJiwWRKsGAwejAZddzTcN/0BOSAUlzTP4ZK7J6y4cEtkJ6jxioysVQ5UhR+uWvz7+Sb8DUvmq0j7fGFkgOixi5cIqaHV0744ljHam5Snwz3FufQrvpl0OmwGz98ugLG7zbxtsJYkH2gAFovbHFFynYuvS0JjWfMqfeDK3w92QPr1nznA4+6oPFLE268OZyq/ExYZvoH7FQZBle7h9zWTpEz89/xE7McCneXAxcvFXhtOgFrU1woqKgSTftlIH/gDwjmjERTrZMw/OEjSIkshVXJgTxlcBI4vK/DQMWFPFZACiRvWfHK7Fp8t9cCfq+dDaO8t8BW+UUQlXoRHxXXwb0xoqh+Uh7WqvyGywUzOeniEI+tzoR9b7txjPBL3ui3g53eLsPT4/VZ+vIYMBB/CZcK1uBitwR0s7ODvgEdMgpcwcUHqkFbIJMml7qgjpA5zFmRxE6aEvBS05GLtILxdLkgnRua/c2ninDpghD6v8/Ep9qCkDDdd4iTl1G1dSBdn5Q8NOPvUJcuyVYSqhRv0opCBoH4QkMZli+7gpsrB7HoXBns9S1mBz8nMsj+g1pJ1TSstgTN5MJQ7JEuRI5PgYO3o+H2yd30bF43zC5az9YvxHCx+GXevqEYjyR28PGXCiAR4EOj4h9D8rpm6tSOYfURhdi16Aw3PAilppRmnJjsiaNuy0DGMykw680c4hMnVB5lSJFZv9nwoh9lXanBNZJ/6OTTM6S4Wxv60oLg4+Yn2FZ9h43iLSBuhSwKzKqnr+a/WTGiAqcW50BG1jhoaTGn76xDZwssKWD0ZpLNUoPTR9ZCYkYix86qgfXjFnPkWD2YIenOMeJj+aedNtcfXYFLPreTVM1iGPEvB2J8ruIY79d8294c6iZJ0pyGQkr6VA4Gt6JI9/o7tGy6DS6/t6JmTRwOViEtXKwFx/oKcf2ndRh8ugt/aLbxzuafNK6nnqWGb8b5g+PwuOoW6L0wAl6r3AOJ+0F0dNMsBA1n1P30EP5zO0LGt4g3jw9j+f4CnlZvCKW+NWzXJYkiU5/TqfYoahpliNmtmuRDSmTRdB7RPBdOPpsIMSreiPO1QL98B138VEOL/xZj3kVjGBwUoE0it/DMujCIytGCZ/FJ2ENytGrmIFopVOP0MY2w8GY9jxBQwv9akkFkUg56lIyEyMsl3MgJ3JJlAMfb7sOJFdtY7MperFA9y5MNXnJo7Df8ISgArQISUKZuzXd/h+NM5VxMEemBJxa/cJ3GQr5WkY5/Ni6iEy428Fn8E58ZXYaxSxTo1P0qnm11GS4Ncf6f+GIOvTCIyi9S8cFSKfgYFwO+Td3oM/wgJ8lvYE339VhzsReKRWbghssCbFjqD0Uz5SFmnhvf++zPCmUnYfS5Tlq7phx2RLTx7gd7sbX4Bb6WUKazI01hrb4BTsoK40jxBjLedowaFrZTkF0bb739kYeXJPNVn7cwfJU8BN7Lp9Efv5NmvDq5/dQkP50BGhtshu5mYqRRUIluZdEwXm40fGpmvNmWS36Go6FIZBFOzQpgzZGO/Oi1MJxGWWwu+sKu1+TB+qQYK4AS5j59B1PPnkelF3qQ07EU6nuI7S7V4bC4KoyfOBkGhUy46+s1bnKS4oj3yTjllTc1mJ9FS/FTlC9VwjU97tRtS7By9jne83EsX7VMginDxvDprgiuPWWPXTkfqWvKO55lJMHSY7Rgy5YyyFfaSF2L90H2hw2w9NcSXrJ0BBoeXk+n8p2BXW2xaddoOLRejsqF9tO6yWJoIbQPuj2Wk6njTIxVl8Jtgt9A5bsJChYIQIWqCB0pOQW3xGfhlo0lLBr8g/PPz8Vfp4x5U0I0jVh8jMXEBMDSTJkEFKPpebAWn0j4j6DiCt2Y/ZnmxHShjPREwtws8L5sBvnyRzGkLYGk5XfQi+5tHG/Ywr6qG2CESinKap+DsJJAnm1pBI/uEvSo6bPF8H+w9/IFHogU44wNkhxiWw+HhKeCY/lz+DR3MrSceA2rSrtJUEaUr/ncB2WRDtx6dg/4i3SDaFUklbUYQuFPgAmr43mT9gKKVY2guH4ApZwkzPwSxAueXOMN76eAttZabhSzgTJDa9a9Y0YS95fhRY175CE0nnQXC4CMaSwX1tShpd5LVqtShR++8/mlZj/9cRIEtaiJ5Ht6HEjeFMUxGhewt7iJTI8AxyoYgM/Dk5C5wZ+F/xiBwG45fNVTCG3zb9Df1F4w2W+DR1/7sFmBKlwMiEbHxmEUXRIJZbeX4T+9+zxlrCNWbogEV9tAyPgqANevakNEsi3gWgfSifamz+r9pD36GJn4BJDrUJaXtEXA4xhjzHtkA8LSnlTrfJSeqE7jC4uewcELa8HYaQBSdx5F9coDtNijiJ2jraBy1nrqkmumhPWfaKSfP3zePw5tcg/TpI52XHRYn1on7MPff8Xh8Ashuuf/nSVK13DI8P/wyJRtvDnDFu8XuFD5t0rI25WLZ4o1QGevKLv9NCJz58246Mx6uqJuwjdWhOGItLnw2m8uRGyVpprSUbB6xye6cukc3nncCm9KWviTeStImIrRzHVnYLCxFFJyxMHZexT8CrQizxWPOEg1jlZ/KKQNt/+hfuRzfr4rEbeNsKGQqhBY3q0OgzoncFDHlzV1slEiaZD9sYcfpYfztNFjsemSCUYFi2GfiDXsbniMgn/dKXFBOOfJ7iKNtgc8b70oOm8PhKZPWzj9wTrWu2MCHntCUU3kGehnR0EvukKW+AK2OmjFt4IM6Potef61/xCc7DIA762rcZddJAjGEjt/KcHlMz1JtOQ/Pil1kB6U9qBK4C+oO2cKBxNyyGtMBy5X0GMNmy7ec+g6+1ZP5MT10WAobgtGi7zJ3tIYxBwm4CKX42zdW8GbTm1D+zlX8f2LWbjIZCYa4DcumvIX1mzTgPS9XvQ4biu47lCH2rIv/PlOGlUGbuJ5LgH8NuMDN9p/xpz5ajBhsRElDzvHuP01BU90otlTh+OVliFHS5gHSsOek76yHq2/xzDvZC3uTb3O1h+zaFlJBm7P+8rqnQa8rPk/iDFez4pLkliiSQe0Nrjyjt2h+DZUFcrikI6ff08nfffjg8VP8HCJFK6yncGNZaJwW8MOBz+6cLa8PtVOnw76N3ZS2E5n+PxZHNwtN2HtEXXalKUHf+a503yN/yh1dTitqnpIv84S/S6LHWKvdUNu0o5iJ85BSao8qIZGkeHPH5i/bQeW3HGB+H1toBjjB97XpqF0qSMtGFnMB+9bwaSgMBJem03r9ufBhEuWnNCdRU42QbzSUZ0yCi5i1O8SKp5qDel7NsFiexsUOL2OFSyDwG5KK0+9JwKpas8h5p0HPfPaxl3aDPF39uJdjR76oGiPpinZtGekFOwdOYa3173AhDpp+h14mRpH6kPP282w1vkICS/JBTgZD0WCYWzpr47PPobRWyEVCtzfgHKrxKHt92aaUO9DF+4qwDxRb6puQFjhGsH2Z0toykA2HilhnF8hDyLkzksaBriyy4NGjXuDfrVdlL2hkyOlxWnevEkgPfMQiP0YCZM3HGJ9h83Q2o4Qt3wk/5itCOseVlNByHWYr/FsyEWKwLVAAS5l9sILn9l0okqCTWU7oc7ABM6DAcyOkQLX+3Fo2ITcZj4M5q/qwrrsVHY5VcBlVom0X16XTLQ/U2iEDoiGNJGZgQTkHEOoaZ5D9nFRMOnnLnhUaAX+33vQ66AoHljXQXfiPfjccXP2sBeAL54ucGBeI+9fiuTk+gpaYjZBUeVS3n7BgjLOmHO/owarJY+DWX3AKvEOZOxxEaMPOuLD/uO4O3svi3a707DjRyhPQI+fSCgBLpuHobCPP43qxijFDdx8TAYtvkaw+7J+nPt9K6yySeSMWC3Y+boePn0ZYGwIwCODsVy2SIeclk6nfJelXCuygXUOusGtVlHI8ijlYLck6HhSTubYDkuDtSk5MA/rR26GTe/HYrKBP7cG6IH7vwRwqhXiVA1PfrfvN+utfkGBDtvQZFUqvL2mT8Uj6iDGXxNWv3kM11RtoPntcF5aJUjqs6oQ6Q9rXwnBNeOd+NwMVXTTMwM7wXr4eV8antxazANm53iLmTW8n6MOFwo1IOyqCWdPSKbl5TYw5XkBZ4Q/x5o7//DeLHN8oGIL4oEedOLwEq4vCofHx7Ip7rQBREVNhuzGg9h4tBYEKxqoa6hH7kwTwCSnMlr8pxDevOqiV2ZToNXQj7QMe/DkEX/2+aTCsxTzuKmtCg+8ugMTHGbS1lIfEhOwBCvd8bjLqg0Vw2thbfJtlr9G+GRob//1n2Ot8lzWtLnHDwcN4PB6KehRqIeC1hI+a7sa//7nS1XbVqLstS68bFRBhVvMWKVfHoTyltKStWoY+tiVv2gf5qqrD/DSrw488dwUEq0tOEDFEJ2E5GBDQTj9enCN3CRLUcpZmSZMV+bQey9xpvhnDq0txXca86B5jwU8UyumXLXREKV6AszzXvGC8Sac98Kef2WG84RhafT0dDBPWDDEaP/Fc3W9Pv74/BmtdUZhsPxCalf/DG7h3bgntJ8WKpqBq5gMLBhYxkK+a/GhwAhcYKqLrlOTYd7e06zoYI0Tv3hSb7U3S5XoQemccPBYXEUjQw5i0cGXXHwsCt+aj2DngfP8ybQKOjzcSAMEQNz9At2eMZZlZqZx7rUCvBHZB00n6tgz4RlfmuAIwzdvxBqwgK8tbrCgf4jZbu/FX28DYdRzI85IOAeJl5bx5vR3dPJOE1sn6oKr/jcafFLH3R9T0fXJQsh/8ZfvffHFqc3/cNGJWFItHsFXi/Rg80wXOj/1E1cln+GCQmWa/UMOF5q/4s8DpZDRVwBxPyLAr344XPr7DOx99qHMpG7YWpTNn2ZP4K2fqsk2tpuEntRjf5glupqqw73lK2iawDk4HdtMO7TFec6+Bshelg8fTOJJLEUC6tyCQDl5FFSERrPqASnqX3iU9n3Ip02L36FkTS1IVHSyrk0Z/hL8wLUfrUEk4h3HKjfRMs9A+iu1n2LdPTHJUxMtZiyHy35uJPhqKbTr6sCLya+pwsgXhPk+JkgmosDcXpp7KpF8nLeBV3AvvHLWwcZOCxi2vY3FZ+TQgS3euPDgZwheFIUv7pvAnZOicKtrkG6m2FLwCVG44D3As+uWQozabrigL88+X3J53H8aWBniAXYPzDHnTDObBE2C/tP3MMwvksYq9dDYuLHwfWs3x00bBftDb8PFt/thliGRR44Y0JkuNF3xj2enOXKXbSpcUc9n7YnjoGHHOboWP4DnBTt4vdQIuDmeQFenGcb3voJJ7iKkWVNH3SKPEb23g2L8cTiWPQ/GjZ0I1ydfhFEh7WBbthht79rB9+dumA+mcGRYHE7dUgm//E3I8yWDUGU71b7wRMfiGMwd7oH7TmpTtfw/jJKYyLeNa+CurDk+Xm4BLV5L///fcZTwTIJfLfLU9c2Vosd74muMxKkNlnSwMRQmrhCEdz6GqDJ/Jr775YOi5z340bUQXL56yAMldXjfDksozatCq4nWoCm0BPJmWOO+wE2Yf/s+NLppweMRnTjgWs07vefhG+dxfFDZDLS/HsXLEia4NK+dMwNSGTf2ktOuSj49qpiN6jezVbgTWzw1h+ib27BZ9wttSsjn4obhcCtbmT9d1aQJX5R5s68vbLbywY32BlAaep4tInxpfOsubi/Mo7/mXaDoPYqXi+tgR4se1Pm859zVRhCZMAqmL3rEyo49mNP7EONk+jA7QoVFze/xlD0t6JS6B9rWmUGg/D6SClai7YXvOO2fIVjMZjolFIBTPo3A3MEV3PynlXp9pOCCdDZX9qtjddM5rFUM4Zk1PyH5hD51bcvmYPtWiuu+z9EtMjCmx53LLexJRYZ45jsb1tXPQeXCB2iUZEwZIMi378+mf7f1ocJ2kFa/rqTyKSqQHFzMY/pcWSv8CIgmOfEGsVMY9FiCdl+RgHVX7KFt+RkKdqjkhA4VvPFmM7t/CeF/Q2zyXjcSLiUrwbJpIpArtpL77h/Ej0mO7DJqGnm1lmBkkBg3Hi/ifT9/wJfX/izbLQNHd63jXf4DcKjRiaTt4tAiqhL/+i8Ho2RJWvFCgG1WWfD1YAFotr9HOR4zeY67JJpME2C9OEfKGO+Puyau4aVi8ZzR8RZGVOjDnahgMJxWxA9n5kPXhKkwc+0Xzq0WoqXunVxkaQOr9o7C5AXG8GjkYU4ttKU/5xfS3qflEDBRF9O1vOF95iDZ9L3Ekf2aFD5jDEw9EEYUac3yttE4/4URbssT5OV8m/+t/wu6L+Kx84IOp3w2hq3TdWh/OjHGlZJ6yy8qSljMMamm1PCtD2pvjsbGNcG0V0YA1ibEgdfkevKc40X5Z2pR7ogqr/GbwNeWNqCZyye0mvcIBrdPhkkFt3i44HusjouhfYfGQeH3CvgTJsViFmnU2ZM9lL8iIkVVOGCyDDr+8+ID9yaBSKEEHhO/QeFBw+GElizeFojEsgRVnL9+AvguT2B/5T720Nbl4Q2WIFflCTZbAshKA6Dw23A+u1wUEpS1YKbRZH64sBoN5bXA+uV6snCW4tY76tA2cR1baFXS3UvL4Es8QuR5ExpYcZ30Q1RIbF8rL1BzwDl2M7Fn1EaaGKgLH3fVwbC/Y0HgnzXkiVnitgnBuMi7HGJ0H1Fn62GUCVKiyun/oP5qFuUMPWvZwBV6KDIRLhuf4V/KW6B+9k2o1DxJ15RWQ9hSKdhcW8drFtnAvMx8KprvSAetLVBowBP7AuTQaOUeWHExHV34End888byMBGQXboRm59Nw/uRznzS5xpkFCIL95xFNZsZvNHHF8q+HwJd25EwsPs8BJx5gQoxpbxhxX8kHp4ChjPm4sRDt3lfeTJs/PaVG1KFIdywA6auOUPctBVi5Q7R2i2WtKftBNe+8qPQjm1wWGQaxY4cCdVjbvDkhq80+kYdbpSaOzRLe2q6noJt13updswxHB3gjf3ZxnDyqwm25XvCpqP9sHmXHdQ3iUFomgImxemwvFcXWMS1U/w0DUiZ2AvWwx/w+AWfyNv3GvuIOtKSwiSO3HSVonLtiUt8IGeSMuind0Chrh1bvM2FMa234ePn5Rw2PZVCngqSUn0Tnz6yC8U3W8BwsQn8stEJKjaJwc4aVdouN58zRq5i8eeRqKslxT0bH+DtQwBKyZ2wJOcOXPh5ju93u8CTA3kUNEuPnFU1UUJPjNb4/4SsVmPI2lPBp798hzf/peHyQ3to6oY99PJXHi1I2ouaCd+gTWeQzKSHQ/jJHVT88h2vnz8TqkpPsP5rEW5e8heD38ymMdmzMVcuBZx09OCKUQHM6noP1c5XsXN7I/88rgLaFmG48E8xOo615nEBZXBKdzT4PnWiusvJrBvgSpKd6SgYEwG6YxtBMt+MXkMv7OQ0nhgyFkqfrgAn78eckLEdPWtdydfpHp27KgBRB0Kht0EKtsd/Yg9ha4itnMsuq/QhyOsVFId0wYy3k9BeywHM907GfSFHOOj7ZpLfYQRHqmtI8MY/1BZXoBvCF/mC4R7mJSvR7uk/SHKqQOnzC7BbWBlSs+7xmuWjoffwOCyPNgcrrz9QI30Xg9t34rUFdzF+nR0tbVeE3tm53JoTQBm5KyjuRyBWKJXiWdVkSjveSkeOh5N58W4UkVKDpAo3LI8qhF/K7yG85xbdcinkmCvX+NON/7BVoIN+OgezN4yAs49k+IDvKLgrVQHnLFVgeFkGrhzzgOxWdrLY6h4+26sH41KGwy6nYJx5ohnUH0TDioKpPNV6JRx+0QajCrdij+02OD0zBqbdsgAv5TtUO2s47QhaT/jsKbSkeuJFn0/sqvuIbT3EcUl7Gfw5YwJH7ltj08rjdKfrJ7y38QH77mo8L11D+/W/YtTCUpD6eoV8HfVgfWviEJPKsNFPATY+7QmekoJ85dVbfC+2gKUfPmQLpVdkaWoJU570YLOhH5/9t4YfTyyg79ZGpBP4ClOvD7n59WL0vP6Qf53WhKK0ID5qOJ7+NVXxXDF7DPEJx0zBrYiDd3lKpTFWLtWgr+oKYNrchk11RliTfJGqjwhh928rWBXDfE19AXPHapqybgJ1/BviUzMDmJdnBzHFEhyR/ABfmmbx1apoVtJ0J5MuP1bRlEVJPwvIUbbkKbO+Ue+LWlj+y5p3tKrQn68vSVO+kxIDzVjowSPstpKCW2u3842YB+jlv5vl06QoYX4ZvEkSxCdpwvDAZwR+lCyCrI/qsFrhBZ7OuQV/Bn3BfPdBWNi0CjWnWJCCVQTnl1fg6yd+HDJOA4ZNrIUf6X9x+44z9FTTF1wVXEBGuAfPt8eAR/51zDjbyaVRw2Da8QcUcs6QpkWcpfWWB+n4ThEsGttOfZ+BHUzEoD55A2Z9NAYDq+VgnJ1G2x6Y4hSXD9x8tI+nQBLXtMqC1JeXyLNK+fQ3BciDDEgY3gi3tZRwwf0WfvJAFuWi14LFoh7yVivl4abmXGZuAIrGxVxgWgFT7ILweaoa/piQRipmnnw2JASeRVeh14nV4KI8NF/Ry1D+fh1Pff4Hdc6J87LSCbDxWhZv213JMxuXs0jYFnzYbQpnXAU57+h2OnPzH6+5Kcq7q+6zVelcGre+mex8HsPZDdPYNVceFvYehB8y39lmcgov+nMZ112WxM8dn7ix6QoaVajBaIVkCn2sDoplbWjsNx+x9z2NfGxPybNF6cn47/Cyvp+DrEzww9jZvDNnAuy5EkC2Gy340Z7btN5Ji5xKh9jJNoe+eL2kL4EyNFvvEKrUGgKKFOHC28389HA0aQ/l4L+Bn/gqpIHmGtVA+jKihYHJsF51FPx43M68+hVZ1NvgpvzT6OIkCc5QBRMnqHBtxTuIbj9Jx4rkoPTDZwiImkvz1yST1E8DFl74AS59b+LNOsIoYIK01uQwPp6iDRX9UWB0YhrsqB9DZjEeKCP7l/fn58Hadc58wfITxAYfgg/aurBH1RHnVN2jp1ejYPeCJ+Ao9YBDveaDcdlt6ArqB6shzn18Swbk/MI481csuawcD1K9q2j8MCB7zSL8XOTEYRkfYViaKHds1oCzdl38/aYY/zf2Phvny5JmphpKGZwnoW4rylA5BJfW3uJObTWQHyFNN2fPpu0eDEeDsumb+1g+LDkNbwTogUhoFrp7mvO0L9pwfMRJ3rBaBb/fuEYb0hRIsE2Ejs79wUvLEIscDDFsuRm9mzABXMcNgz+P+uHMqmaEU09oTOdF7KobDgV6i1Gk4yZW75KkP63jwcvrydD7nMQMWMNb0/Rx98okvHUlnfbGbKLKjDV08a8zlW03h6V/TTjzVhbuV12Oesp7QDDBlQdbS6HMeBa92GmJgy376eNYM8iWOQij+0Mg8vkC/CZlBCrql0B8lhrJpHyH3S3JZD/4mWMmqUBhxylOOrkOe5Qfs2HVQZ435FzO8sfo7XVZiBwoovPiI9BSTglu2fWyTe4g3tuhic4mWRznFsnFDvGUcN0MTryMIJ3OqZwYpwhh70tBILCBBKxUUVLgPTy2vUT6B1tw/d2p/C91LZo+us2nosxgnfAMOilXRhf9V7H5svf49VsMk7UQKZtuhZVaC/Bk8iosbtGFySe+8bs9PTQjSIWzTqZio9s8MFv0kQb+DKJYsyxpPSvF+dmTQVj6OySKnaZvCld5sogBdKrF89cFtWDpbsgFS35gSthVPDBLD8oYsSD1Lq+fPA0+OD7D9pAoqDhWCj805qDq5lwOux5Hz4ulIEIvjqwkbqO220p496IPpgw7CvIXFFhZfjxED+bRNtkH4DtHBu6OEMBDUUn4LfkBRyp+x2kpf6jKrQ92DDnalq+2+GO+AwXNNgHZLDWM6FhJ7k2dGFkYjFr1Anwh8xe+nTMSr84/Q5/WNnBNmxrEXfsADg9EOEXiHUUfO4ftHt244rsiibdY0cI6OxRwTYb2ERog+OU1rbPYQDMG1aC4cyUqXJ1G5x4/53sxhfBQahmedw4Ho6cycNHZHA+4LOFnZTs5KW0bH2zsImN1bahNuo42eo4scewCdPkIwg7To/RzyCEGj4zkbhVbHvg8hdNeWlLrBn+oWzWH332ez4cuEvj4JsE029t0dHEXnm8oxMjRP2nGs6dkZPCNV3fOooN1Ayw9AuDFL1GO8/GC8IdzMXjxXErM0qMLBeFwLOUJ3JudC/+5FmHCzMlgMtUAVWSW89SYMPi65gINJMzCmW4i8Cs9FJv7RMh2hT79TkaYXn4Sv954ApaKF3n9RnHoky+DCWqjubQgBrp1h3FEji3duCUADj3iPD2oiU0sRcjp2CYc/SMSy4Neo+TuBh7/WYgeP3Im/zGmgG3CfL4+GyX/FrBkUjllfQkD/S8hmLL5G/r93YWb7b6xjc9oWB+/Bx/qJoL0PAlQ39YNvxO/w4PLGrh3RQ/O6ghDC90itNgmB10z67nXbR9uPTmIWyLF0ePCGLo2w4Ke9x1Ambil2F3RD5mV4tDY9hh/z9wHU1Y/40S5w7i7eg9BbQA9zv+GdYdC0fXLIjQ6LQgxvxbywyNzSXvSSV6cbMwSyTagvbgUd02r580+C3HdqVqOXTMBFrgJwW0Xb5gj0ke9AZtBv0aYR22NwP8Rd55vPf7vHz9HaA9pKGnREi0VKQ0tKVtEKiQtJUWRSIV2SUhCZlZUhMhIRkapj1GSUpQoKiGh/Pr+Fb/b7/dxXcfxOs7z+Xw8rjuvyWaNUC87Bjd7htAcUS2wL7flPfcqofuwBZV9icOjuzsp0c2GpEbl8ZRPxpQqv4p/V08FP9ESDqoY5MGmIrh6uhj8pT/wt523UBOHo8GDTMravoBebBeEU6ENqOj6nJaWSaDFyEque/uL5D5Gc4lbFYlnXoTmnP9wSpElDLvfyJKPxpGh5jqwa1HHqCc38YBqJZ7858YFB89z3DZFylQWgZ89uji54BxJCHvQFZ8gjrhuTO1WBAMGs8Dl435IN5vJ+ffU4bJxMaX8KAdP72I+FqQMlj/SaI5MN91QGsbaY+X4TrIO95dJwcDVONq75i3pXGhlPZV6qLh0khbtmEzlsUZ08I4WWuc6wjVrEzANBVSgVexW9g4DFWdQnTzyny3lVDA9Cgy8J4PbaXPKJkOQ61AZ6gVjblcUphqTmfC0TZyPJ74hp4z5pHtuCURnfeOlZxUhcpkwCcjYU4G1NeecWI7ipyKxKuQmOK7dB9ftT2NSqhONezUOjj+/CM97ZtP5G+NhT0gw3k1DdnIaBsnLt2LJ4624w8Ed11WpQPKjAxB/U4gCd9vyEqcUDu64g9KD07nmZhBFNupzsoIYZo0dDtcmPkM/d1Fe6bqSNfJP4+1bgGevlfNzcwF2c29mn4QSUHaRh0Ne2ngvczpNaSkEgexwXtqxlnSURvPhN4hnnplS4ElRsPbRhNDeZsi7cA5DD1nhRnLhwW8LwZOGetpyaHXWBuJqtXf4olIb5G78ZWHfFAq5uB4vv7mHe8TmUYTwe5ZWsAGZbd/Iy3EKXr+kC6uD7pOVVAtaidvDvGF/cYmJC93fK8tJ//Vx7fkGnh2QAIZbVeHM3S0g6f+af5UEUYSJFvl/vIxu92ZAr8h6UDU5hFAlzh9PmoBqrhvMWbAeo6Zsp8rzS/Dwpqsspj0CJ63Pgan/yrg0NoROOYyCl1ET2HugjTf2nkYDsXP0Y/1Z1FM4yoqavdxt+pwd9+yHWYUjIHPyCP4gRKzdIYcF9iv5da8c/HCUhg0ne8lELgk9clvgqJw0yL7XoIbzQvxHvw/zzh2h1WnTeX7/bJ54LYUXB9TTGVUPcnkjBBct7oGlnjjU+ijBB7HhrLT3FYfULaV3zjshpecU+B4Qxany6uBXW4sbXhii+euVIDm0+762Llxut5qf7PXHURf3oV/DJ06VHA3CplfRNPc2zu5Mpj3vVfBAtiHMfNWHk/8s43FBSigfuoX+VojBp7Qt1Nalhh5727B06IxVNspy260FqCBbyi93pqNw4BnU28KwkZ7QojvHQXzxMdobtRYcJMzpcJorzTfZSTqmW8h/qTNpfJQEjfMjuHGUO5zptMRv921g2KhOjp2shZt/vKDOqK+4F47D4sIpsOKqE2seC8Ej1uN5x9o2sNz7ghJDxUhCvwh/6Z7ES1sQE58Occ9Gabzz8hp8eLETLpw1BmvbEVg6fiP2C0fR9QWxEHYmgpMtRsEcwTcwUmoX4NOFWN6+kV4JPmArq8e4c89wLnm7EV2EVFF2pwI8L97Me+3O0qj4TFq/dAOf/+0Ocq8KeMVPd6wW14BJf7MxxHMkpNUp0u8Tv3F341xqafKHNf/E4I3QAQwda0TvXXJA5uZqlno6Fn78NiLZt2P5yaPP6GvkgB9EBEhCoRpWaleR78Of9H7/CijYJQK7y+JZvriVNJSc0WVxJSVObAcrrxfsEpDMtuvOsOMvDfg9WQqehYrzj1WelKH8CscIdPHBxscs6H8KazvESeLFOlwuYwJLcofBGUknXv3YnfZql2KX5RNyce+iuUeqcIlpBp/wOAEpCUkUbDcVZieZ4D+1oyBd44hho6JQ8G87vPNBvpN0k57U21BKcxL+6BwHg54FVNY7Ctz0uyGvMwcF115AbysbbhzK1PcKo+nUEyk2H6YEPRvDKW9iJMyOG4v7R27ADa9O4RPTZaRU2YaJHvtx6nQzUvBUg01ky8fTjVBZ25yXJDlRZrEBrlvpAN9tnlO+5G8235vP7pfNwVA7lN3lR5N7wzw2vb4Ruzd9gEURObRibylWv1jGOgG58GuNBnyrledAv2ao8M3GNTwShFPWglLQNSw914ZGvr85Zo8bWS60BNtRbtS40g8W+azClMVeaBp9CZNT0sA0xgdPeqyCZ9vFWOKWOZyakoWfpf7h8oJgbjiQQwVhyGN+P4WFp5misQ/sshtom68WFGR10G2/j7hTeAXbP9Blw7TppDZgzv8lXeVK9bmw9uV9NnplAGGP4tG00xtiPx+AB3CFDk6ajK6p0rjvZDs0DWug6cVpLCZpCKEL3oOmriALHUH6mTGf9RNyKPeCBDh0OLCvzWl0C1lPf9aIwtxjR/mL7i5yG5vBpl7vIHW9LZ6zewTfb1nzebPHNMbtHSyYYAl6G0WhLlgIJuAX9r7khWOnx5Hs6LM01+sjRiVn4s8T/rxpvznUtK8h8em1VBO3i3wSLenPoygs/i1EAwJ/IMdTFuuleyjUYyKMN6zA5uxpsLf3P1r+uYWfqClA7dQmevj5Ic1ZVsm111Jh9jFLmHG0lted3cQ3HXNwVep+DNnzBael2NGOzEhe8jcfl3fbkPQVNWi9pAbyOzPg/uYmNr86E28IT8OeY9UwcsUlNr2hAs4tLrA6xhhyBTrwmLEEJbkG4K4hxp+/Vwg+a6TTRo9AsFZOgKZ/2Zi9xRQ6rzlg6/JqjngyDXS0MilP9gs+PliFKfkOaCO1CH/m/iOPfEGAlHbKrPyCWqFnSA8/kvNKPxo1cAQsD47itcn18N9rG7o+eQxUbRuN7qcXkrtmD9sp7aRO7510S3gtZ9bnkcg0YUjy6QaH0ZMh3qeSotd/54T7gXCPRfDIl6WU2JfD7Us+U5DyBUye9QF/6euA1lEF1gkqg/S3H8jf5AAIpqehqXkfvNbdQdez1HmVhwf/fCoG4pv66ahgLx3X/YYzQgIorHwzjdvVR3KP82nthEpOWFQIDkOcLRwUwT9eqEPKb2t4oX8NTJ4LotTWLsy9H003G1r4/YLtPKFBHDqHI+kdFcJ57cY0XteR3d/UUfu+FWyw8yubnTOiw7bTEJcawx2fD1h+uZ5sRauwKtWCPn+Xp7xwL/b+0QSDw5JY4UgorHgqB9NUH9CHpggW2HudfMPLSdBfGfbavSb+IUXZR6NB/95+1lcSADX5cK67FYD2Mq742G8f3JcP4rr18rxr3iWW2DUdR+i9Yq0Nw0Fm8xj+F4e86OJEmv1kNn87qgS2VaFsczeTevtHg8zrUv45xRzGxMpRrq8rby2dyCozVw/ljBq4fzhD0ieDWK8uHZ3OCWH0WCPQ3f6AumdIgsFGBV6/+Ct823IB3LKd6by/KnzJE4GCARO6NXcUVChfpzORJ1k9vAaPjA2B/sTVdPWsLeiNuYfquyNI7GUqNEaPgitJT2h4dy2f8y6G+HnDwGHMSq49NIqWjnAE6zpfeNqxHzVUFGHfpi/sGJlDYvKbwGRGJB02ekYSj8Vh18ACuPk1kSsKA2lq2jiwtMsgh1X27G/bS0Xvb8LOyE9gaPuKdyZtxIR5tXx1vD6Yr9eFiFwXWvinnYu3OoGN3Q7yaw3FPSe2kvZBTY5NO0rPrj5kPwsZaH+2g6e//g5T3LTIRr0as+8v5N5yff6wbQH0y5SAZ/4hOBE7DfKX9cGS0eNR9rkbzNPKgdQnXSDgNImWZfmC+7a3vFExgZOfWYJWwCCZX5yGbg79WF1XBTrLH+MakwuYZAvkeaOICzrO4qk8SXDg4/S4o5/bf5qwzNxu6KtWhbzZziS2+QX/7luNGzIWs+TXqaAQ6YoOt1SxceEWfvvfEdrpNIeNGvNAH7x5zqQsqpUDNMhmcFgizAvHDeBTH0facc0YO2NGkNl6JbaNUmTPklr8WyRJzZXToO3Var559SWkZwjzgOlejFVbTTM7F/D5ha64XCqC5QISeWHTKFCJ3oQimy7ywr1JfFLYBLd9TOaicDOuveWJx3Zp46bKRljTqANu0Q0YPHYX6DrO4AfcyLUGyPvnO6Lskq0suM0KInYSNgdqwu4vl+lyrS+5eCO+98jB/S2mJOfTzF3uVzHn5UUW0OgAo2YNOP/VC8o8T0NZSyylFbjyhJxw1L4TDTdCP+IPWQNOXFOJ2junQPcnD/K7Zw/nK1TwiuFZjg/aPcTNiiBQ3w4ssI4OL3oO7U7KMMNCn/Zl2PCTUXW8q14E3suZYUTDLto0uwZC4rTI4uUNzo0VgpzuteyhacXD9OzAt9wEV+j8hJVHzPjPzxwQbNqL5T/rQVHECA6VmhLv6ILxl5fCt58u4PJ9K+kJ/QbvnAWkQymUvtRliKktIU/RF27Pl6BPqhNwEg1j5QAlfDBSGAQstOm/6WZ8+c8XluyUAONha1F6XhkP3KnCZUXD6IjcOPo8W50vR2ynHNl4SM/sQtt1IyF4nyDZ7b6Dx3cHU35vOy1YsQXyr6lDZpQNjrv4GZeIv8XiH0rwOvYsXl9/mlcoTsLVXdvhZsorFG3cBNt/TefNxv1QZrOINkQMcYlIM6nKZkHJ33s8kJ+Oi4fy0WFzHDonNILEuTkgmZGCr0THQO3AG6jZNoKG7TZGNedVEPp6I2126oK3u4fxfR1nHF1xibsWj4JdYbHoqBfI9xar4C7p+xhh5sH3htwl86I3uoiVkc93Nbo6Tw3s/5nTIoNMDLykRFZynyl+Sz2XxN3n0i3P4fX+cu5RG84WWxHebM1Gi4l/+D8ZO/wluJ/txA9D6yFh2jB7CU+fsIBrg9dywzFjGNHxmJtaxvPKSnNu/eOJtik7QKohAn6v3Uc6l3KGZkcLx6YS5Cd+gk81zhg1M4Mf3ban+m2uMFnnDtzWNsEFL/RxdOBn6BUbCzOSUnjbqws8a5koIhTglsA43txUDDklivxathVuln7myiJxGO2cwlvjH/FXm0coQYvY6XU0xnguguqPpzHt6T9KF4uB9d2SMFFyB6hvcqHtQV+52lAZRlZNJfMGH552YiHKHQ9mvUPpvKWcYYJCHar8+MHyU4RZ102KD3R18eY/eVgwtpOkNbLho9YzttdkmBQTR6dyGknm1D5wstLi1OO1WKVljcZtN7jd8xdtuSnB9pHjYJKHAPU7xWO74yh47p+NkqeD4L+sY1w7+yPtEDHhT2iJKrtNIej9LV5hms22Ka9J9VMyCM4P5VNPj7H52hnU2nyZbx2WRNFUXYg8cJSn5jVhbJMGiRr2QdPsK5i6ZinrirbQu7fXaGH9Un56iWC/iikv61sNA1Y6PE/vCV7ueYQPxUM4aHEOrpjnRZHOqjTKk8A71ILWpUeAZPd4+GtyBX4putPG7V9hh/FOzP04FfzTtvJ38XFgHPcSm6z9yfXiaIyzm8Fnbi2gnn3y3BqdTd165lA7Zj24vDCEfd8+D7HEalI0fYgvpUdCxThTHiaRxuy2DNKi0jA17gpciRsLy3zr8OqBUlhtuZMmDCjBnQOHsTviA7yZvR2+FnTi8rpCjPUXgn35tzH44QXWUvCBolxX+vhqD3ge2s8/39fC/dAD4KV2nA/+1YSBpvGQPEMZjPZ28pW5YTRuUjSnzX5PRTuP8H31+5gxuhS8+sTh9c1USjndzcGZm7kqzZxS0s5QidE7LO8eR+PlKujD53N03ZegzSETr0TMwG9LVDlarAleRmZT3aM7aMGVFN5gAa8izWHVhrGg47kEpq44DpWjzagybDO8K9hAKOlKo9sH8dh/Sgx+N+lVlRw0VMvARi1vtDEo5B/vFEk6opRo4D19dBPm+aY+3J0ziM+uDAOVYiLLeVJ8bHA4KWM3rjlzlQodIyEZz6FRug6t7G/il5OEQKdkMY9o9kSZt8J0XE6QPypepYrwP1SnKIqZZ4/g0s5V6D1miJ/3N4CAkBvMPedPZ84cROHvPuhdEQUDpa9RRCGK3h6yIBkbQ/h23gJkX+iS16oXYDZsE/Uqj0ZjiReUH64COXdDqVuli/VfmEDMIjk60T8FlE4+gHe9tyD+/HCMuyRNMkfe0W6JVAgIOcXlzwQBLSvQpT8T1lpa83qrNAz7swU2RL/kp9mSOBhwha+WRYPVX2P4C0vBcYU8FtwcgY/LelCt2IdX82YMUSmkvD/VpLWzij7NlwZN0dUo+KmATOe9h1rbICyftIDaLS34aIII1s1vxqNbVsE0JSP4OdaUVB73UE9/Ge9znsQD16+SfkEoB2tupPPVzWDxVBtWqk+FDU8H2PXbcFzyx5lEXEbi02F90GGkjFu64njyrnJafn8j/c5QgI7eBJKsteC5z+/i278OcOlLC6dui8G3t7rpRf4KDF/tzlOE1cHB/gAdVQzlYz3hqBeXB9UBu0noZDJetvKi8StP0MG3J1AnQxRmyv+gCwWyXK0rzvHuchzSZ0mzROKpd1EtVzSdJMGdP+i3hxwUii/CMeofKLLoIXW5z4OKSzfpX/86WvaknwpdPnJk03YYCDWCaybvwKjxBki/+QjVcTmsMGMGTN44Ar9USfFVtbG8Z1IaP90uAJ4nDkBO4xu+cm8Y6H/azt3jO3EMBFGRz0Xc0lADGeds8USVJMQ7zuVfbRacNdIKL3d5s0vSWVyX70T2GvO5r+cQ2hfdpx/Tx0LjrA6AJZIwu3ECWrnMpKbHOzgppo8X7tPk3N1ZXH33Pp8RIbjyzhtn7/xEN5tSUe1+Bdu/WkGDvcpgN9Gd8yz2o7H8NZBJmww+UsXoIZmJxmmydNNEFms272L3su2U9CaFMt7IwKl8xm0mYyBxVShqWArzk/C9vP4u4PJbrSji5InOt/LB424NB259z4m7VeBKXhgcWxjH41bKYEDSdyra+5MV/z2CP8VPYaqcACXcdMaKhcPho5MrGfcthyvBTF65BSy1WpbDR2iS+9T5XLpwPG/f9g5XBIrDyagCrnssBR8Cv2HQnVW4x8eP7AwE6GGpK8c7ppNj5bkhNx8BP68Uk95XF55tOBfelZqh7ywBWtZpBsGoipe+7qczuSKYeEkQ7CwMyeduBYDdWs74LcO2LReYfuuwzbB8fufylktXHSTLLwzalW5U3fCQFuUshZb8S5iu/B+nPyWwrkhkUwkHTCgwxoCV4yBvrhoc8LqDbfabwXHLSKrfrcHz7YNhpZcp6C1Kx9VjbfhqEYK1QiNFX5PBJcLf+ToXos69e/DpkSSZbbaEQ38HYWfNeBy9Qg3EbfZj0o6jrFFZwatODrH2szjW+SrJVybYAU6W4byA4bjVTxQCwvyo46UgbQ8XAx+J85gTVkjTh+bwSOdcHudgSHD7B93uUIPFh4JxvcpFairxwFiJVvZPaIDPVYNQf6uU9t4Th8+u5iRfaw5CmeE8c/8Anu7MHzrrday/JQuf3JnIpUZpsHqpPXQsK8YHrRrgd94bvKzkyeewBm3/N4hZpS0Q0zCKf3zMZJURn+GfVwE9GCkIe09+ID11LWhvLoZvM4fjpY174YVWHigb9JNV0nc8+8uQC96OhL1HXcjEpIE7B+fS83eeaKf8FwrWpUGvfi3ssVoBntNSSTZdGfxPzyDHIAdOP1KIUtYeIBPWB7ZtZfhf1XkCnSt4YOFMMr4sAwFB+3GD/nGWebQNVtdcY+UEN9ixfwI9+O80/22bQnYWgawzUxwKAp9yUMxirJ+QQjleq1h6fj0fsxyBW2VycYRrMK88EMJzA8ZD0+YAqFBV5fq9bTBcoYImFP8i//FAxjdc0Mt+DukNi2SjHRJgZLQLDD7rc8aRmVQx/S0/zrXC18JPadaFW7z24AnqdD7C+daW0HzmAG9RPkfVn86CiXUwPda2BRPlOLpVZkj7I6Opyk2HvbomAVtF0xelmTRyfjWmLDUl5Z2nSF1vE7k/zoCEpFTYbKHJCy7KQbh7MH5a8BjLx61E3YgEcLrMNCxbBuxWjCZbVoUJ61PozfehnjZOwssHXtIhrWPw+JXjUPau5THvd/Ct6AL2d8kDgaBYjDSYBK06q8lv8V6+0T2ZJp/bxQJhw6FDYAnKS3mQsdB3ilh7C55NEIdf1uUcMdWSZeYZwU7PTGp9PIdWfv7FstLiNLJTDA9WKuPfJcNAtc2Ks8ptcEqWEZ27kgOFj37wS5EbYJE85EWGXiC7tBCOf1SE21cu40mxVio5mIW7n2ZR2FD27t83yMm2jbjxYB1mvMka6ktTEKj8iIkyAfRa246jR76Ht46nQWlMJAX/O8lFYZFU4x2Isz5MgjhrhAmFPpiwpJo2zkuju1mamPe7gcvWunH4Z1E0eanBRVICMGVGMxx4ngRvT/dSWPwXnH5MmXYNHqHNFyvoeW4y+IoKcK+hBnScdCIFw3B6M28KHhkxjn6mqNGZpP3w8nsz6it10tRkQ7rGMuA+ah26K7+FFCuisLvHcIf8M7oz+QR9cXhH5hLToDR3FZVZacB4U+blpv+o/YkTv3pxnLN2+0OXTQrtPORJKidqaZaaA/YuIND4GsqZK4Pgle1d1I9bR4UbHOm7fzrPrgyH9TyRA9caw7+sSdCZ8Y6ic2WpykyYFe4ewU3DlOH9zX1g0XCB18hsoLbcdrw40hA21tTi+aKDdODUIvq3yQVt1B7RiEQZ+jPWi2oDkJVHn4Z+FWP4miwPQaK34GvqTO7b1U9umxo58YcYz/22F2tzlan5wiIMv2UBqlc30HStkdS3WIM25bbyNwlT7mqX4qiLjuQrMAJpYhprpUyHiX/qgdfNoGPVZmTSKQqOfzxwmOd6+nqqnOYO+d9F63lU/Wgs6M19D8EROhyR8xZHP++HS7m/8Z50MroW2rOx9Wa+31XGj6t0YOcIxCszhjgs4gGlb1nD5iulYY+7EuepPoWqL6Jss1iIblSbg+jc65Dx+COW3h6PPuMKUFlyLdkFVcEhazNKvzSB62v7+a+3Nqy9bQubH1xE4T2b+OeEl/xMtoVHrNeHE+U6uMvpBN/zaybPBgG4dGkkj39RRhnXnsH2O1/Y7XoZa8tdZjY8x7ubcuDeXF9eKSwD4TkHOWHxCapJ2wJFyg0QcPULln0fxLamFHauVSH/ERcwdrwWhA0qo7jUGUhY6o1FOi/o+oTDsODxA5SB41guGEW3H0VT5l8t2CUcjoLbNjJd9mZT+0S8bteCic8leZ+qP7TfnojrJruzi6I5jHcNxBHW0XC1TRa6ej9j2elaOHmiBix6M+hdSTAbho2kmw9GQuSalXjgw3xaFCnJ0d/s6L81RTBPeDH6uE7HwPCRHDz5HVfNMoVJX2zQecZGGnM3fKgnKvhpVzWdmhjLMzpWY3tjFdaOSgFHUw0o2TEe5TZ8R/Pu0fjzWTs0j93HHud7EHrSMXGsFUXmy+C3SQoQnfODm84epCuf5/KjJd1kIWsMNTJOuPDMCzygGMRKD3/D01N6sEkukmMnLIcfGZP4+OU+uPl7H3hJhpL9zGA88a8TDFYsgQ89AlCGInRO6AKpJTxjif54/va7n+jmOex2KmHBUnVumBvC9/4YwpxHHuBw2QEWqZ/nP5uyeIFXGrl+fU7npMfRIbWJsOVIK2g+Aggbfxj/ijmjTPBwLh8miVHCu0mz9AbeuBTNPXGAEZtj2fWYGLi/HgGb6ySg7mc9KJQ2odLCDs4KC8VTlXv481VfjtELgBwxS3jm1QfjHBLgvO0MPD3zMNvYbYbLf5/A1FMJ1MYyVL/Ajpy/i4NJaBlfi5+OnjrxXHajBydF7kb3x1tR8sEEVDaPYu2gdnQLEoUvLXuGsr0Z6z4dpus1/2Fc+FtyfuDC0+LKuD/yNR2+8YDv3tWD5w8eU/B0HVwUOAulKk3ptcoHCPTdSa+XBVGPWjJLrwgkiSptGNk5i/7E/oftAYF455ce/nd2AJfN2o6/C4NA0SEBg+0/k88xaYgc4qlDUep8fJg7aGxPwPCcdozYfxKGiz+glqnLSaShEqrH6sFmWRFWHurT9Nv7KH39LPablEx/l1by05vC2Dq+kr2M3eDNERmQt87mo32+vGN9Kn54fZa2j0M4r5LNf//68IGn8VB1Ziy8FjKGKK+JcOjMU25dehRk76vRn4u5eF5qIa4f/R2Exnjy7bxl8CffDKTeyFOH4XW4VZRLxVfngLJRM/+IvUQfly2HpkYF8BHZxmtypWFT+DFaZbCY8y68pUfdLfhkZTP2mJmzQkkMZpxfBuuvetPD51og2FoHX+ZO5hevn0DABXve2DqeFkSk8QeH/Rwdt4buBaqAxl8D6NF4hz5R/aR1rh3DRzyj69Ud9LZ+I/44JUhu/4Vy7NmJNOrlJPCJLOHVM0TRbXk6bMp8wdHwhtqL8mnFhpPQIzyG2jM+4VxnfSgP6aKMz0n0UFeEfxuehJBXEnDGWA4HThylsuABqFN2pe2lEuDTNQwuLA5DucIRfF0wibVT/CjU34c9PmriepNCvuJuTH2uY8BAZwZs6avCCXm3qGFeK+z0reKJr2M5KUwSrPduxmHy8yj/iRi8Pm+HlyzeQNGBqzy39QY5Tc3jXL1KvLm7nMW3DEK15Bda3isA2bHTUbksDsSWE4hN3oCtdRk8GDIOvmTPgstlWXS4JwRvr1CCaUJVXPvvLwsd3Is2kYl8/8EnEEq0hMROWTDo9ueW1BaekqgBqnZfqME5FL5Za8DiAXN0WS5I5QITYccdLV7orIMlc5NB1WQKGE2M542b3pJ4XCJO37CJYpYb0Na0V/jy0F1ExR6MNbiGy6VNYEN+DK6R1+XCcbMoMOYknHZdwX+uTeOR/p4Uo98FaXXikNKtDJ5n37OKSTNPWfOSK4f2+eCZ8Tjw7hnO73DiwGMG3Gw+hr8s14U+4TAw/inMfqp/cPeh0bj1cRsMHAmCO36r4bypCLzYfRxmDHFnlH0O3heTZIU9ppDdk4bS7iG4daU8R7gNhwklRfDihg24F+vA404TKos9TC26l2DF6HiYFfSE581Wh4O8GjIP62D6K8BBD0UY86mW3icfge390rhKIh2ko/IpT12Hkw3MYIn0H3D0AtTr+3+7/hdqytW4qEiSpuEwMNL9jj4i19E0VIhovgMcqn6OloNL6fJ2JWjZm8pfp+bT2PR48DyjzIc6e+DWDwOe6qCHmknWLLttGDS/UYU39ecxZnA5vNguSt5nDPFLiCGrB/6GhxeSQL/eFj03Z8DmtQbwyMuO1z8NhxOGi/joEI8nlFpRo2kSCq/Oph7/eEzsM4HfX/Xgaaocjpihx5qt1jAYfx9GwkNc924ppNosh/Vha/nutJXw8MhYaDnZjO87hHDchUo8diaQ2k6NBf9KsyE3QUx9+J3ie5V5WqgKBATcQHosyM1Kd6BaZzXUXL8OpVtjyP5SK+skDvIq/1ia2aUPkw3NUGftN+xadRJiflwHlwUZ5HROB8Kt1rHIqg80y/8h+tQaguKloxCYtIYv3luI6d8ccP/8Ahoc3swt6z7gm1Fn4XXKfuhvBXAO2APzupWg94YuqfRk8yu7O9B2dR3sN3Tj2anL6dyJcFCeMAG8/wXRXTVnynzqgCMfOoDXrDvwvTaRHQSX0KSc07w3WI+y6o2B3wNVKO9jq9o41Hu1AtpqhnPMAqYd75zZtDgHXX+P5s5JBjBtaMc1Njjy8CFve9T+gaxalUg7Q5TjdIs5pAbYLT0W1PqU4IvuX7pUbgcCu/9x6b9gHtPWTANfX2DXbA++teoLnpgzkysmm8BDp/u0SnoWdab2k4bIT/RaMQGrdIeji8I5eqK7DLLTNsIXdyOQPIykbjkHB/wW8gy32/Bj4xwMz68gE3Ri51AZNB7rgy90tGDJr2B4Wa6Bg88ucJ1uE503WUwF6t3UHjWcXW4P0i8feVDcpQP3tgiyxOQiNB0zE5znZ/A/LXmA3loIVD/BPoO+OHiiHNX2i4HAX8bYPzl8yNEOFyV3gNRNJc6tGYPnt/6GpkeF1BHXj4/PDoNn5/7h4tADdHjDaE4tWUiOETGoU9nLCQvnkMKn5ejoHAuqMjw0q3pYPG4hOsvMh4uXE2GduQR/6+/jput7sPFlCI1JSKAsjWGQaZaMKmm3wMJyMtdcvME5D87yzNPeUO1aDldnCOPJ/jHgqz8OvJfFoNkLNbh/cgeGqcVjydU04M/lLPT1LcYuKobDobbUekENVgTM5GvrP+L5QDF21zxCKovP0q7s4ZQwpxN9s7aQXc5YsjNTAVFbbcx76sJnnJ34m04tFw0xbQxcg5cxafBN9yivsc/H8X26MDWnhE6PzKTHyqMp97MUPPdfhiIze0io3hdGS+3g7o9CdMZOFwqP7MaYUTexe/103vMoG/ynNPLLqu9QFvcdnWO6MOCtE5qPVwCLaGn6z00RPCOeQOqpAGiWWM3JL1dxWkQizvz9kHXaFHnyZz3YWb6Y9Vz34TP5h7TQuZaaNZZTddMTXmw2Fp58R77f9xjHKIvBzxN+lCU1C8f9FYMRmu2U+DKDHpTr0TTNe2j4VQXbFhZhwqGxMIn2cMMmW+xZupdrBup5T406nC7woznPr6HjOxeaE+IIOdcN4XqSNzou9KW5B2x5afM4tJ70ktKfaMCaLl0+oVhO18abwD3JCbDrdxpsqpuP5pvUYd//vhnMW0n5+sG8R/gIJX9UYsXWFlhgi5A87OdQTj0DlSO+nGzmhjusB/hERi+EvRAEM+39OP/sJ5ocLgMLkrbRvF/dHBq1grU7NOG3uwyfKZlFoSPFWOf0fBaw96bSvCGOqfMioQMqvHVQhw67h2Lw+4mse9wR8vQZS+OOcdwQL9bfGQ6nvVtw8kF9VBlzmM+NzcDdc9JJ/cMdsG8ZhK7Y+7BqnBT+rkfwm+KP/ofy6fzk5XxlTDU+yGqEVwPzKLtuE+12H45tz3r53ABBRPkqlg8RIv0hB7wRYAyPtJbjEyUnklj9k3KC4rFmx0K+OBWgeXk8jZ4+A9Z5KOKlU/NA6VghffDbRv6NevTqliqoZM3Gc1XCcDD4AJw2egVpP93RY3QDbLWqZ8dZNpgcUgpN+6Jo2J1oUFUxgE/LVGiNhQCt6xnEzVtHYa/+ExjxvoYca0JxbuB/tEqbKSpCAwbnLqV4QXnaXtBP3YUS/HnBdvJqP8WbZKwxQNWcVO/XYEPxOMgZ/4pHBfbD30kFWDtNFP93j5GuSjea2ugP+UsFjVq3DJ8oaIKl6Vwe4WrEdpN+ornZdSyKzoYO3w4U3CdFnlXXYY9SGT29aADKFVa4Rq2URpfU8RXPdrSNNWelZlPUmEXocS2ZS1YKs+PbadCpLQ2z29RBp7seNc2Wk4VZNQXdN8c5g3v5r/tv/qayhxzOCEHJHF+8KK6Liy21wNdAHntUVcls/0KOm7gZHCNdedQoOa5+aQSXyw8QaqrBO7XpaLg1HQvL3tHBumEwsXYs92w7yyfoEbr/FYQe5wKKd2vj3WoPaK2dI1ZNeU7SXk60x240F5SJw/ANCvTqoz5MLZxHAhuXwyHZMhT3b6DGBmVcu2EaHdsXQf0FXfw4OYHjlowE18/JcOxaF03eHoP+uqdpzmVVlL+1m7SfRZLTrXVwsec63dAeAVPXFIBGxw6cluCIMreWYuUVC16z+xNtDbjO1WEysKvhMH9QnwpJAVPJPtSOlUXkqHYgkEklkDMPCrJzpxXs+/IRL30v5nglLUjc5UvbnljjnLNG8KHPlCMF66G6ZA+mXjvMYws38qItn1hp3DgonDCZHyQ+gCPup1FomSNI7tlJJrfGgHbVVahKlALVlA4KXSoHl066wMTxyzHmYC6uHLGfW4//g3q/hXD/XjX4B+hA1K03GJOL8EhkCWrLxHH97lo83pBIbs7bqc8uiQTSD/MyS3HUAV2+PVIYdga4Y8l7TVTZH41+e0pBSLuarJyrYNzUGNhKp0lNJph89WSh4/QKBrPX6NAczVeQcOTReNg3yp68DLTolMZutP8cjFU9crAkYz+8/7aFYjuGWGbOQtw/ZhsbvE+iBI/lKPtrHi1NtsQVtaPhoNoQZy2+RzJpphA2sYKNEsIx6E8/mtfNosJfgSh5eTtqFQ6HwzGvKGjhVHbWGiDt2Wv5qsA3fLTuGv9yHEElwTKwpDuXp+tpQYLXUKemmID6RnU8dPENtqsKc+rdh9hmux+KJwaCidYV2vd3LGxIieP8y3lk4hOPb6NlWM0rHgsnGVHv4lp6HSdF6+4JctYnFbBfoEPO2zRASyyHhkXdxoMdWynVr5hOxUTTU+tBlFmnh90VU6C8QJoU8pVZP3sTfvj1hyvMtsD6k1UwrbSJw5KF4LttICifBrjteouVDn/gMy2fsGxyPJerXIFdLb9o4p0juFNqFbxUrIPbocLg88SVg89fxquCXjhQIUZ3ff6QW0YIT568iDqkVLBhmQQHuOmCwVQzfNT9j0rtnrLyjXkoNL+BQxN3saJRKrn8DmHHaxJ8uF4MvBSPYwfqQ+jhT3BT4jM+W/WTRze0woFDmfA51Yi+6m7BuN1KUF50HAdSKtn7fj9GKLpyQe43/nVqCikrtoOkLNLrF9HwX90UUM7aBJaelRS0pph7vnuQ+MJIzGvz4v9KpXibmDOvl3+CQvumgoLzLoozWslhqyaiaIgGK9T/AqEv28nJZCrcLxnasynzuTXcEn5pptDatjB0K6yBK432sDpyG85LB0g/U4OTGh+yosoFji62hPMbD3KDyBjO2LYSfc++hIHXDiBj/xRO9lqRw6QxYCSjCqmlZqCf2EL3gvJgWsxzfB/Zw1ZDeRv1+B79LdUjqyGf7RlxF503ENzTvcOnz16j4QcfcMO+ENAakMDntvdY53UEvD1WyW5yP7FCRQ+27JWldVJbWU3/GOWcE4L4F0E01Wo5lOkexdZlkig9TR69RypDf8x7nikwlw9bRlGTvjGXPMjiuwkPMWj+EeqOngHrRSdyg6EAjDpyiPPvLWbplZdZ08WVVZxMUa6lFiQlAjFe7D8uvXCCFCYKgfT6HqzT/0c2oRY0Me477VeLY6O+16x/aTqdV1LDIaXlG4WjIdv9N32zCaMUGQc2vbaH4z2teVqPCt+1uUHieBTtk+1Aa6wU7NvnCtlZwXTujD7vHWmI1zVTUGVTMYjnL6Dm32fA/8NymHx9HNjDJgr685JP2zuSwuU/ACVJ2Bafj79jerFtrh4uS2rHqhsm8GD5BqgO98NZCg10jXzw6uoaEvfcg5GrMnFPQSHWXBDG0+PMIDFaiaOWm6LLXlFaraODHmtXU7t3CNkmHeDTtgaw0syPG7aOAtcSd5b50kJj0rL52r7XmJO4n6qK63lSix03LihCyYk5VLVhOng536QCpzscWPoeqmbZkPUxHZqg6ILFYhvxwEd3HFN7kZpfaMEVixd4OWsz2L8g7Ph7l/P7WmFmQBoM9LRCKl4GT+uF5LBgFJQdf45i1wShrH0W26ZVgn7Xfly3g7gixZfea2ZTYK0p2OiZg6DpTPSeLwMqJ1vwS/ktPJQeBY8XdMOKNVYoNVoUfdtHYa76eMj53QuPD4lSmGgxut+VYr0x9RQ+V4XRfRjqv/mNJ/5J85YuJchru88lOcN4TFomvLzJINO1BqL7H0PIiYW0W8qVb69uYKMjotDyfR52es5m4QmWoJHRR/0N2bxM+gUcfamFLlJavErTgGIEVMDqVy9YqCqTnL0IHt53gdQlrcm1w5pjS9r5Z1AUT9kpx5s3ykG7fwBd1KnmWXbP8GrnB/JctIm3vP+JD5ao45UEN/Ce8IxGp+nCut3naYHITyg/FMABoeHUHbkOus/UU9+trdRQ08jzM4v5dtwkOJLuwG8t+lC61hyW5ZSxq95k+BLjCavlg2iEdhGudB/kw9KyYLzDEyLPqPPECUO89lgAq/tE8fn0Ut70zod8e3xg9cgCtMuVgeDbh3Fspx45f4rnT9+j6FF4GO1sa+XHwZdg9ZpJtMFRBoreyoCp2AK4l61NQaPGUIHJTfghuwR2bj1KhTJduPJICK69P4w50BAiLXRgwbLlrBR8Hftc98DRVjHq+vQVhaIS4MG7YMra7s85doqg2t1INpoRoKkzDUzvP8GroxJg0qjvZHhcm+Osf6Kr5WVujzKDZuUx2O4bzDvPTKFzSy5z/DBDyO8zxjtZolQz5FcTrs2hjruakHPEg4LyB1DzrA3lvW9nv9yb8CZiHbi81aJYDQlYVBrMHZfMYKfBKX5+pwUM3FOpVL2CjY/EwB/1jfT67jJ2vtBGeXEyMHu1CfiPfMtTRQ5x9ulpdPniFF47Lotqrrmz9DwHbnbfDRejp8FsYVEI2pdEh2SrKbkoB/K72kjLwpyUT9/HpNpmPFFniLdrTmPTY2MYk/sfWxwNovMjRtHTzyb42OcvXJw3luiSKIR1PsAZUx056ZYcbG6/xpd/i5FFbC33PuyGzeun0FSTEHr4Yxl/m94Pr2SuwNoR0uC86Q29E/gHz79OgLMpflx2/Ah9Cx/PGSf/0tft88FjYAnWL1CBudMb2a33DX1cPYltJe+i2e135BF+ACsKd3HwFGMKcJmJ1ibicHzpRMxbUUlhFyLpYGos/njjwVs2D2VhyBwKSLZHeeULbJNA8H3KSfqkcAi0Fg1AiVoRRhf584DaQbJxkId+55e0YV0e+K1UgmtlZdyj2sAxwpI0fIc8npH+gg/lalFTtQWlxysz3p3HijFDnhJ+m7ZmuXKF9GOQ8gjnsJo5VPbzPb7X2ggHHVdxftoqGjghCO/rRLhuwwKsDE7DfKtA2lH5jjZ254LBui2g86AK3nz5TO82T4fMq0tRq6mOTGsr+VH8BjzcspyM5Y7BswcueHTeNxxeVAXqYiIwSvce1dRKoojbHTo9XB2svycOPX8RnIgUB+PUabR5iJ0k1gtC1bNMUgv7RQoHCklS5QHMHT6cN43QA/FjYQjtv7Hi7XUwd2a4ny4NovEb2KdVk41WtJHfSWW8VaRObxecBnc/LxKOjoBv1gIgkbmFrJeXsnamKN80OUPzhe7STIME1n5UyFbjI7HxB8GcTdNhioMIzhT5TQWqJZhqm0fax6Jw2fQ5ZFWtAYkLP6J18W6+PcIQMqQ7OW9WMDdmqLGspQCopO7CprefqM1kE6w9nsStOh38MlETapoOc1vvCRou1sthJrtx1/XZMPk/U5hlbkSHBRAH2jL4jboKVDyr5QiRRxz2QwCfLAsc+r0Rvb0D8AtF4/x/W/DSsyO4Y7IwBGgOx1vl01GNKkFY/wV+l77If/EHrU8/gHJH/cBJd5DdkgQh2LyDf8gMsfoHpLdCj0gxLZAK3o7mmFZ5uGwujefnLSKBcQgNQT+hKegBDjTe4SVJUrzg72tszD7KqLkSbJ0LwemyPNVliMLIMVnQHi4ONzqjqXLuMMo3OUdTN+0ABwFnlNNQw8icYUQbh8NZmb8c33sRmqLS8HKoICY4refr8J6v3v2GdWO10UHzIY95pgCPPLfTdtV6WH3ADURsgjnTe2g+/GS5Wv8X0FhT9p09iFc2DINl0yJQVTqHXs4oRdGBR+jpKUtWclPozeYlFHLgECTqleHdkinwI1Yb/8vNGeI5V9Ao8Ocl2cmQMCGSMWcMbqv2wbtXVuB1DQVQ9tcG34kWmP7HBN+o+3C7N8DDaYXw9YAdpTzsg2ILb96kNh46DU4i7ZUDy+eWdK4pE7fvuweOcVVkM+UG1Mkt566ZDqxrOhz0JaxB5+gJ+nMricWPWnPWAg0Su/WcU4OsUFPKkcd5/QKf2mkw4rMo56tfh+iKPIyYfwPWDPpCkd422jZ+AWd+6qfb623oY/IU8LvVSUqzYyDNKBnS1b7horerQPb4X1x80QYvRJuh8BRLzg41BT+1iWyx6ziVqP3FeL1m9DvphWZHO7DO3wI6bx8gtYZvNLXMEKzj6sFixl1YqfAXDDp9EVcUYvrnYxBW/Bo7Lv3gMBVlWOEyDQSqLpLc49845oULZa7LwsBmBXjw8TyGNJ8iuZYuWFMmBIlCgnBMZhJs3VfLeyT9MfeRDxpZGhHpiaFIRzIW+y/CdIH9PN7LBJz2CUKu00SSToxBSZNxqDtlKQgW95H/fD9wOxsAfzxjIc5WB0ZL2sH3P9ug020XNy0qQeMQWSx0346TT73DxGInkBxMZ7NryjD64Rwsau2gvB/R5ProHUxz0sV3x0/Qa+kKrlpchzD8IR8XUQRurIKk4LHw6tov3t7tiqMvGMMKVWWeJ3SVvWdn8aJbxykyQWXIC1Qw/0UAzg57Ad3q00BunyzdKBPjAMWhbjt5HWU1TvPFACHQ4xAKu9sIxYIxJGazhoprt9CZlrPsIbKDCtK8aaF6GydrmYLdLkvw++KOl9x+ULz5c4gUiecHk83Rp+oflMk/hTqnO3RfUgb8tz7CHw9C6K2iNi7YvoxVR1hAsakhRh2fwJpGB9FA/wY8cRSEjCcLYcHxOyCq+JNVKntoVH89TRk8z0EP/HCCyjo+WBJF0g6yECtnTyriL/h8Yiocm32DTiQPQ4p9zZHfBihbVoz3xMrCqnZtUNeZBWFPP/Lr/dN5mZ419C7tIq3YcujviYQr4lNw6UgDsg8zh8Hg+TD86A6MFdIFhbEG9MpRg95PHqR87U2M31o4pcYQfXsQxv7nAA8m29GWmUUYY6SNby/fJWVnJ5g0/SnJBR0jyU+52H9u6L0edjhe9DvdrlmAyyRewV2XKdgYUEJy/mepQ/4MqV1swWtdU2Bz+QVS2LmK6gbu4sxJyWTnHYnuP2+w6aURsE9TGMRSDDB5LEHE7Bs80+oIt9RfpPuuX8Fl5G8aEa1EoofP0pzxHhDetQV+tYrCipUR2PaunpdkXeJ/Nxpo2p4HsOz7Gmw9MxNjF1gN7Xc6RptMhtT9D1BydA6rCDZyfUUKqT6Npa9rrsCJK3lwf3IGuz/TwEMJirA0QY7MFpZiXsNP1jirSdPO7EZRnI0vbnWy8YTDbN+xm2eN1IakK+a09ukRMC78BHOnJoKEbw+QST01v7SHvebCOO9YEjScsITebD/e+8YDrrRPoT/j5mFybyzd2B7PgysccWCVMU/pV0FPD0X4TxKG/pMI9pdXYIPINtYr9KID0xfDtz3HIfVwC7ksms1GJ80hb/0PDHeRhz6zGXjYYA4dm5xJsw/20+JeCUi8+5on5a7HU0vGw7+/JVy9tIn8bJdxUqcplIi84iavn5D9ai1aFrlxvdt7XOo0CrIzJWDTpIf4ZcZWPpJdyZNkl0P2yVVg/1YLbDQl4OrKvVxzUxBWll6A+s+fIKp5BzyvmcLbbN5w49f1YFuzHft6NuBRtQlsN3U0nF9RCOhdB/Jqw6jsfD69VzbmtrqJOF7zAHmJFYFbyAg652AG045247Fcb27Qus6uXTP4l78q229dC1Jtx9gk9y9JF63Homg9OJs0ijzSXtGJRbPQMb2S6iac5y6X2/zs/AgOCfjFPe6M9pH60CtZiCsPtpJFQQgoZC3EdWdngH/aPfJ6NBsG5qThiRtrIWTRNHB1OwKpcaeZo9rY2fgZXhwtxfNiVkG22SHQDMgC814pkIlVAGOLLFwU+QZqU9fT9qIYsPj+E29INEBigzN0P9aA5QbS8FZlHMR420OmTQ7eLFsHxbp9vHvHObhYsRfvt13mW4a1cJAIR/RMAr+wDn7kLkr+hzPgesxsXtZynr3Gl3OuaCvaNpryZ/+vAILq4PQ6ildd+cstirehvkUY7utVsFamOq2Y+ge0t2zANUk7Ye8PAbA4uZxzn98lD9lC+lJrgQsGNPnSyHrSalXlMz1eWK4UQ3olqiBkE89GKY4UX3qHpStmwPCPszB/TQwunr8LI8ys0S2xneROGoKRnQlJ9G1Bl+dOUPfqBA5+eAHF3q5wWesjv9Sw4ASfO9QxMBwC5GIwJr8UrwpsxVUy6dg+5D1n5XXALyaNHB2b2ao7CQtvSkOB4GhUvb+MAzUv0puHtnRorg5fvVpLgr9nsIZjNpz1PkcHlLXAaHoaJC0/jc2n+6BNpR+Hy6uBXJIdhh0dA1E5j/jqx5tYO0MGtk02pWVN1zEvRhhv5ixE/QY3CtmjxwGzXpG/bz2+XtiOVgnCcGKNHB6Pv0dPsrSw56cY7zVMZjGPQL5UeRJeeZTD/3Fw3tFA/f8ffw0jQiFEVsgIyUxERcMITVJS+giFUiQVmhKRQhOFSDQ0tEQllTREJFFIk7RsSf38vv/fc973vu/79Xw+HufccyecFgK1IW6qfT4MeqaY81j1c9RPqrDCJILPlr3gT0G/8FirBuY+3slvv2hB0MqzqP7yGaQ3NMEHhxD2wp98WfsADasMpbtaw0Fv+1FSk5eCmpWr8YBrHV77fJrG+Q5114m7MHuXB4e12oPWT18eo+cEhxwmQ3u5Bq4zUoewkl8sr5RKua5BjGt0efVmIT7Z852qSxRw8kpBePcrm8RFtHjnVU34pJfJRQcmoprsHqrb/YJcZFfipz5neD5zJLzceR9v/tCFD9tGQ8cYf7y36RKVKsZRjvJGXFXoQ1Psv7HVaQEQ+erJX2v7GMwfYf3oLvCgPBL7MxbXNx6AmJRKrt8yHxbrK8PPvZUQtOAQCM+04PGy27Cl2QtUFj5D/XBX1L+2m1yfZ/L7wAlwu/8Gy+Q4kdKSFp5ywg+NlcWGvGo3DA6tZ6CUzZ8+36NJB6dAinwpi+3agWlfNvN9y1f0u9ic9x0dYIfCPRBdvQXVTRG2LjWBKL+3+HDUTT546zNvHu+HXFPIajWW8HxKEcbcuMrX9aeCjKQIiPZ+xfubkdUyX8L9YRvpVsJ1ML3SjFaFPixurkBlG4QwS8EC3JzuUuClkfhgsij8ls7h7BveKJKzkho/9aORyQyoevcHa4v0QT3RADPaN8KJ1teYOH8PHHkgQVnbYqnJq54rwmooC7ZTeqU67KZL4CZjgEVd9fDWzQo05+aieu8puLH2Hybfns+PrCezVL4ADHv2EGfjPZr2IxMDd24i360yINQlRmbl+xFaY2hVRhjQYiMQmaTG0TLO3P0zEE6VxuJez8fcq7mRdxd3wcyjA5isfoQKHBTB+6MxftePgdtf7+PkhCVg5WgNko5OqDnsG6mta6N71e/wmxlB/SI5tGl6iQPog1I6RXDu6GWeNtWZg8dNgrarp/lIaTstsZOBunJBquuNpiyBjzhp2yqcrFpNT/w3wLg2E+6Y346eOORTC9Uhfbw9Ok6cyTeNhpxl7ReMmDEbtV7UYmlABRZK6fMI6UoIvSYC9nEAS+eYsbiKDWhVtPOAry7i+cukcFGR9ZoGSfjVGFIdYQZffxzhzLlZODu9EUqUylHmlhmZFSzF9JG3aMInX3imn4W3StUg53MWhW3cQi3G88nydDEeXZaOEUnHUepkMGg5LOE/Uz9ATrY0tM+O4sFDmTjsewnr7SgAHedKcm96jbH6U0nP0HfIxRA5SQXW7wpHu09bEBKu0ZnfH2lJ+QRuFbCFh3vjIaH+KLTN2Q4LH6iC752tPO3gLMzf7gZPgk9iW4YwzHR1hK69dlD31IW1X1fTZlVlyHZR4ytuUbQuKZBl1PTotGs/T1K04Dlj50F1kiU9+NnO2ZdHgnyiLZ/c+AIfyE6Hna5M12Ln4C2ZixzswqwQsA8vSP8HhtaK8Ka/HsKHn8S0uBlksNGfsnfdRxNjTX4VdYVjpjRwyCo9ujHTALTPTgPNX2Mhe1wK9QYkYWPCL8r4tZAEcqzo1dPVIGq2FOX7leBckxGb+Q4gzhpJq6P/surcpzztSQUsajgHbK5ORZPO0qzJqnBjuRAJytVgU4gQrbHThMCgShgYe4AmpieSZsVB3N90jzjNGqYeiya/YZroKyJDf44G0rT5+3nXcUmcknyGFYfczbh0NQocHAlvo6+jzDkDWtifwmuylKFK1BVVfzfg7vqrKLXHGu26luCYy+IwbcEBtpazhTxcCTkXNqJ7/1WeOTyTT/flgV+2HfbfD6FZoyWhqbEbQh68ZPnVZbj9xm3uzlxLwndNqLk/kH0qP0DiBOK6VCP4kuKLom4dLJebQa7rorA2nuGNWDr2ZM1Bxd82dO/sNvCdrwilf25Sy8greNa7kG7YnYNJDoe4OC+As3Su4/S1OiBQ2ggKrhbgvvUKPS6Jxqxr+yh0/3keXPEIv3r+gtX/9fH7xFGo9Go6zXwwAijrLFetf8AOMx7Cen9vvBm8DnMOIazcloGlBcUYNK6TgnqmQrr3LH75ZDYVq7mwRsRZjDo6DZXVdbit7zFXtI2FueEhtIzUwVViAsjOn0FuV/upRucyP7zeT2Iq6rBtcjkoRtwhD//fUFlkAH05WTBvtQVsKTjNL668Ygu3BSx2ZQaMDfjGg9+uUnXcUrj8Vwu0S6fDR9UqXLlpK6bVBrLI46+U1uIJG1Ll+FlxCP/77wwaVujDuK2XMPGuEejcjcfT23xwyUErPlzwhbZKhaFz+FVKHvsPdZukYcn5CTA/dg95Opnhsq8BKJs7DgU6d1Ov7Dy43puD81oOsf0jS1Df8Q00zVvg4Gd3mmZyAwQtTHDyo0OU+88KmntyuXZPD71tUoJr6dsoVjeVD5+/RfXgTEcSm/hVcAe5ORaDjpgDL7YVxMpNE6H08TNan3qCI2xXcEG+PC/0EUbrqBZ8X0ic1H6Q801sWL9EG6K33IFpWwRh71sBOOdURE9FSzFWhujwyen8IVaVNq8+RX9nK8G71jDq/nwG7x3RgBEFO8Bjky8vi0QQwNE8UPUXev+Ecs1iJVgyvRKnL21kSTspnr9wLi9zzYYPD41x0d86qJ7/ndIbOnjKhpFQ1HYGfcSn46pMfbgSJUbjDvbybZ83qHC2HbKFDvKbo354EEVgSt9lfr1PBdUm78ZvWxPx27LpNO32Efz06TKaakRzSHcu5cxRAi+3kfR0vSAe23MM09vGcuL1XrLSvEc3fjVjRetzquvYipqTFSF3Xy2p1clS7hd3ChwzwGd6PeBinx6rybbglZlX8cORXhocYwQBg44U7nKOsgUrwFZdGJ1DT+DfSQlUk3GNC5M0WN64D+NrR8GK0eUw+1oXtziKwuOinfC3ci9ID/vNS6/b8aO5x/mU0WKKWkowP7sPPvY+pBcVGXRdW4kuPa+jyR9TYf9YObb5fAcSryhSSpUgjLhqzFpf4lmzLYb73s/mmtIeeJKaTBO/n6H/hrpEM9kAI/1VYJ9tPEo15+EGD2fo3LuQUz5HYv3CSjza/p2tH4uxrU4DRNqaQcVyT7aK8MOoTbvpr3k9BsaMh0WviqHk3WZ6rmuAjm6BuKZMD056XIenQXNhsPQY1j4cx8c9vcgp1Yyn/frCdv692KORwT9/WcHDfw9h6owcFjPqwPqWh7j2XCdrq1bClqHcm7FjK4itfMmG5XKgXiJKN4M24zStKk5XSKBDtc7clH8MUzeWQhkE0r+Dl3lxoxRcdN7BtrLT0FT/KIkmSZMG6eHI/x7irMJHYOdsxCevfiR4Kwy7FF5QeP9rmvLrAXsb2eL64YuoeKIz33k1AVd9ZVSpWcwey/VAOWQ07MnN4srAZN7m44eLco+h/5ZZkD5yD/0zXAtLNiST8UdrkFZu5YkWgFgiBUt2jabFCpFkPfcipok7oET0VZ7mQXR8hyEssvWA0tnFvHrqSLjwvJITpN/h7ugnbJKx4n/fMovkN5LyGjOYvz6NylSEIG3PGPS3XYNitzw5td6a//ucBM3mJ9j72noaedMMNM4VwRW5SRTVGoF3VMLxfug3+KwZAy/MK+nlYT8wj72NiW8NIXm4Kz2fdZKvaLjA+a1vgb8pYI5aGkvFZcP4Tncw6JtDPwOl4K6/Nou19cFTzV/UMm4jq/Zn4e8ZQVhRcQHa7+figR2DeP81QpfiHzyrqoRJdYtg+McE2mUmjjFKyK8Wroeg60P+GzeTVGS1YcmeOZB4oZIe3nKgxf2T4NCNB5Tn4IC+7RtQd3kejl10BvSuqA5x8AaUq+rG0dt/wLoYC1oXfQtrrlymGdvFIHjgBN5INeUYf3E4lroC5EZmkdVtXVjU/gVaVgfggeJbeP9wBxzT9QO11yoY4mQNC7euo17bs3BO8zg0r47AYPsYeOCmDKee7IS74TFsmNhCx30VIOX9MRDP7Ib6kP9o79dGaBRcTs1Pi1j8iyWmKnyA0mdPQFRYCAS9o6hf2RiVwpey/9xEsiF3/C1UAg+shSh2ihwXr/3MZ2drgmhkN56aMAtLhXWoNFcEeqfU8NxfN8Cu8TQHjD9Gpzavw4yvcnDk9S9M3j4NDltuw3t55/jDolxKC7mAN/Qv8oz9fpwpNgqE/WRh+L04Dn1/kaeaJuMdFwP6fEcER6/UxoQfMRgUJwc2b5vh8UgraA8ugu0DhvhlfDDsrfxHlWqfcZ/WRrottJfOLXUkG6+XfHCeKMhLS3Kq1gZKe7OIaNp9KD/pxtdff+Rd2c/JLiOIlMZ68JsFQ/1m+gXKJhqD30sr9lnfDjeONdHTEct43iknlhbsowX95vwkfSzkre+GqA5jzHrcAtDwCST1PrJCthfI5gpRzK0rIF8biTc/DPHaf018bE0zdGvkocPBOjQ/P4o/OvzjhLuCGPiogir//YLXpeKQGDEIT56Z4X/qOhQSGkuHgj5R3Kl5UCq1EGtXRZG/xTc6NUkbUsd1Qfg5Q3zRUQBzjf7wzV+vWXmaHEwtvkOTzOUpa/YxmD9vBJjH78FDT77Qg7pBnGS5iVXuZUF3yUmWcbPnJYeGY4l3K8cWy8AK+1hU1y/n5dN+0MGyQFp/S5P8jq2An65ZUF52CozfvuKRfwRA0OE6HTiRg9vG+ELAx9FcoBEPUfu7cc+lJvbfns9bTK2h/4EMnAzq4pQSL3aTz4Dtvg/gQZoK9rhdJsGUIspab8u9l97j4LDh8HfeeuKJZfQiYRtPSxOG8I0huHTnPdoq+ZLXN0bjliXTwe+0BfzwMcS0ZjVQijZhIX8bemtpwCsH5GikZA7Nj30L27w6cVXacBDp/ok9Dy2Z5qWCyLylpLxVmRWPC3L59BYMsaigeUPX1o9RBYnSV+z4az7nimVSxdFHtHfBVg5RX4amuAWcxn2h9B8C2LlCANKXnKRj9/1A+tJNvGj+iVbOi4C/i5hi+zNQdP1BdFDNg4QwXVA1FQX7U0V0buZPjthSSO8UDHlblQfnN8pj4gltLHf4CDN+icFt15/wdY45bNy/BN7+O0+znJfhwb5MyN/ghrW+2jD/4xd6elYZFP64UlCCKA2bIQPjhE9y6o9EkPv0ZGjhr/xr72qeXRBCuZkEBr7eGDBlKzZeSQCR7PMkHquEFsUWoPhkO3+slacTI0dQ/HgGD8flfEG1HY55nIP+MTUUXKgNjxZ34bf9Wzn2YwqO61HjyEiACm17DivqR/d5VyC+1pXFdy9CL8NcHkZ76PzzRpBb+h9+WDkR3v37BHsSWkj/oRTl5ljQ9QNO6Fg1D4cnB8AC9TdgYiJHTc6yoHVsMSpqNtJt6U+k8v42OWrXooJkC25+r4ZxfVbc882PF/4bAaGDB2hZ3TiekHae0+dYYfCZYSi8QZ/myKrg/ra/PK7xIa9arQFCZ2TZu8kHz/wnD13HTvFRuziue7GXj/vtwJQ4Gbr2eByvFlKFZyvt6Zb/eSisy+LiG5PwroElzngy5OPxryj34jP++1KP4wxMIcnsDn4y9QLLd6/xIsbCqQsj0Gf9U1AQFed4nwvs3y7OT+XVwfJ6ALrbhMFkxRw0GemOb+d5YtKsVZwaMwEPmOtwne1lqBkxFk5NBhrrP4p/BSRjv8dUDPU/gKdtFLG65zjMsgc+7PaXvp6bBMNdjDDDw4NcNNZyms5yCpBaCv4W63ltzClYuMOdlpzq4AZTJVhlv5FXePzCgYzDtHXnQZJQMseinHbc7/SYAp174N18aTi/Sxxaxw7xXossBosCbNXw46utD+BUayoW/BeICrM7OEpwL3vlToFCsUj8eU6QSqV2YM9YWxih1IGG6y5jYa8H5y07C0bTqzHzAIDoJnmeI74Ap8j9w6T4uSCmexem9i6EUtlw0siooiX2u3mn10jYyMJQkm7Cx1YUotANKxghN5xcqhtpzQZVVrSQhosGElR1ZgSIBatDu+MACwm8wZvP38AH5RsU9+8/Dlo8gWQ3SpLEhEY69koDfmuEgsuT9yhoYYD2fn5cZHkKC9/bQLW6G+a81aXvBW306sJIyG7NoSPyX2lssiQteXKDtPpmo+G+HEju2AyrC59SS5s0nNskDlX7XpPS/K/o1vqORu1qwN79bXh8/G+65fyKMkOa6O3VJDDvHA4WjSmwc0k7S/nPgn8aMrQ8YyXpbtLnPCtHLB2TCOqJy6DZXQ9KTuuRnEgdvVxXBsv3KsLo/UU816WL784JIL8Li8k2rwYzSBOcDiTx/TmyZH1sBD3+eB9yGpLQ9Ol9PnlKA61H72PbpHsYK2kK9WaiZDzNDcrWHof6zi7a4HsKXvb1gNz2TjKUuMmai1Kw4oIcxDsS7Lu5lwtinvCdc0aoJvkfC694hlOqV9LSl1EgUbSTdANFwP1dJ0XYaZKgshtGj1rDaqFDs6fdRSpukTAsK5+D5Q1AU0kMoAho0cZ49n45DQ6JjcGgzkqUruslr7q7ULQ3gybOe0rtZSpgIXea1a0yWftTMxdfTcO42ftAe3YKHa5/Rf5N/1Fx9EV2sLeCuWKnePYHb6xrN4PpSt+h2fc+hF/RILdlt8Encz3vDlDH4BpVEPbq5N3Jr/hn3io+avOAOy7/phfJc2jJvb9gPC8bTlVfo+6jliCksoKUlj+lmofOPKazHiR2yFFBQROtyZ3J3ZaefKjhLF1OVoQ39nfwhtcZ3rJGnQXNFGl6bjTO2zOBR6racdtaK97h1AWCKy2hvncyX42LoIGIqWyQUwYPOrT5ec5jnL39Iva9KKMfoh9BfoiH7q+JRj/rg2A1aQbbWe8G1VMXUHVEA6o3KKN5gzUJrLPBRx1KkHb8G5zJECJhEWGcvCmExQsvkURLKG2TcIfrJ/JZ70sxnXpqAqWzAul1TTgm7XiEzX0bOECuEYvM/5HI/VFcd3E9SO3fBKn9KnDKvRGp7BOuCtOBFQOZOF9qIY8f0Y+zqnL42Yw3MO7rASyy0ofguPnsMPs3no2z5W8Lbbmz1pB/3q6AS982QKTmU9h2ehXMXicHufXaLDLmFBRKroADBmZD8/8WvnaNoxe3jNDKrJHWvU8A9xvDwTPfBHwXWENEmDF7/1ImpymPeNfDHJzmqsPX3ubgfmUhks3UArlzvWiXDWThIMlv11SAbpcrvRx5A5vyb+JVxx/kod0AX6TUIeuMFEg7PcArQxmmt8SCVy/WAC2ZPPg5P4qavVLRy6QCsjM14O9oD8qP1qF/Fr7gEVbMY6W/s9e0RVC29x4nzeyF81cbMFZAAOL27sOcrbmUqeoPR+TnUFzskLP8EARMTmSdm5HQ+OEUmp5RhNrU7/hcM5S/OUzgcz/f02EjcxgnpYtBxxtB4s9XKBB1otgcM7hz/CjeuSlJBtMDceetH+ANNhSqXMxRVy6xVtAUdJoZQ+vWq4DI6ttg2JbISxdU84/pubhiUz9mhFnyndZyvFDcBON9fsK815PgT2srjDtZh15vjXC3uy5luG/Hn/JHODPyGbzpDUDngXqc5zACBAWC8U3+NnRdKMgfQ+7x1L9m1PRoPI25gDAVpcg4LAucbSWhfuYGnjQ7jD3FHCF34D7K536AiM8j+bfJJ3otJQLLnT7Dzf90IWJlK0p2FYBoZxi4f8jjAxHJ+M7OmEUfVuEG1yKS+9rNxyabw2G4j9MThWFYez5P6tahS9NkKUfWDe9OnUvr816zQPoGfuGuA8c3bMXEYbfhtdEj/OGxjWQvb8PZF9XAuyQeFZTt0XD9SJgzTXWojybAuI4ydrjoziesBXn2l0/80PU6VNgasKv5AlRa+Jov7tMBV8HX+Gz1dA58PY1tks+B3vWb4KBmDHnyESwHcrxfRoon6avCr9Ya7AhdSfekFnFi+B34rXaHd4u8Jutnm+DzhBCuyonkXZVakLDai/0qzKFZIZ6jzW6AwTp5EqldQBenL0RD8xYOy1pEml+nQnlTBln3vQUBbTd6cyibr+dL86GYhVC3sxSWDrfAcWM3waL5CMufPODjtcO4z6WTztatpYbyKpwk0gmH78nQ+uu5XL1Lh47mWUPT2gtYGiUAyuML+VRhAT9em0yJ3+/TbZlUuqsqAFGnNFhGwwiCUxox28GGqh6Mo7B747mmqQqkitpwl1Qn3lfUhMNxLRyvpgd1Oj9pmVUzBnZpkPpwLfpkcIn6KnbByKp+nli1Dpr3XmKJ1iHmc0oC0cXTydf3NtrMmMXWUQAz+6/xLLf1VOUryekZ+zCrQQhiTwXDoVcR/OaWE0v6AC0TFSVLi1lgHPqJ/subDT/2BOEro+Gg2dpK06fGQtrrp/DvajtOCJwFp3MqsPSiMz2uGYXXy5UQ1orAmwpNqniTCZXb9PCmTyKlTLnGnQFF5PdggJTCi7h852f2TDWB8nlhnHFgI0kKbGEPU1mK+LAVan/sZAP3i+SrGsranea8eIkgyM7YSjPmpkHb6Vbu1btGH97lQYWsExtqDSM7MzcaEePDv/6ZgYrZJux/vYNc76/mNOtESju/kJRPyuFxb2FOmBuM4vMTsVbYFBwef8V7j0dic9kI/iMmSQ57P+DpjZMpc9NDOjJCHnRO5MJnsdGwfuFeEleUhbAV2mwabI73r1QjjruI/44rgtznw+QlEwA3uoaD1X9HWWyoZ/WXdaB6agPVf6qi3MUFYLt4D6TnRvPMZTpkX2wKF6Q7oX1BAD6b0MtSLhfYs6GR+guqIebzTj7+8SC2xNTDvtMT4PdiYxif+hYvDIRB/ro49ND1JaOZR2hTtSzZjjRE+5cFmKQkCpLmqTRYsQ7qtQZptKU8tBuPo5dkirPS2qm5OBpz516EUAlh8L0awHq1WRxg0gyhui48QjEBO+0NyEd9CTnue83P+4aRlZc1mATpYKJINqYucmGvFYe41/sh75s3nGcFr+CnNk2k/u4wb1qkBInz+/m/BRbUP6sCxJ68gEXRjZC9cAzlLdoDSa4DtCmoCfI7pOH27ct0KPwUywus4OUzjGDNx/GU2LOQzML3kk9oH54Q+AOP7wxxTpA96tvcR+v2BjCKt+SaBUZYqz0Pi78p48yv+/DxiSe4cocYKD7cRaPdTWDWbDHcIT+BnNNF6MaqQXSodKNiyZn80qAcL09h+K+hBR65yGBJ7DoKOOdJkoc348kLsvBPV48Nd+ZxX/wBvvvSDK6ZPGHpU9/haI0Z1KjfpfmZs/lpcBK8nLeLm1y+wDZdI7h00wqGW16DGSqLiRrESUbfEg5O10G54uks4f4Ddre44oP4T3R2pTAI9D+jAztdWLX1GQxsHMdGCVLUHhHBR1J0WbwiHJQ+jIHDHwDm9+7GZ+YXCX98oq7YLnyv18BdzXH82VITkkfIY4bnFVI+Yg4vN0vw2dkBNMKnFE91TsWU6xNow73heCPFFt6q6HDlp7UcVz50roy3gVGYJyQ+vo0ncsdA0OVATDnZiaJCS0D7pjNOWtnBmz3UYeaYSPa+JEHud25jQaIlBvg9h0dtX2BHxQncYRoL0nqetLlIA1K79Pn2+nKuqaqHHUqVMFlgAJ4PE0DHh99Qp+QcHkiYxWmhEnB7Vz2MbRwFYxum4dXTu9A0LAdB8g7tWCaABhddqTMrmiYvUoF99Yl41v8Vi47qgMH4EE5c+wgm+ZSjwahu+vxaFQxybeFFtDEsF2hjwZHIzu9lIKXaDA+aMUgIaUFLcS/tcCzCOvF1pOEiDnunn+HR07V5+70xILLJiTWm6IDhoj0cNPMtdceGo85Qz073kYWv63v4efIqkKx6SpAagTNL1KAgrRILr4znfUeqWEG4GHy+SEBw1CDJpWSBuulxKhp2GEWtSnjf3HC+dCsFf53fzdov/fmvpw44VFrgrvH3IKijGT59TqFR6ucgZKMdNqq9QReX1XCl+BvnN8jCQcNGbLtlxrI9JdScbwY9w9wwMLcdvyiu4ks/hHnL0ku8YJM86IdOptPjdkKj3RmOP6mLqs5byNT+LExt94Zk3Tb+PmM3STVpwuLrtSiS5gtvDqWTVrwL33X7BQvCV3JQ6CHoy10BljMsUBAnwqzFa3lMjTS+MpyL9frjWfLWMfZOX0AtoxXAwKCSJ7af5mOrlcFi0mlat0cOvd08yXnGfPTe+4xrZPdBvMBPdNJ6z3vn2ZBtmyoMS37BE7quwcfB7aw/7yftM57B5hWPqW/tRNjnPIevv3DChncG4GnbQQ9fGNF33Z6hnPvDCdf16bRcNCWn/IJT8t8wMXgi7746HEbhObLP84LVBnuwNVKe0//J4G6J77R25k281WQL7u31pJGoAwvGR8BLpcuccOsImaw8QGSshyL9V8Gh9hGm1KpQ7sg7vCdcFWYOxPIhLKO7VWuB9VPwZ2c/7525iS6Xt1Gc9H5Ys3kjHrITBNfC/eR1VYJcvidCYVErzLnyEYrd1lJYQQlkbtDm+kdnyLdKESbuucV34irYY9ZLrIuUw8dRQ32b4Au34i9jm049N2TK8yt1I4ic0o25zedZqf8puPq4Ixw7i/cylfmohiMctDZh5Ye/eNt0adBsFGfZB62wbWMojMrWB2FRfzgn500FhtnU1jGN1m7tJ3fLiSDvUcKxyXU0+O4CDbtbDnZHZMDUZwOab5BFRysjlIyXIwFBC2jp1kNhE0/oX5aA3bXG6BGiz36hYfQ8YQtdmiVBPUJHYIm1Bawf9odSmmoo6LIKKNk5072QNfjfoVGYVhkBCbUHeH+BCPRcVwI6tgvbig3QTNiHo4JGofO0TJjrWwZ3vn0E4X+b6f5OYRyYLgOP8g+Qwc5/9NPYjHXT/fm6/xqMDIygL68rWaX6P/pSu4aUfFRhoZUK+k8Yh28qnaA+uwoqZ0pw+IFwWLBzPJd+K8IBmTq4KjMR0iyvsvbT5WijpwwPu15Syqi/3KxzA34cjSP36ldwuj4PbYb276SsCXSojOPpuzq5caku9TR8o9dLHXnMlRhYs2QeKxt+hDPqDFWuS1m4/SqtH8rVLvlG2tAyEUQmJVOecT/nP22GZaNCQfC6DETfuwBF1o20X3gyLOsaDzXjW+iMwRa4uHk9hZl04quPWnz1JEHW9fs4VjoRV/mJooDrAE49OpqvJvwiJ8tcSg0Mg2DxaeypPwyOH37JwmE2vHG1E2d8r+Xa5lekcygFAuw2sYeWExlcHYOOlgx7B6ZTfuwMrm4swjfTboPix2206aM5yb+eiKUblvNv8VHwsE8Jgk4+pgXlw9B88BD+zjxBDScGcMQ2A3Q5epqyHZNRU8qLXwwfD2Jv/sF+d1+a3DEdDe/eobf7n8B29914/VQwirWa8hxJQ+hIMgaPcG3wshwPK0dOpVbrcTS4bhwONm2BmedPwfBvkmwufo8XfjYGL5vzuOHzS2j8uIp1DA7ASaNGPlEcx8O8n6D9RQW+FFoEgQuUQF3fAmqFGzi93Y8TFAe4a9kNXLPmB3kaTYbNkIONH39h2QFx8JUaSWLVIvhwdTWUFx7BKrENFDvmPH2etJQFr5TR8ZVvINBTCy5/CIV6keuwUHQfvj11GhVel+Py4iAUe7wap0+oIOHBKJa8bwCBtpW023EkjtnRAkKj0+DsxnBuUDDDhOapVAiH2dg3gUrfm0O2yixsWxAAz/0PU4G/LglXnYWRZzWpfkccWYxQJ+ndKXD1rDKsnuGLe6bPoHvFRfi55AWll6+FVNlocJxbSTVxuzGi/Dz4lonDtpNTWF5xM06u80Da5g6/z2wGK71QKBKv5n2FUbi64CKd6JeGajtF0JQRx5vX3em85yk6sLsekwZlaK61Kb8XjIScrFSykRoFs63j2MVDjl9fkuCwOfchYXg2ztk6hZ8kraVSGVdeq7QIP01Qg2X2zhhiXM7f1ndSTsRoktHaD22r/vG6qE3w7NIBjr39F1fKmUOq0wHOmjyPvv6txB9LpvNM7XV8ocEUL4pEs/ioJlD7bgr3do2G1JAi0DzznYOnRfIscUO69HURPh3iwiciK8HuTgf8C8nj40/Hw5JLa3GDxQy+VGZIlS3DIbaxhMSPLKCZloZ8dLsODyot4e+uevDlyDpOXdSCmycMg0HXV5w8Mw29rnhB9o3/SOmxJf4Nd8J7bcqgeL6KV4xdiepT38Ja1YO0ZMkTDPZeAcO0ImnneH+MWvOKtQX0QHBqPn9QPwg7/g2g5MRiyBzlx342PnRQypPk6xxxp70h72nSg+ZcST4dNQfOnMvB7q3nOGF5DFjr9fHU0bdp5riv8Dwpg+/tnwQusAaS1x5m51kbWeigHu6zTiL90AHKGvwDRu+LMf+RIRwqN4R67VfUfrADPLyG4xnDPi7JnwtzMpbAK7rBki3yOLvlNWg4IKz8IAtNY/ogSq8fDd6kwcQ+A3q4XZi/5fWS8vdiqFepIJE4hFXXt4JOjQr4tB0Bl2ArkjYaD6lJOnzs0AkcPWoizisfQ7YzJoHbwfUo/iOW2na95/Ouubg36B5v2VWEGXrH8LetHv2RcuJ9SRZQKCCOmR/iSaOjBH/cS8d9VdJUl+cHcee70cxuDc04tg5svg4fmldHOrzrDfaGH+BktxJIDwqD0EeC/P6sBTnucqPnUSowQUIFhsc95+jNpjjVohsiet7icvld8KrlCUf/m0nBvwXB7Es/F3WrwKwTrnjxqRCvNtbnuxa+lKz8nqUOl/JmNYZY1YvgsmA4Dx5SgubRuznKpZ86Bexw8fgXmKIhBrsFJ2HuaS/6fmQf/VBAtLqpAZWFV6kq5jU8eLSH7JNW0LJUCcw/fYbD9shTueoFvOXcTI/iEQq1BTlNYjOUdRrQp3MDYEk1fOTPbZK+ok1/nFbR6gNRNOfEcJA7vgJNVBVwRMAmvNW4j0dPmkqWz5w5tG43vJu6kxf0GtAbHT0IFBvJfxtzQE1pKkwZLcrvb8mSi1YAf3oyi/fPPsz2oAWfj0rA9DJTcPS+z7W+6wivdlGilBBU5JZB1IgceKPUTRI6YrhYSwrept3kEz23sS5kLardqcR3357j12oJaEidw/npY9hwfBC1twEYwXE+uPABOV3cCSOsBVF2zTIKtrFgFRw7xOGy8De5FXuOMnwYM5rWqC4e4vI6OGujjFsy9sGb6iv4+9wxflL4F2PCCvG2uArkZyeD7kM5erRYntJr1mBZ3jb+ZlvGxTJFGB/9DVk2n+1LdMH/WgLm9DWiloQIjVmYh72XBbjT3II3lZtAVnACdQQE4z9lIXh0wJr1he4PzeZHPuqZyZnnneBmw16oljQhBxN7iPQcDYaSE+BgTxOHV+iC9ZtCFJ/9ASYuzeADYrspslkGikf5UOd8eRJzV4fNKYfhq8AZevv6Em/3eIlLlZ7TyesraCC4EdJ1NuHaMlcobR0OZcVVEAh+WARj0XTGc361cx38lRUHmZZ5oJB+Gk643KSZ18zg8sYp+NlzKoxcshOdO7X5wucK0rr1F3fknecrpdnk/fYMqtqLwuL4XNCr2IITf37GC91j8INaFu/6mY/HstP5wwRJmv8gh7rFCVbtfoGW43UgXfoQvZD9Tn+6i3Hj8glk5iyDigbiZPJdHyLKJWCpmA8kOViT48Rqbg74g2FB3dhhX8jiKrlcYHGcGoOSsVdpNGx3248qMx/y8pQ9GGR+i52e/aVo68loK23Nv0V+Y02XAz5MkoDCmgxYb+SK92oXgq23M5X/d4VbHSvR32McBN78wJY9Q89/0QS86S24S7xG//Nn4JHiMrRTcOXv1+sp4v48LLF1QYtFk9FHFyHmxBwOlHgE7x/ZkM1vZd5nIoExf0pxa9RWHpfZCbJjFvHfdUO9778Yy+qLULW4D13rHoCtViNZbT2BV14MYOeWx2BX95Q1zgpB1Z1p0O28GO593QmbV0tiWIAwd7gcAF2DeF6kogCikdIw+4UURF4JwniTj1AmoY8lx0bxk123YGSrHcHt9VR6vQpdvIPhk4E8jDA0Rd81rVgWOoeS1I7TI3U/Gr6wis+2v8Nfv7NBYVosqUyaCN5S6RA0ajwnS/3BY6ne/L1jO8rplNLDW37Q8smYB0dJ4Q1/CeiReECDfvXw7t8zTjJw5FzPN3D9XACd6KhHU6k+1puWjiWGCrDG2ZC03V+BWGcu4dEtnJ/vTQuG/2Nbrwo8f+g0Lf3PhdduVoTJl6LgTP1TFp/xBfvWFeELOw/USRmEFwtDsWHMOMrqnMTbFxuC4KqV6L5CmCOul3H42xMw4uVn7tCey5vQjVe+0OVz9rfwUOUY6Mq148Rvm6hvxXqa1D6cg7R+8p2iaXR0kSIIP96DWpc+0C4xDUCJldw0EMkBAndIb2MVOohK4Zo9F2ngrS4UOxZTzpzlHLUQ4bHzaF7elUr/lDbg5ecZ7Pkhm1VqdsHfk6nc5Hudqka1QsAmDTh3phVmXET4vlYX5m0ugbqXf6hwpAxRQxgpxO/kBPV2qH6sCgo8DwL/S8C3Zk70VuIjdqVN4bSjV2nLKFmKez2IX+234yJBI3i9aj/GrbrOdWUjYK7UcRIZEQOvvmrwtdXPoLtoJsUvUcdep///H8AC1Fpxl38e+A+9N8rBPJgJL3qTeNG6+zi9VJdblohhyV4rSBoMgKCcCbB/ugFd9XOG5y8u0Lvt3mB64TWqWu+GvesSMNpOHuqTK6h4ZRPpCh3nII/NJOd3nspqQvHyvkE2XWNPHZ0aIBomB39Kl8OSiFFkrnIJR7h2sa1FAQ4eauLOy45IwQYcEFEPj28IQk6cMHFsFo3oOogaX78Rax3mtT376ee4g6DePYrnPiQ46TkFdIJ7OWPTRiwKaMIS2b+gGrSZnMoKAW8nsExxMKwUTIHtRQqwdXk7HFuZiBnW+8D+pTjNXqlEa1qVQEisnGYaxbPu3PO4KkETHqnkQZfFVlbxMeeJNvlYdHw2PO4oxDm/Hfjr2kecfPsxCMwVg41vnenN5wc0rSgcL8+/Cx0PLPFI1xrsi80AJX9Zct/0H+btZYjfeBur578ArURTmPkyhLYP3uVL6unoG5RBRi0zUGjBQoy/rgyLlkTgswMt2LNoKl469IMn17Vil4E/f4nph6zuT/RnbB1i6WhwTathtyhdOD/YST/SmjmvfQYs1KtBg2hrUCgbRLGHBrDA0BCWOBphtmYKJi+J52fJeRxsU8oTVH+CEN1C6xJhNNmRDH2lyiA86ESl8zZBsVUMnG97gm7n15Dq8kjq+CzCSzYuhxOZvxHyNcFr+XJc/f4pPPtthhb2y6hG5xaGLTmGRsfksGCeOQrXmKDUal2Inz2XVh2by8X/loHWOSvIFD+HO0Ls8bS8D0yRHssTHFbwzEVKsCxkEyuKitCSD9XUXrIapm4/zE4LXxN6FMPqEf+B95pplLJJE/7deQK3n39kvQVbodF/Ffe5XUJDtQfgIFPK7XNrIb8pEnwuEMjX6GBf2AW89zkTL6YK0ci+MD6lqgkqT6LoqlkS/pC6hy7DlOGpyXBYKxMM+X8P0J0HujT/pwqMqTaEHaWlUB6ihrFnz3KjqRB0L7SG6MsyfFjwH22bbcKRReOH9voiTBrZRsVZIRRivQGq86xhQ8E2UD7qjfYz+unGQyUc0ZXIky36eHAv4Ordl2j8lX72Pj0ORi3wgipOw6+hC0h791a4VvAZzt+v5lUbL9C1umF4eDZBQ7YoXK2fShh8GUsDe7G+PxOnvbtCZtPmwPDBJ1Qgp4CpxV9oc4sZHDYjPvbtOIRESnHdnvHY6tdHKVPk2cj+CZbTfl4QfgonF1vBQ/NDMPHBZXrQqQ4TeRJPUj7BC6p82HbDG8qeZwHLA/No95mhXJufwwPONoySh7DaczI9tHhH6ekNaOU3FXUSqnjYailcJW8FfwRngeWXCXxzhyZZlt6GybtC+Yv0Pwp9E00Ch3vAReQXuecN9VuVDQSOrcDdRmuo0uk239BNJNs6Q5hRpEGGozrRaN4G4D/isO/TN/jpOBWXkj7jgat8uz6Kpj2NIROpPBycdYhsXsRSpI0m3G7NJYnZ71B87AaY/MEfJ3uFwlHpVhx3Ziz/7IpGRd1r8Oc2QND+95x0W5Va7rZD/s4eSnfwQ3nvOfjsgRWq6YyA+/pOpGU95NRyzRCae4UnO+egU48F2ry9C0d7XUgo9jOsUasn/2HN2ObKUJF+HIpfPoF983VIrOsHjZuRw+f2L6Tvh8RgrXUdyYw9iVNiJsBos1RQaxJAT2Vrjnm8GcSiWtngijVID2ZxgmktegTuYy+XMTB86VHO836GhcZdcA52c7Ayc0alIX9+YgRHsw7g9P2GFOyoD/ugFP9eKWI571OYfikRdbfbc2FqETUP+YLR/ghctp85T0kEbjiPIig0JMEOAJdFkdyzzAP0l3Wz3YY1LCtXTGUrxHHcQwRjw5384MVoEJB0pJ9bpbm8ciw1hUiw9djxbHX6FMb2toDtPQTbRjmEh4UU7qFINlMWkNeqNaT/qAUC654RzLTjT/qTMfyiAkzpfAGpp5XI/Fk0wo5lVCYURSNr41npqAfgnGvca76faNdU+HdeC1Y9OMdjz7Zj0e1UnPjQBt0UBkBt4xjavFOGzbuzwDZJDJ6qvuGyl+NJ7bI0+2s18HDfONzgHIJzr28kadsC+D6xG3VPyMD9M/dhxxdF+vncAeZfvc94Ogl3hF/lkoHLVGs/h14MWpLVhnHg0bGINfK1WHfPdzYaOwA9s4dY68kfmtCvDSE9pqi9RxQTnjDcVXvMSU5v4eKVb3hywlcKGP4akiY54+MthzlviNdvqftzeQNBcL8GaN7wx7Od4aSbEoP7ZOPZJfwpOGo8g+URilCQNJ3DxWXAulwd5vSs5sjAAFoRfQQykqfwhmBrUPvYxzWnvoP7ohgs/GoC6YetyChICh23H0OXn89xYoQU3NSWhHBNIXAtj4fhSRFcZ2EKkTHLMVjrBpxdvh8PTE8AYe92+NvrDXEDi0l+HfDcEV/p0Jpx8CfnMNl5bsEfMgUI9cd5TIwGBcqFYkHQHZgcHUC+OZvB+poxmEw1ZkNBVYx2COLwqs1kHf4RD3h6g71vBs/6dpafR+SCWq8W3Lh5FyK+qUBHUz+Yx9ZQWPQ5Hn/Rle6m1ZCyUQuXb9OiCFF90NseAynyF1HtzWJ62juCr1U5gemRJB6x4gxaHHaHdWrpaFSrDkf/HqJlF1JRPeASHjunRu/0zUFRWoJlYvpA9c9SqJ74FvOvyEFRaC3VYwDcmGWHvZKSPOPHAi59WEJzlk2BM/JlGBOoxuNateAlRLJcixiM/xQDejk+5NG6jIT9ZrNQ9mX+GJYIaTOyKe+oMaD/N3Bbp412YyUg4N12FJ03DGXP+SOIb0S7kwpwoVgDMktNIa4wkmVraylA2h2Ujd9AjaoCnG8oJckTxhgcU8KT4CnOmCILV3eFoFHUXT6wNxmHxetQzAlHDnnVhM9jozjXpZ89fzdgQ4sAGD94B7/theifVzm/etoKbhtKYED7JFT/tqE/F3dwtfl5TE7UBNkHP1h+RiQ8nBMNlT8380vnpZw5dwJGP5mNn323YNObD9yydAoo1g7A8htBrOBXR1I7mC1rl0OR0xNQv25OIdQKJRJ3oaZFC7Y+Suc/cavBfvQSOC0sxCFlC8h8VhucFrqCrle9MGztDTR4oQE9n+fypyhTCmlxwUjRrbD7vTMm9xbQYGsqh6SOZcPZZrhk5NB5HJgJ9+7LwJT1m+GJjAqorBXA0iH3Km3zAlXdKeQntpn2GctASU8ndyWnYOymCWDp1YhBlQOcse8eGQ2mkdz9OJoePQxvLLKGuFfWkFQ1CnYqasHe5RXooKLLk6cv4o+7BXix0Gq0qV3M47cLgUJEISiF+aFjgx19yX/NgrGzYa7CB5AZXYzC7lp08sw1EN459P4TzHDy83eo7jfANmKv0Kh4ChqMy6ZdCh/h+7tUqBvIwbQ4ZXgz9iPa3unG7+/K6YXkCqheLAvxhreZEhN4IMSAJKafpOxHFuDZpANLhXZz6/5s7ok0w5H3vmL+3xDqy5fBivVpGB2ghYtjAcZWm0FJ2weSGO0Ln8U/0qormezz6wAeDL1Ge5J64eJjdZDfpgdjs5ZiocpNuP5qNW5Mq+ADr/TopNJb/iD8Ebq/T4QNdRb07JcVaItr8CW9tyTYv4mjNDR5b8Ut8t6Rhna3ijly6P53qeVC0GhDOMGXYfroTbw7cB2P3/0Ds5dGQeDrRyCk9YhW3G6kL9EueLRGG2pd9sLqneJk16REDkpZtKlhHddKfMeHJv343fsjS9lI0RQjQxjmKEHHJOdRn2kgisiugLZ38nhV8zlurYvm+fvOwd/ttSByTR5SS824pMwT3K4KwzO3PvjV6c6e496gWUYy5eVvwyKX45TZYQ1nqiPxj8UwXjt/HghWyMP6CSOhxMOa781QwUPD69jSSpxCyqaC3b6NqGHJNP6NFbb1TGLPsXt5+4A1wfAI0KnygWCbNjy8C2FATBRMHVxI3kufHfsb4KnXL+5PV8M2+AUxnj5oYXCLD9WKw9SQeLoiUQk96itxmsgK2DBsGYlG/wTPX3aQEKNIIpmyuMJHFPIMLtCr9xWocNCAbFZ+o0ChHO4MCYP5b2TR595cSPKpgEuP5GFUxWY693UOV8JRfPFCjbt2d0FjMdNV9QIY27af0P05edsMA0EvC3p0XhFUV+hxst1RSr4TDyJhs3m9hAI3yPfA1CN9cNPcAkwt3Sk0axLuim9HzQnz4MX+m3DiBJCRy09qHnmev7y/DepD3STatoHiL2wloTIRkjo5meoa17P3lwSad9maPWsyIDT6JHn+GAOjttzlqM+h2N/oxyv272AFlXP4ZrM6PM/0xuXvf6L4sk56ukcBRvSkkc5/b/jaIk3OyNxKkULGsDdkD64ZuxJvCmygRTlvMGe6MAjYDrJgozL1DVPGM2V65O2piCrvzpPC4zPUG9RArxP76EizMnSPGklGAwo403gafJhognUrvkC/wRNKMv5HuzPO09NNUzkqwxgieyL5+KYZ5D4xhbdTEOq8b0arbnHI4Zvo3TEa40aPoJ9d+rD54SN0nHuPrX3TQd3PAqQ3VuLTrav46xAPjN88lY/N80LNLabQkLCeC+8tIJ/Ez5hiY4X2rVoYP3AZ1167STfj56PPD2s0+TQZZmUn04SDvuDkcB71S3x5dLED+MdsIc+YUfDr0iW6ufYbR0iqwa3bO9jujTLYTFwDi7MCUM3aDxeF6qOXYCNu+PqCLm4Thdr7EiBbKUp7P4bB/icNOH57Crs5CODF8kHaO+TO23Q0aG9jONp7mIJoiyQ7lFbyV00NenC1kC0KXqDc6C+YOPMddfiOoJpl7fQl1QIci0eDc38NXv9wFi8vnsKH72bB8vCj/Lq6ifTvW/JW/TiIuSMFBd0p9L2jAK4/2AzbJglxzomnsGXBc6oYKzB0jndzY89B/L1YEias209LKjRIN18OO7/6ctByAbQ9WArC6Vf4fGkrnJwWTxb5DMa9qynuOOGK0+/huMwb2JElw1kz7cjYIYJuvHwLnnfcoT1rInhN0gDVSCa0bcd0gdk4+nMC52xToabbruT8tJp1Zu7BszemgldnMAuMsYPirWGw61kb3Yn9QmlRS9m1yJMz1ePYI9kJpk6eDMX3omC4yTsUqh5NL98Nx4nG8dB9eCf2rN/PD1OXYtQRQzDMUYM7x0rp84hZsGxjPD2Y4kF7s8NQdMtqfLvsOLguns75j/bS+Hx9gJgkav7ZgGX0EhVDpvCyOe9wX3M/yRYYc/Pzp3wjcg9fKJCFye/GoE3KTFT58w0xeTFvna8J3TsOc6+iGFhs6QPLI/koFCgKv252Y6SKMXrCCJgWOAK3DUTip3d/KCtLjN+fTUPQdAVFO2OwCj8JfmnfccranVA1/j4mCgaS4hZtaAtz4S7lTjzomk6j/E2hYI4EN9vUcIl2Kq70liGxkUL4vV4CbzjOAJ/C6xhpn4oLwy1B9l8zLD/8jwq+jydR7Z3gUNiIbiGT8e/zpyShNQna+mdhmqAelAeegXPHDvFczQ4QEUWO+TQcW3/PApX9sXjSwBkfyVyAqO7RIH28Bk50bocncQ4QuaGX8rwX09X3O2ni6r0kP3EQ30lLwJZP1hC+7QyKXguh30qR/PH/iDvPvxr8/w+/RnunqURokHYaWmbyKVKIZKVhlQoZRbTsbIlChTIrRVZoKC1EGVG00KIiKg1+ff+K3/33nXPO+/G8ruuc8zinLgDG9arQmAWLMFraBHu9r7OvaSeNMrKCrq/LKH20Ii+//xMdnPeRalElPx/iiIRxL737JISZNyN52sYh1hf94n8hSvxxug5ImFewyDhZnj9xAyU7R/O/wyUc6XsApl4fDuELXdEvLo3vz7/HrvOXYXGbAbmmrcMzXdNZ++AgVa/7BEG6E2Cj5FhatZbg9uM+ErrTR96Oe+H9t04o+zAB9ovnYL96IiedGgkK65fynyVOtFJkDU8O2cQzArdyvPcSdr0+gn8f3UnCjm303VcI/NI24I0Jyiz+OQF/JXuDT8ZX/Kt1l+o1yjgu6RI1x16hrZJ6cEFiGXpLfoc9HWtZQXAeLPdL4imtLnTKNhAVHu3hEqUNILBbBir8VsFi22a4JX4Uiv/OoqsKs+DoY10epieD3f+NoKuXpsPfk5PBeksnHtkcxhtdzsCP8rto1yIJl7TqSUouGLbus8fXufXQ0ioCYg9u8a/rQnDk+XqI+9aLdfGWlGSXgf6Pf1LD6CZQcxiFDiVCUHb4KlnVW7LR9gSYtKefVqqdYrIYRscH1qP4hAmY3inH/S9HgneCOq5Ui0SfdA+afuEKvAj+QHOol+u9zuPwliiKW7KfV43RgWXfy3D1Ri3acNCHzCJTqFEqArzefIf1wY0YfkKSIyefp9nlVrDX/xMl4S0I6wjlQ07yPMykkrKWdsKB8p84x/0Vd3hspkWu6uCkkcOJocfozkIHCLPVpVWeCdS+2QuPZLXAq2M/8MJ4Ha55YQCOYvNQTSIQXqeeIHuDkeyqFY3l+8xIYN8ieDh7J0Uqb6X/ygkajd34P9MM0hv9EfccmEr6J6bR5ippuhB5HJY8MMKNN+LJ97sZzHz0HzV8kqAXQX0o1hCJ3+9NI7gzE8/WtIL0v3IMnFWDId464H1/EXktHYtz++Pp/s6DNHCqh5d+G8XCwx/gysu2UO3qCK21AhBtkMuGkSvBTX82hGTfI2Pzn/Tq10lyVctBE7tuKPmyg2seIIjfyKOOhcqQX9vAO4fcdFrWbzrj2cMTT4zlO+PTcMr+NlbE0XB6w1tS9o7AARFXMstIoVLNbl62LheeqAbAwlpJfrEzFsxZBy462OLZZQmQl/kMlr7eToYjDkA/reWGmgA6S5+oaekIWN0sDt3jq3ioUznC4QE29xXiLsHx3JtRS+2GFzmiuxvcphyDZ7NHwDtFM+i+PYlqPUNoe441mO/9DoHnhrbaxwZf3+qlb7eKMd/aBv73W/WGt8uhYuR43BVeg+P8v/JSv48sXZeM6Vs1qWZQmm/rKcOYvQ9hTtNfGP3rFl03Hw6qdA6nsgbho6cYNfw+TN0wnb8rSULhhhpW8ZekIs/3/PRAGx2ZM5O3Slnh1/69mBHmjjFJ4rjDygz+Vj3jfs8r0KO5Fs/9+YuevbbcmnAUF0koc3FoPB+UrqKLvy3gaJwbpZ4bB/U3VGm5Sx60HPrHdRMU+EfsGt483BES9ylg6X6CGtFEKtIpw6pV62j5un7YMpDKqacEeXxQI/Tdn8VVVrFwOc4IXBbKUUmPFoRFJPCvyEas/SlAA9mpHGovDMY3lpD0Li8YNBCAa0EBfOLsULN12ZGt7k/cd9+STma8JLXdKWA4sZ2PvtWGAwmS8MnBBiujItBFndjf/QRHztPEoCWb8Vl2Eu252UK7m2ogPUMDxheswQjnE/AoWQ0vHdAAv7n36UrGbZwxPx3Xt30j26Rx6G0rAqqWL9hmfC76Di5itVWfae0pC1499xDNFz3GE9dq8rWE5RCQJwoLsgwwdpksfxNr46Sfa/iIdxwOU1nMW1atwtX13dyd+Q4HCvUh2eA6TUl6AxGpjrBhjgv3XpqAqf5WVLY6AluvN4L5+/V82VoKZoTPpXOHy+BBgxDG9PwmY7XT8FajlJ6GTabO+VK072QBVzZYgoi3Gq5wyQG7RYYQ9CAKDbZJwmjFLJworwV5pxoxUMSbzysTzDm1c6jddelElxUs2yhMZb2JcM24mD5daKUR+QtYdHgp3TfUhIevnuHLCXIUTMspU3suyf+xIC8/Jr0Ka54lLEHDS0aQjpgibJ4UiDkHppDKl1O8/qocuYcLwcOjyTB2kQEmnr3FC/8sw/gPmjBv63SYdfEuRTQNwMwPmZReKok7RIux55AZFIYMkILH0C4eM4PU3CvgSkJUZXYXJQ87UY+oA/9xnDnEyBjI2v6IG8V7qWSImR8nB1J3/llc6LIPZ18oR51ce7ipXAqvu4voytNZ8Hz9e7yzYBiEjvTl1d6HSOXdVz46xQobVO3QVnM3yKINaH3/gjLCYvzSThP2jM9km9yf9Og/Jdr52g+7yj/h5Fva9DhwDbuOCqYojTmQkCwKq7qXQdf4JLippc1lMnfxsNsd/lKty8dfqcHaXyc5d087uN1RgWP5pVztMp0ezTXEhsEN1KdYSe3fj/LrNVIgPWseicjf4KKdFjDq3CdI1rSBd12+JDnvGUa5JWCJ/1DvFU6hYoVXfFk9DPXSbUBl5nNUDQmnkMOvMHTSLfq0zgb2JHVQ7+ZrbHD1DG/6PZFUv6uASPE3jv0nQ57vVPm711wKNHZicaPPaKGSRU5/vSD8K9LgIgk4GhWG75oD2W+gEpZbHYdz9U5Q+fwCzVqviWeC0mDvlokoqSQKX8efwNqyERhDChC8M40mvwmi+G81UGR8jp7Vf8DNxonwb8JYiCgpY/h0HmHqJxxbbMipLa/p6oUYaPj2BTsWWdNEreOwcpsy/LWfzHru9tht3w6b0RDze+p5yp2vdDDmJGqGfYPfxtocJqsHC2xVIEDiHdH5FxQ8+RcJPrfk6VHnefu+j2yUmM3emYtZfqog7OnJZ0mFtTBP9zCPHSMA+t/30qtVM3HduwaOWamEzZcUQE5gMhg1f8WURd04smobdHX24npVGaz3zmThuD+o/L6IosYtomE3GXplO+BpuT/u9/BnC3d9Ers/gjd0S0HXe0+s819BlyuE2ZYMYIeFNscu0aVDOXPZX0gFy5ytaex8S+qqOoK/o5EPjsqEX1NHw/ljzbBfwASaVnzATKtalhtlTYvhEKimy+P8Req0oMMXNfvkIcNqEyXP9OBCCxeYWhuPL/+FwmB9OKevaUC1yDzqCb7KcTwB6mJ/kU7JABidWEl6kmGcmd1NW4/9ANXZ7hg7vgwu/zcdbpmZwaqYSzwlTwxstkbhuT0/wVTYiVat/4I+W6biR/0YjG6/jJ7jBGAXufHyn+3wgJXIBHTwRtFcVN2hSRVjQ8nkaQG1xwJO+4CgWbMd9g0Io4SAEi0a8oi5fV3g8EGLJ/WdobepDjRS/RSOjpkEw3Se0Kc9f/iRfTr7yySimeAHGD38GAuLzsZn1utw6nshWLpBERQcjLhlXhC2cwmVWoXAoUUjSV8+hEe/MIFRR95D4s0S8vGyBsuuYKjUkYf22g105K49hrr+otNKJpj2sgsfGKrzyfCndP3tcPjsW4yxBeL0NlAOVIa8OTyccFFNOZxumIZ9fmW0boUh3HwhAaunPeTu7MlocXziEM9aQel8FBhtf8/xxYPkemECCU7Pg/hT8mDWacLDc9UhWLmJZ4t9hsW7q9Fthw6OqLWhFMcq3Dy0wTeNR0L17jLO//sZLqSaYZzlLHCID6XMXCNUacthDeGvnPHuFGqPE4ZZdn85WDYf9vtmY+nNBDSOuAXnBO7CmqANuOPwGPqxyQO5czy4rblGS1fX4KB4MQorlhIYV0F/aRRdu7WDZzxgNhg6f+eSJBRMLMH0xL8UNODNuwS9aNsYcTR2VcX1GVGweH8bNSWupdfZIuBiZcl/7m6DwfgmktFtxXTRkbzKw4U/vVzCG8ud8GnRR3i7Rh6UfR6yVXYKVy0fDqZpl6Hm2C72XvKHOgyWQ+7TRor4Go0BF01h22AaHk7NY9XQkSC3chcvSd5ECwMsSafoD/2madRWVQP1osPh5+6nkOB1BDM9UmmwUA4rVUVJ54krZNe+x4EboylW+AHdCNeHg6OW0O8IV+zc9Bh/XdDmKTcOkbTQE/ZtKMTciOlU+XoaR8VJQ5Hsfvz0Ppcdribh0cIvpDQtka+V7KQRkqfB2mks5b/XoUBhaZCbcp/F58yGV84h8NQsgZKCkqFdeS61a4Vwd3Q9nTAfwSG7BWG17TI+sDGHkj54YbRIAlwVOgXv/fKx+vxdHKF3g06OXENFmgAeuVo4VUiU7s1rIoWOPfjvlBOV3+njv3dLWGnmMjg5ohhNpARgWncnn91YSleDXajn8iG8cGA6lcRY4rP44Vj45xlcf/2/79cy8NFxlFYUD5Or5xPP/MDHJR3oZl4J3L53iG4YN/KyaYpUMFkIdj2ohT7TBFqsE0F/3dXpffdH+JfYT+sXmJKEbD4+nNsMwju0QUdjODw8mEbP5m+GNN9yqImKpfw/G3D/rOdwZ6IN4NZL/F+VNLh8u8wmwV0w4/QyPO8ciInP//KAVzRIa7vS22lfhljtjGePicCO8DyIrpqM2OhK+dn6uKJ9C+z2forTc/rATEGGP9w5QGEztGBoBNnS0BRXJZXDxyoZVOvwQl/ZpdR1/CTrr3Dk55FP+Mv3MZC0t4dl5BfSbNUVNNn/OTTNN4CQ7iaqDv4PGs3aYE5eA13fYgHV19TQwdSeLXQd0Uo+Hlw0XaD7zDe4XFhM//2+go15GRAzKAANfsNo4qFbIH2gHAaTV/Mb5Ut4axjwLKcc3PMslCzPeuOrw5LQ5ULoUX2EDddZ8M/Lx8nr82HQu/QVU2+10fumPLq1uRRN7VVAh+5RqVM65ZuFQV/PHpA87gZipg+5RCOR+k/kokt2E7V7SMOMkj4K1/PmdYOprCwoiDNv2tHgJTN4+MaJHmT8xaBpIux+ZhzYLj1Jatd66O14f1goK4vPV17DLr0nUCAhR1tKPPlKSTjo5k0G4Vvm+PisDzlGHcDXc1VwzKR42lKxBfJlhfBWWi+8TTNhk6cjYEJCLKZ+uwzaBersl0q4wDIXdq6J5dmu1/ln+XxY4dpLCuVjofS1Pxv9uEeFocPZfc5osFrawpsPPqCiuzU8vc+J5spKYNg3AdhX6skOo5k77Q7g88maGLtwgH1F7/PT+YfI1sKaX8rEw40BXVhwqB6C1AP5XKYGzY0YSQm7FpLzq3I2cphPhytEwG7pNTo9xQgOFQyngcULKNLwLFo8sWPVVAvIqu1gP+0C7ouxp6NDLph+WBB6v2bxgmESqNT7kD4NvuLH9uPoX0AfWe95y6O1FoHnQkealAowLf8PTqJmcogNoJly4my88QDH/v3Ah5YOwHzVMt69Qhr+ihpDWXYVl66eyxFfzmH76U044T9fOnRRinV8U/CC2nH4cy0JlllrgnrDanqf8wA9VbyhYskgmF7LQ/PyEv66+Qh5ZlWSs5kLWHdIwOHl3/gxB9BpiKQfiZHwU8YPlA0NocPhG6dkScKsM9dxpcRkaJvwg9xvrMLyOQfAJ/8qPWIx2Oagh9vMy+i/8zeYWnRI+MYEsJhM3P9gJNlyMPhUzYBLktuwbNcw8JAa2uG8Uliz/CBtVJCEfaqaKDfLnJZkGZJryEH47lnKJ3Z7Y9hPHU7PvUxK/wBWvCHo3mBCuy7X8p2Rk6mt+w5cVTSm4hAZ1pLz4Guaxmyx4TdkpumAEGSTZ1MJmz+yxsd7v4HgCke6WK5N0yuJVu0IwCeS7qTWoAHLp/7mTX6HseSbGd29/QJ2umag28KbGDJsEcwfulO6f6R57xst0Eqw5X0yV6nRLR9V2jNo91l7uLpLCORmmPHvsklYr7gQ7z8UgS7zKVCr+B5jvRopduNh8PQroDKZhbBYYynvsf6F/+0cA/tctODo8lngNmDPG54NUFpwC84P7uG5Zsk07aotnW0ppZhkezadrAzX/SJA6q4hRiTX0nfn6+h1LZFOfzhOH4WTwNxZjvofjcWmFfow8pszptlfpWn5wiDVWoD9t8Vh7fREuNNyi1t/nKUflWLYnoBwvP8iZhdOJ5PLp+GnSjM+H+znKg5E7UvjIHt3Ps5xM2IN+0nwXTAIT55J4pIEZV69uggW5HmwlLk52exSw29BOWBrp4OvTw7xV34x727fB1Xrt8GyiYEwYYoDv3yRhTbJ8/liz0H4dCcdbvZKQIy8Le1PW8m9Vz7SE4FGClrZhvNEZMhKbjG75EdxmH0vavpbwS39N7gkzJynnDxDkqK/uCG1C2lODjskPeIH8XPp5KgRxGpiUOerzQsu/0XBzB4eqzqCpXcZcJZqFWTk1VCnXTPEiDvhD/XhkNf9FP9Ip7Go2Gau7lmLemoxNKt6JVffN+ePHxTJRT6WAv4ZwOmwOdRplMEZbwCNFvZxhmw5fV0thAk6xTDv5VlWOZ7HJySsoK5qEi4N7cFEF3dsvPOB7aY+xlj/Z7jY9zZ7Ct5DHw897DtnDAeO6mFMxwtSdKjkcW7zOPVnDIgsHEPybb6YtV0EBT6f5ogGWWgd6nYl+zM03sMLd8eXY8P9S9ydUEQKm7LwRXASNkV9oWBnNZieuZ9vXTLHiiRGh+eaKD/mB1nOWg3ri01xy35tkKw+DuMWjQD15B147bQd730WhHEtVeRmEcnhsX7o7F7ATvu+8ErFRtoQqAbZ9ZvxmshTto5UoUleXzDl0R826tbmqvMJFPOlBTd5SFHlKEuwaRlG+kUu+KN9L2BgFrgvXY8C8h4YXa+N9ckJrBeWBgHZE8Fj4l5ccfcQlH7az3fPnMG/DVWYWR+JlxT+wYeUGkz6rIhfdo+FBYNjeFfTWVa0Q0o76MEa6+xIuPQkmowMQpNn0uA9NwJrE0dAm548jK2uhzvJnXwisQpm0XYIWF7J20rvwL0/3ix0UZzGy4qDZcJ76Ng4gddq+NC7wB4yktemgluXWbo7Fk9vk+cTQg5wuE8DNkzazuHzR9P25V78/lU07PpcRG6KNnxsbzF3C6RgfXA6+t6ShbrqRvgUoABLXxiQSIQ0LOccHr5Sml/4F1L/+n7c47WUFu8YDbuc22Hf+0q47T2arrybyLpSq+DORXEeG7yJ3B1rUTFcjufgcLhx8SEkZHui2skA3P91BmYvvkT9WauwIPYe1Rvn0sK2ZN6yVAxOOCzmuZ8vQuWKQDDLGQb2to8IZQfp7uhB1vwTyKGu+vzJfQJM8guCIoVImvBNjsZ/O8Fea/N45I514HNNhmfVNuDbfgkOshgGtauf0KSL/zH9fgRjXFvo7XMpeGZrAJd2JdIn+1AYlToIdaGisGiuHYhI2sOVRjca7SHCrVPn0b23r3H741QQTv4CHxeIcFS3GYydVkIOUTvAb7YS3B21nCYLnocXMvbUedaODJpu8YTY+Sy8WhQ2xXei4tr9WJ7/lX4H2qLPqbO4ZMFEyErvpt3V0/jCjkf8BEeA48bHNGxlC8loGPOw3cfAX0QJjvtkoUSyIT4Wu0Bt2u9ZcMZEcLd0pma/enpYf4d8YsL4bMMgHty0ioOPHKSphxzYUlAP7z5Vgi8zmE/M2Eh1i6fQuapFVGc6G6o0Z8PHuHUgaPEUdmhXUtl0c8gW7sEv8nqQNnkOhvd9J83iYLpo1Eyz6wthR24TZ28xIys9BiOFXfhVey/miblj6nJ7mKxrgHPEe8hvZAHcyPkEIluLWCNMGxR3FMOLsiiaXWGPKcYaaPp8HFYqbIHKpYrY5f6HVlQ/5SfFRrDq1UTcZH0f6yrlyHKRMFqLbcWkJy9RdsUoEJ3QQ+fE3On5QyOY1ttK5VcqobK7id+ufU4B2wFGKkbwuIP3UQsLaWPxXi5YYwLGatXg7B1Bc94n8hr9MpZNCoI4EMB9U2K4q2wjy47NoruqYpBe0A2p3gKYPNKT56w1AvX9ebC35wB6/Sgh5yvbKMY7E9JClCDu0jz4c9CbV+sb0xxpHz74YzHO/jSbV+s+Zqg9CA41s1DqniW0dD2CNfMVqXrJRMp7sBcmWh2nCUU/oHBNFPm7CqP3y6fQ9kUO4jsW0Osl9aht24sJ0Aua0bEgrnqc4zLNcdW5MJZuuo+/i6X+3/7/97+jxiDgJsQnjlzE/IPm0NbvR9o5djRukjpq17uB8YcitA9Xhj3aO0DsUT4vcCiEA50MN2Q/kODXEjjQrwYPw4KhaUYR/FYYCR8/PAU2XQAhN0PA9f1hDJz/kYT6GsjOsIl3GprgMdf3YFQsD0L1j+hSojWuDD0DHjFzMSM+BJrbBPmdSgEJqv1GwdXRtFxfH2aJi6D6M3mS0QrAgNKlsOK5AxqEmUFknSrezDzFEmpz6WKQFrg/HcTq++tIaMR4HKG9hmuX1ZHL7YV0JmsafZyUBMLXhUhSRwMaVM7QjkID2h6phSu3LKSW3WZwyyMAImZ5k57CMjb+8QL2hhI0N+eT8vQ1dPlOLrZ3AE163cqda93Jz2oFZZjf4diWxTTbwxocNMrwqocDROpsJlMtH7gg4s3P2gyhuEWb296sY+nZJ7FKYhLcb3wImzvvQF9QFAeJuuDMMY9I5WMLlOhI055zktC6sprr2xGWdrWh1okjOFZNFCzvqcOTvFfkcC8WJpp08OuuVJoYIstXN5iC695LeFilCdaqH4cHAfG8ty+S6j5OZsosww3Xr4HyswjsKDUA+TG30XvHQb6wch06NVugd6g45Cblkfi8NhTe9woeDdSDktpoeG25FnRPJ/E90wmkeuU2+3afh52NpnjhaidsvDWF43Nm8/sEM7hc/wUOz7GFn97XaZmmF7XtqcKg/3aDRIA2fZp5HcvsLrHWIQah7QKQIa1CjlJNOJgqj5oj7vEeNXP6b1XF0Bb8g/1dg5huT5Cm+APka3bj5TsukHlgM380/IoLxZ9A5bdwePK6iCo7vsL1O4IwTcEHWmLzacpnbRpfdoRGX7nKVIq42b8G7w2cx7D8JXhTxxp2nLGDqCmn8WJAFp0TSgCllRFsN+4O+EzX4p/LvgA6RNHU6NHwJlcOf5mLs9X3BEraGMNHYubBtv8Ax4VKMJAYVReuhVcK0rCTX9DjkfPw57C4oR005MJ5p9Cy8yZg6mwYHfIKlx2o5bU1Q74xaRc2lI1CqwRxnr1CluQt9HHpywwaUZKF928coHM/NbiqzhxO/+zFYy75LP5FAdpCvNBf7glsmhNJjiVGWGK/Dbde3kEeVqPhZPQ6EJnsx4E11fjfps/k2lkCNYVjuEW5ih+ohVOJSir69wrB6+kecFLuKjkHqUF6VBm7uVtCWsEqqtGU5LtxzWRe/561y+VhR3UvtAan8CQfN0o6/wH2NmqiolgM7T5mhymeR+HQkTJQOqEAL3K2o73Hd3zlPIVSLuqC0YurVDXWkN5OjgDP/wbp7/YxNHb20N7vEwed+kK0b95Gm27l4dSn8jB3SS5ssVeC0PxjMM9gCx1dYgJbnfz5cMR3NtvnjPeCRWlF3BADNcfz8t/TsG9KDJ7TK4e0gXFgMk6GZbarceofU7C5UU6PP45j5l1kGa9M1r1ecFhZiG5IyYPqSXfwmJzANrMFMfb2NC5LvMo7jjVSp8EeKj63BK0SnXjYPl3Y+lyQ0ycW0ePNxXRBbBR+tZsAlworYM46NfxcGwjPRl+ncbtHg0iQP2eb/qaHj1ZxbMx1WjvtBQ3fcpRE6w7gsMtvuOPOKRZ2sIHTO9s5zbaJnPVUKWvzYYpWfUXdx7SGXsMUELggxwJj52BgkyEk0y8IvG2HsQI68Pv3FzyUOdQ1N/7y3YP/MLxfG3dOWQTQMBJ0m71xdV4XvFypQBu3TIcnxvH8MqAFCmpcoVxkLC0x1cVlc8Rh1a9Cqkit5ro1n/iA6DPw3pCJoR7tkH4+ApNnLSXNk3k8+Z0NjCq/jNe2pEN4xU1o/SHFf7/+xtS7AxTmuY3sNJEd3Dfx24/yUHx1OxpoG1FX+mR0eR3BqssT8PmHXVzyKYEaFCyhPy0QNV9OgIuvZmGf9Uz40PGQ3q5w4KyOa2ytKAGNQY7Qln4R49QqaMwTYfCP76TQXHOaHXGCL1R+ZYe4m9h+vQaU8uNAc0cGT9wmA/0F0vCCtaD1bxIuO7qI3aL20Sqjx1w1z4bix74lRYFrZPBzES40tAKva7o8KnoGO51aicfWOvLgjzLQ6PuHPQF+vE5kFnRWZPFm95EgYuRPW8RnUrZnGJ/ryOT0X8X8JP8xLA0Mw5pAG7bdlEKl8yVARNoWNXyLQMxiLrV76+GuD8q4c/5uWBUxife/i+PGxa2g0W8NIxIv0ksLPZgys5y/xjzkvyv2wO/edaCVr8WzZEthVMBONkgeA/mib3l6phbMj3NmgxpH3P/vH3ikL6HqFwLgXb8NGl9dAV8jKagp3w7rDat57AxFlL79gNQy9Gn5My8ulrhPw8TuYEi4JKY2DocFH4dh29AuzrcuxPDkLqr7IIBHvDRJTes5Ptm4AWXat+KEVzpwqr8aD9q9QLN2V9I7MoO2dm2Hl4lv2JkH4MG4KOqM2IwF+iKgeyKUzPK7uHBtFnSd/MBZXemYltLCY3k1zPuWzlKLe8DpGYL1xI8s9sUGxoZ94madK6C18iSGrXMB2S++rLPtJ9s5q2D1aVugOQvw9s9HYHmlHEyCD1PZCxPy8l3D0fO6YFhBIBps9SCtMANYlJOK5vcHeXKBBC6VSsTWwHMcdXUWLO1/Dydnl2PZyThedt0SlvRZUWXoeLT4/BiSninAv+Ni9GOYL/vgF/5jehc2/fpNP7MUIGqjAtvseAQTv+dxldMBAPnpZP1Floz+1kDA1he460Q3HrOdCPd6quBC+inc1PUG3KYKksgcabSc2As2097TYGY4jz1viWFvVUHevgSWhDej8hBfuhK7wSSoD+dqW/O5THsMOHgN8l6c5I/1MpCbkseCJgJUVnIJAyS7cUFYA8+JlsQ3zZ0081kCzfrcxzlXx8HhvChKGlyA3ZVnYMF2UeqVSMajEsQ/LlThkZBplNRVyOmek+DzvSYK/DQHNEb2oXzgW3wc3gQW56ppVeVk2uPdSqJLv9CsqUKwQqOSG1P/8a2pl3lNnwIYHQun+Oog1GqJAJFIH/Ka+JqiBczB8uV73BsZhK92tbKDniat2CQDDgXhtLXSFh7HxKNFiSCThCBc2iFHMUviuWLlHooty4OfnTlkZ2aGLnG6vO/3Z8haH4FyUwXgjp4b5Tr9Q8vhN8GsPZllivXpZ/Y8+BtH8NUlF8v150Le9bGw/qYmhY6v45ZL/hB/Zg3FndvCjf6TyUqojStsnkHakEt/XqcD9ZsTOan1I1m5lMKqZdfRoHA1CUkb498jXvRVX4+sh41g02PisHpEBTVs1YEzR/7wqu8zeauRHSqHNnNLqSXYnaiDmdlusH+mKSSVr8OYs74w1bMSTGc54dh9JyjvSBk6XGmCj/cnocbozWRfLQM6rV5wv7kORRSW0MSydyRRZUB7XQzg3EgHKnG+QyEKQnDjtBQsEzOG7W790BCXDykHYthkTBOZzBkAzzeqKNI0m7fUSlHy0PMnlFyIZof+svbDxaya8R5+XN2BgvM/Qnj4RFqeLE8L9lnCqbea4Od4mMdPFsT0uc2UqF9AkYZH0fiiPUyZVQ65FXthelYOPPewhQMVa2nPia8UWqbL//s8cv/RQyQi5Uy3vlyC82bFsExOjG6WWcK3ojWg0L8V1v51wPFXs1l+dyf/ax8LIrWiaF34A0HpCyRYGULLwX8UFfkJ9iXYwWXRW+x09w1/i3qB+kIW9HMgFRZJ64N64ijYqbQK/yuyA5+yZvhP0QlcsqpAWn46Hn/azo++HqZVb9aSqt8YeLsqnT1nZPCcXcb0db4zwH49jPorjGIyvTxwzxtnrH/B+g6GcMf1L46wXwOd6wfJ8mwWJY1H8BFYzHt9t8H9VR/hrqc7ZXkYwR+tHLJ6cxM+jszCk3/WcqWZJp3bcQe/rVfgvy/mYnpSO33hCRBWuIJFHc1x9Odumuixk6vnvoTPX1/B2C4JlqgaTj8yv+F/O6RAXlcf5LtcqKZNig91l1F6pgq0nTLG7voSGLHpO45+2kv9abogY2AA29+vom9D9/rOqzWUte0E945RxuONe7FS6jtMrlsC69xU4ceBpXTIdRy3Ofhyq68KzfKRobNjeqBB14fXZKey/35fmjLEc69d18C/PBf/zv4HzTNEsS9wGly8e4QjzyliqskV3qZhAjAcYJ3zYui/k8bPhJfiyTfVMHFpHmd8zqXJ/Uex7d8LtAzXA5siWXjotABybsfRvN9z6GeFKvdlvSLLj6E89el/eD0rnGzn34C3i/XARTyAd9xrxIQbk+hCVwVsK+3hIPmjNMbiJdrtvAJdvyWg01wXdv3M4GlHXLH32ExQrXyDHXbXsS0ZoG3fW+j4oElVr1eCjacwlA9sgcf3L7N1zEoYNW48zRrKNDWfpSRpOgdLq1yxoLUPjAxlYY9zKR+7VYZXbrTS2w3LaOZlEVhqEA0zfSLxTakS2qdng46eKOxdO4u2FbdT2e3tVOdWyiGDZ+m4uwwmH5zAp3x1cGD9d3Q0M4dp/87TxsVGJJYzGxQ+VNGfFmdQbWuFI+bjWST2BbsrfaHyz3ogplVFQtfPYrpgEk+7fhT6BFWwTtCCM0/WQueONWA40Y4PrBGCqIFTtHJxDVwYngIhseV4MjIAtKMaUb42BsOqzfDD1h1YPmgLb0YP+XTOFFyimcZtu06SWYw4e80wQdG7j+nXwanY8FeV+zNEIOvzecoI9KaHbQbknSvFM8xn00XDx5D7SI4Xm4TC2PC9aLtQG3b+mQNmIhm42nc7nrpyhxV7JDi+8h9S5Qp40NFB6Sb3WTJSElKEv8GpOfUw7/R+cJIVI6VNW7ktoZF9zO04PEYZh2km0ovycZCX8I4rquTZ4IwhdXuE8dijN7luVwqcKz4BU2+e5RXyhsgqghBroYBxx6Pg26wBPhJ0jW/fPYi7Ha3obvkCHFPWw27tTXw8VR0maN5Fl6MfIfp3C8sWxNEEhau07vFpWPwZseK1GOclxEO71Hg40bqO9C+6wZ4wFTh6wwxKbebCt7DxpPZCA7t2n6fm8BT6XDweOjJVMCpMBK32JmNQkT5Pf2BE/ocdwPVNOVw6UklnLQ/wawFrCG7O4euKK/HpkzuI6s2stnUeXzIqJdN3fey4cxU84QqI+GsIJKOHtR/OgfLOfg7lfOiZqYQGTi1YIVOPu+4TqgVvw9+XBOHGChM89iCGHF1/sMBqZZqUuB2OG09G/QebIFA8mWdL6NHMAn1wXliE0eMlYenGD+inkgij922k+Mr36J5/Gy9ZCXKz5Rz8N0cH6mrnodSRKJ4WOJuK39/iZuFGPlSxGqJnlDHPPs7fi5qoq1Qdzj5xhuHzv5PRguMgmFmI8YVFFFl4C/e5ueOgYS0GDM6i1IxxUKY8GRecCsfDY5bj3k83aW3qRwjqscCAnXNxlH8u6X+SxYqhTskZ8ZLfPFlLPzaNIe+gUuz8rIMKxttQ40oO7xj1AKxjfpJ6ywR4WHCWTaKGGlx9D6iIbiFdzwI4KBmBkjlvOHr/ICoKteJwMTP40zoH3nxLoulPVuKZsQGgf82Mzh0rQPsn6qARtQY25jrQ/UcSoDamErOEctiv7gebGnWTmVQlaRpmwJstWRDOY2j3oeG8674s2N+MpdSP31GlSgbO5M2ipxE5vO+MBgYt2oQps9sh5e0UfOssATXRY3jNkfm84/UHiiQRUq75TesyfED7VTPNS0oi7egHeKpfG6K83uO/Fh+Y/2ceLW7r4Q2P9PHEMCVcf6oYHJ0tWPsxUqieDLQLyHHc8RT2WleIV8JWcYaRBJ2Vq+LrznHwWmY+aTwJpRmfR4PJmyjseZRPn3b1wuiOK6SdnUVq37eTma0N311rihmH/LmhYRj4OAbwCPsDuGlfFkpbz8bJKqZwX74Lbds30qT+dFreE4epN6Vh2kldPrvZl95KKEPitIU4/dgH7uy4zfMsU3DKfh1Ya7oJRvtJwINLHZTruxAn/o5lf5eNEB8SDdLWPVgK9hQkZIYCjksY3bTgzoQV5DRtNM0dCOGpPtOhoF6Tx1mvhcwOd5h78Q0lKpdyWYwQHHDYRBL3b3PN+QoYvzcdhP+Iwtvo5+gaagnet1w5v2ITf0pn2BQRzEFnvoG4E3GQhwZuDvuC/1444OoKDUrSvQDtZ8zhyNsRcN2mkhLGboCrMdE0ML+HJPYF4fbLuziwgvjAzcPwacoeKPw7Dj4q2qBV8AyK+ScI4nF2nFbkDk3vo/mZtQtlXx6FW+Ulqee/MfB+Shn7m9/BiekrQbJOlVuVosD/3g12H+VBOLKBLdyK2LfABP59LgfHszfwgmUo1E74w72m03BUylNyCK3Dw8Ym6FcaA+O3a8HoR4b0R90Lxkr+4dULyuG/Y6q0vqMGTC9lYW+uMr/zPQLZl2zhVM4AFI5RxQ+308l8kyBNTe7BtnJjDm1ZgtNMF/G7v/W40EMEFt+6gPL173BF6wi63i9MJ9qn8rlrwui22Z/jDv6DE6mfWfmrFIxMksPbfr9w3nbAV3G2/Hn2WTT7toJKPr0k5YtlQ+f/4XxVQ5Af/x2DhWfyjiVGOM7cl+597qF5pwRZueQ5aWrkwFxDX3wJyvCksxgVkhVx36udvF50FHxJ+AvXUtsw1KGXy7eHwsitWpAebgwzBGO4cHoGLteIJ4XePfCdRsH4vmpQeYLoOXYRKIv/4qIsIxjef4g23r6AY2IrcE0EwuHTDdD9PgBumH5A6aN/obWygGNVzYGPnsJTwauhsnEuDlcowci0TNwTP4aecjnY7ZnLM7NGYEKsBgTJtEOtRi0rtzXg7+w5MNMgkqJPdMDs3e30+FY0TRu4Bsq+QmC/PJwNIhGPDnl7mFYc7K2PI8/Smdy2/ClvH/mYLlgtonQnLfgSUMOr06s5fK8jhXj38/L/dkD8G3WQbo2AexUG5O84k39VC4MK/8DeDWZ4NGQtrDZ/w0bK2SCrns2+swfw4bPpOOXMHrjQOQokdzlz+SFHnjO5iyqUjnGdnSVfvtbF478HgPW7i+DS6owV022G+POa3OT98L9QVzKe6YoWYTt4sacSxel646mpv/GPtjyvFR4GhccHqMlNHhKMJvGRPT9hA9jxoM9bFKlaxnui/ODOFHVY7KYB9w7e5tDcPnhW5cF/hD+R9skBLJKSo3B9P5r68DZNPdcEK5ZNAMUz/fwvfQGtEzoGKVJb8aqLLFmOPM6HjMqoyfkXj/HyptBwI9iik42jXmfj82e/eISZDMxwCibF3F7W7hDl6sA40lO/zVg3EapU/LjZrBijnX5TSMwU9LV9C0pnJvDd7Xr8RCqXl9RsQdtmXai2OANxUE7dR7vI9Vsddm+bR89GPKHAVcu5N8aOgrQ2Ut2CUZCfvISaDvWyg0sJRkycgZUvV3P79XgaMJLDq8MvkMb0ZsRjRlByOgE3PVCh4M/yFJ3ihMKKsmB2YAZa3JpObw2SWW9EAd3UGg6XLN+A38NEejZbElLt5pOaQh/7/e99zZEylNW9HmaurocVLwEMC/vIbfNOeJWTB+ELd1DdSF9KKLkLA2brIcxgO6hXSFLZUjWYOtSjx4ss4ap/Ii3Y+ZzWzH0I+1QewsUXzhQkawLD33/jtM8moPCxdsg5BXHqsDYc1psK43ZLQGbCEsyftoqnhhAXX3Vl2TeKMP7ZA3Y0e879N+rIe8R+rMnpY/U90Vi/JhmmKE/iNbaFlDVFHwQdwhBkQvj941hSmxFHL4MQftkZw5q6Jj722A502ovwyWZBMJi9CvFLLKmnvcH4sHd4W8CE3iSOxJxZSyhI7CO8vdhJyWNM4caasew1qRPye7LoiIAxGDr/xGGN77E9RQ5vvJ6JCy+fhzpjXXCMSYPMHfWgHP+PBnes58jSIU/peIaHuvpwapY8BcV2s5ulMLTuUcRZS7Zh4xxhtjn4mHZe+QkuExTJyuAPVEVMI+i0pYpMZZDoicDLC4z5ZO5MPJL0l48ZrCZh7Zk09vw7NB2IpirPApy4yxDedEvScN0p8CknhPYuBnD8W09OdW9J03onxT/LRHMnDXb+KgsC213BUmIXuMywg+/DemAc5vJHhwy08JCmi/cnQfSUVMx4Iwn3pt/jkP+y0T33Pl+PnM6T95/Brw4HSMTlB6dEV/Ivy81YMwOgwGkQ3947y9e3HcZzQmpk9Tmfj0gcw1EPnuKm3qt0PtIbR2+xgubVimiqPB59d3vAnn9XoPK8IpWuG80vVL+ywJJCvBi/iy2fG4DnGlUWT03jHzO+4ZPtErjJZCqa2XVD/gs5+ClbjKcOBsGUBwTR0X68rlUBhOwDOWyzD430kSUlmS9cdzebPzt+AmEuRmsfWbh42QqOhxG3DfSiYpcce7i3QXLCI7AzaoFgidfcBPd5RcEomPufD15PmM5ujY/IYeclmDcmEi2XncUVS+Ow0m4l3ysp4lMLBEFn8xiasfs8+LsuJ9WTI3hh8z9unXOSi91s0OZKGz+7Fomq5lpQIzOGnmUuAwuLOl6nJ0NN7h8xonU4LJHowGuD0eDtLEyrdDXhlPoF/mMLGPbxPIuHH6BfkzfyeT5Iw323gs6veHje0EGnQ0aCqG0/9w98hrm/isjG8BNmTw2jVa1Z3OwohEklhtxvX0SubxXg/MpuXJe9n4bPVWH/6y64XtODY+Rvc/DOKtZUXoKN4x/iimARCP70Gi5O+kqe0nKYMeSA/vM8qV5bC6vFnXidYxOaXVPE3QXDQdA+mJvG7AdRM3em6Rsg98NMsBF6D1ou+lRV5wZNKeX8YLsOLJDMxBv3r7JqmQcqGdRSs9VqnJLeBsOFovml1zlu9F0MmrnaIJZYh8NS9qCy7h1SXiPLR68do4HvmtiW9waHsRi17ERcOcsABuK/YcCp6Tjx/G++16IA5i5TcHbfJwx+FsPqa2aifo8gJC3VggLjU+ygO56THu6jo2bv0EigkLd4XKKmfU2orvQWxSdchLzFwnCruA1axEIgc8UxErzehQmnI2mSqSjkXPChdjsDErmWDGFZipDmXwCztoSioNQ02NAqw64TIylXqgK3WHjyu5Uu6GvtB98XK0JLzmn8vjiGDux+h/Hf/tA4vRZ+uvA6jw0Mw3gTczow5TacGtpQ8v4K2cs28ITTG1jWQhXOJAEX7zuOLgM7uSF2Od2OSkN1MoQFwiGgH3YRN8hVkVZeCr9YvhV7HsuCmNg3uvR2Nd3avAyqnHXhT7Q61Q5XwiduDWg9ZQXnJK1Dc1lBtozURseWVlI1rKHBRAEorTgNFywcoOzrGo6Maad7f2dhw3VA/+gBHplyFPvZhEcc1wXJ98D31Xy5o/kxyzgsoyIda3pxgnng9A/+qjgf/waOwE0imhBWm4e2flEsU3KRGtoioTCpntMPviBlxwYcXn+Pn9VsxIAEfWga+x2KO45y2UJhHiY1i1fzRlSS34YbU8Pg0YS32PErA6REZUEwJIUjNh/gBQEB9GP7AGqvP4kPQ+M5bNszkvbQBY+7Qph2WAvGD3OFlZ419LfnNOhIpbD7+UMsr5RBAgfP0eDGlzRhWBudWGAJ3eGSWLJXgC5mXKWNoY9oYmkT/ZryG45eCGHP+wK4w72C63PUITZ6BNyxd4eHGj0g5d7Ndy3f0482YZ4waRDaT/rTeb1LbPNNGdyK1tNEewkQK05js6/bKUukjnZNkIHpOYpcp2tMVnm9vN5QG7wE37BQ4m9U1NTE291akFRxC0b9k6Gvgml8+lsUyJ7XxcnXRsPm2H2sbnWfPP/sBfO5SvRavhQFfULA3boKG5s90XXrCz6+zBqMLS6A5JWLmD4pBQT9f+P8qXfJBH/Rg1YDCv6qhjWtlagqLQuGXiL0PSidnBae5bODgmDnKEqfB7eRpGg+8VEZWuR4mWJHCMD4+y1YYvCK8/cGs2/fVNqc6E8Vpt7c7zebzob85FXqjpzdLQzzjoVwYE0S7Xq6kZb6KFFP/ETaYaVHvp8PcLLKNv66QYZf+QtBTYofn93fgbu/yKL02Se8TDEFxPSXk41/EF5/l85GF3+hu70YuNe+pAO355JnbTvIWcyjjSbaZBgQQY56C0Ck/jrN6tzHET6TAJ+K8Xzl3Vw7yZy85u+k4TcUIP/RIfo0U5SHzzuMbwtVcIqSHPwR3Yhja+9CeLQ1QU0Q9Dx7CML6NnBmRhNkGD/jxdlhuGeHKhRfWsxuOY/Y/MgoHtaZxpMWlcO7+AH6En6FDV5aQ9OB3VDTOeQlJ3eiVwQx+Iyl+/aXaOt4Twwu+Ip5NUMsH6bPgnFzcesKYfC8+hiuBCvxuH9/oL7dmc+K/KTFFWvhlr0kuxV9RJ1ecy4KNoIJmsdQO70Byrx24wfNKJ5ZHYu71l8BCZ+f6GWoBEmRMqSzAMFxYD2Pf3aBju1Ngc8WSGvOmmLepOG8zKED9X+OhoGth2h9kjgcbJFn2Yv5PCfiMK81Wca2T/SwxzAWyk4acdX3qXSjoQkawqVh8eeNPDb2LVh90ETlzB8cctIPLyfdhgnv7mDzeCk0CtLjSg1z2LRhFyfaykP+9c3opLcW/k0rgPWCNXQvRI1C8yqh8XAYbc0RATGjQ+x/6hC4aKuz6ORzLLzMGMSOu9Mm1zVYPKmcXHqC6WuvOHiPbqS+wwHkdn4RHzx9kG9OPc/F5EfRd/LYx7qTjUelgGyzISzfr00Sp76Q0yRtllqvQ7dFn9KVaFd6P9Iegwyt6PmFq1Q7cRjMzXYFPBNB3nv2kkrkK9i9xBTbOo/y0aZMMDeVwnMj/5H/JjOY3OzILy2l+MM4O6gQJ3yo1sb3b05F15fv8MZaf/x7xhpHOmtD+JeNtDJtMcR/CONDk5dBUuA0+G6MbNHUDQb/Kig8cx1tfqEN+s21KKf1jC/H7iYDmwj69+Y5bfq1hG1UZkHPk3s42ecbLK3RhLUrHuHegGaKu9uHM2+uA8fsZoi9dJJuR7/ns4ezUf1XDB501wUZB3XacFCIV1gtIJdvizA0Yy/snWdFqjkX+EmUCDjFzuQvr03gaa4x2Jdcpqk/XoBy7GoelXuEJKWXcmRnLaFtD20WdcPpkrbwsngQDU414QylCyAvrwMili/g8tWneNfChkQCNNDPJhxqnwrC7Me/MWXfIu5R3siP9/4kM0Mr+PF3FBk6rcZRsw3AZlwXrn2tDetHneT7jybx738d/KjsPJzZV8wDOWlkp7iTh0nUotd2bc6tGgXBMq2cdCUJ9paks+oXRuPFpnxWTY7krrXS48tB9GacFQiOHQcOi23A+kgsLdrQQrpxZzFhR+6QbJ2BAxMBnKqMsfueKmdfmQQv+25CulcwdVQbY+QaJ75SewpnrlcDedFf0G50F813L4CVW1Qhc7cKaA8xJXXFF9Td6MS7qnVw+rEH3BlSiS+SfkKr/kfuKVAA7aWD8LwqB3YeOctTom345R5dPOaSCANqcixecJcrg46DTOwEcE2+wu8fbOKxTed5psw92K44F7/if7xadBWPGuhlAes26vIi6I91RZsFCpgkuIu2hGhy5JJjeKvxKm0NXAp+lh18XzsVbtyVh90vF9ECpX64cXwT/OuVhx/+WjS78DGeGl3LybJyFPCgACwXacA02kinXwuxA/vQ3ivivIkd6dq0V+w32gvSazdBdHUk1p3Tgd6FSKaDnnhOrphcVAlWv54Ca/t6+KB8G6Vr2KHABWdcIq4F2s4eILfkHb970s8KHc2ccuQk2957A12/PCmyaiZ0SI+gknfyUDDUmVerfNCa53Ognj/7L/nAH6WMh3bPEGrde7npmAjdHOruM/IrafDndPiofp8uzwfKaBzF9gnC3O8vAQXtsyH87Wf+kDn0eA/dASlJGdQ8Xs/jLqTQk3mhfMNlDWYu+8TYmM05u43Z/9ckOBaQQS1+faytegLPbTuNjZcjqJkb4eRGP/jPPoQ/jm6ll6FW4KxixEmF0bi8cAzdCfSBFXLZ8CvFGx0UdVG6/gBd8E+BJ3ImULXTEBsVNyMHx+Kh4Rf4ms922LxJh0692Q3PRVbisMyDmD5BHQb/j0LzjArp8cP4dzSU0o7SHkibNDVQSCmikB2lkiKjNDTIKCtkFyFEPyMllIYUEomShkpJZVQqEeHv//6+uOee7/N5Ps85N6gX7KYE0hWPMzhyvCTm54+DE5XxZHSsja7UhvO8QlOo9BSAw3o5dOSLASZrmGJkwih+XpwFNNkPxxpHcOCoK3DrhCGKzRaEkvEXoMk6kVfV1IOL9n44PzoK3cO9SEeiEESm5WDil19gvtcGoodk0UegnzdNeogRadkYna9CCYWxdMg7Df0XxMFtuQu0rUcIOjf7885PbWjUYURRo6Qof6kQf/qhRHdvvYeVNpcg+6QT6TwdBTs3KXNzRAq2bnRGq1vh/EHCjXH9UTieKA/Xs4DPZFTTB30b+A0p4GFfgjYj88h5qyfM1G7G7pm7wWBkETUvykC1ACf866MD/a5eXPVfF1qvOoZPl1TTnE89uF5cmR63f8KRNAE1DhVwsBiD5CcB3nQ7ERK7ttKK1MOQcRnALv4nxdXFkZyVETt5OoHyE2UIWBNPd25+phCjq1y33YuKj6Rzt+tHqBsZgPJGE1Hn5zsYn6sPGrVfwUhqB8eO+kZSuqI4onwY3ApTw+tuISwq8h9Oqn+GOyKMwe7kPFwb9p2K4h5Ca/p0aIjN5K51D0nisSjvjyznkftGkvNrSdgb5c43Hqhg18YuGhucTE1JKjBM9Qptu7CGJsXcR7vMLihYLwPtfl/4NE6nxpADbGq4jj7oTaFulYdccfASPxMqBLu8Ps7QsATflVWUd6eEzz32QLksbRip7c/hQ01YFNRLBaM2QMfDRjo33hiKUn/yR1VtPvknnUYZJFKiRTeOXZOBiWpPUUh4Gs6cEcB1dgCXTVaxkI8HJi94wObJJjQl3JVyeyppR4cSx5ik8AjZo5wwGeCT9y34a/oVVpSqY59+Gwyv1OF7MVeJ3IWpKHEz7rA9hw+EJ0CqSim8/rkBIr/FYoJfLp2zssWdc6/R08TNvHh6MuWfboUPW4RhuNhC/CrwjMOm6/AN+Xb0GRbNwtmx1LLIH8yOf0N1/bu033EszBL0IJcDrXhkuyI/t8rBzPpSyp2nhi61kfTy3P//7NxOoTXmUN1TgrMCh1j29g4aqMonh9ZgitWxgZLfd3Fc9jEYfdueIkRE4IZ1EH0r+86vEzzw4pOxeHogjG4navID4RiSONPIepJ29OPHCLAdL8tCvaGsFVQMRRuSYVXdACiuWkWPjSvwQehcKGu9jbuN9UBRbBk7fD2DduMdeNLFDCjuz8D23epoNVRPQg6rWGzCOR4wtoLCaQ+o8HkEKHi4oNqYR1jVN59PPLaD/WKL0b5ckMwNRODcezMItxwE0bZhuLVrGhqpZ8LFs7689oQhVMusY2OFneT49CG9u6AB1V3DaIbpalrQPJmMtStAe20dP3a05pX8gy/vsYMbOdPh0HYzOL82FEtVHCDMLx0XvTlL2oSc8/IevX2whrNpKnvd7oclPBYGTdTg475cinRy5CWerZSXu4yqapagdssw0kh24hlC89HPbTi0zAonoekVPPfMOUg+UoDut/9Cvecr/Hn1O56eEMwRY6Rg4raxoK59Cq8o7ASTpQtY9/cwVplWANfj9+Ehl3ycYN0DLw/+AMe3QqBT+Ybn3Z5EH9600MwXpyljoxpO+LGY102cSl2XHuPflz7s9UAHmoT+ALzYjL0LL1Np4HO6O10cDRe6QNqHYwRmKqSoYYTruzRAWLof6uxvwXIDd3o8cBe8Yw3xhUMDaC/7zIa7syD9yRT4Nd4GXm3+iU5bbvBYEXV+LGVO5VfE4fD7jaT0nnFxwC5O0tKgpLrREHkviKfLhMCUq6KscMaRoyWvYO6yz3T55VIOeRwFR8oGKbVMBh6fryJL9xmkP2kdVN0phcTVydhYasJm5w9Dxy49HvdiFMNqCWhd5EOjjgVTbUAn/re2BbN21VPklc9sL6JH1eJnefT1i+ARaQqPChfz0mZlOKupgI9f9IBVkQ/Njd6GbaG3MWvkA5gq8BYXiSrAoaVFMKz0Cq+SugmjT5tCy4eFsGH1T3Z2v8OR4rlom7obQr1MoVUtHOyGb8Oj6Umo9KgGNxo5QWD1bjprcoCucwn1D4SjlOUESNs0BuU3KEHVhA94WCEYhMsmYXDCXZQ+78ozVURp49d2jjw+Eg56XMYZHc9x18VHIMkCePHKalh2TYV3G2pS/slh0NluwoVVyrDxpAxc2h4PocI12Dl9Orw1/8PxC3bC/kPGNDX2DveEarJllgzM+efPU94ehGC513TKsYDPr/nBfsrxkPU5g39XesIzwXyO/6sEy84lUcVmhAz13xy7DDne5hGkF65E1XfPabzQQ/b1GgXb7ouB+zsvVIzbBtd7TuO0ZkeeH7qPryx/gbFDbqgvMAEjJBtB5KgQRHd9oOG7ZqNalhEbCz6Fupg+LDw/jB+eS4CAjDmspjUKhBaYAO9Uhf++tOPl9bLs41zOek+74cjlS7DCRAACHwXzteXxpCU4DNoDVvObl47YsekRJwpfpsNdrXA0+Qi1rCylttl65Ac+fLZ/Ehx9/5jw8330yRaBaxoZXCyhhykSP/FaTD4ff5SJZzkFHUgKTn61xgcn8/n2yHzckRaHBmKbUODtR7jTH8TRc6ups/c+5dbJw6KoX3i1soCSRvrx+aBZFJZtClxcir0xsqzr9Z7jLmvC91Z9KEgQx02Xi+jyq0JW+thE7zdY8T7aTFERihC4owiOS5aDAAvCiJ4QXly9ifd0hOKsce60aLQi+8/aBmEdd2CFsT8LPrqFwxzHA56q4Y4xvlS4dh1+j/sJWV1x9Ky1Blevr+clq3Rh87Y95HmAoXmOAPfvPEHt133x/pz/INhRlMYv+QWrHtbhngX1eMThKpv3WMGXO5/Jo/k0PS4SIx3vdtbvns/bj/twmZQGTDOfQn+7XUG/3xoMpk7Fq0ca4WL2LjCcxqToJAeflgiTx5NXaETHcO3tsSDTYAOC1zfSKQ9zGixeAU0lt1Az+CgV9LnwgtJx0PQuBQ1PaKGShwHMTGphR81quNLageHbV5DOIiNKdvxDPmrLYKx9KFk/eIKxm9Vhd/li+tZrTaIWolxj6MfrfO/T9asqMFRfSdHdwmi4PgMPLx0PnptukN8+TV67x4tfQBL5n3hL1yIUcPL0Tpz02QX3NN0il6RJoFGpBdTlhjv6p9IvzQdkcRG4cPFHHFVyBRKmAe5Zm4EeL0eAi4QEmMXUUetSVXhk1Qqc7YBawc382VQWrWcHolHzE353YTwE+K6iZVGSlOt8noK2GnDE3VwsLzhI3fMSac/NIX4g8eQfgwxgTXQtZyUFwqX8cNL+sgBj3X9Bk+ACpABbSu62hb7zvjBN1xYOX35BjyIj8KRqJZlWHqO78JiMfhzGyTlrucM+jTWXHcSsXjV4dd4Uh9oW0K6/j3m2kxXu2HMaCu62wuUvrmCSH8DvfVZSFSnBsXHiEL8oDebrbINrnbNg8OYM/Bryr5M+/wWLKDe0kT+BFqITITNekPzOHAO/MAuQkJ0A38fr8pP9p2H4Fw9QyDkLxXnWsO7nWMCzbeR/+wVahU7AtrE9kHdLAj+5jYejrpkQsuMOvuvUxnJTZRg8EAzqVl24YeN/PKSjD0/lhmH2TnPYywkYK/IfN9hE43t3AYjdHMh/DpewepQiamSX4RU1dVS8kULplz2xeuU1KNZuo1oHfVDaux62jVHikebhLDftGMvfaGTv26txqdRn1NedSKuCdlCNtD7Yb5jJJxsDuCe/im98awavCTtgRWwubD49HqeM3g2ey6LBLEEAVvcupr0BnsDPR/Od2T85RXQDhNiP4IK1G1BayBSCj9bgdAlDWKWsRbUq3VytF8CaWqYcLWRG9w4MwDTv6WR+ZwQWzl+IPXMJRLN2srPwEXby2EopE+dCvO93sLDz5vg5/gQOj0G9dx9KzFGGxbLJOCbMER0sX3HLpC6qbvlBB/RKaMNRPZpbEgSvbaXIdoIi3A6aSXdzxclorinYqdfwsZX6nGk9B4eKk/Fw8DkQ27iXIq6Lwe9oO3o46zvEaWbTCzkBSLX7xjedC4EMGY2bzdiuUgyrzCbDCckj/D6kliuVV+PwSztBodORlX8FU26VAak0lxJFXIWGvQaw9bc/a5/vYqPsRxyoYknJ655C6hx/WHstmp8O7QDtJ65ocUoZPJ8bY+OG7dCfsAxb2oxhml0bLL4XAKIe3hAVHQqv3jqC5UNJeDLcnt1WN7DkSX24JhzFPx10IFAqAToXNXHlorFc4XYZPFZqQsf5IhbEFnSbdABAX5qmLa0kkyhhLlm9HwsuL8WOiv2kVSYHqv++u3ZRGLe4PQA8/YJCZB9R/dNjaHfWgxZdWID3GszR68tIaHRaxg2d1+jXtkl0b7sEJJ5cAo/CRmHz/Dd4qCqTbdrWYOoqGThRdoQCg3MwSPg2u6Zl05IN5jSneRx9Sf1F8yXloMpuMgePUoYsGTn4bTHEnb3Tcb3uZnBeFIEFcu5kef0QD7rshexr7vTCcjIYznkEPSOayDw/BH0+O9ONYk2aHrWWVumoYtxCLbLRLwODm+Nh7Oy9bLr9Az1RcaTeA4G0r0QAxlgeobmF/fB1pDNf+J6ObeNGQPfKPtZ6/gCfvurHVZmd2OumgH8TDvKmu83o8LoNBqfNpZY52jC+bhW1XhaCxE8GtNvuNTxJ3UkuZU6stPAGjlWKApfP31njhgbcqkaKsn9NX3/a02f7XByafZXd5uqRwJg38PKSNGnO/AKTS0b9cxt/2CYpjjheFsx7NnPMkC87haWgTpAThnTGs+WOvfTCQwZ2TzEmpYxRsK5Tjy/tfATTdeLgm+VlGj+gxmFGTKVrkujkK23o3v8Gi6Pd6dQyd/bqiGEJpQY83O3KheH+eGpWIOVa9kLRNGHY2PCcnUZPpk2zJ/Fx9WzKf6hG1W7H0SljF02IdeYHNZF420UT/iv4Ri7jx9Pvm8U0QvsDt9x0AkVXQXi+fwCtk7vJ0+UonzO3ge6loiT9QpK23O3nzVPieepQP0tXZ0Jy/g0oDN8H0j8FcV26JMRsqOKiSc0wY3cHXBfahGWZAvR7w1gO6I7ir9FrKOboCtiQLQ6yfaPJ+l0UHHjSRkXPx/DWEcKs+8SJbmd0UKylPM+S2U+GUboQ4vALnn8Ygove6WBz4iZpfGzl9e9e4MMvQNRiiXVDgdSdIAuuMjJw55ISTQq2RJkvYaxntwP3j1Llt4bSlNGxD0xHWmOq33D4r92Czk0tJf/R52gwLAqMbqjTL6HD5O21k37b7eTnX6ZC54AqvG09Am5aI7C6KhtP7r/HjofWwaIKYy761sQb92fxDeNOOGWJMOlIIfdnf2WrhRG4bc02fPHhFd1c+xXUGmfiu9mHIVonC5qLNGHW8kX0aup7VBbtxbwjeZw/XZ7UnjSCWI8mepkEcOelHKo6PBp+GmtC6aa16GLZAge4kExrtXmFwgtadyiUd5xQoL1ZonS4dyz0nSnEer9aWkrv2SX7JXRiIFPaGbw5uBJuRvVRvEY9TqhjMCtzgLfKgnT503+Q495I/UvTOXeTGeV9MeDm6WX042wCjqyXAUn7Gbz04DcuSrfBUr/feN3jPo/QGQX+y2ehrrcc7Kr/wMu36oLx8rlQf86X5t+05TZ/Q953/SaFTgzng0vLWMbxKq8Ny4EDYvoQqdJDW9SCYKH/KnIr+MPiglFsdykVNXxiSXH4d/IWrKT82xNhnfMXdlgsQUGutbirpoq+ffjFztcm8qDVcrp8N5Ch9irOq1CB6R6WOH3yL9pdLM6bfi8DQ5XNsPZNDEo4hcFZ/dGw6GUbH91vBU7RSTClox0XeQ2Di92dKDvnGFsPm4mv2j9xp9QjfvNvO87ZNupfRrzowv7H9PL8C5pbtho1+ldh+L879vQ6A9/SwhHpKriKKUDNixsUnlwC0uvaKC1LFt6uTaeDU8/isWHLqXRoDfwyV8BBMXmYAl/IcOkTXKOWyef7h9DRxBqGlryD8w+foG/SDlwySwVeqIuD7eoIjj/qQxqHDuEtbRUeE9ZPsRaePC7oJ4jUjKfO+qd82scC7qqosMDIg7zhxCyyFW8Au6MLWf2cDNRXXQSJxiB42vcAbd1MoXJiOh8puUGZxU6gD4V4NWoLeLV+40/+1vjhZzovnzGEd+RU4Ke0IMQEaNLpQ19R1eIRbk5+QvGbF+C7nY20rLoAWHMv7ZW0hYR8S06fOpUjb+Zha28a6bgO51MuFRDZ4YbF2iEwoC5Bh0ptIOfuaLy12oU1wrfxvBNfOO5aHTlqjiK/1CD47TuT09aOpBt/xeDukhpWb6skb2l5iLefTnXRaZC23oZCXm+lgt3llJz3E1X/9e3r+mRyP9CLbdk99OqLFm8QfIYB1+bzQuU38DnxHGmJzmM9aR14pdZFpxI8cfUlGZ6h8Jc/fngDf4TrQXfBaVy99SgYrfGCli1mgCcyULzSAJfPPMR2ZpUo5OTNppNdYCDeH8e4JpCsjS43DlmDjvAEqq27x9vj7dFm+SRWCEqiGo8l1Nn1nu6l9eK2YbfpE5lCdsUhMp/wgqckjAG5Qlu4nPWa+pPUaW/9Iv6WZ8gqs+P4zDsLMBc2w9BOR4pWsKC2TBFeo2dJqRLLWLxWFW43veGguk42bbaAXNmNKHFtGCnNy8RfPdasetGOggrX0v35Z6BG+zIGTJkEdsuEYHeqH7cf2Ash7epcc/UwPzyzHxxOKfJVB3EUj/Xii7v0KE5JFKRbhSi2zBM8le7QRWEPTBqXjOG3rdgm89/NGSQQ+J+kg7qKsDpuHmvI+bFw6wEO9h9k5SpptoiYQVss7vO3uBNwY/V7KJloCekdmpSjM53Hbb6LovNuw9+Xe2narRL4G2dJhcuCYOXd+9wROgYuj7bA2C+fqbz0MTyKcwTZPT78d/wLqFW9CC7iH+no8G4y/6gKH9y8CEPGkbHECf5lM4qyC0NRpvMrtp9R5ounvpPkul8od1QfJIcWwPh7D1mpwx8uDlPlE3uscOETZT4/cQV42J6HR0YZlOVoAQUXfLgp6j44Hi0gG70M7hGsBcmFHpQqugna111AOV8P9lsuAOG9W8DCnUDllgvEky2+mfqdJ/ba8qWnjZxa+JlSx+TCos0q4LV5HloMyvMMkCepBfc5ZdIqOqh+DK6v3QRbHFq4oLmN2htGwKrGQsg1deEk78ncOWYyne92oaWjlED/tS5uE09FfwiGl5/VoVrEEyfOSIHbmWdY6MQ/pyuLpgm35vGRVxZgVhHKL3XUcPcORRj34CAkxu+i/QrOeFilnPpXeOH8xeL0uGUvJK36SDpC5+HBPgMoG7kPvgecxMKx0VSbbYOHcldh28UQVmyLg+kCnlC37AApO8jC9II/cKlfFj8aDoNx5XXY4rEB351JhyWZ6yg7cAg3afxmuwFx+KC7CT6VjKHCzmy+ciQIasTmgGACw3VLVyyYWopLQ5tR+6UkbJ3mRhcCmvk/uwd87ZQPaIeqQucXIRpbmoefx7nCGf+rePAIQtoFT06vfITDJhyghZ3NnGe2HhbnecP8Riuy1H4FAxUxeN5FHQadBSmsLYXVV8bB1UYHvtngi0smO2OiUwSLv7OkphtXGCMQ9Ho3stBUV545PgzK9W7BLs1WcN29Dob9uQ6hfy5xgO1z/KEzGboq5qLRi1/wNnQ6e8qexsXLdkLWLiN48fEEPpW7TSbvP6BMiQlMXTWWa9YP541Zp7mr6w41No7FfWdjMMXUjo2/DUdD0ybqW68C53CQLGxU0LlsNYefb8O82WEsFDGJX5zbAg+8lPhSbR3u26YJ8XNFYL/BJZ6eEcnJS0ZD1nZTaBpYw2ols8DbJgiLZ5fQGWVhuPiwhHKGe+CWUw0UdWQs1erX4YWaZnj02wfm9AnAXF9pYAcx8N51nGvq94HTWX+yOSZDxepbaESIPXtGR8Put9+hZn8tvDwuDULZ+7FB9QTcG5ONV5ZuZR1pV0z0lYMOudMk5y+FwYs94GYIgKGmKecMxKLEiSw81byWX36K4b8rFHmf5zPy143Bry0z4ESiNKTpPwSpr+tYdGoW5/W9pnXpv1Cpu4p3n/znfCkPcFpbPfi8HgdPOoex7NJocNE5y8NnDee3p8LowIJR0BR2G+c8lqUPpxoxsmQiTLlrRm9/vSTZo2H8/uV4pCOb6M6yUxQ2OZLV3ovCncNPqN5zLBj2xZDY+jWgMm052mMFDExoxfu7OmGMxR6YJfOau5ubqQJ1wNawklPWvcOzfWlUZyCMRe3e3FuyA7YvcEaN5YvhXkMwmYtKQ63ZXMq+dAEevJ4LpmYeOHHACQSz8+mm1mXwXzwaA0rjefQKM9A4pwpn7I3J2eocF1r3886lp7Cv6DCc/HMW+8KseMQjhKNVGuBb7sD7E+fgoPM2mlvcCL+fRcNDl7f8dfIWihJbi8p57lAwSxacLUM50+0KeYlE4x0taxTCcLA2q+XoLW9gifhuVHudisWFyhBsOISVNwdo058cejjZCY2GItFobRGLm/wFMohmX3k10PQ3AqkkQ7j7+By0TvPmn+t1OT51D2gtqISAN+V4YPYfvH8xArJzx4HcCz2STFflJUeTIPCIEe7K1MDXMx1gi9c0HPfoLJ7Zow151hJg4NdIfYkbyM/mEefMnM5/FmvQ6X/57xLLZO3HF3DHPnWOvaoNIr3FECRjCWJht3CjmCstt+sG24ch8Cfdiq5n3sAViydwu4oEzPgUjMOVAjh+2DEK742ky4fD+KiJPZx9sJx21cZjvf1MmrdKCF5ljSXeOoHGPJVg9fyjNKK3jX1yfLlf7wfTqEFoWexDki/VIHOTPxtofKT/HueAvNwLOh3xBptqF2Be9lvwrnyND6Krqb1NB57JXob1otNZrKSef8weRKX/HvLC5v18pHYDHLjdhhJVI2ms+igYfmIr7jaPpz3PXvHjjSdgDYryeuVv0JUuzBNH58GUPYq8WdgGTB9Po8Wz77Gvnz5NnPwZ/0iHwmi7xTxK5ci/91GnQ23eIJMvBNUJ+/lB6g46nnuMq8dt4sEBO/hw2gxXGtRDregIjH3aTQHXRSBFVQb2CJ3nBYuDoVnoKQr80IXfj1LBuGoQbvXngffyNNYrYvD+MgO/Dsvns6p+7PW5GS9OuombYBmWSQtyvC+joqgvwwdp+Hm1nJ7JaTOeHwe/Grrh0Qwt3LNPBR5SLlSfqMT9z41Q+wXA7rk3eMW2x1TzejGUJnTDqy3msGzaIboQ/REHHpmzo20qrQ8yBfHIOyicVk8/3ZXpzeFHaFy+nTj1I4Tr+5FiRSJ9H/4Ss3OsweR3B04wzsI9DTakI1hMO55Io4yOBGJME1zJHODPu9ZDYIky3Bf7xXsz7bC4dy2Yjh/k8283wpPgD5xXJM7Wq9ywXfIPJC20hWRrE64tKcKTVtu4J2YJTt3chX5SmWjVthMnlofgpWVEBcVacGrWRJp0zpGz9u0nkTW1/7i4Al0Hh+Cd+jYQmXEZzJKjIadFGp7lfCSB/ijyGatGw9rnsfO7f9m4J4+SR02pbk0JH864istWq8Dvp4008WEiTp8kz3j2KJlp3sEdU4/zrsVNrOtjiWYHN+MqU3UY2jcXO+pDcf8rd9ho9YWyEv7SwWWFHPf9Bl4RfEWTu4gnvtcA22V7obC3mKdMqAOx+49gefldzqgwRvtaH3o1dgQPk5oGc84ZgvO9tZiT8pU9bo4FdT1vuGJiDp+PDXGb40Rq9lTEIbdMfvtDB8a6/8DQQROqDbyFmS8uQdXWKtjtsAKfy+xDnbw4UhmSxevDNWBEdjn4RM6niT03UOTaMlz4axzO6VrOPsEuJC4via9c1+PcuOFQEasLGZ8AegXTQXXWejpXcIhs7oeA59xJNFpsOxicvgKzYobB5Y8FeGrrHtyjV8zOhkLYlLuCXK0FyNNwOpWsicZbdTlo+UIZFt7ezy4vJ4Ny22aYst2KQk9eZN1EPZyryFR75AfUO95ng/0qUPWfL14+7MAbcp7gu4RclJRyYOmhGXTd2JIMmx+A7feJ9P6VIHw8aMdDyaUorNnA9jV/qEVOBKI+L+fyy1W4q2AxLPdVpAVvrWBNwDe4dryZrs4+RJKNrThnVyaqedfSQEAFRN9LIpGLucAVYmDTthX3xYagzC8rwPWx5J55B90+S+JOxY9Uvfc6Onz3wEuzR4KeogR3OGVyiGopvf0oiMOGHeHZ4WlwqewqRTz0h0WtV7lJfRxoibryuJSnPObgXNJNceSkMftJM3k6R258BgM0B4+26uNCHYC+C7ok4pHDZUErWPGmBYiflKPfDtk4LasQNmi28E93dThTYgZrQhqgTe0wj33dgXr7drHULCDcWoC7JZrR404Evbo7g292jgfL3K0Yk9xJbdkrqWfabrr32xrzbx7GwdOWtLbcDx48v09+P6WgflQfSp5oh9fXM/HS3nyQevuF7LfOp8bRN3DpoiZO+tIAZyImgnMaYHpKCsa82M3Sfg3o4+vJRQlnKSduLzW9nsFn7fU5p24UbHs8CCnOPeAyLpZcFs6CFP9eOPDb5J+Tf0LNNz8pM22IRwLDps3NWKUiz41QA+dvNuLb9vekO/c5nz+2COc8a4F1JpH0+tgEODNZivqUqkHB+Qh6eyXwLvkbYHk+hPoO7QGLnc1sqPKU1qyWgrFXy+jK63iKeeUKrt+acZHNCpK1q6Ekw389d/cerz/7hbe4GEJG1HS0FZgFa2IcadnIMpb5speuLYwEGfd8jrg3np6NcaMrsxVg7PladlYxoJe//Sjy+RYIFbfnxIoUCrisDwksy2IzT1KoHcCPEj26+3MiBXUHQd34Sq7CG5C3NAwGLGRxuHE2uMx6hhKpk/95kxlk1w2Ap+4XbHJ0B9no//D6MxVU6DfG3VY3YJpmHzxJJDBOG0sKRx3hYcozaA8yA9fpuXjVt5UFj/6kyARrzg7fTccajWFyw0a49U4YfTxtcEpjOOxJfAx+186BWMFceDuA/FChinvNBGGkwVZcFngUMyYuR02aSqs7buLhTl0OG5ZEDxx6qK1hPO5PV4Q37oD4WZL+XKnjnD5FHGsxBz8vHqK6Lza4TcKbK/v3c0eKBJQGDvJJ2y7QNYvjxOGT6FfqGuqZYsunny+Bmmm38OOO01TSqgJT+oZg/8l8HJYQSvo+IfDuuR6faD2A1eHSFLJmPLtFq/D90QgtgR4UsOkmd+v/hpgxeWRy7xWNK9kA3dCHXjSSpC4I8Y/zk6FmcA5vkVfAOOPx5I+fINEsgVs+FWKbSS5KgAQ2br6CdqLy0Fz+DqWM0rn8RDHvcpLChaPHoNEZLXrzJhzaJIdIM1aJNL5bAidsIslLXVzgc4CvbX1K504vx4y+b7CrKZ5vloeicE8Z6odogM7xP1QyrJ7ah1ZQYlAn91Y/ACkdG4r8tZNK5Ivg0JgFoK6rC+ubTCgs9wo0D+ihoJ0x/vqwBUOLIiBcbjjF7BbjGM+xfO2uAWjemQbfD83lWbtE4MKMcej3vQK99LZx81d3uP9kHq39YkdXnqpAm5cq1kdsRy+lfBa33cOvi0ooeUwpbZH7QBNyv9LK9puQ02oDJ2ft4/rZX7FbWRsLUxfQ4I18HN1yiw96ueMbcU+Ys2o4TzhgBHc2NJJJcsi/bhaCN06f8KBqHEotP0Y91s6UppbMe3V+ouw3C/AOCOG4sJOs+C2DhRRtYUNqCCx4Js9LalK5ICINIzdU4C8NAbiYv4TzPu7jNz90mPWX0q7SXfw6U4e3RntyGAzn1RPG//N2fYg6+hHdl6bi/DOncOvbPbTvfhtMdNLCHu1VMNL0My201WJzLyHIzquGAYNs7Fzbg6EX1oDY704MDZ2Kk+kSGmabUHUF8OeWcfBoXw3LaClRz8kGnhGSyhV2Gvin+xddqhkPu1qFwOZTGV6QVoAb1lHUIv0KtmbEk8pPI9LdZg/hgx6s8Xk27JJ0x4kJWyA/1Ax+RL6GRwI5IKW3EQx7+nHapstQMTUOzO01sOigKK3rGQ/WXqPhpsBlfiftTc5Cr+G0/h7IVruHO6eognykOA8rEiFT9b14LN4YqoKVYfnfmTjt03oue3eEWjrDoGmsNoz4WgHfdlzljh8K8NdTFARXD+GO4Slw/3kZLq9cCRkL58Hg70EaFrSDdKauw3oWZBt9OZC1bOGh8vP4eWMhcUw3a4XaoPfqBSRougxkFztxX/cFHOxXgqVvBHB3ijRZvb/Af4OSUFQ6A+54LaWoueV8UXccrHE7x4NRVvCkrI/LLl2kPXiIcm9GQdeXaD52WgcWWK0DK31D+H5BmONq5GDfFT04vl6FN059C+UDAziR4tngjwD9EHSCeR83QKGTDUbMFgFfp+9cOjIFFvp3YEXjbb6TLslBt9dRwCcNOLQE2PlqHKnlq4O0eTeY1aRCYnkAJV0WQLGAg7j6n58qXX3Fqo0raZPuAbLPMQSt9Tv4UeNvxHBXPidjSylHpWGf5QlY4PcGL5bFk+UIEfBL0IKfk40gedl0av23lWJr9+HeeqYF6qocPNGXY+0/Y4t1PEkIa8KZ8o34xXgfz5TTRrHBafDfnDUQZPKbL/7O41HPBGB00UsuiNWDbBl/Ksg7BY0/z/Ci9x94w+KtzEur2H2bMbpM2ArpRZ3gUyQKddAOvgd6ILRImE5P+oR5y6ZiDNRD0456fj+8CROlRTmyUQm2VR/k0hdzOOHePx5aZdCdy5W0zaeCQyLbeWmNDY3KuIieVTZgFNaB9WJ+nLBThnUsXXBgThh2+avCOquZWHlpOJmNmAS3zC0gaL42HazMoDcffNFYRo8TP7eQ+fM3dMczFSRM7lHya2tcVysApevkIerLXdA/8h4jctfgmN9yeG2iMOYlj4RPDWvRRfISXtonA+tabDntkDbUP4qHSTqhJC7zEv8m2INz7wu22JAH0XHBEKE7FuryPdHwowLklRHv3GWFh/2OgHfkNhihkMeKP8Pp9vvPWPCPQ3+rp8L6w3uhQ3U5N9sqEAk+YJ2Vu3DMFW9uP3uT8i388UeDJMy48IrOOD6mrEgljtZ+hIKjq8Bf2ImejxrNzdcOoIlYEf/VkILRLjdARX4qPj4cS0Ep7XQ2bwu0l50h/zUG/Hi0Jjf1boagLoCSo+Fsf3Ak6WkZQ9jmVNh94hElma6lwbxDlBDhBnt0ZUnHRAVMDLRYX6aNmk8WovIhRVwstRS/Bc7D69I3+Or6dbxj2Fs+ISACH79/hJgfcjiddVm21A16F1zAudMt2N76AW6Mjubq1mY+cXA8FE1xhIpEB9yhpwedxTk8x3Y/RtYUQyKc5mqHTWyvvRZk+mQgWVSctD/l4PbTHynN7An2nt5Ml89Vs5fxQta2HwcbxvvT2SNqMC8+jZpqp9DX+pFQFfMOR5cPoHnQVrhR/BT/VitSY0gO/JJCWKE6hf+KbCDfGlFW3lpB9bsjsdduGDqtNWaxUxH8AWdSd8hEeOP2DL3+Tb5rAvdRfbIdynjLcMQjbTK/rc2v77vQ6p+yeLBsEqi65XHy7+8AOvuxXm4JBqYYw+C4A/AuKJAk8nuwff1z6PYZD1bno/jYoXpOPSVE5yNtMN9ngO6Z6nOgw3xWWnCWfANduXT0cFg/K42MZxMrqWZi0tIISjDL4fl7zalllRusXW2CwyPHUuWhMXDu83D8dNUBVSM8cMmOs5Rb+oqmjl+Kr2bm8BGzXaQWeYoWBajD36FOdkiog5ezXfhG0CPu8bwCK3Me0hKbdfQh6zGfXKIA7RcFIOPNF3DqXYOtAXv4R6kay4RpcvkFcTpxuhzFtR/Swo5MlJ8pB+mHYjEj/CzIbFPm3h13YHv0Smjy24IHLY5jf1Mw7qhJ5JcN5nBh3Bhu/yXCPGACPatyOa45G8WEG7jb3Rcku47TIccpEHPXEoQmBuOthpnslBDMM7dWo32WHY8ROQw9qt2gOMocf0xYR8KPDGC2wCQoHz4IM1OleKGMAGj19lDqtEf4KqKCnk6bBys/X6Pwb/oQP9qEfE/tgt/V4+G6njoN3k6nKu/n7DpRhbIyN/O0Jj9+l6cBtR+SIK63mW7+vkUXs4/ztHExPLljBq/QSWLFEkuaUnEWdb7Igtvij7DCqhCy0gXA+GADLk0/A1M+Exm8HkA3bRWKWbCFxwsANFxbD62Zf2ClURjIq1yD9MOioDFiLXyNlwSNg/tYuyaNiv3lIVhhC3xcOAEDskXxW3QyqQ/E8MiEMDCXnwSlM45QYfV03uLwr89zN2DsjhIouDWKnS5YwIFzHWSLe7jAwZ/GOTVRxI8m7Ogyh53t36DvzHTcW/oUVzeM587niaS1Jhj8Xxax0VUDch/3l1dnyoHC77W8KaaP0uJSyU2znIrFf+Kv6gw2OBYI8jcsUCbo36Y5YAJfXY+SzOOLMDxOg0pHHseaFVqUG1aKF4c+0rddHTB3VzCNllWAo6ePsZLlATS7SLzY/AAoeM6hD9I38ZhaNu3f+I/5rypIR04TVj6pwx4rQd6wPZPyyZLGrfkPJ/gEo+XZDJaxvUYnPzyjt0Xj4aNBCx2s/8YvxJbSoslDOH/hQoi8eAMnLlXBQIt4tNilTr4jJsJovSVcnziHF18Jo7iI56x84RRtVO3AOAkvLq9vpnc+4bTgxRgYO/EHSv91xWnea3H5nhjWTV8HXvPHgNafYLoeWYyjv4WDzX4ReD3nMPo1NGGXeABmTLXDe7Ni+VVuNFWsiWHzoiiozdbCemUjqLaejcUe33mzfSdKOqbifg8RapO4SHHVtXwneyne/VpBHktGws7qbHKOW4vv/Y/Tu+X91Henkw4NPsCBwvc8JlQAnh16iB/6zeGMXC8auW8GwTuN7Cz5Bltaf/Du7P8o2caOICEAFqjbkr2JJFg+/8p2Cu08Yv4v9C/JpHmT/DBNTR+LuvzATyKJr2sfxxtmWnA75Aic/OiLbrMvkV5mJh44IYohPvXsLVfEBr/ScWVuBBgOMETObqXda9LYfd5ciJlkyhuhA25gHh8d44GuNq/54A1R3o6i4OY5j0ZVN2PozkGeWWBElVPP/euoZbT6kwtFC0+Gve6LaShnBDSm1YDOsWzWDGlhqUmOeGhSCLgWj8VILQfYcN0HY+NU0ZbMYcG5d1hedRZ8RqVB8SIxfKNbRCJK0dCfjJTqchg1FE9ArKEV3M5whrPBCmzwXJtkvg6j1N3ToCGkn0baqUKUcCvr6m6l+fuEITNNj8HZjTH2FG/I/rdXr5dh1h0R2KSsASOrjNnqUiE31emD7jIlFgj6jbPrlSkpW5VDmybzjKgM0ttWRmMnavMtkbmoPEYCLKyQ8/ur8fCdHii+U0ijrrSwc8pYlvkaCyP2ZEHGQXHMnW4Ari6alIgtqBtTwqJbHcBlwILDS9LA+edsmNgQSl/Wx8KCoEkwmK0GlSvzwGDYGKy81UZOUuO41bKbAqPeUsVWCXKWSCedlUpgLjSLSvVvAp35x4v/QkmjzJEKH5ymjWnm6DKnEFx/muCs5klQuUCNxqUGcpC1PD6fPxLtM5Sp9d5fHCZVxVIdN+GodS0Zq0+EMTa7+MpJdZIUN0T1L5d51nI/vlG7nM+eWoqCS4ox7oYibxcVg1n3ZPnapF9gPLaBO93f4dcAA0oajvht+x8SjxSntbljuW+PKAQXN6F8eAMcO7uS1lToQt/nGmqdn8prjTeSRL8Cz6yYyaqB4vDZ/Bjqb76Ld093cUPZVrAUvk0Jquk4/sMicJZqwanrwmjqO03IdhaAoeMq4FAOtLr8FtUrHud3PzxASE+ELnf3Yu722Vg9XQWub0/BIbsy/LE9nm1KrlGG8Q+Y2+IJO50b8HOYLMxzOEbzq/Rh4esD2DgtBufEXqYdSyq59sAAhzel0Ot1cTzx1kKqeGkKKvnK4DQiCs3/jKIqDWOuO+vFDcGh/DpbhwKeT6HaH+shgvbjrgQxiPpuye2BXynszHQ2M1Ilva4ZUOTyC8ViC9GnqIPf7l4BDTPVYHLGbK6e6gJ/3KZjn28x7ZSfjm7nGulB9iGuzLDll3/d+d23MdAy+wge7lOCZcd60FN2Eie5f6bBuK/0NUyZXMTH8d59kfCf5mi44DWGXySv4t8rZ8AzSxkSVv2PLr7s4qblZeCwuZK+LHHGhCEDKH7xDq/+95VXfokgYdEr3OThgK8Dk7D4lTCvG/UTFae64d0PE+CAyWrctXEqHXleR9nWWmB2UoWnPP/neK5xGOj4EvOCP6PCfA2IMBCDRMkocjbaDJtLtGCqTTFsvbeOOi8VkNdGXX57bj5pjdaG5+M+w4YFCqRssYMlh1eD1tAtenboNWte24l1cW34X1cf55sow3OLLRRetJWDXxRweFgozF83gxbpxbIu7oG5mlfoV6gldhUqgkDDN1bOW4vjPg1QgmIB93q1kkvGD7Q+d4kyTn1Fw7PL+ftYQbg7SYaqj5qC914NdCusgYE7WphxooB8wlsoZNNt/GJ0Bl2OmkFZXi/PO5iME9ZtQE2rah7oq4OUa6+oUXgKCk6Nxr8O23jBLX1IFnr8r0em8fGoefhqrgBM1hbhbhV7eO+1nxLlalm+t43mDbeGtdKaoHBsJa85/RnnPBOnPuUJFPTyOMzN+sYXl+bh1o7vfFFGBAY/OlGXrB80JrvTuAABbtZOYLdLUTBD0YALmvfC4xEitLpeAa7JJOKWyZvQO82XCw/48jMRU/xkg9T+Ig08JaJ5bwSRtK0ivMl9CU07V9GkERYQMXcYx1S/hZas3bjqxWaa+2wKvOhfiDVqmqBuvx6/n1nOMKUQZ77dRPtd5WD/gVx6taAQWh/vp8xNDjRgJAoDUrP5aNtx+iIZiiqNw/DjdmsudV5IR0YIgNkIFxLoqyV8agGqt0fwqp0d9Mq6FvacCaFBlycw0Padkq2bMHjnI/h+ZA8VT9aHKjzJ6yUMyNXLiMXNRvNhgXEwTG45b11kzk9HmNNO42csFSUKGzq6yH3CXfKIyUHt7NuAs63AYnoSGTyZB0ulf/P6gFbyNhQEpQvudN9nFZUHR/DZhLNQXLsCTz1WgixpW8xxM4J9i3/wz2wJOHYJaYnQ03/bQZorNWXojqwc/0lazy72/2H/iiQK97/Nc7I04HHub1qawxDyThuvNb6A6q9v6U2PGh77EQE7XCdi2yZVehWtC8HLP1G7piz9nPWSc9zlaZjzFIo7dZO0LqjCdpG1uDpHC05eV4MRLXpQtvE+KUkkk9xbHy77+JqqL43E8rpQji5OB/WRV+hZkwxUzHnAUv1zoXqMEsTZrMdTN7bwnJuv0fPNXhTwq0A1jyqqnWkGRYeu4xy5vXj7ejacPTgWL6ZH88uFKbz7eRtU6sVw2O6J8LhSHNINh2PK9m627HpKqutGwyHZcZQbNREaLk9ge9ElKBtTjKv6xWGC7QrUE9sHo2sS8D+VJoy+Mg3f7TkGTw4yTjy+ng5dnIBWPbZQveknibfc5VM3N+MP+wPcIS1Ag6uG6MC3IOpObMT6WUvpfLkckI422fs9YXH9t1jywo4il//G76aXoePtTtpV/BN1Qx24SMoSnL/rsK78VGgrMYX1iY94Suxq3vetCXXrWzBvwx0+2mwFAVnKYG3WwH1RdeRq4g16s8ZAjm02XtrhQpdX3cHvZcHw5cRF9FmmCfGztpOAiSIu6tkAFruRHZ9nko1lFFe7/4Qvvd9Rc3UXxFwygsJXGXg+TQpC81tgyuRckOhfzH/8fCFbuw6eKR3FPrXFaDWTIOWkHv9JHMSqDz+g3fAanLqpg7Pytcj6Xg32rHrAPOUz2s4Wh9KODaS0pwaiHa9Sf1In9PTZszOupMq9aTBYWEFKHgq8QEUK5Javh21LO0nhli/6rH1Kpwv+7eQNGhRTG04fUiXpkrckNZuOhhN3/Ghy3zuIcBekvRMi4UfZZgy0v40zNv2C4e9HsK3QFDISVgOrwEsACQMw1fEaxVRMg73Hz4CH+Sy0zEznUKGVvKLfkR6rmkE/jKWVP2rBJEeLJN4kcdqKE6D+fSp/aI2gGZMzYfPRGNoTqAEbDyzCETp21HM/HJ+O06XorQdp2qeN8CtFHg6I5lDOnw64n6UCblq7+al7Kfo5LOHfaW38RsoLe+Q1afnGahTe4QSFPxHYWx+u1+jiq43qUPDQA9LfbKbtQzV0YIc5Sdvv5ZRvnvTOMomvJUjA8r+XeIJIHUs+8YHF9+3gz0dzHKfkwpNev4QTxyL4ad8JGtOpBpIfdVBk2UOMbMvkk1kloN/oyucXSeDPT61wePFTKJeope4SS6j8aMPm5wugv92QPx2Lpr1nFDFp93nCoBz6Xv+PeTdnwwM3TbD7x3P5GWlsdEeY9x4qxu2TS+hwpD3lz1sCQSVjwLryNkx5pgQfLiynirXW7KN3gPNcczEy5C8tHudIU7sS8bXGDhBU8MYjRxQgJEkY4sU8sHvFCVK9uxjnmSvymqXL8ad1ADb/Mub2xbYIz8ShrMiMgr3e0arJ2ZiZdha/9+3G9bIzKKgknSrE5qOeZCFVNAuDdLkD+l2qp+ysGJKqGeSVYhMpq90c3n0MZfGulZB2KwWHpY2C7gmGQNaN8GB9FGi/2gJo2AX3Ta+R84MsWNBjiTJOcXT9hCisDLzIhttvULCgKBcqbqbnN9/QR8+FNPpQN0RMsKOd6kU8ZqEZhOVG8Jo9uzhIby0N3A2nRqXrPOLjFdJYWI7TBf6xt1uL/gxZQ9INazaItQenD13wUNEDzPLeg4unHf7+T4obF3VgpO5OVJbXg5dQTfr65uQYkEUpbm7kazqTrSYbYFf6HnL8coNaHp+jrzYyMGpNKKqfXIPawU/pSMopcvMWgqtf72N4+km6+SOTTaZtgKhIYXjSH4iZWja4UVOZU5SSua9xHg9WRLDpSjeMP/wblB9bwaGmCVB8soq6iibR8o+6MFxEB7PHnoW3DScxrFYDmx//x+k70nFLqizMDZ4Emx1cSPD+BLJrUyfPCQG4e4YCjhi5hgIXu9LSRgEyHa4BY4S+ww7JgzxavgvnKUtCmYcMWMg/5pdyPaxTdYZm/14N6iuGQ+5fbciSDySpQ8I8rKGRRJoVYGjhcd7TI8Lzqy/w13mNuNDPDDb7vwK7R9NArm4b7PqC9GhHHP0pc6IKBX/e4OlDmsvf0EC2FaQYJ3BlyG30iPWD/Bc6uKF0I49flUM/tyvC9VNH0dtrBl6ZIwVdw3fw3PiPuF5an061RPOtogKaf3sRjja4j2ccBeFbXQemaiMUHFlIdRYmoDJhI/0VfoG3T/tTxXBF8FDt4s/TkQ+FzoKh9aZw33kU9Sh4U97zEAgf+ELt3x+hr1Egi5vXQviLMtqisIUkhczgtFMpZyv6Uo3dc7hc+YHVnkbxBX1BWPX6L04NPUBCEfLEJrawWXE8BMbdp5yw1+w3PBkb6nTxntkN0J3hxbO/P+CWJUgfCkfA6jc96PHvufhsU26XT2JNMSkweJhDeg7u0NYVgFI9znS4XxlEaxvI9hXAiIhuWBolAu+OS/LLZ3WUktMCxaZH0Lopk5JWTIZTEUArs5vgdKkPCOpP5o7bBqzuuoAPvorE6cmj0elWKf8nbQtLVKbCsMtlbLCxkoya70HhnCaKv3aJ14XOpnN6m+DY+Xe03EQfhkk9ItSYxGsOt5JaTxVoZDRSQNpN2Dy7HVY6aZKW+Wyqr7KGsPI0mnavHq2vxsCIm4WsZysC1gst6F1qFGTKD6DZaTnWdpIH0zsxXGC0m+pc+7m3+RIMz1/NBX9j2Dk4nssOEx9MPgOqGrYQojqOpIObiTd6caDYE0g+sYOPXF5Fvr6LuOS7Gc595M5pj63hxO8PtMaonjfIn+XB6GxesDIFLddo08kFH8F4wgne+8OBt8mowUl9Z96+7yklaerQ62nbMcJyMUrdd+Nj+g48Z20IHPxuB0mG+tBluRIF6/9l5LgtjztSwf7lOZi5fTMMvzebi1oOcKm3Ly6P0IffOiKceaUUL+3eSPvyv2HytTnomayMx4PcaIH2/4g774YQ/zaKXyMaGkRLKU0qpb1JpMjuR1JRQgsVSkoSCgkJRUOhYUTJaKASDStCIWRkJoq0tDy9i+ctfO9znfP5/HW74M2MYr55wgwcA21wl+kUNjJQxqdm3rxD9z1vXZ3JMjuuoM6Se3Bs3k+4aaEPGz6mw7U7//jE383oaTAUoW0HYFtXDL449xz/jQmAT46N4OkpCkvOv8cyCQ90uDxIt2668Plxd8B2rxyIfvdgfPqSu2fK0g5TJbjZ5g/aM03hTlcEXJ4UAyTkwGeWHYMLQSdQyD8PL35vZBF5AZB6+xts3JPgy4rTYDKhDMRmenF2WB4WfYyCgFki+NWyFAwNxsNsqXv49VAOLPkuimb6lbB90UL0mRaPxheC6NZ1K7C0jqKj2fIgHHeTYn7u4ynBLbS6L5D83wnDnq6ZaBd4l68LyLDSQSPIDJ4ACyeYgJ7DLwhMHQZvXD7x02PuFLjCG9K1Z8JL2zgyXwhQtk8IVr3pw1rPCVTY24BVN2ex4pCzfH+Xj6b7t7DtGDcaO3kC9b2RgJWf5oLqxhdo55xBu0yFuOygORsva8Dtv+7Rl1dEI2tM+NAfLSj1v4KKKQmgM+Ip/TdSjiJkXUHsvh587/pH+lWOIJY9H03/WkG7chumd9/kx3uNyH7xLUpbsZsOiFRS4sBLRN9/IKj7EoWj1CFE5TJLqMbBt70Xcc21E1xxfhQqTziMqhFC4Jx3FX5J3CO1yVPA6cFxXOEwmY449eON0YocuP0J5i23JS3WYKF58ihUkwDwzRqkNHPI4OgMeK8lwhkaVojXHdkwtI2v+L6CLSqa9P3nRV5SIAm9uBQ7v+bDnj2xdE3Gl0x+PAeFiD9kfO4JCOVdxYmu+uw2GuCSQxWFjP8M+wMDaWm9BhS0KMFetcfQtmAN7B7TCLNmlOPGvSoQZtNMLktGwser5zio0pXlX6hyQFA8ZZWUsf6fCJoTagShw4RBV2sh3sDd8LYqAarsTED+7mL4GdXKEfciIXOZOq6UU8GZ3aPhoVkCaXTcg6+vg2mD5no8s9OdTF79grZF12n/xyd0t+MEC6kPg+emI9D5mQ5MS5EGt80zYcXzRPq8VAXebRHl19Wp+J/jZopW1AfHIH/QGLSCquHqnBDaRROv3kJho3lQYeBGhqqRKLX5Nb0qGAWyF+rhavMITIpVg/QH6jh8oRo3VPWT2UUjuqC5mVekzeIt+43h65wG0Ovqwno7M1JvMWKNrrnQazGIh2IyIVpJhgIdFNkiUhoa143GsF4Tspi+DFXGBPP8mnQ4JLMKHolUgeULRbp7X5EMdgpD/rVylnzTxevme2KNzg3Mq9xHh0Xk6JupL7j0J3JxmAQERplDxOBlzrhdjQJbD4DBcVdMXbETV5+/gT//POEohZ+QZvEMAmEMaF96QQMrLVk14j90GPUW8+7rc4yGMyaIuuDrGjsWnhiClUsmQ9xTGZIdW4mWLY6QvWk0aWX64963aXxB05avu3aRj819uvDYCLYEx9GbwgHqFvhGgrtmcHRsKfn+yMMNiYcxO+YP1Xufo+fWyuDp/I0eWJWg93ZfOpcqhlHZy+FFUwEk5jliloc7ZR26zd8OSIO2921QUzmD/xlY8IY0Bepo6GUlsQzqFl3Ab44fg2ZboN3iFjApFMD5zXC2OhtCmyLuUfS2IlYd9oC1bn3GP7N14XhRPIz5pQ2j6qNY6FMZ3159Fp8sK6EH+w7ikyexEJntwzbvD6P1tRtIMcYQrneeFzxewk9195KCpxsdyDXE9htJMMJtJOgoAGNjEDoME4TN6p6QugNY6vhqHiY5GxsOf6FN1Mb/rk7FXNXP9NfgFCtdFIQFQskksc0f3K78or0G++jHgmiYIlPIx15uI/OCJLxaeRSkr4rAODdRuL1qPgvb/ePHPkZ4YvtDiHA4h5UXJTH29kyav7WRynYaQv3EaJBP2wR7+k/xy2FNVHTtKZQpdrKkkA9qC73iz6c2oOOqidB3+xWfLy+keREfeJnyZNgfGc2+l3RYXdMU1joZQsWlL3B4rTooJEfAhz4RXpNuA3cv2/PvwGV8cOx02F5cTv/W/YM+a1Wo91eDl8fU+ZjFXyxMbeVvCtdgldZuOKt4iHUqNkFSsD+2jJpK4+VFYcrfEAywCURRJzH2vRMBwZ2tONDuhn09ruybYQoHEkfDvysTQVVpH5wZvoFuTz1IFy41omOcOQiUL4DJYgtoTNFDXvomjsv1JSC+LZfTIjupYVgoh+cFwy9XXbaQ6sMxq1zRZ4gt9lq60WZZXeiZ+w+kraehlvlp3l5oT+GnACeNGkZBTy+C9IznUDmlj+m2Bpxc8Ry0tvphf6QdFBxIBG3jDaifuY8kP8hCr78X2IshjlEbDlNq/uNW09d450Y8ic7w5lfdZbyzthtXxV1A5YSnbLrnHcrm6cHX804gWn+Vv8va8/Ge/eDg0IMOrQLYfOQH3XpcTK7SX6CyjmDRvEPk3zAVjVRkSf/ABJ7tWAqC5TfRO3UT7lFPxLZpC+BAMUGPlCWkbP+Dr9VzaOdwCbwr44cJHx6gzJFmUnTJpJn14vRAwwT2DWpy/9dv9LbgL2ULisK0P1FQnBAC40iJI3X1+OB7M5I3FIRZmSvg12AT9n6VA+H2Hp57tQXGP4qHK5Pl4dCBIqjv1+fZshbgc/wnTEobYF9ne47bJAojt7SA1ydPGLskBluLA7Bu0wk2HK0OqxOAx8vHQ/H52xB7q4gVp89Gcb8+Gta7Cp+LTSGFFdmcFKoLX5paeXkTYuwRcUweqMe1xxp5oOM8T3+oAf/OnWPFSfvofqA6rDe+yTnfD4FylTFdau/B5R+lePXsRzhHrhDKDJit7uVCHImDWnQ0Rsxo55/RcbRePwVCfi+ldKNLWDttBb08cwRy39mCkJ0hrNwVDuajOykwYD68+nEGH0+q56M9LtisdJoCp3nAo64IGvdMDga8DOj2nC4Ytq8BqtYsQE1K5wTxVHgi6UC1/Ah8HF9CibkeiFmtgYlvV6FTzBlWyXkAl0/eIgHtrbwxfA+11UmT0VItXDLDEsSdDpDsNMTWblUYGVcEAn6LAfxscTL9ZsmJEVTbvwKFdabAsDvadDj2AgqL+LLVyiu0Zk0ap868Alaik/j94T1stfQL90WrQUA84sqeWlzRJUdPmxzpSOUluElOJFpcihbup6k3xY2DbYQg9rA4+m1ZTFAXDVGPZnCDUihUyKmi4xDa3nDuA+UZthgrQ9BluAWWHboPei0bOd6yG+WXC4CEayEWqiJPuPUQM8/o0fpGFXjW0cV7XLJgIOYpCZS4YIdZGIhUSKLc+T/kMfCaDgsMQhlow/zTtZwsN46VXXeC211F9vu+Dd84JXHxU13I8H/H2lJfaUaGAPyolKNbs4eTzfMVqDj2NK1fqY0p0xJgdLgJT/6eB9HiG/FQ8jjoXfWavi/fCvbubjxq/jwe8zkVX5XoYNehcixV/kMDf8/Rl4lisDJtOG2zL0DpAE90T2xFe6FOKnMYYoIFNbg14wPkDt1Nb8JoSL61Fa20VLDWVAWP+Eeh9ctPlIsENaqeQ1k8w8UP9sGqLVqwdFg4fJ/1FY/MWAUt/a4oEjOJrvjKsOfJnSx0pBEjrtrQzaBJYBP5Ez31M2nxxDTaonEL44UPsIxFJDRsKaCNfhtAetFI6CkZBiLzTTlCbS3ML4/iyOAvqDjfkAI87nFISQuWfZqESzoGadhSMxD83s50xojmKemjcH8H2ca5Q6DBdt6Uo4USG8ZBXEkEdC0bB0bTmT6t9+aaPEu63WKLP59dh3HLs0jWMYaF9CejSdhN/rVZDMzPfkOnolr4LHoL9Qpa4bxKG81XDYKUss+wtrWW5I/6kLOlJdxfXgNxo1pQOXQyv4wrxZJtjdTVWw8rd27ieL1hVBRnx06Ph8Pf94P8/nkr+o/opFllTIs6N4P67He8dq4ftP3Oh51SpXx9kiqEfhhgq9GayEF16BRagkfPZfCkH+fZ9chn6mjZjzp3LoOz31CniZ0HnYdB2O4vDUtsyyB31xf6+0AF/hY/56gjIyFs8Uu4Eq8DdWm34YutDfeoiWJ+9kcylGjB3QE7aN/Q93LclIcpqYvRe7c4/Plxmrt4Gz6S84HBuRPQR+w9Puv/TVkThLjmbSefcpkI483VIc5InMfhDhQv0qRRYS3gErINhfq6WDEoCPL6b6PH+N8o0DgMEtVjMcDlLKS6rRpitxuoZttIb0cv403ju3jzMmme0HOCzggbgVHCMriaGwIPB/xpQt9qvrOwFvZeMYHND5NQIHEib1vhj3ucrODQrUQ0/adEi2K9cbOTNEp0tfPdI7tJXbkL3vTupvEbxfDPZxkQsSihO2t70LLLlTJ1O+iDRTQdL1yM41sewqG7t7Bhz0fMuCsMpkHbSfL9DNj/chWuDYjhWcKV+E4uAm+vE8V7hoPcqHYP10uZQoHIZC7/eIKv2WfDYlUjKhaoxbNTStnS7S2kzj6M/TKbSHLncHjh2oPWokG8I/ciplw/AS9WhkPrYC2mhq+HXaOeo+awpVwbLgSj6t6h5vht5FTRwLvLyiD1wyocdeIxzOstogY7G15Rn8LZ60fAqk0/adplDzZQL6KpwciRf6eDYIYrzV4hRltmLkFtw79gckwWMoWNOXb5VWiWvwEd21Ph7uMXqO00j8P+JnBc9Q+ePLEQF0hPhnFSl2n5+hi4TC30JcmbSlamsazLR94nUsMRpXkQdmU73amRhKIZxpjR9gAsp8jRd9QEIftbfGlfH1mGn8cZbefQc+5mbG6wAndhA1ruIEH01ofd7fPI1gKoMmMfqijOh/Y72qi0vR3OLRYCwdlqdP60KCmmrEJj88O03ugV3TosSbVDLhY0cA83+cUOcaEshEkrg7eyOOp8dKPQkbFDPPKbIL0Fc+4/oU7lCpzVcR/XNwlBzN67tPhxOO6PvA0CgadR5qACGRV68RzDe2i/4wB+sg2k32+0wNN/Mr5oHgO1lxbSuNgiTt/rQjofNvGSoBLyUq7ju66LaeJhazCzFaZQG1PqNH0JjgPXqfzVbJgmdBB1Ak5Qno4Pm07IYS9dFRhMtsDEusd4pn0b+51I4JtbI+jxf0FQKznk1SjAuYbqLNykDa2l4bB5/XX2Uc/nwyExMGfnFRR2E+cN31Phtd8Ax8X9BtMDw2D3kgG4YvOV3387AKumBtLOq/lo/D4TTjTvpbeP9OlGlR3FBVj+3/7/W3XpA/9s0cebOh74YPxJvP+FMUW+jG6ZvCBZzbX4+qEmZg9YgFDCJPY6d5fbf4xBsYx8qjt4Dyc4R6OpZA64fvflp92r4MBJQxixPpQ9F78F07OKdPJzE7k/iMWPMxI4e2kSFJ/dDSWfXtKYiEkQJTeL9BLugK2tG+U6q1Pl/I1ouHokLgz+QwJBQeRn3Y4Lhk+G5o4hT2y7jgv2qZCfzk+aWdBCVusNSa7ZjYSnf4WdSy5B1Ofx4KYz5G5r82iPXBRMHbcAKiX1YIHXBXjtfxdMcs6RvHMUOD1UBreM4dCUrYw2dhng2VmDzdVrUM5oIXedyOOypK8c7G4PYXumwubJwuR5rYfCovaBU8dlag1MgoUrwtEmX5q1HihB5YUX3H5AFUIs9PjsXTVMNFeGvse2tOaMAXFdFE1YqkXvenq4KvQKHl2qB6UmDXBnxQ20aGonS6t3fNF9Df+pNCH183/4Tp4s/Nklx2MKTWHRlsfkUO1AH7ymo9hUfQxbVQHNlmIw7LUfNlnJguGLQtSo1oJNem7QqNcN/hL30OhcEmd276RlzdNx4iojKFudhxHWa3GGvTlYnNagyhW+bKHfyTEZpfBVYAUEWW+kRXP28peeB1g77xm9EraAVUvPwFOz25hodANvdvRBYrMDmGu14Y2ZY+FYzk5wMjLloyJiUN5whz66VPGHpANkO+ssXpDfzuVbFHFSrhlentvHTeUjcPFOBZALECeRd4Pg6fsPk3U+Y1jtf5Dqk0M9hm/A8/lm9NsnjRHfEQ6PKYDxn0TxVEAcx9mPJPktj/nFk2TKkDcFg/hpfK9QE0s3jQYj57M0ydUb3HuVaKDmJio/eAuJPkiOk03QdX4fyLiu4wh9ZfCP3gix1zowbXsbjRFex3XTDvKxB7XQ9FAQZy/vI+NN5WB+ThAW6ZxkF41dNHPBMDo9fS30udyDS2iMzSG3WXpqPs6/psGzZojBKM1PKKYQDTd+WZFE1H3eXb8ZZrgb0/OjO+CNZDx2XHiEdjMlwDGoFfF9BlNFM280DERxE4JelzO0TCaBb7mUUXjWKn74dThkzC6AuJ3PcKJcInxWtuAtFWNxGU+B2Ue88cn1RXTiTiNcViSQHltC8xIXQq/pE8xfuZgXTMrD+bmj6M+CGta2+okjYTzVTRKAw8OcmY+cJ99HC6AotID0Pk1hgbl78FLTQvqkoQwnnlfDnjUjITXBGDR6XOD9wCFylRJBy3HnYJ1iFTXskWVXhXHw4r421q8bDkEPBWhJyHN0rGhF0fNj+IJhKWjca6Tsrek8bVQnzRjxChbrScPexr/k3r+SCvy+QvWnStTKUITHeJEMsqvBOcSbt5aN4wqFoR2MuwwTLy6g3sWuBIq1WCCmwXOe98CM53XgnHyEpy9JpYQjlqDp74lmua84ft0a1IeR1LBkGop+DaQzaxv4xlQ7sFu5BgRDlUDD9Ci+DN4BOiGHuWisEaYcvwOfNxyHWwXddC4E2aOnlUeXjoXp27vx39IJZPH9HBpft6R9XcYw8OgJCZ6dxRGDI6mytgJUZCfD/UJbXHUzG7UFInnFZBfodimBpgO/OGCKJ6rqn4COHf/giJM8tA+xTPX3RvzyppvV0n+irXYdzVoxj1c9iGatjf+B1ANj1HkiDJu9v3Jd2nge9/sonilfSCllUeitfJznKbzlX6+fk2e9CT4oNAGbwnfgWC4CgQFt8GHPcvp56hE/2LYGbMeFgUSGMf4Y18ZyAcrwRtcely9fArWrH1L5RkfIW32Nc/EhFQwKgOqD1yT8N5sq3CfA2N5HGBMWD0caN0HYjI94KAl5xHBga2MHDgvWwCh5PxKxEIBbFxKGNliLElvv0BGZOna69YB9Pkiwh/cCuP9YBql4O96bbwx5h16z9+tUvLvemNYY6/CWD90o+iEES4RmgIm6CsiMCIB7VZpgWIK4fVoy7p0+CL9GbIX8gh/8RNWbvw2x+0qNYNKMX8kDEmOh+0khXoxx5vke5fhr3FZMPLAE4+ddpuvSctw7OxJOXuqEI4+k4UVfMcp8ccZDpwy4eOlHaG88wrahx2C2qxG7PRvP6/sMQV1BFwYr20D/3w04LaxGkW/esb1iPD+5tIguz9DjbzVdEDhYT9aNY2Dummz0HemDdXM80DQxhe/GTUNNm488KOGB6bcF+PG3Apr80Aoqw8dQ/TcVuHFzBC86X0lOsZNg2v4UqHI5xOVdzH6nDtFi5fHQ2GfMdipd/Pe4Bzt2D+NTgV5UrBtC6RuVeB7501jfnVRyehiEnvOl6mnDYG3oWpR6vBfayBr7ftbh0Wmv2FjDA2ZV/scbqgmC0v7h/Wv6QOomJHp7Oetf/ICFMwE1hSfhh6krMOXYIE5dPRm0Rrykf707wVK8iib7/ECRrmG4LNcZS/qXQXijE69szcG7gmbw8rUnVxSEgbpEAo9RKYG8zNsQom8Ls8rHw5KnAyDeIIMOy1UheakjBVdcp47zyZiROwjCgYdgk6Y/j59VB0uF9Kg0YT/2mw4Dt0hpVO5ZSuGv8mhEVizpOllAjoANHMxThfpdNXAoeAbI3dKFx9LPYHubH0wa2rWs3r28qyIYN9TqDm2dOfodO83J90zoyHhpSGktwr89nqgdoUx9Fu5QJHEG7hvexUU2i2nb+ELKOnIXi08IQNlgIvmdB3pq5gi95Uc45vcWyjk7jr48rWfvYS94Q/I/MtugCunuMrTwiR4IFDvR2BvdLOFxhjqnrKBmuel0f5Ia7yv+Bg9WqkGmpwc3GIRA+ONgsl/wiEeOSoLt896TX+53ylqtSGIS+8g6RBeG+/SzSTlxnPlfnPmhCGG0Ml/ISINzqz6AVvhRXH/wPSXMtgTPgJl0NPQM9Pj94tM3zfCZhBrP2HWd7CqPYs1bP/72rY8eyenBrvBHVNL3F46uMYQ2hTTa89YeurM0YeSETLzd68dazw1p+UMLcJ1izA+OCEOC1jMS3z6efmSWcPuWdtirXMl2wpP5wD491MlG8C+Xgp2F9WSQ95Dn7TfCvsG5MOdkKqka3CVhh924rmchv14wGVZ9XUkG2+qxxKEW6+f/QN3WAdqoGcrKXnoQpL4fhaur0bnBGMy3N5Laptk4Y6YInNAzhTM/dRFjksDdYS0ELk2iYbstcE2PIQznZozdYQLaEqkwdUsxG9r4o49HC/xbcYOOL5gJnxJEcHwTgSdYsc6nhWD9RZx8373ksxGXaP9TfYSRvuBYcg3ej+qF98fkoXphM9zWdqDqci0M/NnEOh3RuKW4EssCN6PvpSqQ7hqA80WT4aD5NZLS8GeN5McUNfiKzA48IDW7oT5Ze5Y50hnu4nVY2D0MZsu+wuaznqy9eyo8cVTkL2Od2NAthv5TPIZt4nsgdLIST7Q1g4sDy9mwvBX/G1NCMR57SOHqTV7em4T3NZLAP/wruijNYp+RcpCzzY1eOjqDtuUDiNzVBFJOyujqOxf797Vx47JzZB4rxQ4+E6DRyxQ8c4JYYa8dFTxXombtV3jB5SHb5ymSZpMHhA/bxl4r5UD00y9eVnKT0XcKmzwVhu8m/bzr93t6W9/J2yLLcVHnW7q8TgUmVyWge7ER5r91Zu3Nq3mtYxWWRPSQwT0l2qkjScG+/8G91olgTMasN2Iz+3wUwqUNfbD2kBpt/dJJNddXw3b1Dro7dGdyYspg1T8arKJN2cPemj5+ucV/PsjhXpdImuiXRvnZFtBRHI0/ZprD11I1OjjyFFXTRx5h9hgia/9CsqchTDe5weZVvVQaZs6/NIeDpIcY50b643L3UNx0URwqfcxIsuctHepB0Mj/ANrxDbwrQRA61q2Ai89us/mZVtoa8YhjGwtpha0VS3W3wNPZvpQVVA1uDsNgUVIZxeS2QmNcEe6+4YOeb4JwjvhVfnBnK8ZaOsC/S4tJwsQIfhktghdLvvEFnd88Vn4jdd9/DV8/S0GarBW5pcnQ4uWPMN9HCXb6HECVX9VUXBGAi/eb0L+aByh3IQfeRx6mjVZHMVbZF3JmqMFat1Aea/wXz6WPg7EnbsHcWkazOe58yuQd98+zIAmhUoq+IgXJZnl0qiUS141cgKYtl7A8UZWSfp7nXxXr4fXth7joxwv2apgC0+6tADPl31j0rJbH1sryh/TpuFvjHkc/bMKkFiFIeH8Uqop0wfvXBRztZURLLZz4x8EyeK2Vxfc+AHxfLsMf8Q6VCGpiR+BwOKdlxlpbb8PsyXchqeQqj4i8RHc2KoFnrSu3XVxJuWp7qLebAESngopcO76Zngupd3vg5qFCTP9kh/KBs1jZyIx9nfzxtK0i/Pe6lHPrhrbNNBE+Zf+itoIUap6Sh/+CNoHdK0HYvEyUVk6TB4f9d+GOuhiv/dVMMktiycI3H0ctV6aX5mNgSaYJCNkvx98F4+GT/TjKGivI3lVa6H50IszPyMLCP76w8qoGfL4vySNEjrJLrCGs2dXJT51uUUNbL+4VLMC/jjZ8adpWuDDuLszR2EPyvyuH/F4YonY3UvqVpeRV3Actku+pauEeiArSh60byrB4+SBXpxnjhGVyoFZ4hNb2TedMZ2nQqLqCAWUtIJLvyY5bZPAuvkNJo0rekSsPW6T2g8SPXTw8tBDNB9ZQ7bVgvLDzC9xfJMkaJ1PoVGUIr9LUAu0NaXB26UFK8dbn+R//YUlTA1UO9mNr/TP2brQm5a7D7LVnErz63Up/Og9i3acuqnY4C+8UTmPu1E6ctuY/nqKZSM2Vr9nj0wTISfYZet9EfLmrgiSNfEFt8Bat+/yBFQu3UYxIE5kqPIRoQUFQFL2LHinHQSNelb+1/YGxZbNx38IrPJUXkC0bcbJtNfhYD4dSN2DRsR0gN6uWo48o0BbXZm7IEgcNqSBYZ97DOgI3sW75OMgPzafknG8s/ewAZY9qJ/AYRQr/9tDnjYMQtXoat0l+Apehe2veEkZj22PgnOhGXiLzAB5P+wAi0x7TgchO+GHkx/qi+2jKD0kwTWE48y4IXZbIY4CKJe0Nu8ITtc2hRrsUzNPfkIq7EZ1yQAgcYmbr5RfAevx3rpD/TDZf5Mk5fDTqR3pR1usZ+O9gL+iXy0Oxrgb0m+Wi448D4D1nKdU9EyC3/IQhXtTEaSVl5B5/hA+ba8Ahiub2sYHU4abKZW8d4VFZIQQoX4JImfOUvraehv+6BnNfmYOB+wCk/5DivkUHoPRvItUoqpBO5QE+pWgAp3tH872f47iuUw7kj5WxwJ0zJLnrD512sIXvwSro9DeM1UbMg8yX+VwYeIuPC0mBhUcgycRVQsjnXsZFxZiusgFapnXQccjFzp/unNNxE54kKsPV6ALwHCiGfsnLZHMvl8b5LkXK7qFJ9dVw0MCLqj9tBqGtZvDuWzTdGXePS6Zq8rD9UtQVX01nI4VJTWIuF9mMo4icHyzXbwgVaZ2c+ESU3JcFcM+xczj2wgeWDxLnq+c8yP2+G0U5/YT0s1OhbVER/OeVDJmx/ZzUHEpec46zSPpDjvEJABO1t/Rl2WU2ihzqScOVaPZGlG66NbCtAEBWj+pQRtfizle6JJfbCLrb3/D1xwBzl2Tgl6x8knzSBR9U5pKWsheKamzH9/+F8ftdl0F1ixfMltCHx0mn8eYzJQ6L9+eBPbo0UaIf736SYF/bdXwOReF3diT6XRCAdW9jwWqSFy7bVsu28rs4UbYKek66U8DY+3BPOAtUoAyOC5nCzsuGmF/qggtiBMivVBHyqhtwTEQ/9PqYw4OgSWw0fRUKdkyBukX6PHq3M6R8PMkBOTOgz7ucI/yWUJtgFGXtGwd+f2eS+rup4P28CNrnBHPSRhVYsvABhVlsgRWlcWCt/5OUP9/CeyVGcKjaGPZEJZGLQRiPqB+ge6eug0BoJOY0WlF2zJDjXmnBmeuPYOP5sTAwkACBFI+SjwYAdtfCtyu5rLnxLRpaDMBlySb6ZroRw94ZQbqBK9zve87HjaVALEEHdTufg+8uVUwuiKAqj0vQLvIHJM8D/Mk3g0Wrn0J0TD4mrm7BPUaaGPowFNO26uGlBfv5dWctbg+XghVJW/mkewMlOjZx3Pk6yFkgBiOfJXBCj/3QJo7kmd7iqIXyoLV7GZUe3ADbJu6CR48b4clJD55sdAo2pylAj60auGZt4fsVIiBxO5v/anlw2OYASG3xAi3pQd739hXt3xTJN+VVWEjxC4dvmgpju9PggmkD6i2YyUcCrSE8q4g9miRI4slx0PkezXfl32GupjYkZVRBo/U9yq24jZsnKJDr59P8vNCLQiy3gbmGMJ/6OpGt38iApOFQhn00cN3JHHDpjuKK5SVorbkY62QLeXjhMP5+bA37DvW6nLAzrln4hR8dvMYW+7/j7te5+ODYJ6itEcSZpRfo3BqEA/qycH75BZSgsxiUypjufpJmhd+ktv9yQOrkDx5oEuKfX/Oof5cyXLGYwuJiL/iYpzk1XfBC6/Z1ePvVKZR9SfRmhxbofZ1KjVlSEFi6kt1MM7DFM572ir7G7XtHkY3yAZx9+h4qmEXRvfOjeIQhwtPPVzHP+TP63lSA5rmAPRgFa6u9KEZtIrpPnAMbtk+iNseJgEpHOErUh8NMw/meQgG4fPyCg48CabyxK69aMIDxhmdJX00QDHqSUT7enpd/F6JBnEXr5FywQucSmYwKodMxyTinpRrW/BoJiS79lOn4iHQnSpOBgDfMWBxAEgcm0okJd8lf0wDULi/l6V9U4eqsWPq3LJE1rafhwRBr1qHpaJ+1Ac7HzaW9L//C+ZmzWcRUDGxPLaFFJ8wxWs8KCiSMefWfWvIW9gCFR7IceGwm5unp4uNybbj725ZvOUbDnrMDtO5NJR+ScQC/h9LYqSrLtudcoBELceJ1E/j7ay4teRlAi2UngPL4V2z6Jx1j9ltB7X/t1CCyCn8u/Ud9fVqwv2Mv/xLpxPgzG7k+3Id82lLJ4doBatR3QS+xaRT7Wp7UnutATukdOLOrgvftrgP3MavBZZowGUmY0/7vQVzq3Qvh5e85+ZEuPLM7irU9+dhlEA7JXV0ccT4OT8uq4XnDy6Czy5/nNVVhvqosdLSeB9E9atw0rBdf7AxnAYNtZHdCmEgpimxvTqZjZyLh1RgLMHJ4AkuVOujIRMTkJms0SDkKFmtT0L3hAK0v30i3pnzkf/oSEHl6Fs14qAfOyl/oRsbQ1pjJ8MzrH6j3YSTlZS6CAv357O8nCkvmXIBuFV1SXJdG1hWEO6J20iPLOZw5YROOnVoJS8crUE6ZGsCoWH7udhQvt2aiZP5fWCxdyEkZzqhdMoUtijshu/ACr3LRhL0eszG+KZMCiqwhMtwW9nxXBPXNt2l4cAPusBnNYvsNac12E7CeP5I1w57hhqKDpCDoAPXL91HmPoSq7QhqmRtxcdQnTq5WAZdvTfCp9RoV3Enh6ZJymFWTza+WNPBzld1of7iVWwaHOHu9BYwbb4i3z8yHJ8+nQXPhKhpzEuHH/Gowrw1is53/6HTXaNAdLQEn+tup8o4ADL+pwAKneqhRJg/EtqyDrJzDFNe0BYcnNXLTN3Oo9zjOG1vmgNzzO7gjMAk2SrzHC88mgJzMOzqzIY604nLoxxwT0P/tiwWl0Rx9XgJUhUNI2buGlR1tKVVRjwNrukhhx2bYoa0EceVx2DXfkOITfsJL60k4Jl0fuzUiuOrjHvpUNhdOjzwCe8IUwD6/B0IFfOFb/D2a8PYkfm4cixvmttDcJE3+M2kSy7vdpfHdknAw/yyvEyrmurVhVKLkT5vDj9L38qO8U3MS/urKp+JtdhB6Zyqc3JwPx7cNcpF6Mtw4YwHvhaxodss82NTWhHNUMxkiX9IpAwUodtKlY7LdbJsmhdVRQdAwXQnarO/A9XuPaad+L++P74DqJICdSZPIsiIVLr+4BD/Jj+JTbqLjk++4zUSHZkfXwcSxPyknxwTCMxTozcp62D0jlAOseuFVWDqikQZ3FPqjbvkVWnfiJsx6rQ8W9V3o8/ozbMn+yb2h//HSg2dQd0sylYivgJqAERgSrQB1+0xgluULKHCVYMeHnhQVpEjzqu7hpgun0OVGK95s1+B9mEgfxiiC7KN5bPhtHPZUuaPF6zysrujBI9YdWKTRCbGaqjQqJw6Ml00FtxRZvNlhio1F5WzplEydX19AUNcGdCmbRSedldBPqBc/mhtA1itvsMmSwsMJqdgrf48VzWTopMo7VH99FJYnhKHTYAfFZ0hDtewWkPNczFLHJ+DP1KMw/vQ2yNElii7So9GSkihc1cM/NwOEKwqD/+F30PAzFbTEH0G99h9apzCCLD5FYp3pClpreowTriC4Tn/COfobML5/MY2eYEghXxZAq8k4+HnyNl9dd5HrRjugcfIIOLX9GmvFLmHY/5XTX93gHf9c6KLdYZT5uQvrn5yBrgcRmOqlBlrapuAkvpZ+ChG8LjzG9x+UUnrXdWq5dpIThfrp0Y1WsH6kBbfWZeGaOk0a0JsHFZ32YPjHnuNvxJFYajUt0mAQj37HMGgNknoTcct+Dfyu4Y2ZgWfpvnMwun9NYg64AqLjxdhM7jTQeUGQtQkEtRHxHFt1hUcf3g8H17lyivBKlL4xgp61eXLW282klCwJ0cdiaV9bM9y/VM5f1f9RQJQ42X50osSKWKheo4GvVbTQ7LEynJ6qjJI+b/CBhBdV6HWD+Ib3ZJDtRzkrq7F7vgplXPOHtK2C4CUWRusPyuBlr8/8U00Ie2unUoqsDkfsNSLvC9tgwooFcHOzLhzacQEXTZPE4dXXecmtCPg5/wJc1DSGjqCv5HLXDGoy/8MeYXNQ095M9yPtcGZVNF1Vsac1Fc08pr2UU+9MhMigUxSbrY8Thpy83maQJA5tZ8vAJjhzbh7ZL/0Kgn9vs1eBES/vFWern+MgZqQueMFWXGG4E1eZOIDQJD2qjJiBfYfvso7IWb5+ugy/fWrkquLJsM8tgLP9dvIUgyy8fl8GAIdj5731KNr9g1S+l7FwZjanF1rAqX1hKL43Daoa7Ni6LxzTjUdgh20O0aUy2l0CeCWtgY6PsIL1AqZUahFFH5qOY9vUr9CTOJz2fF2FF1ke7t//wK1GR0nuhgZczd3OohUlcLpbCULSlDj+ax/LzqrFuSqplGl+Dk44+oDUOWUY2RIEdwwd8ET/SbIYyrFf4XFUvVmCr4s2gM/bTvCW/YtfnyvA8beJ3PL9CZUXV/FhYVUaXG8A0YkfoXDhUbz6QAgyQgxhZYgeWEx6DNIB32mX22vuKgdaOleH6k/OoqjUNZghd43bLA/gjAfDYfFLczBTyYN9oyx43y1HjPV3geE5kVS5yBLOeAlzxoGzdPfKBBiU/8PzO6fCm8RSqAsVAqX5LZSaGI5rBmfxjykBFGw1mT60aoHWuSL8KacKK212wdavrzllfBcWRLpzzIUgzkmvR/NsAbQtATB18cYP03PgrLA1hKVFY53EAMdN1OGYTQ7oGGQIO7PdqXm0ArzWNgLZyL3o66OHjc9m0vwxeuCnMAF/57iinUrnkKedQAsPRTjz8iy+3HYctGdp8X5pI+pPWMgLTszBTf59uLjtIRgPtDKuUIDQS4aMUYL41csSi0wOQc1YBzL7Ywb99lOheuV2eu9zEQ9KiUOvdwXG5puh/K+HvOaCEavmaOHvHefwUdkwfKX+mC1/GND+cYKgtdeGlhr8osc7dvAhjwugsr6fzfWqoKT8CC1Y7g59ph/oibgSTJASgs0/NPig7zfMKbpHbeMEKDh4DU3teoVP1rRwqccxKP9mDCmzC9jf35RXxc2AqVlC5KS9C1QXfMMDEwRRzjUJBAsSWPKLACgc6iLnk7FkN2wxXTq0FpYPDnC6dy50346H8cJLcIP4dFaabQ1LjbfzHZ1hQ71iiCONOmjcu1ZKWzWGD43ZzZ1OAbz76E/c8VsXtDVMqS0pkgbSJ8HOYaqcopuLD/N+0x5JQdLQqoDatbe46ZIGLEmz4bJ9Hjz2zVhYN3cF3pmVyDM+hNALH3Wm6f04c9EhULMQB3uTIH6nHYRPi5ZT8vliwufZtJlb+MPJJkhd/h4uzjyG0q+sYNp+JQz9pcm7bfzAebYnfBipxvvLdrPa0qeQlWsBrUVN3D5pFBx8dRoXzj4J928k0IzDchwQXIBzJax4aq43zq6fSY4La6jRTwd+HQiDmx72WN53mAW6CNpLFlGo6DEW2rmCpyhl8jNFJ3j6VAe2uOeh97PJMCJ9KYktXMptQ9Bmpl2EkS/PoPPKq/SlO4RuxUhA2Omh9za2ANsF03HCk3wKW6xK2aHSOKNfjX9k++OuEx24NlQBSmVyKH77MLBqz8It345RVvRmCs1Wp3la7nTSOIamLMxE79u6ID2mEZ7LNLFGnR9s/DUSL+lsxNdmz0FmdBz9+uKEGQNDnn5EDtb/zOd/Y0/SDZ2/aLsjiJuMJXjC/t1UvjkUpTZqseL6qZR2RQWEWlPoZMY0uHPDl2STx1LyclcKrLoCd0Y/hRyDb6wZGYjLgobBGMdF8L1oDi5KXkN6b3rQ7pIkX20V5G8y6hR+bh9/KR3g+gfGYFJkhmVjunHM9PMovnISe15fAovdCduF3XBB59DeuZWBaxBAi1Ms+Nm5wOtRI+Gw0QY64SiDK2dl8FTrUl7u1wu33R/CaGVNCP99mZ3vRFDStUE4OPUQLhSxwHLPnbShaxHoaP+DzIOj4chJHfid3c6+Eumg8DwNwrdV0BPbMWRZF4bHz7jRGKkzcHvOKzhqNRZ2ponz46192PxBHs6GmNKFiAowOjZAp9/8APFZmXREdCZ1Xyaw1+1lkd1SdLjgE486uobPVFpStxFxn/AqjHpDkNL9BUyPKsP2vClk/NUOHoWlodjzHBSzuQbGwnk85qwiOU4bS9O1npFRsR6cq7+NocXtWHdnPe9TOsQKayM5ZZsjSU4QwzNzlCHgowE/idCB/E2rqGTkUMea9oGjZw0+f5bMu3e/5y0JMTT8ZyqLzj7OlguU4c+88CFOkyH7ad6o2jgL/hjUYLPOd5Jf+hKW9nyCyyoNpDDEG2N0zDjgxWk6+Z8UWDv4gUxFKIwZ2v48n0xsFBfDr1kbcI6XCUz9NJw+f6inJ86t2KBrQs/T/8J+xViqzjwKoZWhfCz0Go3dPxyuqu/h5u4xHPxDjvf/CeF/qg440ecnb82rB88XW3GzrRBc3SsFJ5fewcTV0nw4aAUphubSh8Kp0B6oxDwvkq/bPOfZt6K4ZKUkfMqogrM/voLbm4Pc6j8B3r3/yItKi2FhgDNbzvSlTI1NkGVrDkKu6/Gs9mPa9mILqok3sd6kAj7wbCeQfxK9Hd+PrUlRLHTKChKE7uLDWWqw8NMIsn20Fn84Zw75+hYW+u8xB7tG4i3fk+gSrAKh6v94xX934OL8DVB4eAO/Y29IHqjmH31LcMS+YtygvokezdQBIzcfyBxczKXN+2lHoT5KTSUO9XSHVzYLhniuAZOW1WOaogQox4ZC/JI4fL7nG4i1uNJK1Q5oflnJG6sf8doJS3DaQSPKLJaHcc/iyNp7HU9JfQPpY1NpRXom7ZyylV2mfcSfCoOgaNlAJ2q0IfjXexqneBPL5r2iGQISlKdxGM9F1HHNsiby/2FGBc6foV9ECaxv26DjTSne1fuVk7MBHguZY+jp8RReeRqFy+OhdEMIJNibQVP0LkoV8uDhco188YwhjPVQxvyKEXQ8dAm+3W7OCa8KOHcngtgjN/xhN4tWb5jHbyo7KFtpP+w5sBbeJy8hR7UTVPO2D536JaF/TjCGnV3J606fIzktCQifEo22h/K426cYJlWn4W4BFdivPAE2/B2AiYILUPjfS7L5rxwrvmdhsoYb6Q9bzMU/n9H051m0XVoMBJWX4fqPV0DLbhOpv4ojdZl7FLvaHny/nEEdB3da+C+Sv4cpw/3pstwxsw6tnlwEm+TN/N91X2hK2QhBR2Mo9ddDlD89mkR+jYZkORU2+5PEdpezsFXhC6cL6uBeMTeyVLlEyuPCICjLmqP6BCCn2YZENmyhzyvjMWCVEPf8h5S79R1ev2iAdiEE14964MKQkVByOZkub6pEl2nT8FlQKpdWd8AOPytWvfINiuYFQc6/rbw8ajTcmryKRkrlcOJec6x1/wtrxhynPzqDJPj5AO8LfIG14l3slSsOV85p06HQ03T43Hu6X26EC7elYkrEP5g6Wo7ObPmF6+7uhvMCSqAWHsT7pMzAvuQS+S4hGCj9hOLFgVBJ8/CTzRuuq2/mXDMFOLjlInDxDYz6fIX6Yr5j7bx0HrTLoEtBseSxN4u6Z1nQ3mJNSFypA/fGH4X97udJbasNrFuQitnxGThOeA2kbh6Pbpey4E21HNiqLOZhGRfJYUksXFwySErLFpCV/2pa03mIbBpG4MvYIXfdrQuLNQSodaMdP3hmwmMth/JZXo/vG3R51bVIyFIqYuGCYpaOZNi7fDQ+nnIf4p/P5niF82zy4zBkiCVBbeoTEOhu5r8lT7mrwhoCLqvTsqJWPtlhBx1rx+PlGsIrJ4fBpvtVNE36EF7vDCFN/UkwUVsIDVOzuLT2McYv0aVrEUc49NcVHtmiTm75z7H47TGy9GAYaRRAKqJ/MeubIm41WcMLvcpZue4pbBzew89z/kBf8AbM3DEarol1Adxoo7y3ZbjtWRF3ZifD0iwF9jyygef0X+CoXSGgMEMb6FMWyrm0Y3meHL2/bIznbURAT0SeN7mKkHbVbnixfRGcdJYA9UNbsXVyEnbESgHt2kNpS7Xh4ayjKJ5TwY89IlFw0zaOdtIG0R4XCM1+T+L/FHD3t1+kX7CV7R7r0xOZmZQn0AwHcoOppWQ4XDPxRpeJkTzYHIxn/7VTQUg3T9ofClkpeuBUJsfBgQk8OE0Hljfep3Oza/CfayFpuj3iyLc+EBd4DG5dvojWT9Rorv0F9k5Uh1XJ4+DUsgVc3TUP5LstSapqPnQUb+PGfFfujhzAEt1KDHAzhpqsMK6aX0Tl4zXR3eYmpxk5sF63Mpo4DXXe2XqUdComj7yJIOA6D67aT6Wi1K/sk66IH0ZkwstHM/izgBA6u5txvuF0enZtAtytKGSsnAyfF6RDzZ19JOReiGtkS1CLd8KaIVdfkVBOR0OGAz+0IhljE1j0sZm1hJ/xttfCfChYGYTP/qbxtpms8mwOpehZgN/xPBJoMwPRX4oke6wU2/Vn0e1za/HxpIs8f9l9ujLjFH61MwbLiOF8x+sPXDgZwjYL2qnW8RY/ytSFJ2/LsU+0lpu83vA4c23Y0lZDFsGN3BdoN9T3Bzg33wrtfO+Sc/s52u8XChPFpqHbXF34/fAujp1wg0POdHKryFS6xLNpdNUO/FO8HbsKx8FMkZNwqFoKsHkrFw+0wo2DJpy7fRNIWbzhr+YbMc75N0QIq8KWqxqQNncyzP/SQYf1ZKHC4DcrT0zD9Z2ZuLW3nlP2eIFxnSjE5H6jKXsU4W2wPzjTe5ijGUpbBbMhruobVtZ2wt5LgrRknim5D/lX5Xcj0Jv4l36Y2WB10zB+vXATLY8ZTm0ST2BVig1mherS3V8BvC1IHQRDgT9dleFE7U6oCdsDGS5dED52HC3PMcDmTyaQc16OEsdMhM//FvHfRzHkW9POw+bb0emrE/B73gqS/nQbj9rewjlrdEjVSw7GGVphRXvTEM/aQ2v1SEwRaQWvmLvcNG4ipJsIotCAA/Rf1oPvw4PYOfUfLWy7xF3DzFi/04q27cwBsa5C8nC/BFUnsijbTgzy+5qwvywEl8VUAIp0Qf8VLbq/2ZLeakylZ7GDOLyZKaZUAO4flaOIUmXWbQByTVuEByePpxmCtvjgWAfKPWqhjM6p+PwMQr5DDLrbZmDN9wAc36cOPyb5c7CYAH8Z3Qiy7tfQyXIKDJtkBRbbZOhptBSH/xKkI4t2sHrxOb7/rXso79fo3tpMCj56l9eZyQLtNcbDe/2gLO0+Kyl30t85T8D4w3o4plvKg9rEyXM2sayHPEw+6YU+1p348OBWfvG8BXS2feCOllh+8CKLrp8y4TUiSvxCSBDMYlWgPSAcJDzk8I9XHhfeToDIO8L4Y0Q9ipU8wxxpC5TeJg/nNObi3IlHeNOPXNS+MY2WlVzC2vuefMHgDoXk1fDgluUwW1cCeuss8e3mQ/ThhDPPctlHtsIitH/DkKvdYTj/2xEiSnu5NGw8qH1x5X7HNDhrXAJfUmfh1dsxeDoniIJvesPL/rlkmd8NFx0EgLYlwYisaDTPugleP15Ayyp7TstbAO0HNGBR5RceW9cLFdEGsObWOvzDSvj4428OlvdA+3ePIf97LvdIpcDCQ/u5fvUu+q4lC7+PZFPZ2g785xw4xPgGdO1dNNU9S2Dh7dNoXl4GTEv3YGktEZiomU87v6Wwg1kBPhSbgJI3kvH9gxW0dnwS3RwdjNvKH/FZWQABwSaIvIRs+SeT9fcUgv/VEEhZZABbp1SBhog7eEt+BCc1CbgiWQQvxj8mC/uHqLIvGa8cSUAqr+DrTuVo2HcF5x0YpJBCc3jqIscxqd1UHOpC6+uiaVXcOrZXKIXorYeRfumyQdk+MHGzgPvdvdx+soDaDjuy/tKxbC37lo33FOL5MYbwbaotP5n+jinUFKLMp6J1Qg/UHPOlcQub6PembXSyyItT7O7xnvKdZCr9H7m3j4eQNxew8lUeFml9Y+kpG0jNbz46zpOBrKwDPN/Bnk5vXc2WAxJwdqQddY8SZBGTWlah1aRyT4H/C17O6fP9UKlmHbUufMDrVk0C4Rof6LpuB/ubbHnx77E4xlga1zzYBlpnt2Om1hbOj8+khM+TAXcFYcslHzqgvwM2DvXFGD9H/h8F5xkP1N+G8XuYWRUZCVmhjIQiEpJ2pKKdUSSJEErZRYlEkgZpaBj/UomGhkJlVrIqSVtJpSjk8bw8L87n8zvn3Pd1fb9vzuS5/tRcpI7P1FtwWnsmSXurQXT0DtxjtBNj1eZS7Ew77DbJZEPxHNjS1o/jZhSBwWN3UuxQhuZBCSyZUAz6N+9TBorw31l/IUn5AfgNJsHB3wvo3ZRI0JSWhPX5b7l2+zWM/HWKk1YWgU15LvhdH3rXkyfivvMiMMtnLPxq0IRl0QAZNw+TqMMO9IjQ4+ylLbzkjTyXT87BLLWLGP83hbQSJsN3zUuECaHobJQKA9nTQVq9FJaKPYGPSyXBeuxxurj1N8wqUICthUfBd7cQv+jWpgzlNk4OnUnqb/NY9ulW8p/xnkVvZKBnujSMPzCGW330kRybeaeEGl/QdIevtcJQ8+M9zbBtIg8DX/S+OwrObwqDkVJxtPNICes19IH0/SqYqtXAKUddsLJnJj3c9YF8/AxA5pkrf+5dAl9FTtDg6EjweSnArbnTyXj4fVLybMUOlW2U/XIMPM2Rx8Ef6Xj5yXN2KTMEm8TFELw0GKz9HHhP1xrO+28ErI0Qh1i5aHxVNIlm6y0moSHvuT9Slp6tmMBH3O7xsY2adMdtFVY0iEN+7QPsM3PmiIp83jriCiz7p4oXL9jy4v9uwxpFLzwsPJTF9ubQ0bqIVpe2sdi5dA53OM884EqKShowapIqRvlsoMfR16jIyBCE/mXS/fXbcLSyNEs90OKSP0tgINCcr5YBLxGehAEhP/HTBBkw65Dh47tU6MkIFcJEOT6KgvjM+hP3lxZRoGMVSzkH88lfU2C4M7JF8nNubreDjYGubHB0AmralMKd+dbw8TvSnxB/NILpcA2n8ufQtywc9R/OLZwIOZojsS66Em5GFvKPRHOKXhzA/zWpg9yD3Wy0Zit9XshD/uXDP7IzMOOgHP2jKHQ9F8xidrG02k8Qzh1/RNfVX1P901cg/LOYCgYtKeaZJB3OVyQ/pQV0OeI2pioDvHsizx8TMuDQvynQYHqaNv/ewm6Ry+HZQyEymbAfk1/YUNMOZdj6PgHWjZ2IA+sdYHVHCp8d6qzomwHsfuIzqwx2UUiwHGTVykDGBHsKPLcMdh9ZgZ4at/nsqqlkurKA2x6V4pI5TpAQ8h2fXVOHBzOS2O/lB5j1ZgxZTcqCVZ4GnD/rPG1wD6ZlW7Upfd8vFABVEFwQiIf3/WG7nSYs2/2FsnWiAeWGeOC/BrhxYw7+SdjM87dIgZb7FK5csB8nn3xDArvO4uScGn4kbsCr0/7A75Qf9KLuJogMOfs8x3gMl0lB8dxAPPrdBE+W7IZNswTglupj+LhNDX0ip2LqQoIu7UK4kHcdPKOfUM9mNdackIlit61pWWIpDvvRTh5i38EZzKBZpwhm5y7jSbkFLCuhRoum/IbGb0EweCUP7FPeo3ezMR9frQ1jd90kfYu7bKH2mx8kluGxi35QvzUDPUYk4LRbETTnSzje85eCGyWL0TRoKkm5JkGpxH1aFfmaf/bvGXK5Rr5yY+yQl/Vz8jd1WDajHM/EjsXiHds5z16Kp4qMw6YrolwR/w5SJq7Gmo/n+PFXJWDxZxgQEwVHSx/T5PYV5C6gC925S2GUkBX8Gr+WhxlF8C1BbTiX5stVx1+jUW82nc8YhGUP33CIew2Ejd5Fm3QFaNqqDfz+kTTMbWihbzb1OCPpDrwRyoEdnefgRrQ+lqw9hM89zrGYjCZZCBKYrMjDUaeGs29QAOk1daLlXTWa2ZEE1c4+8KLsO2y7+4sO9QlB27UsNhxWy8lKgax/ZiPuGxjE7jsVGL9Yg/lRIKd2jUDRCAl47Z2FAnn9ZFm4HzYJjYOFaIk7v0ynUfVzOey5M4i0DpJqiDTUWh2BWx/aOD7Wneb2O+LPuKn0zHk0ZJo/R/W6YtZ+4EAaG8bA9e1h9M7/CJ2ztwb9wKf83EKFthifxFUbeujF7tusEqhBaaUiYG99mTJPXgSPEQ484NlGPVZX6FP4GlD4NJ3F1zly+bV82uZtBooeopSZW07Jwb/pSFsN3r1YRRF333PHwE2u1/TDpxcFOfedFth8vMo6Am9Z5tNL7l/UySuF7WF4uR/GnHDhOrUe8PmkhgqZovCJrVnruBCaVO7k1GP95HzyLLrenYfxyWF8YN5dchrzl6NPjID/gv+DR8cicfsoP9gQeQd7i35xaWQtxptvA1uBkfA5JANe3peHssk3qajQBya9KaPLkzZw73M52qM7gvTlNCn32QJ+Z2pP0+5IgbJdHX45modP1p8io08xtJYNeZzxARBWO4zCHSd5ctULnO1lAnqGrTTxJqL+lP94/SN7vmShjEW76lFa1BJ/7ZKCkHWv0bUBQX+WOB17Ngvv8S+saq0nk7kL+eP6Mm7ZZUXpXtU0cuAW/JmsDUJnp6O4tSROzBqHV6OeQ//QdYSaIhUnd/Mt/xmsu+Q/Vpo9HtabhcC6O5nQpTWHPAb30uFhu/FmQjaNTk+D9qJnsGFobhdsU4Cdnmp4xFgbNW6Pxdu6i9kjvI3LF2SwzNQ8bv9yGrPWfmcNBYThBVXYEd2K6w4exaWVP8D/nyv6Xj1Omw/rolDAFtb/cxyrhQXA+0IFnBnK1Vc7dWDCjq8gXLeW8oNt0fByJ4/Y7AefmjLB0UYf4lxDccL0CyzS84cHtBL5ffE7/rF+PZrfvUeD/93D8a+i4dteRXB1DwKT2k949pQh5j7ZBY81JrCb0BUw2TQL025148dnl6GyQgBCIzpoX6cNuO7+wP8kt6NI7Tvau+wULg6qARUyQ5MNAuikqQGrXrSwt5cayw4epJjRPvy+7j+40OmL2XraeCz0Ot96OQoHVxvABQcBklYUZUv7PN6QHUE1H0Po005lCpXIhLmfJaluuTDNvqYGW6PFaHvsAGotD8fmg8YoZt0M63tqMdC/BLYvN4Gog/K0QlUTZgwxQY6tK4k4G3LsFVXYHpfKud9/0xcNGTJILKeJpnvgtIgM/MzuYZ/0MvCwDqDLsR/wirwy5so7ku2UKpy5SpH8jwVzh/c4mChezpftW6l9ejkGuc7mnXsW4UWBVHCuc6cve91RKMQLrV20YYaTLiYJPuY6zkft6YgRloEwdZY4V3mZ87SNZ6hf7gCuvjMBKjKL6RWY09r6APLr6uCnS66hNJmDf9tq2nPWBWmlK25dog27ZJdAz3p1VIyugGUPpuCosh9caxiKhc3RWF61gsVMWsB4rBBMS3GES+XbydKwhBcv+8XtcbasXlxNia/kyOzzVfRPPIgpxYaw6pQ+zq7YR4NCblhtcJWNVp5GsYPLqePaNowSPk1dTRbo2SQMjfvsSLFSBeNGL8OMgkrcfW0UmXcqw49bYlTW+p33lBWQa7kmlKWehGJlVZy0axHU1jdT785wzHb044DpGyDgegx2/RnJZepyIHDpAqyuaKFbbp+hWvcCLbdmHGm9C73jTuLR5Z/5bHgF7pU2htZ4ZWz+sANvf5lDGl/6IV5pKv3VnEOhW9+wr+Vvmj76Ma3VNIIX7Tvxg9pt/NbxB1K6tbhR6TJ3HS/D9qNN3NfUASVVm/naX1kQtzTnK65T+LfE0iE29+GrSef5g8RsyDEuh4YZmvj67CToQDH4R4V80lGMMjyuk13GVQ518mOdvnxqtPSE6ak3sevDYbxxZjL825IFDqoy5CiagyvsBGDhLkfIT+9lVfqNnbpAhZn7WSZLByLe7cWMG2u5XVkTRepNaG7xWFxQnk7bDhuTxr97nDM+Al4fNwf5DhMwG9VH1lnXyX51Mu5fpA+Xp7TS3AmADsvqeF6uIgVHT4WfYmNY+toCdNtQw6ljgfM7xUBb1AiiLN0weGQOPzFthWu5xtB9Rg7ky0xJNXITj1cW5E2C72hRaQedO3UO6nb85ueD60ggfhSs7xyPEhqnadcYRl3bPbBoeiGssHgLky8L8t1JI2n5awXy+SsBSdf/o6QZa9jbaT6l1ZRD074SfmsUBl3CJtBZHkAZ7xR4QGIsODtG0Pgt1/CXqg8Kza1hrfYhxlLOJu7MJL0px3i4vj8tDCQY/PGTl6mJQtKK+ZA55S09jsyD+cajaJlYL4i5JNDUMza4O0kAkvNOc5KgLzfcHQ3iK15CxIt6Ehk/nRZJh7KlXAl0X/uDHa9FoTzblgcTQlDb/SrYNjnAsgQp3vHnGy70vA2L6sO4Ou8sH4lWhN9qK/HCk1yKOb8RdWyYgv+d4EXeNyh+riAFiR6C2r1b0K7GEqqGui/JWJL1ZFOgvuECfu57CrW5mWBbuI0H3bfBJ219OvVNB9aOkCC5vnqY33IAbsXvxUXDp6FWWiXkFN+hOy7q7HzgMv23cip4L4zh7Z9/U+HBHjwKlRRkPIu8m3L4ufk6vEgjUfH5Ah4jIgY/tCVwcMs/fPb3Np4RtWZ7Cw2Y3k3s6FFPr1tj6LOQP9ipqoDw0Xa0yn9O6Ye7MG6vCPV830GBP6aTxL6VNDaxmbc+z+WS2JGw3EgId288DH77wmnq3aX0eb01Li7PR/mpbTgYvZy+/zCHDfYW8P3mL9inL8Zmo2eCdP8XuOH+gBshE4KDSqDtQjyJtMjwe20T0FF15XqVaJYd8pLuf3vxnKoblOb7QuXNeVQc1Q7jJq+H3OuysLEzmR/Vj6Aefy2yNhsHXyTm4mXNbTA/fjVs8PJG4xYXDvklAu+0XWhiKmFYQD5ZRe7CB/oXqV6uET4dN6U6VzVcjSHY7TQczJbL8kSX0Rg2ZwT+Ky9iPdtHnCn6hA60OlBjqSP9UO+Bpix1kFXo492OXnRCUYnpxBdeUjgWjzevwVv3TvOwvtG8su8tL36lCx59w+GOQiFOFLKBU31arDahH3Yd8qYg+z6eY7kNdS61UKSlCDScaOFJk7/DcHkVehNQA/K3f9LA4ysMMX6wGOezubsyCI4whAvjBLB4xDNYV7WJO3/EYltzONllvaFLsaqgk7iBLPyqyZJ0QW3JY3KVL4WuVFWcddIbsvfKclqzJBjmNtLmMF8srptL5cnioNZpi2sDn3FR0kPeEbuINMY/Ig/BGNY/WgOb90SBZORf6FkrCs+ehqLS10x0eYJYeSCYFLJ96efBSj7pJ0GzjRJ5dZcJh2XJwK/rF9kteDx+zx5GYhEfaWpoNO1N8iEpkVr6tb8N405oomU/wwVbXdza/xfdq+zpWEASbilUgO6bt3n/iR7odU2A0c3ykJCjBFt1b9Ec2zm0f0U17xVeSn8396GcvQp3fNPnwLFr6P7zNbRjuRxknGrlmnk3eMuneLK9HY5vDBfhM+drcERoGJ7TKASr8EbY1WgCImMiKf/AFKhYPYKPFYnAibeXoU5gNH6V7MYp5+dwUG4Tj3uhDSUucym5t5OkdieDsdgs3H/VfMhnHSlLxh6M3DdS/H/bcE2wGZwyew5z9uxmTD3Itxr6yUfNnu/5rEJV3xO4VHYelPVV0ek1DEv/DgL2PSXnlu24vywdAsW20Hip3fTQRZrC30uy+3Vr/kzyYHlKDydta6O7ds4wzjoDCwP6+UHhcqAT7+jZw1aeUDeKrzsogqL5OvDP3UC+C03odGMy2b98TQ129zn/lxJPexiNDedn4YN7JmBzL4bGFHiwb8sWLomeRps+JuDJaUl0Xs+QE48F4hNzY6iWFgYHzxhOrbVH4W6C+vEWbLHpHXf0VqKdUhqr8HC4P6aclxaKgvecj3Asth307t+nglFhIFPmgo27/2LLiunQKXoZbyUV0+NpI8F91XLeIDUTn0rr83LlVn5R0EtPjYI5zXkqfTlbAmfS/3HSbn2wWbkZVYx+0hOPZvzcb8p6TikwWd6M54jMpNBpw/iJaj+/8hoJXzftgfn1GXQ1+BhOV9gDI2XzqPmNGiyZI4FbtWMwtXYyxFUYwhtDQR4mGg0xzw/CzbGF+N3nOCQqMssH/sbWtaV0WbsET7zXgrZbZjxWM5RXah3jgb1duKzpCVbquOI4uRW46s9Unibhg7kw1HcghCRfhgv/9aGJ2w36JjyImw1+4ddUK7ZTGc/xd/pg1CcBiIyaAYet9dgjTwBraqfziKvL2PeqHQ98ioIvb6wg4UUcaT+QAX0rMVB/OQLCdv1gu3uaaNvzCK+KxkJU+gVO6JYlqchA9JskCFc813LirfUw8mIvb8rOhKDqZJDbN4flHf7CczVp1pWIojOJQtD77QBlZMXyU3c9/tb7m3zCDkC15B9c4pmEjxbXgU6lGExJloeAYYLo9MUEPiz7CR9EHNg14BB9U6xF7bSNFLLFisqSf8BPFQuoLWnnDQUnqNi9jjblvyC5b6s43aMZejqMedneGXy25Qz9qRwFlhIRYK3mA9PlzlHTQmVu89xFQpJOuOJjAPfYjcOxa7ei+AgT2Cg+HvuUIqitcB7NG1dFx467wf5/R0BHJYaCc13gi8tNHnneHBSUBShtjzQXLrTmCe/MaLKVHi6658raM2Lgkctc3Hsljr9O1wYnd1eavNCfZsrsgLqPFjDzuwwUdF3i68+Gut7jAgVPc4Cys6JwVzkA8sRMWVBwFzzVmwluhyqoZ68hy+55iyWbq/hGpA7f5xHwbrUvJxX2Dd17CkwWS+Aw66V8JPAI3bzjjwKXvUCw4BIXBAiBhlMFWL+xZv2x1mR0x5XFhjdB+eKVXDP6MZ7NN2I+nINnkzVhn5MWvvCshG+/HuJkfxlWL4mgfXslYOr0aNJZ95ZW7PlN168MAxfRbtj5q41kLs7gmXb+bLxdlEvgBooGjeRwvxQ0vWtFeyfow7A3lnDW7Q+OPWcC09PfwSVZc474I0vVP2RI98tI3D48lcJmqEDUYAYM1JfxVrNB4IJ50HzYaIi1j4CJvTflmhE+q8nFVZ9EYEfhSjxevRdDj62gtYrKbPrrNSXtItY4vRly7zwlzciVVF4+Bk4c7cfnLRF0f9xhXFvZDuJHbWCK5wmKjt+N55Oi2GX9G7AbNh7urV4BtxwD4XvlEUreuBy6VFPov46kIS99gW7wAcfaxfKS18aATuq4rncEnnsyGfR/hJLS+58gOD+YGhqngoz5Znp76hIHXFCF4tqveLpQB5Mb5uMnSXUa23UJD4h64SnplWgwdA6pvao0oCoOwc96cYXgFPixyhQn/66D6x7+dHv6J5KQV8OsHmPY9eICmSXogdHgBHw4qQEbf1Sj+OBjuNI1AZZsf4WJDQ3wOqwe8uNL0a1AFnSORfHuuD2041YAwB4JXL30CR9UTsD42KFd27qOE8uZtscowL2okXjKoh6T9ENgZ0kO/if/CTe920XLFfug/Ygn0qgzpL9NEY5HicJHuSxe7p1HcRUnIFZ5BnWX1EPQ/NN0Y3Av7BtnjDFPVSFOWQMKI/aiYP48nJ+TyuclmvGE5l+Q/+ZEqQYNOEZ5Gg6OHwXPD3yE1AE3Xj5UJhkTNuHvq+bcZ7CS/yz+Rlv3DrnhE0aPJwjHvZ8MddZBujQ3mWLUS/iG+iD7397MRUH1tKrOjIq3bobhF4Th/Q8Ban8tgZEnnaD87Vhu3HiAqxxsQHTdUv7kfBj+9pznUSmyEJ+jiZfN9XmKoT7PCl4Oj1Nj2WKaDC/79oA9IiNoxx1V9OxXBIHxhfRigSAGKsVTzlyg9eL9IL86FsJejGb1Pi1aXfKEF6tbQIFiIJzWVkdv0cvwY18lnNp4Dw8rqLLZ3F6KL1tJ1Y9teUv5cLCLCoWNa4NpeO4/qJg5En52CvL97/a4bbYDw8QeXralj7S61WCtoj1v1jGE6tKDsCW8cOicCWjTZ4WvZpbAOMe3bJfxBazeMzS+9YULlb/hauYXjJljAH8GUvjDMi/wC5DmMAEt2KxnSUf/jQYX9zJqzZaGyql+qPRIlG33TUPVWYtY1zKZPyhNJ3efAbrQLgDjl63nw00DYDmNYXvHFZ527yBHyl1HmhDO5Z5PsC2gDOd7DIcaG+YZk/rgdZkPaFfLsNfzQnbvNIE/WEuvdb+jmYIHv9fQg9rJHpg6tYp2C7tQ23VlyJIbDt8NnLBuXwWEf/gCCddjyDtvClQX9+Js8Wo6YeQIo4t2kpKFCY6ec5QOiVvg63AX9nY25MIWeVhdbMnXX7fDpNlv4bT3RtJTCYTK0F0keNGQ5pwUg/drxGC9rTrMKx2NITuestEJQdj2LRBFpDMw5P1v4A9nOSw9nC/OSKHX6zXBKGocn3/Qxr+DlxBZ/IX503U46cISGBWUConbuyAsdxpKzjSBm4IxmDYjlerTPvGmRDls8trJfWPMoSUqhlQfeXDeIg+SOzkRLi6UwE1Cs2n8BQecalAGWfZuJCF9idQUJbGg0Ax/LrhEl7UI8t9N4XyBhSBbvxZeFPuw19lbLKcQiCEqL1kjSBbmxuWCQaUALElSIfe902F0ThgpzZHFD6VJNMJ9I5SlDy3G52Z+n3kI9y9Uh33qhnAjUp6nSInwkVXX+F1SK5kL6qF/02F0qlnOEoJHaeGc6SBT0McFJtIU2OIHJffmgrv3EX6VvoY7RW6w1cVgdPItpsm7J4C6hBq8TZEioW5JvuXnxapxEZjXLcHLd56k+QcySUYlgvZGG8PXbhPyUnEiT+Gx/PVsPmwZvZiv7hmOm0rvo3ZgOoavymevrlGwv7WcjZV7UHfOafQdJ0zt1lYcYHYJlA2GOGhdLX2Zex7qbljA4qy98PaVDFv5VmLstCbg8NdcmDKWakKOU8p+K+j3CmSlSFVo8AhFWVMnavTKhQ0utTSoOJ/Gl5WTUWIgrckr4J2HX4GzxmRYUHwJO/8SnIurIPz8mD8YZcHnO9dogkwGJAwcJKnrBzjUUw6kXWNZW0EPZR9LwMmYnfy8vRLpehS/VAqm6qfrqDXvMfyXOQ4yT3RB1B9NWhvuh/7P9FhykhKuBxeC5a2YvLgc9K6Y0PZfqpC78hk/MkjmvCXmKO5mwvtNlvDXOx5UO8ccujsTyf75CfzcO8Rho9/AQFciW//3iaUqr8LbhzEkv6gdXpwAFihdCc3Nm8HZ1xLu/dhD8fvKwd/tEp2BT9CwSJCia3fBw5Qe1vVfg3c/mdC2gOlgMyS7lQ/MWeLaZLZeGA5FvzrpZZIWmrfKAiQfI6Epv2DHLxkIGt/Cd/4E0SFrO7Buvo0Jw7dBkv5+EE48x9mOi3Fz9QJyWy8Jc+2/0tu+s9BVcwX7W9s44lgyKoecwobxZpBcEEYFI3eje7U6iG16DzsvTiBt/zT8fK6OZH8M8eHxrex8WQx77A/wIauzsNFbE45nx2CPWyx5XDTi0ugMOLhIn4TMveF2A6HjczfY03cUGvzEIaXNh974h9CDwTTmJTY8ZcU5NBypTtfXTsHPu8OoaqIqO743gjF2+Rj/6wS6WeqhTVIcKRhm0YUzgyhbjvgx+A7qI9KYtglAaW9Q32EMdQ3GoNDcOIy//Ylzvuwkg2x3Pv9UmR9IbWRvESG43nONmuJ+sYzlEbCQmospH0ShRPEvjdaTAo+1vViSfwFlJxqAttcH2iadznIjPaB75xJ6O8saNlY9o4Z/ASBS8hJnxUlThBuD2Nl0mhrfAYa3q0jHtIO2zwgCQcNuLPQMxxF/NfDDqjFUtV0Byndp4JZbFmi4Xwl0dnSgXlUj5uQvhLRZfzBW6SJs1D6LfxqHw60kcRqv6IhXVl/Fw2EhrBvexLb5SXwgcj+EHFgM7W8nY95XbYh8s4tua9jByxv3yc8ZqDlhCohX+ZNfwAos+umLazLfg13eCLDfkEYDwV/ohuImDpTuJVVnSegaNh/aF12h/6qySHJFFjip60NNcgr9Gb+c7iwYJME3x3ix3Ug+HzadL94WAA9POdq0vQenXDWFkY9SYW9NIHeYS8P0d6twV4sW9V1bT/GHVMg49Qvk9huh+2Ex6Pf/R95DHmNw4CAbafrxicF57KUlioJSjrjFUhHaPp/HnGATGH/Bi5ql5oBTfg2WWP7AlWnCXPBtH334sxtWB/1gn6Z6yHPRhSlJh7kwYh2oaPzg9tGOfHW7E1ldraOn9l2YKmMBf7v+YqLZJIipHgsx4/7Sz8bJqK6QDZv3DHWC+nXcf8YeVq9/CloGN/iJwDCoCQyn6/aCIBcwCh1tE/jmxbGssVCE4r5thW+DI+DpOSOSmzce+toa6T/V0dyWVUs5A8+4TiqDzWLGkt+8kdw6/RBe3bSW/FcKwAKnSLjowJhxyYI3dc9F+SVZsLRhCzs/1GIDTsMn7a742FsAtt14jQ8rjUD70DC84f2TnNbOR99WH+xq/E2TMtOhRykC9RVU4bXoGNIMVcUbuUYce3chhefOhtDo89w+7hLHTs4jr3cBIOo7CiSPiHDlhjGY8OsJHZqYAuo263mHow17rzqOyoomWLjtLYnflgfF8YEc6zATa0Wa2GbhM5K+I0GHMyfQ1S8bSFughnd8m0H/TCeBofJhWLE9jmdPO8zDNolScZAZiIzMhmHffuMNpzn0zi0O6+VVoEzPEJ72nyWvW/U4zXwEBHyS4DnFdym15jxmmtWwuKoIhTubw0jp2xSTP4K3m+zBm/s/UkStGey0Ww+VIXWouXgFNz4OhnpNJRiTsRH/dswCq+hAHP5+DsYZiwId7iRzD1k8/34SbC2OIPEsXdh+MokuHZnI/pduklKUEpY9coTNFQK0dHYoLluZjL0xc0nXH0FX9AQ4qLry54GzYDN2ObTfGQlQ9Iz6F5lwofFH+HpGF1avUgX5v5e5Jc4OFD5246c4FWpZYgGHQwP5SUEPk9sxOKcgziudpoC0dCNNkeyBVftqadR2BbzqMAX+bhjquosZrPLsDb4wfgwlazUgwLMNN04Wgs8zR6NaQCOUx77my01r4GGLGE5T6WL5hfZ8e4QZ3L3QD+np1qz8IAtmODtjnv9akAo5gKvPBeOkpxNA8Ow8eDlJCT7rlkK6bQ9Ueg3w6gAh3iC2Ed95zOSIEc8g43w67kvtwu8XpUHSZikvKl8F5nqnUbjmAP4rWYEPY8I4dM13nqj/GdS2TMCrQz2z4msmlG0uwuBN+rj3w278vTSZohSjKCxkOw8WCmFtpSoXumpBULgj7FSYwKlpBVDgpU0JaiJU23mY5fMDcfdRLSi7uQA7z5iC6YoWSnD8BgZ/D8K/h0kQqDaAJ27s5uOqxqDRoUn3c3fSwfnSELo0gsvjJDEn+TI9z5Dg8rxSDrf+RhXTRKgx/zJmtQahUZ40eLVcp6OGRfTuYCMIZU4Fnwxd8Lj/D5OG3aQd9bL0+7kmr3WZDtIBV6lk7h0QbFIGx8Zo2FysjpG+0dyV/whT5AxQ4o8uNKQKwW1NL35f7UP6GwIhsHI6OS6bTeIvdnDa1UM4qViG7AJ3Qsjk0WDX54u5Gkvhy6F0mp4xnK5e9qH1Jx7Cg3canPnqOXdnbqdf7gQ7eswhvyqNx6W1UdHX+9ytd4gfhf2jabOzUOFPMwbYHeYzuyZBe9p4eBz+nb/dT2ClAIGhb+VAK2K24vGAT+B34BW/WTeaL2xieOnmRc4ZgxhQ7cgVyr8xQ18JHSzOoMGyjSDv9ZqGCX6ClLWy8Pm3IHVkB7F8zA7+kP0JIzI/Y9/lR7zdGXk9nqC2Gfeg9I4RfLn1Ae4vDuPS8DNwUEyJgrb4oNP8Fn6+DOB3iB5VfHyBIbeGw7SnWmyzfSzOrBuFkW5nQX3jN3jurIkPxyfwvbcStPOoCczeogz24wbhQOps1ovWpe13v0IxR7GQ4xmKlFKHQbVN/LvVkwftZcHM7yVJ9Yryfb0/3F0kAIry5Sy9YgK/cq2nxFeu+KI5j5rvG8P8yXfxjKM+/Zdyn94YCsNX0/EoPuw6dqTGw29RVWhdIIK4QArC2/JQySqI/Xcps8FOIfa9n0jXBWbwrpP/qC6lDN+cK+b2uKmQoPyT/yR5k7DVJNRP1cTOiFhYNe0ZOexUxA5rH3qtuAGCBXXA4bA3mK5vpSoxS3RPfo4d0Vc4aO1sPlZnSp8NnWlsmhocNNaHCz2ClL1zGVWfF8Y8l/McqKYNJj7D0OvjZXCuPYY5BYtYLVUELj5JIvXH6TiwyIgiXOdj0M6P+GC8HEJaM2Ybj8D5c3NQJVoAHu3biYObHSAhNJMuJC4D64VPWPzNOkpdN5zeFc8hh60FMDjbALx2POH9OxV5TZQb4+hT5KS5mfM1npPImikgJZxCzZbWvOe+BQRFToQxOsdAbckttn54F00L9dhG4SCu/KSAm2+U4yfLq2RrqgchXz6B0av59F94IB7sOMD6S1+wrecxOryymda/9SIpv2zUKdKGFzd+wHbDAT609w1fC5HkDO0e3vj6BjQ+VsDW+nG8TO41vmsYC/O+avH7nTPpX/pisNKMoRX+p/lP6Cg+HH8bu1Kt2bjqMvStVAVV0yZe6zoVj7yxpk08iWJ2fsVZZ+fx+pnzKGhMHEf0RlKUigaciRAl9/madN7kJ8dNe467u1J4cGYDODXcAwXtI7T5zz/SGi0DnzrvoG5QCJlmDOcau0y4HLQSm5eEwx2fQjjUsIU2N6VSlaAWJMbVwcP9wuT+9BBaudzFPXnv+c6hu3je7Rkq+H6EHzYB5KgCIB4fDKb9lWhdJE+xOy/RDckWqAkJwx7vEl7V40hCXiW4JFQFXN5l0Yt+U+j0KKDYUiEeoabB4s2GsGSsGrUuHMQN5jG0CgSG8q4C1ikOx+9nfGnG4QZUq67EC3p+PMHJGf5z2kwvtpbzrnJz6FXW5xrfBJq6vADv+b8jncQ+PnB4CrvdGMZ35I5hpekQdw4aw89Ru+Ge3FNeUdfB0boVPGzOevIzu0AO16PAYc503lj4HwffFoWiWE2+VvMTBxXFSarAk2cVdoLFpY+QV2dBm09uYwtLKfJ0U4CKebYUflyYB+asgf2/PSniwBr0tJmJkmezYaBoOBwJMWHeZAmJlsN5dWE75Vg94Q2LqmjEixB03rsH9qqPhAOC8ajlfBBNB6bAXduPEB85FXYGD2Dz9rMo6d2IekrPcFHpJ7jv0wCFgT7s8W0SyP1YjQZWztgt1UR5G1RoSvx3ij14nfyPlLA62/LvizpQ+msYbBp9hypDvxI0mHFR7ULU7cmnV0n/0Y+vLphWlg6j7sVjYp04BJXvgA0e1rwxYwOYDZtPxsMj+U+mGkpMIZ5zjinkby+MnCYHX2c28tc+EbqhKQPNssdhy8Ugqnt5kXx6d6NpdRfZrjfFI4Pa0Hp/In/NaIBVNr+59a82bzuvgQpfe2mddgR0ui2gA18q2KBoHHSa3ueCziFf1vkOhWF6eBeF0NoJee3MnbSjIQn8OieRdvgoyJvVitRpwGPXSdOldEcM+p4M7+4ex+17NQlOXwUrdof+ATGwV8+C1Fx5eP0lgLVM5+DfhAGeMLyPZphF08glX8kobTF5DhrCu7wQXNxqyQbfxmPhjjT8zzIKDc+7Uk6/LYzL+Uq71WzwQY0AqMbn4e2L18grtgPebs7nKEk1Ms1eQZMdXMis+S+s13KlHfpiMLrVh65fMcCJYx/h1lH/0CvkH+onHMOlZRo4or6Fxt9tIdtD0jBspilrhA3lhM1vokBRjvvhTIeGZcEj03O4S/oG+Wvb0tNngvBdYimLnsuGtOq79DLChpMjasl+sSjYFotQvWQi361yoY/3J8Eq2W5KTH+PS0piwSXoBvsGDdLqGfvAPnQxvhlRyJmVHrgqXARGfbFEG/UEKBUZxgpyT2jPx9uk/1EOzn9Zw5p5Wlgx2ZcdtcVBQamP8hfZ0V77ABhpbANSfxZwu0APHUtYBQ8N12Og6AWWTJwIesXaYLs6HSelptC/RGmWH21JAjmf8NuspfAy+z2ImZmD73k1cN27Aafk5XHnFjmcnu9A60a9pTDdCHYeYsiE0HNQ2SsJGy+YQUN2Czdft4fP23Zgz7c+vvXhHJgdasddbx+y1tka8DSpZqOX6hA4No/9F2dymbs+6Di+IIdZ92nT1SZY4pvKm+rPscq2O5ywQQWEYibgAZUXKDsmnFrES+hqxUvWrJ0HdFsM9pUthNXtq6G7fRTsnVWOWSfOo3P1WT53aikprhWCO1MfUlnbT7os/Y+8fpyGoqlCMODlCQpiryjTtgWqxaeiddVFTogQZLq0h+bkq1JjXSgMiupAYexwUItxo+60T2wj/ZiMlXawe+c9Tn7WjwGy9ejkW8k5ZxShZWsbzf0wA1Z8UqGoy2vgkZgmWIh2gLD6TAruyiO4ZoKzREXhooEaet1cA/n2qpR4KI7z82+z7uwdVDgmk7RFe+GpZhk86ECYsXE0BSansdX38TRypC4cGdyC2ztMIH/+RWY3dRg7IR7/vtOBo6tzybI0EyvGtXLe1BCM3P0LDJpm0BjtNA6JfIj7Jw6S1sJJYFE8AEras9F92md8U/SK5gxMhbaB8eDbeYWnJi8HDZUUkL2tBsNitoFs1QlocfxCof0leF+rluWG3SHHl+/w5yJ1tNEZgVb7JsAcnWwUmWkMpzVbMb/iAtfOPMX/7C7Au4zTPC1iAl6crU+6LjqwxC8C816PQ82lPbC7Xw/u3A7HqUb32dDvF6rqHIKGCcmUkyADvz9qUUXnPBR+KoPRm2rx8Zd1OKt1MlasH4Xpf9qpalIAPJlvCVN3Z/GvYV9pXqMXyFydzzcWVeDDk2coc+4VlNGaTltNBannxlTILTCAwA1p8GVWJQ+fv5RrIjuw8H05uHgWcVLUI9ptvpLfWE4EfftqTnS8SaP9N8LgvTaY69gNo9yiYNtDH/iy/ge9NuiAYRaacLCgHzep3wGv2dMwzTAYA5ctwnpHV6L67Xj05DdaY7wbbzwbDfq1nWRx5SC13N9EH3LzueLnFtRQS4KWkRmcXLuHwtZ40fCjBnB/fj+n9xOcoysQXLGSTOpsKU69hBP7m7H5mAW8Tg8EyyfmcGK9JM6vDqbQR3+hQrMEtWg23ZV6holTDtDizXPR5pkvdyrLg3ToJfIpXA7+e4x5o/xT2mmajdL3VvO64jT+bbyKm5TOg1uNHuz3aIK/LV48mQBfDx8JfyXayfTFEI8k3QVvFxHWnr2KEqeawq8XIRC0pxG2jzoKLZ/N8WxoMCb8MIUvrq50Ny6GBH760NVj0vB4zDV2VRmOs7UfQ0p4Ac1f2Qjh1SchOaMIH5W/pDr9QIivUoH6oX6d6WlFLRdKSKRai9r6i8Bs+UK81u5Gq1JmoOm4r2DaNAxe/I4kH/ti6q7dwjW1h0Bb7xycyO2Gs7ukOOXbbfgyqhwxzhCE38xEjf6TkFOdw1Hmx0hmUjBmr3zALz/WobKDDaade8nlewg8O7up4ultDM5uQpOsO9So+xd/Cj3D1dJJqDrPis67LiZeYwyq+6JYwvgcxyivYqVHDihr8YAfX5Tnw5/m44DLF1pw7yY4xUrB04uTQC9iL+44cYkld2+E2qY/GMFTaMnT76ydNg/2Lh9F1UbSsHnhfroRqkLXVr7n9MbjqPLSm4o3CqLo8bN06bsRuJheJ/HRStDxah8tj3PH1F5R/Ob4CFOzc0njcB+s93PGp3rnsLNvOy+fawbP5khilRRDMs/lX13M233zWd/xG7ZOlsVdeafZIeMIj9UwgS/iTvChfhMc37wRBKcMh8dpHtS9vZskjrvxRls71J12DRSyDCEr2hgz28bhOYUxMHfgN23baIZrHEUwdmMUu0TV0oTSHhabKwUO5rIYO/YAvdkajqEl8nzEOhP/mOmgx61UzHSxhL5j9/H2Wz1oWVNGT1XkYb6zGj4IdoE2xyrYGbsCIkamoaRwLRh4m2DsTws4J95OKkHn8ZPVUVqyKZS/DZ6A38IjUeTuQj7mkYl5S6vIIEYCNBXFuWb/VW7adxpLd7RivOQl7NWXwVGaNbRSwwucLWdTis9I6Bf7ylvc5oFMJMCx95XQqlLPVj5NIKUxkfoGrDm/qxHEvY3AKuch63w2o4D652Cx2IcUjB9ClkQHPlpoRgf269KDpa+oXncYXLg4HUaPGY8zo8xp+NY//M7iAn3KG06zV77D56PKUFIvHcP3CsKRvONsb/kKXP7zBSGpan41HeCsXDG+d3jM9VZtfHol4GqvsVDyaB2qDbeDgYcuXDHkizn9G2iLTxIc/nAaXBc3UHrpEb4dYgZcE0/JGIqbDwlC3GsffDK3FFZvfQ7jWvfAlaR0KjgaxFOeGMPzkw647bg3Pr9/BS3f+5Bx+md61/kMJ48yxtlG+ihxfi4um6kADwqquCCmieNTLClU4zzfsLVl2ZYuvLIygSq0JPGdvCTdLBgBdtlWJLz3NcSdseCVzdtB71Yyndp6mHjhHVS/HYL/anN45FBOZeTZcF7JJxqpkwA7deWoceVEsv77jRZmXWSDv3XcWiLGvb9GwPBrr2jetncc/OIdRivZc27mVrj0Jgq/htVQdmYoxUStgsgKeSjtPIB3OsxBL/A0eufEQJ/bEn6SGobpbpcoWsIf1C71Q8EaOThxXBOfFrqAhUEOf3jszdI+utAVmA8CO6PhybASvrxCCjJOjgSzxXPpz5yhZw9Kp1WLu1nDoACs4m7A2Qs9vLu3kw8XFlLOYg3wfZKGga+no+G8TjqZ2ItPbn8kG7UObK8Z8ryXA2Se8h1935hDdvg2LDldyz+VjbCQJfg8nqc6hVB0UfaHOJtW8iyaBZd1J8Dc1GnwUmQtzHLOAE21Hex6ZjIJHIjl4YEAub5BaOZTzq45QuD4cyqa6IwjkfxAvt7mgH7nzejh0pX8zXIq/bi0FI0kT2HuayPQPP6BHvkUQa56AhWMPAYV+8+CY+hjihF7yrPe/0eSFxk9tk+DZQttoWVLOm/uLGavuSZgY/idF9q7wSrVIp6j8BH33chCQTl9ENt4E776m1GEix21CCygRxu3sXvCJhh+Qgv1X8rgfZn51HvcFNb9KcaCLkk+O+IjN+zrpkP3PeDyAWeIFI6Bj7cNaY6eAny8bgjNqdk0KauC7dN+Yv7qekw4vx6qnyhzV4A8TlpgyyLVZTj8vR78Nf8PV6S40l9LQxIoVCSvXzVcMfsB7uxwYJSSpeT8Jsj10wUhp34wfJ2CuyP3gI1tD5xr2MFb59lB2kElGra/BGR6teB1rirY3nbGUI1k+uD7CuecWAWzBUVJxKID5jolwFLfSRjpIAai9tNAZPUKfFI1jSrPp0B+5kVeumwNeaob4ck7MhTcH0oLrh/E2nvm8MWhnsXGLuKUfTl06nAFrPWR4MULzrDeHCUcJjMaVKul+HcOwPElGvhc6T86uuwHNK3WYju6A3bXVqPig3JOEK7BDJEk1OyVhdobS0nB9gWMnj6AC+dcAr8PBhCVN5GEpoyACWnZbJuew2GaZmDfvgD/6MbDnmf2uFxMEA95voADstMo3PcbZa5L5iVvxWmUogZ4ydjwkzXttP3pIIa+1aHzJx7w38k1NMthBa6V6ASlfWugV80A5jY74ayVt3nDn6Ow7Pp8lnQ6jXdCZsNGmQeU9+46fjbRpZ93FeCNmwoOf/qYc4Tn81E/YWipPwXm2yai09pWjiz/RW4zxsPUHeMgc/oCalHTodJt+tC2eRVUfHCBFOfxfHYrYm3rI5ysfwq37TCHh55H+NOMu1AtaIiOhXYgnixHRSsdIc6hlBaFTYacAQPM/TcW7E9lUEBpMxRdmEVmbm6g5zEAbrdcecnjFXRshCfkaAVy8MeJUN4cxW+f26L01rvkxCY8LjYMZrc3YrD+VSyqeosNF2Zwb6gM2BhLwL/xxZwT3Is/Vu6Ee64SeD5sLTU+HUFbxlykl2PWo9mZYVBSupwmRS1Anj+ZE5bPhG2lgWwgNBuH4RMaY/8dl3TJoYuiMHguvwIHFuyh4ikn6Jz7LjhyTorczZzx1lM/nNmhTxfTbHHuTQuwCGdw3dNFjxYVwatdXnCi5xylWP4DO9c3sKJ7DSR+9uTfFYrwd0IILgyeTNUzIunHllg6uKWM5Nul8UVoF1m4FoLR5T+UYioO6ZXV0DDvJTmMksMLrVXwYr8HXj0vhMnvBiBgwmrsktlEq8gCdA3jKeiGC2uP34Vxqo4UucYVhUsmgl/DIz5hhVRlVYMGLwluXc+G6n2FWNqbyOaiA1S+cyeHsSCeMq+B11cPs+o4NdyIY2B2wAp+67sWa63sIOmMHhU4/4F4dWf4eOQ+Lz4vhZbyPhQmNA7qntmTe+AwUky6DzerG3GF3G2cd6AGE6um8jSDoTl+nAo6KApnCnP5lP5nWNNrB4sjcqFGxRpqiv6CteYC6P18nAcuPefIo1Ngx+hyyK1RHOqGrqF5UQcHp+koKPUV9KozKTv9DbRWBNFjKSFY7iZJV/3OwL+DDRzuWUUDlYo4X7AAlOImQlRKNi62LUAPT4SaU93Y+OYCTHNfARelNUhm5VuckHWblfb/oqx/ghj8XYAMHwtA9+3R5GTbBdXCm6FznAiXvsiEOg8TPq3VAtr//yeu3yUY9lwOvkR7gMLpqXQo4yV/XPqNZc99pda1L0g4xw8tp/8gZa99NKhqBrHtKvBhawUc0HXl/bMS4UrWfD5ZmgNzo9vogacgL1oaz2l7FCAUnuFVqT4KiriP/iKFvMP3PQVL3yGZIgEAL1f4cu4fFZuKwi/TUFo3+BRWNwvjQEE01QtOYJezh8iwcj+rbtmCS2yXUWW0OvjrBOD1YMDBtp8cEGeHOiMT8MPsNg6ckIDetSJkkT6CZ5mYgo3qb7Ba5s+z3c2597sHVXtXcCNlwjql91AidokVo9vh7QhxuKA4DCXckzAg4iS675GB1gtTQTL9HShMauX+qF3sY3MQo+uEYf6WRNTpeAD9aq9wv/tG+lpjQi8mVJJAWBAbXPkBYR9GoWfTUPbqHKdtKh85Vy4euzqt6KnkcwjU8uXdK0Op7NoxMCpYSfteqcDaxfL8B6RhiXMSbxx/C8x9V3JpsQRoRHtx5+n97I1VtP6nCriWdoOlQBZJrXOHYJlGsGnNpZqQmdwu68vnSitB0FEddtdqwIeKYlIu/YtNhVNh//R1KBV/DG44C2OxtxkoKR7kOULL+GGaJGg/Wk+Gg14QvWsY77bYxx1Hm9hS246Dd8Twvri/ZOS2iIMktWFvnxVtvmPMbe/LsVP8Kz4Q8mSBmm/sUuwEKj1XcYKhJ1xtnQwqt6TgjY4KZsFWGl9zly8+OEEWNfYst7uWX72Ywm8r8+i3kwT4nyU6vd8dVqVmc8qEtaj+9Rs9uldFMZUDPFlWni7pdEPhBy24fNGIziX/orwwH3BtuQhHpE7x6k0POSR7Ofyd6wx7rkug2zhNuFWnBCLZjWjxYzv/WfuIEzWHQ5PFaP7htgVcL55mq7Av0HV9PJxuPoJ+3unQf/kStc54iQdCI1hjyya2DwqmojVpEHtcFx69mgYzKIEFj8zDeENxtGnRhYSsYth7fTIMWH2G+DX9vHT2DUyLMwfp3i4UyvwHFd/C+FeYE5SOL8Jw4QhM/fmCM264YqT4Yl69nGDPzg94ZqoWvQ2upaQ1r1h2chVGXrsMjTcjyTwYQVwtkLdPloGwsYUg9ews+Vh9g84EcXipuRlO/+sB5/XbSEl9JImktcEkY1EwSTpFius+UmFJOU7vXwoNykKorinJ0b31XLpjCZCmPzcYaoKm1xbYO2oMJJXZYueyMtgrKcJzVm/CMbZtGLj8DP3qbMel15RgeN8hbn8ig+lFSeAv6UGFMxLp+JEDnDPpG5bfvEK/01PgxzdLuCb4m9Lrx0LPaX88GPge9qyYhF+WPyAJ5zN86ctBbE5dyDMfTQNHO0XAo5dJaFoxZQ7L4/hdm+D6fW1I/SXF7kW/+MKMBhjjLwFab+twg4cIldUP5exOFYrbsIT2BCyF/iJ/CH52D4bJ+YNwrxoYnonlSIkmTj15hAsEdbAyxRud5KW58uxJmlJ8jMyvbcdNnQznff24/XIgRvqFw0bnNTDr9X7utz8By3cs4cxb0Syl6IMrrGThZIY9hM9xpxl/6ijaJpc9xOs4xpmx8rUNTpHJxKvrV+A8aWPYGBwORQ0p8PjKVVwi0YuPQsSwMOwKi+iloECSFLWLraVDwmpwSjMPd8uL8kZjf3b7uw33vcnDhWHenN2mSdH7IyB/+mna8z/izvsbyD9u4+9hrxBFsmVHhShZpUiRktUgLU3bV2nToCIlKiWFpKkhQqgkkiJCpSgqJQ2pFMrjef6J54f79/ucz3Vf1+t1zuec20sYYhPa4aaoMyadKcY5l7zA40wDvds5E4f96OO52wHr5AXB+D8tiLw5B7MEflPgRlE4NTGL1s87SK3moRQpU8Xnc90hVqSPpvQogk9+Nfq9tyJVy+kseNaMTbfpkEBGLuUO7ese72UkU3Kd439PhtL1P2BFwVtYd3M8njrwgzIfuZBl6yP872cDqzq7QM8RERyRrA5lCV8o2GIS0NIWeKw1ETzKPUF0swv/NPLh3lYHlJtSy7GSFuCveQkGCg9y1sb1bHjmPNfa3aRL5c+puewux45QQf3H16FfSwam110itfRGXO77HvQK9vNmLEGFm0N+oFcMQrsWk5dlBm1WJJj5diFnWFiA82IleKG4hwLjS1i4bRc3va2Dq7I1tPP9KOooGgOZHmv57O0G2PTkJFb8fAv3HspDXKM/KjRJk6pGAI0U243zK+UgOUmDgpu/k7LTLfoR3oGx84ccdc9I2ud4h5s+BYFI1Wy8GikEk9/sxylUSUHit3lE/D5WVZsEETuEQXzKfPR8+R2e5G3k4CCC0y4HYGqdBo+Z3swrhzhi4+JquK7tyzUGSAdvroDFAovwQog1tBm+IXH/ZMx8s4Wkpb7xnp+CVLVwDs5UaaJK0VQoerUUdaIEYIvzHjjesp4vaT3Ca1rVHLZ2NsjZL0WTKZnsKpWK5vPe471cYdh9HEnLzBL37krlMaZG7Dm3GJbsGIbm240g/rwtJhyWpOla4vBj5V6qE2ijzJWh7LPrHa3Ju0m7frTAn5xb4PWrjbLCvkCYmwTIr24i00hT9E/9hp8tCthm5Sps086Fuqg+nhyhwKr+inT6oDV0r5rLL18hjN1QT3F51TD/YiNMLN7Hn0x7qXV9D+1aeIwDv2mAlFc7Ri104ikFDqz/AUnE3xzvvkylabfi8a7uA1J6FkA+gWNhceNxXOChhY+kMyhWTxI6x6ah+8Jq3jHgyl3Vkfhf0RHyzRICPcNWpI/f0MhYHQe/BLMcdpDN7yoSrBmk059zoW3HE3KyFYXVX79RxVoFipwTzD9djahZUhq3PLmB/ovW4ci+WdQStghG6xKsqjoKb326WTjfFkae3cVaTfHss6mWVzyuIMN3//Gh5NHcXK4LOjUSVOG4kP57OYO22A7H8Ou9dCkgEV9/McHR+6/CyKX5/FJbCNZnLYJ1FYtw2RQL2lNymR8ajGTzqSmYkTuf+0TOotEyM7b/JwBF8v/4usFd+hPlAD3OIbRC/jhs7GhmxWcvsKR9K8lO+MBXW8eAktNemK5/gvw+Hadg1UZ+9kYJGx1aIDTMDtvjM3iNzUfWGtSHFUINMCxRkEdN0Kcy3wb4L02cfrsvpD23r9KludvgkqY5r8hhGLt0OotsDUeDF8/wTs1uXlr2Hg7KrcYdKTOwRvkpfxu4TrvPDYMAtc+sc0iTFh+oxonZMhSdNBUuHGtlv1mjWaJWCc/3PeT9BwRBxXcmTPllBDd+NcPf6IkgM+cab2qqh7iQChD45IY/5/RCf7oeHLt3n0N8DkO9nB6PdexAubUzKPNcAy8tnADN2+Zh7+jjtCRPH5zDPemyyAiQKZ+Nv6d3gukof9TarE63DG+g7OwaatDfxt89dOG+ai5tNvciz/5GcBlWxoMBt6jSLxo6V88F3b5O7NebTi3zVSDnhxo5hotC+t7xlLUZ2EqnHMOmnOCjcIG9JCeB2d2ZVDpeHZTH5dCGvC3cu1uV9gf306yQUHi9ZhDXp16kd8Ub6PPZIff/IgJ7/pTw7so6Cqh/xb+yh9yq5CWoXu5g2Y5Gdgh+Q/W7s2Hwlzm0hofzmpbT8L5CC9vmH6FZ3c9o3DIrhusRKKF+nuWlnXhRtwWk5CxDv5mb0H3rYcg5rk1r3vSB4c/X/DRGm3Rc34LkPoaWH6NA1O0tzJ38lt8/2MEBF4/yqfiJYDnfEHJDNuG7Kn8ICJuKoeoC4OgtC/l+8zB7dQgNXg5Cw+ZoNCy5iSfeMY2St+QVXkqksUgZbk/OIiG9UyRjLoHlDQCz3kuz7MlQyOvvxezPxtz4XxN99BaHG9sbqO9JDHmbtHGKbRgvj3vLGc7p4Db1I9+Z7YAeq4phtpMmCLn8oAmjVfDRnB8g6tqE6weP4d6NWfhltjv9XHcRHFYM8q41E+HsqwyaJlAM/zzXYdoaF6ga1Uyt6utI9dJf3hrZgxMlLuPnA5ZQtNoEvpopgfzHerp5dD8o9jhil9EcrEgYzi1QTr8fziYfb/3/t///ThliyqTtzVR0zoROhL7HnMq/cH5zIKfZv4LIi6von5Qk6lwygL/7fejFsUM01zAAxz1SwiWdE9gUcvGAxDMUe/6Sf243QxObyZB31I9frB2HJR+7sHfkAKwJXQTa39UgPH4SR7eqkoz6b3jYOA58Ou/BkSZ1+kyv4PnrLvDz+IDdw9wJpx3h/xb3sLfwPP5izCCgaoqyFdp0RfgV9X2eiMVvC2nruYf49ttsjnbLpvYdEZR5xwjOxE2CX0Eb6YJKJzw8EkLGlVkw7X0lJMabk4nRakDLLRB7QxxUDJ/Q4Kv3YD/iPbUblPObdY/ZcfUm+lQxjIum9sEDExWYXG4DhpsaYcKmzVz2LRfbtg1juT/PcYPGVMi/Fwdp0vvxdPsKyruuBDVh2eTj74l3744HN08NcvYeDRoPy1FaOYDP3F6Ea70fw7b+Ie7tnAcfx7Zh5JX5uKH3Pg1mmnNY0D1IWS0GSzOJPXpXYMx1DTjVoYaTLH6Bv1sRXvX5BS75alzPS+mYTCyL/f2GikLlGJouA9/uXqTxdv0sWWoLQg2d9NX7Acxd+JV6+gR4xKSzYPt4LSX/mgILFIZDgudMmlW6BY+GqXGL4Rjqd3nNufuNSeW6PQ4qTICpa6ShySAaqnTHokn+F/iybwLHFK+ntMRQzLLXxj4rdxqvr4Q+k8yBPGXY7+VhcDl6hbRye0lJ/BocmrceJDd+wGXuoVj86TVIFgmAgHISDMvaQVtl82Hxu09wJtOa94m8ouklw2GzgwpNjmJyKNYCsRgDdgtQZCW5HhrhK0G0azkszBWgFjF/WL3gEezsPEcfdUXAYOkFLB21ACYWHscQXz1MsW7lvVLhsEfEh1YbxvPP+j9k9IbhplIQL+zaDyuXfAPjo5vA4F09PWiN4vafwylIYA5XnS4go1xZ2FWwAcUivqLSdzc2awnkZyrp9LauEj78k6UVmYv5o3Mn7p8tDSlGJby81oU6/o0BqTJjLr5sj+KKWzn1wHlsMpqLp/Lf0+2rk6Gt4CWslelix1Ydmm9hT+gdR60ieWBxO58jLJbT0omDKNkhDT3pnfhL1Bpkisqp7qMHf8sZhvL/hPj5tNH4qFwMRDYXUGGRIayQVqF/CwN4jlgnjCo/RP8e7uG2xWp8Yb8S2s/8jFdfytP64tFQf2sVvY4MwAvXpqDVaG+Q++yF0QN34UxdCOeOm8UzvG3g11Y1KAjq4A+TWviA2C5uKFWmK8rSmPFlNp8sTsa5TgUsum8X3lyrCWJytbRSfyPZLTxAoz4fQ9nT7WA6MB3ato/k6oWF7NPhySmPZeCLxkywDFgIskd24+EIff6RcZCsl95Gd70ffDvFH7cFBOHhspEgaZ1Luz0+UvuzUZC6QxKeLB6gvwqrYPTwCk5Pv8sTlsZg3URTqPX1Q+4tx2OlR3HPcQZYXccu477SU99YeHpyOjxwO8VrzCxBYoYTubRtIq2dJayMO2nkuVy+YvoFnlac420hU2hDwFKUfDMWvEId6celbLb91ctFJ4iCAgdB1OAePhP/iO6+LaQ2oQtTtAhO9B6D5PJuXLFpFOWVPaOuGcNAoq8bzQ30cN+CUswZtQuEPojBz4FYnpr0Gua5OZBDWQ7M90jDd+NysP1VBEmHqkDYyGX44JMQSIQs48ntq8HLOAbOhF+GW6Ja+Pl7OPil2WPANSnasiebA4/qQZhoNTqPWoMPDnbCj3k2aC4WTk6GWjBocpmt61+R0MJAGtkvAWbVGzmw+RbmpETR74RqSPkswefk31DwU0n42zQFgtsNWOiULCS1d5GmqwyJnRuJu8IK4AG1QoOAH30pJ1IY8Rdad8bRqQxlSEwqoFW9jFmLQ0Dlsi3F2reBcn8zajqZULZ3Ch+emIZPj0hAz49uUL4oxjcNp1KlpSB391fSgpIGzG68Rg0pwugwS5o+WCtBSMZnupx6CdM2LsJ0CibbnK2wdHQSWttGc+SPXHK9N50h0RwUhWbR+URvWtzoAn+9xaD7xjqK/5QON0O/cNGKSojVv8p9u8zg7w4/EAvLZ7OR+zn7nBkcuq4ISVNvccjUxzA3LZm2yNfzNi8x8HLQQLOnzWBoMxXaNYwwdedKKogPB+nngrBl6gGkp58oORHhzTg9OmRTQNJeP9DWezqU/fHF5e3qnLfGAPI7k0Cs/T0d7Wd41pdAh79uAf8QOTr30hcHjM/hGLXnaFB5jgqClahiyjie6aMF25yV6duxoTz3fICszDv8vrueNAp14ewMBdg/3IbTAlbj2jWqsG+yCPDKy/BKahbf/riRGugKHvIz57ykKN5NHvBj6VL4A+ZQKTwcJ/9+wuUinfg634J8707jvtaFHDY3j84U2rDL6Zs4eQgPupO+467yORCpL0wNG+7AJs00+K+4luxMvUBMWQ7qbU/yOhsB2J/1j+303rND1BtSmr53qOsP8ZfMPKy/pw82gSdBTHIjuryeBH51cdDlXIyu+m94Q+ASmi+0Dx9JSIDfm2lo1TCc9DQMYZW4PuSmOkNY3mwcmKeKt1zGU++4A7S+1g2rzN7ClwP7KFQwnbSvy0DRwUgKufIR9wUcZtmzlRBvI4LhQRk8ftlLnGBzmZrP9/PoNnnY7L0DN2x2BPtDIeipvYdOHd2NBbZR2Gx7lJeP/oWrMmv5/jerIYfT4uOLZ9P35z9ojdQALoIttOuiOmmY9kJw2AlOHnGXohtl4JZwMfnrfkSF4YvA7kYJbTTNB6WuUyz7bSS81lEBwYTd5KxuAz1xb8BKPhrcFxP/oxwMLfkHY2qXY4OlA5VtzOboqfP46UZDEF//jfvibrOLgyJMv53Mry20sFU5iQ92PkKFSg2+EajKsfEKIGCzmXpdrJhjWkDzbNPQPn6Bh4cOgeWaeTQbHuNAoi3e07GCRykXyFxjCif1NMLOhWfoT0A3r6rtg7MbfvDOC7VY8d2dFDSHQUvEHzYXLwVWfoQNz69iTfIASAf0838v7/G6LRf57Ihqllk2AmJuFsJoOAllYsI8++0F/O+UDtgvtcd1Zd4UnqVEZYaPQfyRFLQ//EZzRutw3gsT7tn9CTQSuiBC+AL3Kd6jE7bjQSo/DRXuCsAB4cW0ty2GjUfI8JZSop1x5hA6fzeJrqzG2QuFcdYqJT50xBSqo+bglqh7oHDWEdXkrpLh2VGgHPSVpphsIp3PmaDmeJmdEvWg7EoB1LycT89XW4PdqydclL8RvgXfAsM8F5xiZc7zJE1IVlQCCjM8udLWgHUuBcE175lY+noRqxw+TbaecyDCzhfu9t/n4a5mUCQVRic1e0johigoPliBur1zWLmRaf68b5zQvhqdGsp5m6wgiH8+BsrD22lsyQB8y/2AsgLjYXS7Erja3AWH9/ep3riGSp8Ng1mex/HCr1LO6P8GZdF94PVgO6QqPodp5zIo5aYQzL7eygeLDWCHRxy/sA+EDA1nSh14QXE+/8h14zFKWnefFh0O5ciKk6RXPx4mJ4ZCVVAzJD+0IC37pfyrehCdX3fCrPEpcDxai0TddpHZM3EI2JLG5s9/gCa34+dlIiSzoxxnDltLlQXxGNAdBNXCouw6XR4aF/+BeyMfgu1bCbIPvUOPMnSxUfItClrcw8U7Q2Gvuza5KTKs83vA2YtXwSud+3jnyB0y1g7CjjQdVpHaj+6X9EEp2x16t6mDwuJ3PO9KMaSI/WJVfROYHYEkrPeJ5oYHUcZELTyjHQFlFcJw6tUDvhHSRN8cesnNoxPlHeaAg6MkBkVfxSaD2XBmZi0eChsDCmPvcbGZKLPfALlqPsND61XA+poPLvXygRqjJTBvdTd/LJIGl0UEd38Y0wnhx7jH8R0Xq2VDy+UwWnLcHyBOCT7uFKP2h+NhnfIe/Fd/H7832OEcqW7cxY78yryDbVzv8vbxJhiyxWDIEY3Ax9WM5LdIwLSmXRisIsAdVQ8gwOs5bjILgzPuV1FVajuJx46DeoMD7C//mj8crYL83Nfc9dSW/+YnsueFCHw5/Qb5D/zHMzWMwDNaAtxr3KBWrY3usgg11yZh2y9/iJBM58/71EFx7FWKtZ4I588ocPuACI0xlqfHYv2kLpbP40dfBP4XAHvKB1nnxmSKqpaFmv4jdO/aCtrr/wD3eU0gqxo5dA6fhnZXgfT/24CWpUJUMcIEkmcNkJimNt8anAc2czowSf0Sn3z3jJ1l77PvrzFQOmU8lVxWA4vBneQ32Rz2H7Oh+aYP6NAodW7ysgWlmHD+vHs1Cxss4Q/71aHFcRk3/uyiiPBNsMblJ2oFFpKVrjtsGW3H1x88oQSv02xzXA78a+UR3csAt+qjo5Ej6K1bCSNPW/Plpgo4qlCHB3R/w69DxnCgJwxrdTqxIGknKx/tRZdjqbB15Xq4RNvIsOcOvSjZitsilGFB9V3q6z3+f3fmAldewK77+8gvLpMF19/nS2FpkGw/ltrqZeF3YTbpx0ZA3NYgbAl0xkalATxs1QCFMjPYsf0DVKR44c9kaUhYvppL/16AFr4Aq3d4g13GAbg1cTl6XBKBsoUOYKl0A1rsLOBsnT9rbXnFlgETsbTlKGZWCpHm80UQsuMG1X8+CrKeQWBoaQz5N+X4+e5VKCB8iXVrPtB2uT904aoPlf7ygweGPjRCegndaFaCJTIXec9Tbdo69wIX/RzHphuOYmreS1zf1I/GFxJo4EcgppnqwvCWAXYILAGX1nD44e4J8Q7rgE7949dRU3Hd68M8SbsT17RagbXtdvxxfxVvPfSM9vzJgD3LBGjb/ZvsmLOVijIO4+xLwXTTyxpyZtiiYK4F/T3yhduSnaHg5BmetXY5SU3yBqcT92HM45F8bYYhLEjQZEH1Mzx3yknQDikd6vDN+HTxQ3qZqoFCRusxT8qP8/4qQ0Z5F3ftUiH19AAK85Ej69ZMfv/BDIN+zYPfRbFMrgY48pIGvI3ZwC+/5YLYWAU4EHsdbXUDsW4o9/N7vlKMsQuNiyGarGQMFnJlrOOmTZttZKjsijBJlXTBw98WKD2pm9JnXaHNB+1JZtFo6E31omEyAL1pT2i3VwJuqhyHUSv+4uSlsfDP1hG9B85x/ARRuLJGl4eHv+P+0EP4OeI1NX7U52GOj2CPmggYGrzB7Q2rMXuhJLTjIjS+/R73rb1FaQ5DgxRyiuyCmjn7/RIq9ZxHy0rs+EG2DCRqjaMM+1BcGmyDgmvGoWfgDbp89gMmeL+j036HUGOOK11dKAFTUk9zWcpCLr2xi9+duAgq7yoo01SJ1YVLoN1QEQxSouB5iyosdE/CsZp/4df0jxRuF0gJL3+i05eLnF6WhP7JXSicdQ2C40bDDZNWCIlJgS9m67H3TzZYHl1EhyJNMd8qkV5DLyQ5RqCArwHUGpnTjdmu0PdREP7qZ1K7bz0/7dLj6HBk2xfruSbaieK8jSFRYR1I/nPnSI9MtLxYBX93LoeymzHosDYbp5yfDRJ13jjq4EToerUbTYM88e4wOXQSGkNOr07hjk1C9Ga4I8pFRvDE4HGYlKMK/YfjMcFaGmvXnabHFnvw7g4deqUwDq4eGKCv657SwRPIp14pwJnzipB6QgxO7RMBAbMc0uyQ4oBH5zmq/Q7q7HtHJZJ+xCZGELZ1A0smVnLQTH1OEjKk/ROtcGbfO6aZDfRAfybNaO/ETz9EoN3SBpcb2eN21UaUP32YNn+egRPrXXja3LPUPc0eXD/9gwupGrBjpCVISVfxSPcEWnPnMdYtl0PJzcq4UHUUVxz+hI/zBrCTzEHwoRb0iJfTpLH7eTCjjHcW6vGgykiwrtbEaiELahxmjfu+M+hnXWbL22Uw6vId+nJGnX956JDcjy8UutGM5+9dRRqeL7j2AsHIZ/3wPbmPe45p8t5uNZqSbIce6y7QMm8TdA3dzibqsiyjMwHClftx1DIv1h5/HR8Y+cLDhe142P49W96J41sGxvjJL5cubpwCAmrjsf6nHnbHLsKluJUbKm6CzMVL8FFoM+WK9WLDyiTwvDhpiE/rMCHeiFdXfoe9CS0c/EELJgw4k21vE90vmEjn552CqapqkH52PJWvSSTRTV60YVk4OzSG8Ar8A6W9KpymZgsVX6+T4S0TkBTrx7SWauw0XsJq1UH8X9x/MMsgCw5YvoT5dw6wS+ZR2msqCIKy/2j5om0wmB3FMi8VyDjCm3c/l4GfMz9jQPwbEhJ/wtFbDOBZUD6q73RDmzANjIqXhSmJKtAVeB4/nf6Muoqd5FJswl+cJaDS6zbol0bhJk4cYh8FWpqXxb9XlKC1gB2fN/5Iju07yHjc0LmBPGT2/QTVM2ksYvGeGjYtJ6WrjaiVIkCfaBae+3odlHSGw/Jzifynbi9d7t/L+np3oOjSHnrTsZN2havTsDslcOTgKkhQtIaF/TNZ2fsrprat5NkayvRIZyoVjTPnrUuNaMonYfwxxAvK66Qg2K+Syl+/YJ+mPgzOseY+qS74NHctThSKx4a/ZXR0rRH891cSHpQ0o61wA8Wv7QaJUwb4csNPqpF7jAHJ23n7roUg3uOJu8aJw7N1ZXDDah8E5clQRP0F2vZ8CV91esN7xG7R0PTRio/Xadk8ARD3vMJ3nfrY89gMWJMpQonaDsSevuTfL0GHyrpQcfAPrHaXgZzdxEHe/SS7o5tuGuaBweRh/F93Da+938Uau/TRufw0KC0eB7NOnqZXAmq48NNIKM49h701c3mGL+DMB2mQ81WcvkX9wgPupnBn7Cpqogasqp/Chzyj+O+NbjpRMAYzTi+jM57qlMkdGKUqCtsDjqOiRR2oQQkdf57NFU7BeCBRCT1eHgdvtWegNsRlRa6TIKfCAkVP3ObwxG46q7cW50aoQt3TaRzP6TTCs5pnxUpgV5UJsNJWGP0qDOIDIlj5hwLYXDqOkfFXea95I4UlhUG783eM3yEIIfdEwXGjJu/09YfvI6UobcZf0l3tBOVZ4sQOnzg54B3V24lAWms270jzgbw2R/LP+o88j03k15o1Qw7ziYM3HuAjnmlYNkUSQu8e54sL46H691hKmZPJT/QtcbyJApTrtWLc3pt8x94f438LgNy2BFTduQCPbtJkmyxB4itOWGOxjYqshkGf1SdK374QPJPloUI1hXaEa+B+OX++9lCK9g2z5xPeWjgwfDv3nrclhY0aEK9tAN1LUsAjzg2dRHLxhOMbro8S4Mt7V/K4jCXwc80gpwrl4CzBMTBT9yi0l9TwNYXZ+FbemiffNyeXJyFclbkaQr4q4Zq6mezvZwALnupQxZU+7PnVhk9etrKpZQtGPwjg1z7p9Hfqd/A7qI4HDgmBUL0ieszXxwmnDCF2YhQIPH0Fq0/O5pU/APdkraMdd8fAm7PS0BAC7B85gnWt3sGijTq4v+AZdvxUg9Iru/B52xi8o+qB22KHQUdUEJ94lU/b1jliTFIknaysweKCPFx08QGGRO4Buh1KBs2yMNkhDk1Lx1JmrhYmzD5I5tH92Kn1hA39zlGN+QB5igzQWFFDuCCYy26Tv0LQlkJoPSsF02378OS+e3S6K4Dku8rQOUeAcjIVQTx2Fe8fOI2TFi/C8Sf7accLLT55dwLk+3nROqtmeLlnDZ5dIgnztg1jvb87YOfyX3BXfRYGimbyl7KlQ/kaiZoqKby0/Ay5pDG4REjwnJRgyBEhKpV/Acp/88lfrhVExIvgY2ktba40hbIfYtA1itjr+XCMKTgJj2Xeg3LpTRhn4AZRfcwZHttoxn5dMv6tAt/2ZvK5cz/5V+VXKH7iQHcHYqhz7HS44uqLCRW/2aXjAG9rGAlyDyVIT1WOq7dGQt+3QmiSqcZzxdto1TBL0Hp4BqVzjUCrZTTsscvEitQ+KA+dxzXzFuPXDGUyqDLg1lcb+K6gCfxcP5VrRljApO5xeFTsJ0XYpfKOiIXsZbsAl1flUKruNsqxDaXjmrsxsVcfEr6acsK0DgrpWEGCL5NJYEw4JBeNYyOjYdwx5LJhKSdAoXMMXB/7l1qcy/lAUzMuuzKLRulYUNv6HyyyWQ5OurxgN4GRkKQ+5EdrvtPWmBi6fz6YPqmFc9BiF7jjr4bX1RLIXa+all2vpeGF46BP5BPtG9/Eo7kUPxeN5l8qx/l1mTz9FLrND85v4U9WK2jsNROYJfgIF1ZVkIP2fI6UbOWzfn4guPoDLPWRp88iO1lAfBXrPFCElXOiOLnpLmcbI2r9ukRFPenUXDcefeVcwFz/CcilutPgVASTwtcwwmMSiUw15mVPYmGNvQdbZ1VQ4vJO+K3XR0bFBqiTIghj06/hlR+REDz+EvjbnUeHcl2IcNkE261UQESkh3si4jF53EQYl/0XvpyJZfu7w+iH62ESdlanXcGJuPSULh2L24y94yZw9GZrWCU+H2p7I+HhpL0kbLGPZuyaQ+tE1qP/7vHUVLIMmvMkcH3UGHBcGIuTTB3w4eYgcLNo4y8qkTxxczbYugHUv7Am24nfKSzIGHJqxnNujwGvlXQDtaq7UGg+nrctnoZqufaQ/lefpv/TZ23FySCiVsayC2vhsq8wWb+/Q5NDP5KDyVZYu+0VFWu3oJeIHq9+OgFGTxJEha91sOqgF65eEAyP/MV5dXQGzlZKA889eTTvM5LxeD3InluLk9YkccJDA9ZZ1gSLgtfwxmFfyabPFWYXTcULBUvgy5B/VIlk0LCD2+HNslVcL/SJRLf54A9RzyEvXgz/KW1E2e1nYMZ4UTix+y6GBecQ9O/HaeH/kXbyU374yJZS++fgxVNT6MSgM2OzPDQZP4BHO2ayiJkBHDi7iW0cigCPmVCWYyhOP/KHuv4xfnmtDR0ri1C1hOhr/1xY6KpJq0Zeos3HH8N/fxaTSKwNTtmeyRrV2vD5CYHDSQkSf/qA+m/OhZVTC9j173W221mF2vHKUBsoBs5BUyDj9AKQ1NzDMw+OoLIPL/isoTBF9gDljHMhuX4tjlx/A+UsR8GZ3WlgVN5NFglIjXsFoa9kGGTLKVLUJztQjrMg0wmzSCSNYF6OI031jsPDNlvBS30GjzazhoOqrpxreIsi2kRo+Zxy9BoUhHubznNTtwl6Kl2hyVMLwG9BGHpvukedc+9wjvV3pPVC7H9jClR0v+YB71QauWUtjVE6Qs/tLCjEIgPr1Yjy6hywT94P4IU0oHo7xYxNQJVr6XC00AK+fFtIs48J4RjPGthyeSR3J8rBynCCQPdpsPWzL596Sty/XJxt3cfg6j+mkH/wM689XDLkD5asc8QavGs7h85UhCbUTOAII1e4tfUpZ9sUUfZJf5re74HpLX5wL1cZ0tNlWNe1HPOt5bFNTw1/XvTF+GUh+H37c1hi3MLe+kE0w00Y0nkaTd22Ai6ez+KWuYLoM3EU5br/QK8b2XzV+QO9fWBENxeYQpLCNS6XvQe7L+6Ds8G5pNLRxM7b9nH7aYTkSzroJL0ShHYoQ4/MExLwWAqKZuUYvaiR1n2fhvsFi6l13FLu/283lCXXcNs0UfBwnMexX2+QVYE5eWifReMzibzmUCaee2OFA4meFDGmEI5NlYbpdnU40307VRRU4dGPEpDTKspjRhqi0n/KFDI7kIZL3MLI8Mkwr9GHKn960PJ8axr/QRRPD9sAFfoBrHB+K+YVXsX2Wwto/voJ4Ky+BeQlI9gpbR+KV/TSDJdEPGysDp/6tkLdSSl0cqvEom2K8OHtHz65uJ8cwjeR0Zpemt6YivcEHkBxZAFc/isBbtM8QXWrDcyKcsHGU8fgnG4fD9q6spt3Cep9TGOfaedgv6MziDaJYvczG3i7Qg4efwnE6ctFONk/jG/2vQW9c+fxRvphCGzfj+b6YSzzCOGxZzrvs39G92eFgsR5huejXsItcWPYkpfNITareY92J473EoHKDgUI2TYdgwM72ftmDVF2I5u1PKK3i3KgwnIQouN24k8Lc/D/tgtt9h/kc9czaHbPTawV1ULQboIC78f00psg3ycZ7oRpQZR0IzyYZ8ezy80hxSSUamJ2w/7R6lhyOwxqlBXwttlYDq0bCx92VcH1sBpuiHGC6MW53POtnpccTaKrntVw488GXBthx2E9onC7SBg1Dg6H2McOFBvdyFcta3mUnDgssbfh0oh9VChdzLGyZmAeuRSmBp6ih5POs76TH3sq/gTru7vBMj0FvU2aQPf0Kyx6YQMVfydBrtQmOHA+Brb+qqOGKxpU4uGOG7Qv0bGO/bTlkjUOqTTcOeMN/qP/4hGhIrgcIsNnb1rw/pXj8Gp2ChX0jMXQuUfZt2sipHkocED7fvAac4pb938FncwIeJcNFDyxE+54H2H3sq98V1oRqtZuRK+WgiGPvoxB3xrh8mQHXO0eS94yBnzQ8QRFh/3GpjpjWCIynMy+D6Lkl024xXMQN78+RZk3HuG5KC2o1DMm46lZLNsvBftzI6lwhxOeUTHgZv8PQ+4VA7oiUejd7Mh7ApqxKjoCDujrw7CMtWjlLA5zZ6rC2+1fUSTiJhw8Pov0o5/xr7+3SPy2AZrEC0Nsaz1klqjhZ/0xnJKbRfWSzrR96yzq1UnnqKMCdHWtBlqfUIEbrcvogMIsTN59n26nP8MKXkp1t3Jh/EsR3rk2Cu8Wf6cLLiawsekI+6pocdKVrRRnp4IzjzwB2933kOV+4Fy5At5s3cKTRQRhrdsDPqP9E8z9WpAqN5PPfWf8W1g2tIcTKfJ1K/68XcR+KVZQOqCChu4z+NjYItbY2oF/5uTzjAZrvDlvHl9arUZC/rqUN6AKxeY6+EvOB8S7DuPNxHOk8lQDM0YeA9+9YbB38QisqDBF07W6sMXMG93NF1GWfxUtcDwGCfcrMPCHFqVuPg+DG4zglbAVxynoQ2TjFqLMaXi44z4c75kBkarPsUVnBPnNNAUptanwNSQGdFaOhvXP/qGq2ib+u0uDkmwayLaiCLdaq8C9Z2188loKKI6zAkPZkaAbMZGnT3vLRvXjWc3yNl1dshHs44TpX5Aub13kSGPP/+G/SiKw0WUVnzViOPBhGWfOOwFNS87T23NirFqQiX1u2+lXVh+LyI8Ay1VyfH79AITYbKXegyYs+bMDDK7cwJ7On1hrmE6dqa+wymIyCGq958TCS/RznT8pv6wmV7N/tPLBHfxUqAXigs68tW4XGDRLwb2gd/C+4Ab6WfRAe9M2Cv6jQwapwuSdf50KP0pC7GztoQ4TAfllWWh87zWF5zVSosxGHNDOJnmlGDr8wBhu/fcdtUfqQ9dIQ5gScAANcBXfcF7G6eolGHA/AkO7A+m5Whjt3eKNmjFRuOG+MUibb6eqG5oQ0RvFFu4jsKdgH7bdecr/YDRGnHhBqx73o3+pPox5l021WffpuPBrvhEyHE7NH9rz5+IUEbqDckOFsLn4FellqkIXWkKFci0v+TKetto0Ah6uY32dfqg/t4DWHtCChO9T6OZbG+gT9KGNu6V5adAkSlONZqVaD35+JYHzNw1niwkvOVCxlk7L6YFH5RmQ/tzDkS3a9NyQaO/zatpcHoTS3khzS+vJ10ISro9TAq2UjaRa5Min8ybAwsP2nOP9v/c1r2F2/giW7OvnFRuWYX3RCHjwZgX82eVKwdPc2TH4MGdbGNCOLcb0vryCO02GzjllK+zStoA7Jifw21ETELMOpV35dTAmSBD2fHKAsF+DcHtGOhv+N4HS1kyBuZb/4LZWP19MmMqlT7zhiFUu5ib5ocn1sxTut5nm27yChR1WoJi7AtPDsumu8gg8mKyO/+Si2VpIjF1GpJG5mze7LWqHklh9sNLvw8CeKD6ZawfRd5ayk1EWpZ7L4rCSRJCm4aw39gY7jdQD0eHPMC45CwR6HfCa1nheFjqFg/WI0LIQrv4+xu6C+bTyngkktbXCuuMJOHo7sGTEGQrycuAbaVMh3zQYUz6tRBsRaRRJFoaSYKQROm4kniPMKZYqvBcc8XvdBNxxM4N+70qAph2tcBnHgk3uItw7PgPMXkwnkRXd/LTGjS++9qD8sY9o+XND3nK9mYNXa8LGdwZ8vK0Nw8ZH0rkafdze50eT17jjCOsVkKX7nUp/G9MNwQkQEFqDewLVWTMlD1fUvCfxeW0wWe8x5+05xNeUM7EpXxCueRnClvavfJT24jW3YTjLaQIWTc5jWacTdBg2sIt+GSYOj4AJKhrQIT7krLrP8KyHDtSeP8oZh+eSsDXC9JfXafIffQ41SeRkPxUozq9A1aBiONjgyo8+muCVuBZSxC4oDZpA5/UGsfZhMs3IE4Un27Toq0gonZ3TBQMW40BltTW6duTAFSdnMDf1YfPkE7CyjeH79gb4uEWUV6adR9eE21DZtIFLty6mR2OHU8ceORKZIgToIACX7iyAGzt7eXqoKi2tuMSX7z7DJItYnm+5kZ+s2M82luLos1EaQt1+U75YL081OQ/RSeIQdO0qvj/rz2k5u6lN4xZV3FeAYQoIFeFB8ErJC76+XEJBEpp8oPQIN3pp4cVxUmQ6xwk/fx0H18TF4W7iNRr4tIosnypB8dk5IHAuHiunv+dFQ++2d4ohR2dXokm1KCw6coWKdePo29gpcOa5Ghg+rkLPOEscc68S5sf/5d6jQ1wuORqerf0IwtezqLFnNrx4UYhnc//w75WhJMh61NbaRLfsHlPhfnPwlCzmmdVm+Ct9C7aIDOB3V3tyvOzCL9UM0SbFj2V0NLlzyMvMRMfQ63IJFGhS4pBzvjxmvjMIVzzhvSIHYYnmFXrdnEQldmbgMzhARUXOeCHCGWZXm8ClGe68dOJJOqO5Gi8eOoxi3wuAV42G9LURePiePiYotvLfv0FY6yQMSpNi+bu0Dz6qt6AGzUQya9CAoAsfuWi8E+42nMfw7y4X/3hKbal1qDn/JN25k4DXQ2rAIVgKfD5ug/2KGbDgzR7eIL6XLhT5s5NfC82JcuHqCnnwXZyBR7xN4e0+XfSqOAcrZsymZ8vM+ZXdGcjqKOKKUW28q+IqXlGPIpXd1tD905FKspajxqSJpCVwgX2/hPD7TzPp3mJ7UppYhCM8ztDiKiU40aYDX83vgWVfDh2xiqWTSbW0S2cbGclegNsB+6nKN44vL9CEoL43+CZzO09+Iw9v7er4hnEM12kYkoOjOEpUv4NxLh5Q4TcJoqca0PgH8/FDwAHoq5zKCcIBlOGYDsNn6XKMz0RUEzsAJYoj4YqcHG4PTsXjLk3c/fQ8xmY8pWalDZB69R5cN57AliezoS56ElBtBr8u2MZ+R9rYo2E+RoxIBh+pCtg26x8JvbkJ9smLwFtFachz2vjEsvuYXFaNL+XNMIIdsWWUJJZOjqeBECmIlZdD3XZVyJ+9n474rqbPcwzhQMxelFouiVtrJvH2dDuqzV/GGyWKWHeEHowJCadP2/ajw/I3UHN2DES5bAdrpxJW21wFV2O7yf7MMNKZqQEvLG+yx2oz2quHtNe2Gyw22lDfBkH+4Mk0Zk0BV4/6TCU+E2Hu8A30Z9cvrJ1F9OfOBbo4fC+k2d+B68Of8MzrJtgRnYMv/qlAXrgzOGR0oGpPLPjPHw5RPaogdSgZq61ceW3vOR45MZXtfhrCCOmhjnYSweeqMviiPYTvS+5Es+FmeEzzJG07dIVHT5Oi4J+jwf/vJPZ92EB0YhWeTxTk9ueXOGqVIoat6qDpV+egjkc5fdplBrKFk2EwJwX3Zv+hhM164Ncazo8vLqayyLGgW2wEATu+gaziJPhV0Au1cbtZfu4otAr6yksmIDZpS4H4q0B8pZ+BXUlWcEnAAuZ4rkCDLbfA3s0VvJVbyeDkT07wEYbEXg3QK7zNSmfXQ5c4QVHRKlZ9rkiT/pnhjDDFIb5dTy3OayFokxYbeSA3f1yEOoamMFauHNsmPucmk3Du8fcF/ei9qPtXnI4aBZNvTDlZGEnBGPux8NtalVZuno+3B/7wh8ZbsDpnD3c/HgVV6qfoEhSSmJ46Sl3UhzWzP9Kxl3dZP/crSJ2QQtVTT2BqzRd+1HYZZPMC4YpGNMhOQDi1dMh1fYjXV5Tx3G4pjgl4z3ZJO+B8ngWZmZ3k9z4qUCA3HJws9OhHjAPt15oCh76r8KF5hLrdQ4yy7y9IXPSmpZcaSWGdJGx8shZXzl3Lg0NPwrUUqjQPwk2+ovBtwSCJT/0NY+yGw4uRGjAotg4CtE6z7bNK1IxHqC9GnmaoxcPKWikxUgbr1gXya0slmHbuAIgZhJPo+/9oZmMApW5v5I0Xx7Ckfxc6aHyio/164BQ4Cb49PUc3nl7Ch1K1vP6rBYjPE8djkdvZYs1Bqo10w7qAfbT0z1iYmZdGffY6INJmQ4sHE1HPWwV9nwdBtN4gTyg1YNlwY1xSPgVSf97Fr/ef4YFrC6hpTxfHDLzGv+8aaGnlQug68AfnOHeh2vfJkFdsBS+vNVH5E2sW23wBd11bRqccNkH6fSXoPiIDcx+6cHMtwp51O/nT6xv4OOYqOA/5R5O3OD1blMmhBzqQ3j4jMfmxbG4AsGPxGygfsxcubrVicYkPeFR1FKRfCqV5lvLw+9pmjp74EsIPa4DfUOaq8xx4dnUcF8ROZ4tiwHOfWrAiO4DsDT5zUtVIip8hBI8V83Bd/3oWNPfkD7+C6E5zD2Zf6kEplZ14bECAkqXm0QhJAVjs7UWKro9o7ZUh3ny4Ap1gDc7qEsaum/4w4K1LOkajaPIrAQjzjcYF74U5pEiRjEyEIEjAgKMFwrD1dR+NVD6Jqouu42EXeVg0bSk0q7nCq7BmurPZG7Nya/hk8S62NymFBebvYdn3OD7UNwqeqUjQXvkkrkmbR5rdP1DO0A9Wiw3AdNc6Pi8jDV89D8HvE8Nh0tICuPOtiq47SaKj9FNcoujIM74gPbxoAktKLeHItgHY8ksapiv9IXfJ+WCwOxBeKqjzW60LOKbqGXd2zOXU2ECaYOPLIyuHAaa8hfJ/eVS14AM4yNVgeLcD5StMADHh51zx+hBd1BSjkw8kQDVdidYumgODPbFcKt0MB4wHYWrIeTg80AZTHk4AmTOLIXitDLQ9cEeTVnvQ77Oj782GUGFggErvzoFcoiKd26tE6mmGMDLGGFyHeP/C6gVQ5yXBrx7q8fxhrpC69yNJvriLY9c3w7yuMngyWgXK3dPgXJkpOcWs58LaEth2LgbfLSiCnEB9rvkwiu41jqMvTwzBSjcaFvwp4JNfJSDQdQTlXHhLFa9PIBXXU5zUcZYc+sZCjxuB74SvoP/oEMm6raC3hSdw8LEl9n28BqEv50Bl7VR6OXgSnRzl4cIfRZhuH8zRV2LI+L0Kl87zgXRTG/6xQgi9G3PYa0Q49ZYow8bSeqhR+QZHou6gTrQFTw5TxgHXVv58QYwWux3gL4UtHCgpDyZjfMHvYRafLJdGD9ksvHtQnK/EzeM3nx9zmYczyK1bClaFY+Hz96+wrDKL5+vkwLySNM4sCQY5C6TuySGwLSEBQlcPsvUda6CGTlo9Px79FFLYmpux3NedFid9oqi5y3hFsDCG/vSmYboSMOyML2t0LOY/muHw44A0ppqY4iHT43zGfR16i6vQW5FOnMkisOypDWmcsOPOHAmoFn9IIUkjaOnC+6Q/ShvP79MAk8Yd9PboRJji8x3GNkfC1KhXkBeTRG0t+8CNr9EFuxOstiAa3C/W83+GBvBk3V1yeD8bX7gvQ7N+Wbp3TQSCp1VQ0JVpdPVyC1n+EYQQRx0QOxs/5PkRnPFmFBZRE4a+baCdA1ZcHf8dRCN+8HyRVpzrrgiaDg/YSvgKfeo7QksDF6P+gQfkNtBBmpJTqXdLHBmkTwT/ch3YHxdIF54e5lViG0FrTQ9M6nPFl3oBsEpUAdzNN+GM4HKy6xCH/1448qqdXTh2RC8KvDbFXk0/Ou1WCnNy9aC0p4ql3g1x/NmhrkkOAdP0p+hwqoTHr5CABdELaMQSdXpoUYUtR6TRbIMj/7prDQ6Pn9EMWXU4GrkWzjSNo72GUrih5jRHjdpN+QuLeVXoDA76LAC2I5bQN595HOm8G8jInCc+NqDNXky3MuZCxsVPVGd6G7K2WEFG4W16p5uK346U8cXWv3yrSIYePGmhGdG2dPLmSV6pmICPNgnCvf+s2e3fLOzOqwQnuxoYkX2bzHR8IHn1dDoyz5zDr9tDWswIEFZ/SHlaOcD3NPliky4kDFdlvcpblGe8CnFZADtlCPC6i2qQVryHFgba0GuLjxDnfhRL9y+ie29vcXrmXBQc/AlbI8LBZZ0IaI87yYKia6B/VgEotGdDrelojpQdy7H+bvyitxXFBSJJdII+jHQ+Qd+7ToKGTwLe+JBOcFYHZz1xZAWDdB7YmsUW0Tvxv0EduKKuC0pJVfC+xQNnhoxjh9sAn39f5Zd23diQvQq3939jq+sy8LFRh0bPesf3z59C/cXTaUbSZNqzOZY6b1+klxum085ceUyzs4J7JrFg/0OSt4Ytp1terljxMRPSF9rS5MzT8Dt2LQ57d4qN7htBjc4edsvOg4W/l+DdzgMcsyQVJzdsx1Wbh2OlbxGvjTuOyjJqUDzvIkmXj6bDWR20579eXuJzi01pNQj+cuHWlVJ01DKW1vgLgMCsx0O8G8PZQi7s/NWZxi9xheJCFf5mM4VEM8ZAhvIYFM+Wgh0ltbDr+gDa3xqB92JrecN7PVadVYs2Vr2cXzcKmlJP4ZkXMmC5eCf5t4qhz4YXLJ/9CSuGl/OMcwfx8XxNWOI+Ay5fTqTomxawcLAKhl83QmH1f9B+2x5lJJSpYtom2NbwFyq0CrhG0pw+JqiBkYkKYZsEfUzUwNjQEyAPHtTufJzrdu+k2ZOmwcGIQnxzRAseP28Ck2O1qGR8lLRLKjjSXJQmdlqQn7Ashfoog6uPB019JAI7dXbTq9+38dFDX/qwWZqr3ceA3xw1nCkzltyW29OGLwG8xkAWgk+NwEnNsVCeP4BfZV+A2rIyfiD9nbTPCGBQSCBv9iok33/mEF+7C2O361Lo4UicvPshq9ekQ5yvKa28FkYmoxF+6Pzm921akGNmSzcfFLNu93YQ2jweh+/5gyKn5FChLhpTXX/iVC2dIWcWh0Nqs8nplwN/raqhjb0jSe31N2xwWIFH89bzRbt/5JzSCZt6laD6XiTcCzCD2psfyV3zN1vmisEwk064edsKyhNv0DePDkoKlYJzo+/Ab8WnlFNoRG93xlOaYjRdK8/CSeHvsXrKDF4cbcxyOwQhWmIvPjAk/jP8PZnJrwKjCR9BsEgUn5hU0/KKgxRw9Dr5nhCD87nVrJ3rhNtjYkChoIyvbb/K6ZLlbPqmhYbHX4fzVczpkRNhaZ0JlYd9o5rklTw2vhFmPitF50VrcZfGcki/dwOqtIo5XFURom+vhJkhn+japhv0efgscFEs4oKj9bTq1HW2CPfhBffmwCfxEVC9V4scx1zjqQvi8ESFKJDdHXoy/DiPWjaG6wt/cnGiNy/0NAcB4XUwq/IiZv3Kh8K+BXS1XJwLY/t494hl6H6piNMsrXB2gja4316H/9UIwqTcZWz+0ISePv2Is4KHnPvIUP5epMHTrHucO10bji3TwwV7XbGlr54nTBKHNKOnlPVzAZk2TMH0eRtZDHdgtIYVQHUaPjQVgVePani3tQUa75SkhzNnwebeNRx3M4vUUsfAlmAzWJmqxqbLx9N+qbdYGbkFv08No0fHXsAd7Zms/W8VY/MhiAnVhbOb91Kg7ke82BjJu23l0eXNc45GSUjx6aTTC7RoVekCuOxjABfjA0Do4BMoNNLHmZrdaLL1EK3R1xpiQhmuivgf4s7zHaj/jeP3ICojm1C2rKIkKzKijIqEltIwKkWKVJRKiYYiKaMptIRCQopISaRvCqVJpGG0Uz//xe/xuc51nXN97vv9fr0efSqG5kYbI94KwB9hfX7suJxPRJrA98uPObf3Is3ZGsWWZffQ6PVGHNOogqm3hSF7mymctc6m6ff9wKTAib3WAi4a+ZxWeV2FxNfeEFCRi4mfzeCD+UdI79rNYf+SoW/rIOwvC+ZXIUuxuesiHr4fhGFtutyYOwUWigpRd9VKsnHYQmcvLkBjIx2OWWTLn2LP8njNreA5xK4jVCzBWtCC/VpXYkTGVCoLlidJPEz9ZsPQOOoH/ngeiB0LFvCOkaJwvekZdk5Qo/dhM7nJzwW98kbAvBXVMPLpIRbUvM5yqQHkGC0Nm2avYfXLlnTn2R3cdb6OenMkWSVJkVQCrelEYCUL/vxI6aITIPTgQcozLIFbLbvhz8dXeOUHosWGAPKZ4UkdMg/wrNRerPUygZ4383jyjR+4INhjaLdWQPmAPQVc/8r7j87HCMMTYBtbQymyYhBpHoVO7d/R11gQXIYXQ2DCBzz/Zg5vDDaGkt278YjgaOp7NAxmRp3GsA0RvNipnJyKfnDjrGLYNuSWWqorUbBmNLtm6eH2KwrQZzkDJ09ch0+OuvP6I1tYaMooDmgPx1dmF+Drl2/wMVERvjvqg77GL87L9OCRuWNgTOxqrjccha/yxWma9TXquRiM3yyqOdldCW5u+kR5HrZ8x+kTrx1O8ObJcAg4V0xZDhMgZu0P2jj8FU//NeSNNprQ87uANlqJ0ajCNjzeFkSBcyZAwblMGnwxA7oFtKFglyW4/x0BybuKQXNMJn0uz+eTHyfzwtyt+EhchpvXlFOZ93KY88oMPOalwemAXdh11Zgm5ptzl8Ba3P0tF16mrqebkfU4SmstNenIgMf6hbhjM7O21Q94OjmH7m68RrJBq3iSjw7+3rIXJp25jxUjlCD9wCG+7JtEzS2uuKGigkbX/8Xhh8XhX9dh+OP3Ha7jRs52lQGHkXdIQ1OCQmo+QmuUHnXvKKDywlvUEhWAm8kNZ4SZYFKhLNxJnYuTDaKhU/wQ1kqUgn/VH/b/9gZtR/3jG8PGsElTEgTKDIOb1eFQuHAm5csLsHz9Udz0Z8tQ91XzcC0rSDb1xxaKQpPs8YAPPXnf0xEwTjYZLRYJkciRJrSdtBDOar8lU/s66o/3gQs3JsK7LXoUDNMwv3MyPrJ2YJ+BcBp25Dy6lH3i4hYJPD3yJz5aLQo798yF7emPqeSICZw7pwQ/uiNxX/NLMI3WosSnPzBlvQiqW46FoAwrcP7XjdNr11GAyGG4uN6FjY6akH7tIhRtNiJBJQvujJCG/JGfuUG4CAPyS/nurkcQV5QDfjONoD7wDkw4qstWzzPhxRYDCPZv5Mf++nxF+DiuDizDsbIHUXHFWi4eZkxxt2Nha9Mmfl1vCo6/jWlwkRm5nxvKr8OzOMXcggqLhEB2wQNWMRenM3iXRFNkwGl9Nb5Mv8pmgtZQcuw6DhPdiW+mA56U06IlVXvI49B9qs8WhvFjQrCv5RJkmWxgl52atCJUmuRfmiKOSSVLHo7RGcGU1SgO41uUaUSmPOwJXcx3+jJJRMcBgztusY7eZv4i/wWFutWprFseLgf00ej4J7Bt1R2UfXiQHpEQ7/v1D5+s/Aem1hKQrn+cltlJgJ+8Gt4VVRo6C3uy9TiCa81b0GmVGOtmivGtnnX4/IAAtcaJwHeBQhbfK4+as+/zmslzUCziEd4TEab5dXNwf+YDnvYmHsq/IjwP+oMDc8/BnovH+dSFFu488Qett65jsbSf4Ke2AE+vmgoGebKQvnopqz1VI/P0YyjROZ6HL3FBPywET98aDqoOwgPb3eBA+RgYVU8we4TF0PxOh263cNC4tpiv/Fc65C7hdHu2NgyeCcDyUIZ/gmqoHOYGR1XP0yivuyQwNhQNa/KxWGgA1Z2mg8ubBJzK8hA8sQWtLR0hduU39t44Cc5GlvHmgt8c+Gker9CYSXvX1OP5Iwx2+5IoSHo4rXhTRzVTbHi/oTc2907Hljl67PT7IAeKhPK1VgF4ZJoPZcd34HZRfxqfHciN2xOgX8KedzuIs2v9DE49uQ+mmwvBXcUL+P5eP4/+XQviYa0scbwU9dxPYlN/OjQF1LL5cCHuKVCEmr5CHvtMGCNP/6NFV6MwVLcL3g7expgTglR0S43n6PTR859WkJELMK/4Kfs9EKS/dlH0dPxherdjO6elxsHgUl9cmfyNvWaJgKzyWrANdcEOy3ScvMAXxH5cJO1KYz4xMR1nb02huk9jwKFcBOwL0jlR7AcdW76JBWeEw6qLAig6PBc8TPTYZepOCtd8wBUgD8LaN2jM+xx83e1OUWXveY7xKLLI6cZdus9Yeawjl95Og9qG8aDtOIa3258g53uyqOPZT9e6ZKlb/zw1hPziugWpdN3FjqdNHQlVP5pxsFIci68PsKDzUwreZkPRy76A8Nk3UHjIg4MvueBOUSPYdCKQ+q71oMtgMMuGbQCtf7uhImECtIzO4W+GqWRxIAAtpabAs+sbOEXKm7DnBh+Y38o2jx/SgqxiFlRMIN22Dr5m/5K1J40Go5lRMEquG4ut/nL3xJtYO3sdxYxZx5eCX9KhzcEYU6PMrjniENKgBwfzx0DjtNPoLfed/yzZynEPhUG9Zjft3rmcRo+UZPUMS3g34yLqaEnj4zYTnm/lxBNXf8K4oe9SepXAN7oXUEXHB0p5NRVEtjyHthJJGjw8FxLE9tB6jWGQ6R9H2dPO4k/1BrykeAaKREbC354tuMw6kB4VScGFp6PRfyiDRQ5n85FnTJ8fiuJFvXm867ghHPDIh567NjTwbhlaRC3mo6mZ2LKQ0VR9PCbeTsHTI17C30gFOLRKlSz+ZaO8lA8+7xyOXlp3GRc8JtXI/zA36iqbv5ACzTRhUKlTBomRU2jHlTlwoc0SdJT0OXuDBpxa74EJJ16wZ/MziO+bACnLP0Oc0hts3zMaPQd02euIIvxVKqYpYSv4iesjyAx8CnXbxoHeWyno0NqLa8S+suw/dfip1oxnDJ5iulgavrWS4qn3eyBTVwB6/ERQ2CeUDwi84kFnYUqYoYqbSwtoxM2pJNXykUqML2KavCE4TDhBOxXnYFeMHuyf+4uvDLjw1/plsDM3gc1/HeKX/VLoOU4E8p1+kNa/Pfx97x+aexVQyGkbfklKx/0ecpgpXs5qpQ/ZbIU4vNQ6CdXjT2LwdjmwK58NNq+XsV21GfT/a4eBw320wtEQqxwUoWr3M7qiPRs2bBoD9wWnUaNbBGls8wYFjwHSn7gD23d1UsWQx++dIQbbk1VZ+9s5Dt0YSDfIBMLqI8FWJZ731Elj4apOXG0kDM2Fd2hRUAlv1PnG6Runws1vwN9D07jCqoEzshfgyR2yrK06Afway+izWRkG7RYh1S/KqFh9G21tHGD6zXY8/3A6LlTu4/pKfdiYdBkCx7iT2iotGnjrgol24/B+TwjsTvWnLSFPWdj9AXbMtgCLehFafHUXo00yve+IJu0pJnjkUA3vDWzA/9pCYLvQMxz4MGVot3rgm6gz5FARLJ5/nmM3RIP8qSa8dW4K9DZ1ctQ4bfobowYuyY1osOUa92Mwjmx4TS0LZ9Aeqflw6XkMrDZ9gvmJX2HNEWvI3FfOomtraf+sQ1Ddc49k38wls6oV2Bo9jHdtN2WXL0UkC1Nhybk+vF/gS+//TWBrvMNlUr/5MPjQn9wVuKToIzuN3sjeampgd6KbI/4U4fcMB0hub4aVmIVuz4oh/ZUIxEY8pYQRJXh/hzb47HoNdcc8MX95IML7iRBn4g6bj80l20Az7ln3AlpS5sLroonQuuAq/tWJppUeNTRn7Hn4ZDUFRWNXsnuSO4ww9wLRjg7ot7SE36ZZsP3td/a/30WOmkt5VdoZTPN9T7A3hJ+ZK0DquhBamD4RkrY5oUfcFpC3K8TQ06vRXS8FPQoGQe3ZVHK5SyBRUkjn7WTg8btayj39nfcVu9AT7cuAIrMo9MIHFCndxnqxG1CWo/C/fANouTcaaF0qpxzXg91eUaDQ+oXkhs+C+DPTYarrL8wqWIL9p4aDAmnh78I2GDXLlR7LniGnrz95j2cemy7L5sI70rDjYQU0swH0itwh930jufW7MkzXvQK3vC+TR3Ii52X946o0Ny554szNRRZgF6PD88fsZ9mqvZyWEEF3Zu2kyMkfyORyI2YkyLJ+YiD3yRjCpmg52Hx8HnQHhvJzr07+KOYE50/4o1lNCym0fKbFJzpxJ+hD2C57UGqNpHPHczjV4iH87hjGor8O4PPsQozYchAkXv1EjePy0L7qHmc+dqL242do5hlD2tknTfWq+fhzcRQuM3Uls49i6LNhKlRpJNOn0igUqe3mzKHZLZNZzlvPxuAdvUUoADdg+/wruH6JJlxta+EnxdVQXT1As4pcyHlgGM1Wuocxq4NJx3MQB8v88WWfMOyItoVxrrYY6jqClvbOxbP3GWo3TIfQfkQPsRj+7aDMFgeUILTvJNldUECD3fLUtnkBv0uSp3KzJEILe05N/cXDN5jCjmQJ0HT8gpObPrGn3jP2XzKD+pSvonHGIZLvyuR2wxQaEPjEGS/Gw7VWJbR3qh7qgw84zrIWZnjXQZs6UFVoEO9SnkXHTnyjO+N1YSNq48bRNlj9aj0IJMnhJPfxsE5FE+tzXkLww7lAwdJkc80Inpz8j1auc6Mvb01BbHccL5CpoUMde3HE4g58uc6V517eRf6+0rBxcx18avDnHemCuHuqIA/UWZLlvQZ2mNDDXwpuwTGhC9hSMR6WWV6H+v7TfGtWOa4y8MYlq1Mw7Hk0B3kvAB4miJae1bigZyJktOXilRxJivELgUdmTags4Eii4r1kO6GJaxcew8YlYvB4lTFESBujic8TvvzoE85rOImSk4eBhrIpGfwN4GtqnrQnSYcmhEyEbkzg5pMTeeDWb1pflUYR43/wOK6gVYfWQs7sJhR4yvx9ogC4PFpIZ3V9yMuhDR9p7Md4kRaocfnA21VkyFTgEL+qvEvdQ3kVv6CGNEt+QHRqJa+ZEoIeKZY87kE1GWsaQ+NjBehoTcPJioLgdVcRHtgvomNjJ0BTTzCvC1wCxgLSrFu6iG60u1JW/HJa91cEXEyNcGXcVRRrnIGty+L56s3/uMnYDjN0vXhg0J8cwn+RzQYh+Fgkx70zT/Hqfm8SO74DEquv8kn9VvCw/4qj5g7C+r32oBU+CVZqnEeVuFMoid2045AItG9Rg3frmQoe2EC2agqpyH/Hw0ZC8O+5Ei2Zpgyy3UaUveoseC67CEbrm2GKjyJeef0N5WfkcNpUAXhutQyNNXYQDEaDjMsNEBxuAKuNDtFzz0cQ/FecMt7cAvcgOQh9LQyVV35i8CkTiEruYW+zAeYPd0lSJhk+e15FrtlOH0aoQfS1PexosYhFZSy5YWcsfbntx3fd3oJ/ZQ+3Jd/lr5GT+NZda9ikH4YpN61hkZUkKNfX4sZTU1Fh8SAtCbDCNb8OgptoKaY6DbFBfCXf6PCki3mR8HulOrpOkcVVNWaon9bA/xZso84qL2qXNIe/XlPo61Dv6CR9gI6JspAqOY8/3JvLprv3YcC+s+CSfwoTK+TAMr6DN0RYk559LInUL4dwCxn0GL6Wuz4L4Hd3VVx71otN5eThmmQn0r9Acq+by66LApCF3cjjlQXMLJ2L9x9ewURlZVSZrQWnK8fSjUxBmrCrhUahAYs65A65z0+0ks+jKZlJcMORyTNWFeTydgC0TsSUhQPgli3BanXrMPc6UGemHCxWNMCFoV0c/0oJ3pxYQ50/Osiz2IY91xnBfPVKeCsVSXW/zGD55yOo/TMdfgoBRLp6sfCvF3hF5SykujyH3ztO85PE4fzSbhetshOGiMuuoKY4Gca9DoP5wwug1UuAF6+MhZS7KlixdAPLRM/C28qFPN+zFu9o6MOJXTrs2qcLtxYNspzSNHhpZMLlm5fyaPN9cLI4lebZOvA8fwapzhKs9R2FZqMfwatyH9KenU7JksIw1zcD8x6fYH2hTFqXPwXaz58hAb9EbJ1dgnovLtP+JUL8RGw2WvrpUpfQZVJuy8eJ/jrQcus0rnWKxD25Yby7Rg+9zjZTho8gU9w82vViIbmtiEXBZQZgn+hPPknTIT1tIxeMfcwd08+hiVIllDonwjaTIzg3OwD8/A1A5ZkzhVdu5IcbpUDZ15Bm8jq0rnOjWUYn+bt4PQn/t4cWJmvC24SjVCpxDS7kNYLWZi1M35NLg1L7SHOxDU3ac4Vm3dKivPUWkONvTbfGPMGT1+7TUttADlmlQ0faopm2jeQbdw3AI3YnBRYYg9t2Keagc7Qw1YSn1XwmO9svFNnTjN/mHWI/5f944rgtNCVVA/TUD2ChWjzuePCFaoOa2D3DCeVbA0B6+W7+3qPKhvPUYYb/BAhX+cyHineSrvonvjrUBxrJ6+DeD1Hoqs+iHfkGrPDjPMndFof5GnNphuE2Fj68hT7a7eLf7vXQeUiSGqYG4hjPl7R7qR2+e2gJHYJ9XFAVCxuiI9n3iCEtC/vHskfOs+HaPL7nmIc3jrTD4eApsG/YbbC9vRvO9c0mU4/nJH8okLrfv+TMB/fosks3jFJMQtMzk6F4szwXGzuhzj6EIOluLJghSGIOS9H0rhmu3pCBNurv8KGLCohlS1FdYTG80o8ntSf/YelWW7zsfB+yKvegxlsAC4te9jiNcLilGrNuPeKzL1eyaMRb6hO9xcJ3gK5vPgm6wrYc1hoEX1R0oK12PGmdPY5r4B9qbN3Hn9uSaLDoAbDMXuhauYS2nZuBIa+GwfbmFZRV7AtZttOxPzkfK3I/8OlsZypvEcKoDiWelS4OJw00obn6NYd9sOZL141o/4SVnN8xHMuDUkh5Wy1VPdgJH2+LsMO8KWDXXAL3h7p/Vd1W9Fv3Chf9/AVKVat5U+VWPDg8gN+FOVLwZkUoNi+hqY1XYdCyHj3WTMHp7e3wpXo+OIz9C07fjMHdWRWK/cwg/noo5XRJofuGDG48qkAxd6pZ4+IpyJV+Bjejg3Dm1g3sFicBwwU6KNbbFMNuC1PirMm4NCMTFlvcgpG5n7h06Qfw2G3D8o8k4XJQP++a48JC+ldps981PidahQ+OPeaWi0mosl8NtpxcwS/OSsGJFS3oqp0AlffNcdXFtfRJqhyuCLlSXstpNvo5m+007Lh3nDrc8FuJ/xn30kI8hLnj3jM1BOCxld3o/LYWpNur6ZuzMFfpK8GcNTJw4MMKyri6j73L31B97XnaVHGARnS4s6GrDLouHuSwlWIQJX8Mq9ZuBS3vAW56fZJ8t6+AfZvsOa/tIvKiJnTsm4vLcoWh6upB/hHmwjKmaai62Zk6ToWR1tx4Kp/5kzyfbaJV23XBNM4KRtfEkX2qPH4Pm0lZmpfYfGQj9/VMheOfNUGxACg++jxt3zAMxvaOp7utSfj35GzyrRCEV6Zr8ejbFZDYtJ5kO9bjM9cYGBg0hWE/N9Oq3FC+d+4sTaw4SlqhsihXeZVNs9diakUyvLleA5l7pED91hSy79GinQs9yOFmEIoodeEpJ0sKW/acJDJKQbA6jiS2jofZXdPoh+oKCIw6RouvHKc9iQ94zp1loFDVTU1f7cByiQ0u9NCAY25WHBSXga66+9BA6DOoVebg143xFDTtLdhMl4RngXepyVsIvr0bS6P8YmHsv7vY7lIJi+yK+JpPNzeGH4RX9rO45qYjySapQ8SfTsh+IAimcIZ1fm4B858h5HEyBqtTRLHk2QYy3P+KtYzGwcgUDxKZ6EaV+0uhoCobmjw7YaRtKbVHvoI9ttOwyOk4fJ4pAo7l4zmpoRPm3nDBX89MeNKY6ZC/ygda1NyISr6SimQqfT9pDu7qIyHksQ9f+7KW8/a74tg1S8BR3ZH68zbhrbbdcHv2c7Y2N4fj7qvBLHcVCd2uo1GfVsHI5cbgGhJOo0oj6W5aE6SESgA9nQC7BTLwzGRz+nTUih8NBvAdZ0XWqH/PpRHD+YXyABmNOYz+4RMBa2N4fehOGpHeDjte7IZtCXm4Xj+Pn1vHseElQb4X/gbWVOlC6J/XHJo1jBZtWElV8g28dHkBJR9vo+JJl7k/y58dT6nB7XuCcP32M7b89R+d7l/COrECOKAP5KflAzulLuGxDX9ZjrQhNcAIyir/8mBMKH6eNAW6PT04tjqVZbeF89QGZ46MC6a3F6egVp8ejJwcARkCWui1QopydqyjNuE1OHgnH5U66ujk8UrUtxxybwFJqByjTKFbKlB3ajbPlEjhx4sZZ3u20vvU4XjD6QpEmKvA4f6x8P7yRhCdnof/nhhxVbAx659Q55vfYvnHy1Pcc3863XNx5IVmBrB99jUsdx4NAb4tvK6qeGi2Lflx2mx87OwDv81tyPjPFPi2RwEWPjgNreL5qCz8jmMmJoBU2QxQDBWGpV7xdHv9Twy6ZI9722VB+s43/jJTA4qSm2lXRRosnWWAg4tvYNjsRH7x6xIcF9lFQa8mw6q/K2F90yP29rVBm4JuXqQ4dEYedlwmcJh+H4iB1ymF7LtfB44HWsGsRE9oy70P5uE7oSQknV4oKILZ8ssk3LwKoxu2sdCVEXDbywqinyzA1oEvZOUVwUfibPngpFhuy/ZhpQwjXH1mE6QdkoSomjwuPe+Fxxpj+dqsBSCg8QfGvFjGzaumk3nwcb6WchDLT+lD6+4ZIKuQC3mNDryvrIErdpTB1KItoFtuAQnTHcFEpBjmSaqCu/JC6pwhSo4BX0F4Zjc3iKrhDZWdWGInTlZbZuOdKyX8qNsaZrmVstzshfj1bAX1G/dh3g8h0FBivFz+mjUS5kGSZynkeJrBErkYfH00l/u3VuKDSzHY8/Eq/Jx+CRpHf8QxyZGccHI+/P4oCPlz9Pjx+muo4r2J++r247EZf/FJ8Vfw8p2PNy5MY1HX25RRNhrMdDfD9tWydPRGGfioVeB4j90UMWsMSM8Xhi82MaAtrABuxxVBZIQBn/W7BOusT8KxFdtBbsx6UJhlg7kGv2GFWSOH2UnC1rNG8ND0Ei2K3MoZSucx11oBvowdmuuoRN6sa4iRtx6D36UyGLF3Cox7KA1rHppwmOB97HTq5X6fTUTDKzB4bjfX5E/glg1etHqfJcwSeAEZy6bRhmnObPHkBeWb2JDon70g802PYiULobTbnz+fmAArmzooNe8ruCeXgYeYAPlEyoOehSEYPxwFOz9t5hcmFvj0xVg4dmYLlZyTRrWfMrTgRDDL6esgyHih7Tt/POTqjmnhL7hsoRQ47MoF7X+P2WlhA6vX1ZPklf2s6naQD3vbw7FN7zDcVQFeZUrC0ouL4ajAOLLrkKelhYCoN5ksBzLp3cgEqgvWZ/G0JfhJRRKUthRQ8U5JUO89iJZ774F8rw0WKKpTTUsZjg7OG8r8cGypl4ZflqVwQPM9i4vGwZiwOCy73U0bc1PA9vdZcvr0nYvbHtCpc+YwxtsbY2g4Jr1SZ1UBAbCdZEsTgmbD30V/SefARBIet4O2vLcYyqvPVHbTh77byODdJf9htZU328w8Qgs7jGjquXr6uPgNt0UbQ+uUOXwtKIL+O6ePDbpX8OORBhDXZnT5Mo0+HxxFcKQGI7pk4L7SC5SdaYxfjsdhV2E5f3iyAa1T+vny0L+dOTEOb59+COOvGoP9aj0y1Z+GtkG/scMxC1uz7KBDgnHHxlqunr8FmyPTaDJow/SD5vx5UyzFe8XinInLQeqPBe85lUe+nZ08ovc0TGm3Zjk5fTjrvose9hizY6ssTxT6zF9nutHkO1dZY8cZGmvVC5o2ujD3ghhcuN5LYG3Jlfau9HvSMfqqYQq/tEeiR2gFLUq7D6Mn9nPuKx1IXSGEf/s66YaMOxwwcofT52xBtiabFrwn9hc4DaaDH9i6axLoPYigniBl/K1hiE3pobDSt5nNlG7Q8R9alBDqRb1n6mDpLXEw3JlK+jZ1mNKUAbGn8vm0tS0fP23CDg8i+IZMPYfJN2Beoxr8XJjHaq/l4c2eCeA4PJteno3kzUJb+eahaXQ9wgHkvQdwn4EqKDldoSZjMW56sRzerR3J4FnEEgdzMPxhNr77KcAyvXepsEcBtIetBVPj01igHEf6gvLwe9NRymxfhlUzDlBj4BCrX3Ols/b6YBC3jg30P/MmKqJsxRX4sLKCNAys0SPYkj9GnCeVthQo+j0e3n6Xoobxk2js73k8KnMTbwtSo7InnhQeLMu1+9Qxu8QDTmkqQXhnKrkO2wMq7IxubQeBjzejzaxaahL/CtKl7jix8A9WPZeCv+M0eXWbGe3yroIXEW8wTi8dvDfdgWW6w/D07u2suG02f3OTAqkIQYptn8J1ar/gfskl3KtpB6LrTmLH7LfkuaKWlwS8o4vX5KHjzytOyZjDd+2eQ2ehNLe2fqE8tyy88rEUT7/wp+0HK1i00QhGxN5gG8VZpFvdQS2zlOHLXBvuMZ+Arkon8VtkBYvUuFDgSEW4PVYfUh/sg2T9GuQz9ZTh9IuiH9fTuR1aOO5uL13XGEVPavVAXOkZoFg2Kj7uII2U5aQq60zOK3RZYtxBkAjcDIEhtlQjogYKxQsoLO8iYKUDf5DKwLUHVHG/w1Bu/7eYrOY54fTPsXizezxcWaKIPXqRpNOXQHszl2Njrhx7/PXi5/xhyOmFOGTOHFZNnQJtrdKwaksUPppyi+aVG8M6hVJ6dG0pGC1Yhwbvz7HP3488QkIXen/MpTPDPNl9kQIL0Bg0TI9FV59zuCzkCM2IsYUrWTY0yswKVskbU0p1KSft2gj3pllAcaYeJFyRIrWZf1hqjCf77RkPxlkKcMAgH28c9OOr45Oh5pIlyKXfwQsb9oDB62J+8moOP3+6GovOmsBAyyt8sS0EyVmS+mb9JKftGuyTc5wC5abjtLA6rIkJZMlGEWgT9iT610SHA3todeNE6qhWgeZmP+je2sOm9qb0fp0zx95UhORXd8lyNWDKIVOevTUGXQOieGKELj8fHklFk70x2u0AnUg2AL+JIVii3oLdoftor3wFpoZkIu2/ABf8FWDSb0Xc1nCSrlw3gwy31VxcZAMX1WzBLc8dzvzL4U8BGXDZMxvfv7PDpiwfeH1qBKQtOMdH24+Si3QohD7uxhv3m/m083jwlTxNNvdXwsvsJPwdPhzOzPpIuQom+M49hk9od4KJvhm+OhlCy+fsICuhHFz11Yj+7FKA4ysPUNb64zA2Jxk/5SzEru1DnLM8D6Re1fOhNAGKXvMA9a9Jw5l7Xpge9JYiMZr6fERpS9ZImi9STNO/BWEVzeXK+11k5yIOVVErYJzVJWj7LUCSKr189tp8Fsnz47+bX8CC0isoYHUSXAsQvPZOxPf3fcg07jOM2OjMP+X+QXtGD2v+8KfJ7kX4NTsBDq/VAcMEP/arADJZ78eHEk8Tf78IwiH+kOw+1CfCa1m++TkJHpWGvxN+QdctF5RetRkezWni0Fk1WBE4Hz5M1mKBJZd5kYkyrnWdCsf6jsLja+nU0WENux5sg9nRXuA2uhb8936lA+ar2MhlP+xUFYa/jZZgKzcS939rYO8BE9idl8BKb9pg+ewG3AKn0K/iP+7t0YcLZg/IUE6FHdPXwKllM8Al8i1c6nbDgZ21uDQtkix+HOTUV1rg0dAPT34dwnj4xFC4hF7E5sMFpdckEdHBU30f0d5nZpAqqgyjTHv5tOhH7M9jdpnqQo8vyqPYKEVI0QxkCa+77PGyEVKHyYF4VDZ6V37ihMFovuP9l7bFqLF+yXG+o9/H+mf/0aKf0jwtWRBC5gCsl9AB89NTcfK9StJ0FyP3bwI8q12Pb+zKJdtf6fh6rRBYDr/EawdH0JY/wK799qi+NZRXfh/GF3Et1+x7zdlqr2gOmUNy2ge0HCvJD6I3wXfL0XRpuznaDDNlSjvGI3pGsrJ0A7xMFIayt5fBp70VNTWDoX/vGVhh+A8cLibwcptmPmWXgVlG/vS8cyJkyt/g/ctc6E7zfjxs+YyLJXeCoN83VC2bBPV3L1Cg/Eveu0cNYjRD0WjgM63ZH4PJuXowac8kmr/xLb5MLGGFnx9os8dFnidqAnENa9B9rRc0bP/F42ui8KeGHk8XTCJBbxU+PEmVj/7pR60sc3ALVYHvyaqgdleCPZe58v1dq3DqsXncOleNxZems8oYR6h2VYF/q8agWGUhnrVshGKTFTQz04WjXl+F+Cn6rHIiHvPS9qGA8yRw4FtY/NMbOwdWw8wJ7VRwYz24tf7Cjbs7kJ9MQ77XixUzhaBZAOHoRWGWH2fPqmsD2cp4HR+LyMLrw6oxumU0Lhq3i5oWMQya7YKYCY1AXufo+/p02u0kQbcOCcGxZ4VMsdVcsapuyLcZTOVbQKizGZfo1GDjeG+S1i0ZcuFnNOrKWXIOXQZBsk+pskkY1mT3kde9+RjxVgPd219ihsor8vkRjKOPG/DeiYOcd6IH/7OYBE+shHGEoSsERJpz8GpNnOptjKB1E4U6fLEvcQ3f/dsEeZbj4dr6ZSDu34sa4a/46RlNypecCuq2dnww4ANbXemArqPhOLIIwTg8j/LbruNJ1OVpas/IKbUUN46NwtMFFjx2RxRutI6g0X1msLy6DSXnKsDY9k4aNXcPzzSeAT5LduNC5/O8K1ORlqdW09474+DJKHMsFZDnZv/7cKrlKhxsXk2648zgmVovflBqg+MLv9JCpzEwuSMea+Um0GYfW54wt5hlXhpQwKcJ7FBnQJvcCyDtri8a+ehCtIMHn/m8m7Y6hmDcmN+8/KQX7AgZzaoBr9AIX6OB/UPSjhkOn6QcUHlQkzV2m4Lm918scaCLXv6zQnvM596Fj6j6+yM+kqUJ16bbQtzFMfRn91mofXAOLU/t5LC6FIYfz3jkUU8c2G4H7pMmwYrk5TCn9wwcTwrB+sdpOD/ABhL3/mMXZQeIN7elmS/k+WWMKSiOdgPFgkg+3J0EcSszUc35BV9aNJInxW6CYu9YCrtiifNHyMOwsRfQ4bwAzuiXhzm+b1D8v6k4u+M7f+1ORIvG7Xxuaj+OTzWACflL2P/KO2qcJsK/gh/Djh3DYUFKG8y6I4/Xa4Nw5qPP4LtmiMcPLCNfwUVgUq9PTQdXQJTgFjz9czFdajJCYdVwiHw6FtoqRsGNACFcXHWTnXonoff7EdR2kmlgQiNe1n8PK4Z9BKGL0lSRbQUBr4/RyNQcqLItQ4ml8fC7eBxmh74Eeee5+FaviJos8nn198lwxL0McmVGgvK6Pp6zwg53jLWCiin70HUF4/qk+/Bw3z7QmGsGH5Uq0KIolsdkH4SgwSvYcbuA7YsmsVbMcNz99xk7JRmQfok2PMw9wNdf78cTh0PgyVDu3Cu4zHFXW/hk5Q9OcziOi+YlYqifPFxe+RMDlm4k7ffjqPGxCH7aJE/jKtdjYfotXHbmCB1eOhVjHFTBb+NYXra7CcbuvYWzJtWw8qMyfrNxEiut0mNPA09M2arN/x1Uh23frOHO+S3USvtxROJ4XDZXGoocM0Dojhn7tThTW2MrLeoTgR07D5DmuDCqjByOBd+7UH5uI66X84V2b1G+9KmZCydZUoaCHHRfz6Iij0QcI27Mpts/81+vcbDO/zQ2RN8C3blRcNHjIRqO1gS1xi5MHnq37sElnm14hXQTH7LYDFU6GrgW831FcN0VRXwgMRpaPVaS+bkZ0JnYjRtdF9LSaRk0wsYNZt5/zjNLn2HML0lY6a4MyQsu8BeXCIAxn2Hu6cO0V7qJ4yNC4W3Xatx88hOrWqRTVqsRHE0vY5sLSrB/mwJEPQ2HL2HH+PGHJVBStxY/m6djXkQLR/0xgSMDQej5fSc4WM+gq4fNICXYAmtLNrGD7z8uH+yjltUuvFtXHure2FL/uDW4sPcROSjO4BqVQkw68ABH1W/Gf3GlLHxZEibukIXRep2U8/wAXD9cRycqTuDHGl22sPyIG11kKV49FgVufuefw5RhzhFt6hfwAHPxUL6Y1gR/7zfwLk1FaF4TSGduTcer+6xp4XhB+I+LIDbKhlRNH6Ls8g62La7Ef4k98PycEan7aLNDoQyqakrBtwAFHvsnlr0+VnN18WIc8aIfhZZa8WKjKnojJoazRmykCm816DVMhcJORTK5b02z66fA0kk7yVrHBxSbZsHlQFlYoOoMWX8twDYyGITEO8k5IQkTDwXhpHAVmP7sEZX4fcW7rXP51SdvGkBpqBpipeux5WC9tZonn1wOK0ashKhUNcxPO8ynIkQ4LyQWnqtKQOzbnyz5LhsSE6+S0/BK3q7XRx+nZXOhjAzumrYGftvfB4uNKmB2/Ty+yzhOqYMyuEEiD22PddD33CQuPDCTdPP/cviFW1z1YTQYx6UTfsui9jPVmBowi2an5BBc/kNoI41T9J/SxfOVdKhaGe69bcGXKVW0QPctLJv/lhZ87cOFEY+47o8wJi+Lh9D6BnZpVYCGvYepPreC8vsFaF7SYuq6vQPWgDq5qmRRi7gWUUETB+mMh6juMCwyjgPtTWNg3d0F/CheBGILnCDb5xTHymvigkOnuPOCPOx5E0Ka+8Xw4sZWitg/j5/oOOEUxwNk/S4H475MJUXDvyxfMhEC4h/yVolj4BsVS5XXj8DGhgaKknNA0zo5ODwbIeKaLo5ytwTwvMMj0gRxZIYUHRHVo3vX1lH9QAVUZ2VxZ+QoKHziD9N8BEBy3y2ao3eGfzvnoIjeHt5usxjTHruxpEg5PqoVou7yFGgokIX56cp0QWsCq9aVgu3okxzTNomc/Y/hgrzPlPDkL7WX7+PnC2VgrstSEDtxg6PjN5Hie3M8cfwKqp2ahttC83nr4A+KfJBIbI2Q0fCXJr7rhpDgNDr07RwqDHny+m1W9DT9DSaOjGTNU3PB7YAU+B6QZNHNH3BFzhZs2RULb/rW8NLrz2FT8mrsmf4V2u/qkHfBKNAxPA8Zo36wwPmJaKvsA141rtTkUwjJZWPxRONx7LgehGpBmlD6eh7NUDuMzhd74EG1BD1tGIVuGjY83L4I154x5ePtq2HcOYA89xm46d5rqtkxyCpZp3hw2GOqKTsPlcW11K40B6SObWPtyULwMOo0enWI0TwHaYyc/gbH7pRn5dHafLbAAyPURUDqbjicOjMKLAwvsMrzq+gz14yqCjMhaDPQwQuK/CNDEUN2yLGX22za24nwQ6WLl044jdGh4RR2QgKEu1/juXZfkk14Qct/LSU7g//4SvkIeHspFCvfxAAli5H0HUf4MmoCC77TIPXvyjCp6Ds++BJB97oF4emFOna028Nu4sdBWrSfHLt+ob6BAOv9TaGxzvPIJLqQ3xjoQp1CAEYnuuJ2pwV0zKuU8v4O4ASjWlrqHITNM+LhhPpsvCopCztjVWF8ezGJPD0DT16+xatLp/DG+Mcce+k8Th5zj1S7xOD1EHJp2ibwsaxDMGigRAkVvrhEIhq60/pJecNU1jklyF1zlHHS8nFQnr2V/mu8x0rNrym5zJneKM/jO6kvYIRLHsRSCsu7L0OVUFOYV6nO+7ylqDzkIFinfQAL5UFoTKpAz351aGIB0PN+j36X1KDtghvvDVSD2oQqpLWepHH4LipsCcJgCROMtrcC68VGNLsF4NqVVNg9vRVSbnjySrunmGJZBafvfcBZ8RFcruzDYY2fwNqZQTz/AhnuteOTQkF0MP48XEt7zf3zF8DtqCsg2p6HH1YuZ5ud48BFcxvpr0vEXaemwhNThHeWiOO/p+AebeLuclcUXmCI+kUyoHtzOjg/GQ53xc2ordUCd5ochCMnwklYJhSGvThKhfZpJL1UG7J2dPC2Ew+ptOgxLFnqyC9jT1G6dTvm/C5Gn8oDYHBWhI48HQ5SPd8BGwzAbt97vOr5A/Z4PcbcWF8MDl9KK077w34oQPFJovCzR5XDHhig3o1Qjp63BuajFx9amgVGyeosPWDMBwYuw+jR4jBK2Bd694lCx95e6LkTj6tXRvOizav49MgOnKfpj09Sd2JvnRjcfevP9WcscVr4d3AsXQNPM03gzxYRktnTCmL7HmKycg4MVxviIM31nLs1DaK2LsFfX98Cns1hkYG3uO+TAaYNG+CwPQLg24cwt10HFiqM5aO+W/iF/Q5OfCyO/WJ5/ERxGpKJK0WOewNvHowEq1UxvMPxEezplcGxS0M5avs+gN8huGHrecyU6eDDOX9ZpF0DDHd6oEJUFifctyG9/fFQMEufx9czL0RHSjYO4uzZzhQ71gwmZqbCyzU3yTZHCxq6fRgn2qGb8jFMiv8D8EeAk+L6+by1KFTMi8fPXvL89N4lGNNrSOd0+/FVsiodeNqLKi234eBGE/wtLwJRuZfYPPckLF6Yg6K2klBwN5ht++X5v25lkL06nfpyDlCZpTY4Hsylf/nH4JDed3hxXxVvZr/n2f4eGFi8gIRKpgH93QUbdiiC4p5INl4WTB4zlvGxt5Gc22tB2SPecGuaBphX76cbj0eg1+dx8LE4gpXcZlDcqXNYc+IkLJ+QQ6pGd9F5Tjg9ulPOK3q/cUWZMSS+ryG7lm+U/OgUm53+wZe3feLLMYc44elesHzsBvo5sWB/UwjG+GehBuay9AEvPjWxiE7HfgfKfIbGjtNg3ZOz0BUQBu65phBj1QWuIZfJKu4Wyzz/ipox1vAm8ippxB/GGylNJBI+A6U2yILuBkv0HlVOMgoLKGKJA3XnzIZdn1VpWuQjHp72ADOUolkm0QL6NcspabcdPn4hD/sHW8k6l2Dw0Bo2SwkD0cem8CnoC2Q4S0GbzELysNkBdkFd8Ga6O+xGKchIEAOtS7cg5OhWSvy9kf2OE8g6KLKN1SW2cngChjiRtu+sopS77/i14WpSNNGHuHFRLF1kCBIjEuE/DU3e+E4Sxt28Rud2LmBf16Pw69J+HGt7BuuCNoCxoijY/auldKWT3OL4g1ee+0l2VjOx5FYwwpop8OroVthns4rWCKlAreAwKslohZucwzqbZvB1YVlc9v4HR2R9hBf1LWRssIt8JHWgNv0RbPXtoyXBjYDPPUn8wid+1rmBB3KIRvZsoLCPp2hDujQcvngEH27cyT9S2snjxU2uGcjDRwaB+Nr4A2lPGgl3JGbwp0/aMCp5LYjc6YS1amvw5KXFENeUCzV257B5/DM8n3CR48p8KfqIJHy+WAOi94bjWsE2SgmoRc0mWQhdcww3yy3F/DAnyjI8CQF79ODC2H52Wr6SA4o+8KSMsaiRbU6fuoqw1s6J+/Nr6INkL2YGyYKa7BQSPLiEt2WvxasTGniN4zNKEy/G1c8nDHWtC0+0S+JzmRNhrcRhvHl0Ai/LuEeTtM2p0bkCH2wvgT9v/6PhGbuoY6QDlHgLQ3/Zfuoq2MSD0fs5adptdE7+hWOSEnC7cQbkJZ3FcyHPSfnBJFj68zem9hzCqlVDbDnwBOSir6FI1U2onjMZVm7dhwJW6rSkRw6kCspo1al8vHpsP6xWEqJ/wloo+bALz69dzNNs5Dj1vCb/p6YA/yoiQGifEJjLD6MFI6J51MBivu4UwD8/a6Jv/TC+vvo6JZmqQv6yRCpKvo1v5kWi2hcbXlR9lLy/baZU4U4ci7/gpfFvNho9DA5IzQQs84Sr7eHsuNcOVut9pLPJxpBXqQ2ZDwPQb0o7TCgVAEc9LbS/6AhadzV47IkL3CpSTa9/JoHp+Omwtt4asN2eBJsmgP3BKAxpy2PRe7swKcQV9p8wJaubV2jkqE5whk8oarwaPjggQM5feOFzChaGr4PrB1bj8xZ3lvoBvLxUhxbcf8LuTca4uUsdLgquw8Nbk2mWNdLIAzL0T2wBzM+IxNxKQ7qlV0xzRJ7D8wxhGBfeRMLJ6fi0QBsjvvtCids+HkMJrFfxms536XFv1xqytZeG5oRaajFiljj8AawXJUOGvy24bhCjrg/1eMNvGjyPd8Wq8ZPgmlYlWX7bD0YT7EkhtIdnyWhgs9NH8n3dg3ZbxrG7ajntbBgJmZMf4i8/PSj02Y0S/ZbgI3wSVa/lcX3eapic4ABV7dK0JUAAznh+pZT0Qlp2s4sm0x2OD09h5YQYyv94HxZd9OP3o3KoJFcB3g0qcl/1YRRedJViO4c6pLABj3sEsrVEF/x36xH1yPyH12tGgNaNv1yrZcGCxd1cn1iE7jmR8E1VjsMTiumleg0LN4jR5nBl0HhaQ7FpUjjarRSEzp2CbzafaTcsJS+zn7hjogc2OragstEwyJYpR1eBQIo4+BXzjuzBtYeRB/MSMGlnPW76LUBpehdZ8o48rA8vJ0vrCC6VcSKlwS2U+zUPfu1dDNXC3TBybyEffOpCtyYBRA+rxDXbf0FHO+LUrVux6lEcvK04jHEKM2j1uiVoP9Wf7j8jsDFZRtoTB+EFfyaPjd04Tz2UjqlZ4vhXn1Bi1x4qeppPZxRHg5RoH0spHITWLu2h/niIwkHDyXDnCv4y+hRP/9MPxQtceMUbESgZdRR8H8jDwVAXfu/lB/oHPhPblcN8KSM2vKnD38e6Y818KyjZPBMtRw1wQ8Q2Nr+1HIyvuOGC/Dts/kuQ81p/AOho0bb9Q3t+cheeqt+LGUe7qNc3gHtFM7BTUZ0bX5xkGbP1aFf3laxDjaDCLwW3XhuAwmmfqco3mnF3Mih/WEHDdixBz+1x1Pj7K/wJMYcSpdfUFrydXyt6UHFBJsSoV0H71tf4n9ZvUFyyHl6Mmo/X09TgcYopf5xQCs1Hj8J4BUmWGFTj00GPsFrjNomqlIO4/WK2zdGBzF1mEKS1iG6un4nFSq9IePc6SqjZgOPsb1PDOx9QD5iKhWemgHbTJVAqM6Vhz2/B0sOz4HjDVPw21Ya6g0RY9csNKD+8CGaUjwGp+rH8uFaS5q4uZ9GXPbzpnzlnndHF/4a41KPgH6fXHgbpj+JwobGOfY/KobKjF+WdkuOZN8fBwit74fJfb3w5XpA33m7H1Ggt8E6fRcc982D3tE8wPbIamw9OBClJf56/owDmTxZHOh3G3SZK4Bony5KpVbTLxAtudiuwe3gX7TVkyPTpouamTq5RCKfh+QqwPqaJztcJwQjVpVSyZj6+uxiGYnuAV7nv5KOV9rg7bh7cnDkS7iapgE7qV3jYuQtGX5OF4xeT2DDtH76QaOCAmBoQu5FJ0fbm4KT/lX76xFCM8n+w/kYPNx34R6O9HCE62J4WvHyPrzdsh9C84dD3fT9avT+Nr9Xucf7vIJ614iEPxMtRfNoyyByMgmKvu/BsgxoYBj7BoxmZMOF5I2bGa8Hv2ByqqwB49qaCWj90gYqlI5LS/+36XzD7Jgy3VOdg6CNHLjxjRFtGFNJHZUFcvPcFaCU1cff4IDr7SQ4qvlmTgpEIb/jUzjr+XVhSGMy+mqN4flIIXXJQJYO6W9xQJAUubx3Qp+Q6Hft5g3se/eOrb72pMaiHz4c8xf6tDZzydRVUrhgBNrfvQE3vQtati8X1pXr8QaQfdEIm87eSXnz6og7XtlnBJLspEBcvjkH6mZTKR3jkhtFUrnSJpDrfc4aRE4lv+cmb6zxRcIwu+E0qxjfpJ1jtajKcb5xHqVOuk8VZP7RwGM/TNt3iY/lqLGcpC5tWn8fijhBInSxLWReH0dFUM5b/UUS56+7xW+/tHNlfBYfHasMTxae85R/hjWwrXCTRDYvsxnBJaia3j4kEzRsHaLSyJNk8UIFZybmwQtSP7bJ7wb88jCWHGbHOsZlYU5aNbTpl2OWkT2t/iMIynTq4sPoNHPWro/8eP6VXW4V5T70IVs8Etux4C2+PzIIf4tqQMMKKNJpLuerXEkrtjgFN6yL6sP4dVa3+yNu6f4Pk8AOQdW0UhAfMok8eInSuQhplb8ihsPM4eFv7mcWHngU/1McLrZm0+qkYSGk1UvD9fHhl3wL1ksSfnzmwWus/ypW5j10XZCEldi7DeAtwM2yjpvA1HDJiD8SzLeHBR7im/Qqe6lChbPWZQ653Bf5H0XmGA/W3cfweQsqIMjKyQ0ZESYiGCJW0Je2SUUlECSk0lVIqRIRCiKSSRFKhYVf4S1MKFSVUT8/78+b8zv29P9/Pdc51Ha1zAhA5+R3Xla1ETdOXcMjGBm+ZGNEEq/uks/Ad6lRsZ7XSGygSKwbvKxHtz3fTqvx1PP5FP8vfv8bS13vgo4Q8GHUNp9RTghg0ZhhU/zTACzkiYBkrj6XzX1GyeAK+jy2CurvS9PnVJv7W4UNH9ohBQ7A7eYyyoq8LXmOAfwFb7TNF4/9+05FuTdQeeZCL4+RwQ9xEOOwRxKJv1HiVzxqy++UI5UNfcUjvA39qH8Exty6x7Yz9YNM9CloCN5P3O3vq/jkSb7/ZQB2zjuHi00ncI/ocMy0e4uNbGeTkKAi6gVJgU26Mv07rUZv+XRieNZdl5+XA1fB+fPZrFbYputJPJRHQrfoD6TNP4/HHa2nKsQoSX94KX4dfxFDrSH7sNwGqC5wpaaIyPBk5kv0+16H8zFfAWXehJMsOEzy66OnpGvhmeY82t+bQ4iBTmFXVwcvGXeRr7aFg2p0E+o9+wIgIWZrXJU90YhcfPngDN9jLg8XAQ4xUiMYfV4rIcZs4j91yCaLn+mPk03g8JSDBPePPcXHjSJBBK+xc6MXfelZT4qXVkBPjyA7vfCjILpW2jt7Iu2KH/+tso2DW4kzYIWKIa1cs4u8X/enMez1OPnkFs1e40p2ISeCXJEWypvIQvm4d7kgYA5nJfrQmMpfKHfSZxF+Cua8R0O1rcOTLLrAW+Met1ne07VE11qe1UYVCGhsnn6cN6124vrCJB/5Kssg2C/gVKAn6897hbe03pKRby1ozZtLyO0Z8ZPhMsls/DQS0FejCkA2b+iqDlosLTjmqzSMsxMHtRwfnXhJDb+F33J9nixGtASBwVhGsZk4D381KoDNGmS1GNsGx0hvAn0345nAT1pu4AEu+jIRDYvcpYYIUbNnaBi3aJzA4OBd3aIfiUauT/HP1OSjKecSrvj+lO091KaRHFexOXacndTIwp1IQw+a/xswjsmCzNZ+Lim7DhheF7FcRyVUFCmC3ah89PdLAP+UDSMxyLa4e38md427RYp0g8Exn/C8nGZ4JEFxYfYiXnd2OTyQmg7/oDUj1mM3lj9Oo5GEDvFglRe3p2nhJywy24FJUXmtOprVuaLpnBGbvjoZtO/v43aVYVtpTR9PeGMBezWHw2M2fX94excvWKkHwtFasGljJf+7HctazpWRSMwUDmhNRT20sbGvRg/j++djyJY2kd8/Hv0+8oc3wJoi7xUHkqb+4UP4l1IWpwFozO05oiyXZTE3OOFFH+cF+WDK9hy5mfqC/n+2pV+4G7Zk8HJZbMVwuKIPShSrs2iKNAXtTwKDVB3oztFFvdSyUN74n38kCIKqmjq863Hno357e0TuO3BZZcmlcBC2qMwOn0sd0fMJINNI3g1EjCWrUf7HM5mwWHS7CxmnN/2bIA/e+eEzKnuu5tcueD58eC/WnjsOeE7GMCoE0TfoLJI/aTqOvuFNGfSf48DuqBxM4fkEbUPYcTD3bz/OaxHH80m+8P+E034oI4ANDUfjyeAXHrp9JLrPHw7ZHoZyAVbj1oQaPlzIi85xdvNxjDq+8mcW6KT9w8ev/cLfteMgZno76cybAHlsVirj+HM5q+MEWgwbUnL2JRW0rUa8lBzneCLqvbEL//W8wckEPvY7fjBG39vJtk0zakBqKIs+teOTGx7SyhMCixQY3ON3AQ9s3seJ4Ez7TN5b6TgbQwpE3MazlLE/VHIGCAYaQVPuUo3dZ8YxyMXyxUwZGmNaigocHONkmgRFN5bl3jsH8D5Lw+WAjXD7uhWF3nnNT8h8KlTCgNuk4cNs2nh+2RWLItfP469FIcHh5lkpbwlEz3gmONS/iwPZhbLZWHqUWhUFxoxW6743D8lAdMCxfxXMfL+bYtWFgnh4C+WM3gfzjARpRG0Ulx2bx9gp5zm6VBpHwKMrN6iXBhjF4MCee3JoOYaSLDRw+l0eHk+X4++cDeLFkNBjMsMKD++aAt78JFS6NoC1Gjjj/aDDlDL9Djs+n8nK1ZFr7zBCWjCoHRW99gtK3mHtoEz1v+4xa+pXYnfgHI3+k8HDlJBIcow3Rw8Khc94A266U520tzuwv6oA7t0mgf4I5hMT+xsPC22HJcDNYcOgwSqxvx0m22Zxrb4OxE75Ayq4hzpe0goKUbE6qdKJLfSJgdrEB4nY/RdFVzvhxThLmOhniuB1P0CGnH86ZaVD3yl+cGG8Oy8c1Yne5BP3e7M+/HsWgYUU0PfMaj/O9/PnBUChMPOjNiock4blcCWRd/kIgsQIq15/ijC8L2HFOERR+0gSdfYE0SXkDXtkmD5u+lLN0/VoyeVzOFRPWQsTfYgh90UxP/zSji5ckF+2VhTUfpoLJmSD00rnErv0GPEftPLmd2EfCCqd59uy54B40mjKm3MDIlUpg0tuKf5/O5bGJa8Bi1xFWEc4kSZWteL/Og2ZXDUDFmkbIdBcE2xezAKPV6ditVg7a3UYrV07CH+HvSachkZ7FXMY61R3wjKfDcaHvOGj1HZacz6ZJjea0Kv0HRD3RpU/pEeikVMXpH27zNYXJ8LQ9HU3fL2Cv8y5w6YsfJx3N5B+vn1JAbhac77mFK0ec5I3Z+jCvMxwfqiiT4W0LkpuTzhvuGsP8FDHOHXWaz7Z2gdPBFyDqIwd6Xyzx+8KRnPDVFlOs//DdhrN8LW4nbi0uIMXLZ+CUSjQlrpwE4zvf4DO1Ozyu6Te8W3wcYicbw60pUqg63RrtknTB/1sm39woAW9z8vHT082cNGwRd2+N53mmZ0FGJYbW5q0ip4cVGJUhS7P+mID5Q2NYlvOS8lYALTgxhddYOsHuCU04TK2YQvSPodj6SLRdLAPVtQ0YqVUJY8RfUmGGGMU0f8QprzfioIwJJz6rIt1pN3hVlhx8vVzOq5U8mTcI4iWvGPB7HweCvROgv68M79bnwvfdCdDlqgn9bI+tZ2MhIHUuffh+FjWED3L5DF08MOMi7jO9C2pLkENuKEDi6EDU296Lx2P0aJPmXrbR+0vzzU3h8j/OuE64Bsmr0qDxnx+pedmDReYgGsnaYf3Hc1DziGhSqC+VT7qESUbqGFmxh/WvjoRrl1Pwv+mh9DJ7GxcU6bDOqMkkc/UtJCrMwBkh2XTS/l8eBieCo6450fT3fGLaBbzybSsGDohTpPUPWBE9H62lA2hpQRoLTpkKFUIevPO7G/e9UUPfgungX3QHYh87YGeXKRXpLMHLl8XYSVYLbi95g3anxvKdWck479Q+dumywdHLOvDUvbEca/2cI7xD4aYCQ9vN6Txrlj7mD1+I3Qu8+btXMG0dtIburiH4z2g0p7uUkJC1OTiMvsYSv2bzm+Q2Kmr3oWPLPmHI5C8QphoAHkWjwGnyOZ47NAZ03No48NI+rnCI4+OfQ6n9QgVkGl3jZbq5kNMtjBsfb6NgNWFQMDuOahueo1TVcjTYmEvNrWrwTcCIhPonQcGfRojZuoiLHqrDycgfYK79C1eIHIa9knP4vuFsVlI4DPs0l0GqQDrK/yzF6zmi8ETaEp+aVJHzcg3UNpSmm81uHPBiFfcN16BFWbMxhWdh8nUlOKMhixnxbrzwhwrukAhhJ6ebfO9+JVk0HQW57ioIKpKnUlMjGHv1GaT826+DC0Lolpgyh0iJslmGLNxvdUYz6VFUqv2NGlVloDtlDikpTYB25Rqaod5AoT5huHOmI3Yud2Kt+he4oG4STxuvCvXn/bjs6SR277JE9YEu2LXyNJFALWfJn4DLy6ohZn8B7RmmD+5Ogph0pIdinHu5ytoQ/vQeQ+eoz7DqWzXM0n/OARbzoG4VQHTLEuwKeAM0/yIN5EyB5juy8OaDP3aNMMN5Nx3p2/oqHJc1Gla1j4Tkj92UtXsSun/TYL+1+6AoXojOtj4G+wYv+ty5CfXVRGDXxx3Ytryd236tAWGH0n89ZClVps5G/5ivcLrrPIS8mYmZn0ZBQk0UKbcJgnSBBGtI7UajyGJ6V9eH9e07OIUfQ1bjPPaYZQQjdCSxTnw+rwqRpzMbttA5l6Vkf1GdrV/tw05lbVi8ZAklDynCiaZ8fBXYyvo7XkFSSSQYmolCt9YHTJMpo/SztyCp6BZWDk2AiyddSO2NEGcPW8zxdi34NO0Jfix5zXtMdpHNWgc6VJDC//8/u0mUL8KsPHhrb0Bqg0C96nbc5pYJk+/nUVJYHFgMv8Fp/+5ju0YAHCuzwsFkERrTLI/7N8mQ3yIJir5QTx2RU6hWNpC7TijBkvhMEBAWp9DfYXC/p5R9rl3E5Ztz+cTmaLBYF4ZH5tRjfMAwiLKUom1BJ/iz1iLq6fkJfk599GDPPbhRPEj6MT3k/kSNpn02gEHRUzDd4f6/vrKJzh67wdme9njS4hN89njKt9ya4MrbJHI3GgaN8ldAIMqOe+a7U1iJBSqmz+Vj8/zYe8vNfzwTwwXl4TTumyKcSZ1BNc9nsGWQNnu0x8HeTV5Q/2MHDIzMgV1/9rLn0ChoThsHWnZbsPXXb3jqYI5dErOwYJkQbC8+y6lRjew44jLbbi4m0VmqkH14ELSDOrCm8F8Xej0S4la+p7i/oWjrPw9az/7HemlfebfkaDg84SXX9xyEJ19ewIHY2bh9Yi03/sv8HB1tUPslAdVhQTh8uDFsXdCLTUlK1HHKiMsjtHB6pC2W5NbAm4i1MMrjBOnluaOkLMCR7HWQmZnN88UW8LbTXdDoLYebFjzDQ6/Po+DtOtjyKAAOXNYCk8cZYN/zm4X019C5GBsq39UF7dF+lPHsCc/4O5llggsgL0MZaiuFcOCRMP0tfAzJTYuxQ+M09CXnwt7/+uh6VjGGts/ExobJcCpzI69U18DYpJdYcu0yJU56CW3PP9Ng4yy+MEkANsnKsdpFMQjP0cJP26PBNUIJ77SGYtpjDepJ7sPcb5Fc+3Ad56g2Y/Op6aAsFcnKJ37AXv8YOKHqzonXzMFs+lJSP/OMnO//gScjwuhOkgyUSx/DvoYKcpJW5rvh19j7xX4wOnUL29ddRefp8jy43x4XPRaEtzFfmRecJvVCJ46MO4izb2ZzQORhbqxxx/XN3SyyehdWTRwNjgcUUElxOoikPYUoqc04IfQAuPWtg+Kzx2FZ5mzW8YmiA2YqUPbkJWeZN6LLvBoc9UQA5D9uozvlR/DPmgR8taAQv5yJwwsjx8D7wnZyy9eB5iRbPLYjg2CxOPe7bYFP1x/hiexXmD7BDNnLAEojrvLx1J3gJV8N0tHVHCadDWNXjML7lSd5w4ZbkKe/jcwuqINi8XfaPWU1qBU2o+XrNWQuXIkH1n8FnVc5TMMvoNeyIr6Vpw9q996Q98NdvCHME8o+V7OK4lSOP7GYAx5ehmG999kqN4am3RCBK2vV8OrzSvCTbeSVFevho7QU2t8S5JKkg2A7bTTWnHzP1rXDIXXedZqz/SiaP++AlWJMglpFbGCpwd3+Y/BL7ULOHFjII3uFIXZsMcrYHOCYjXa0U9iWbgsFUO0qSywRcgarv5P4yGAuSP8ZATP2bkFLg58wpVqTU1U1cJ7tXfKBelw3YIxrXZ5QWOspDAw1hMNsgG//2tOkfHEUjfkOTTkqXDN5LWtzMWVkv4eMgvds/0gH1JMms6W9LGkfPID1mhvhwuNTdFnnJTfU6IHPoSh8MTGLOjqN4KhROLwvVac0jWJO63PAyS03MUTLGkJFu+jLzHNQ+7WFtySPhiNBFhjvmM7WNxu5b7M4f3MIhW9nn2BIzx84df8wLtLvx+MOulAp/QkP/h1OPt41ONhiQ0IHM+DdoTaKPfSczwbL4cGrBfj5syY83hpBok2NPLE5DSKLr9LJI31klPCNSmfNpFla16l+6wRq7BWE++o9JHD+Mq7KquKStCbYvj0P1UyPwuP3dvAp/T6v21BG+TtHg1B4BZZ/DaMt6Q9RvlGGLY6ro33JDUzcK8Wl107R3jFT+V2/MIi0PEefXVcoX3czrWiLxfXr5Uhu4k9oezEHlC1Hk5NnM1arCkLUgAofXbgKO9cswEP9r6i85jGkSsZzwOd7YDr4Hu411GDpbmnwvzsOLyw9B8kJzmxX1kJtBktJ78kM8ll3lH5XiKJYTgtcvCYAyr8NIME8CL/fHoXWqurc0tVG2Sl7ceZKB7x7uR4WOIfir8Dh4Dw0AlM/leKZM8rUvscRcjbkQOysyfDAP5g7t0lCCVyk6LN60Nl7HF6Xz6LsYEVu8fxClfFLYIWBE3XUHKHQDS+g8fVSirklB6q/H1B7xUwuTCDa/FEAd5Xdh3m6q3FhnilMPjCSrT9q4bqlonCl4SRLSEfy09Kr7Buvhb7HLkPm7INw1XsvHN24F8N4Eo4W/8eF7f/BY5OTGJUwm+tXJYFTST5qRDSBftIbvNl8Ax0dblDGeAuw95KgZfaNIFdZT8UnqjHr/HUS+HqNlY2VaCaaULlZKQj3CoFr42F6PV4OF3cm8a//llBhmRAfjzyNLx0u4OoPPng8IxkmNciDzcqtfDK5j1NNF4H63TwcPZgD7pUtrBDA/HO0FP/UP8BLnqlD1ak0sgh+gFpO70gpWRtHZvyAOdv3QdbgLjjx7R5N13XF7NuaIJO7HE2bnNFCQ43W/jXgxWLK9ChlGUeVFODi5yvJW/o+L7yqCrW2dXhjsgG/HHkRZXdZguq1NLTJsoO/V4t595xqHlvyG4vi5KB63GpWeRZIu3McoLq/Aec+cOFQ8zAW0bcC4bIGKm0zJ/s8c8g9Rug9WMbXJpahTNspihwRxX4JhrTJ9xkc8IigGVOyUDhdGQJfFmDWvfOg7thDS+e95bDdo3h2lCX1rdqM6/ujuDXEHNUUjWGdxz3sT3fE/+yU6OO/M/ltNppi4+9Q/vwNMF91P+/Oe4/vVspCy2hPmCZ2hF39cwEzZnJS2Vq0OCzEgm+m85yTj+nK9y7cOkwEatWLWFjXD46mFILZyRiGmmS2mnKR7NqXUqbdW1g4eAlb96lD6HwvinoQwdmPfdBh9DOcHKMEXcaPcM2t36CkrwMxded53zBDeKs6Co+K2PDrvY9gT78QD9rF0x+VJ7hDrIPnxYhCYpQPplwCeGxfiXZv3Cn89wv44C8HY+Qr6XPCa4hpT6S54/SoeG8BWv2Wgfq9l2ilG3BdpiRtK++hyMUPeJalGqrmzqWS77tRqlefb4qPh6bOZBJf0Yjv+texy7ZRtF7lCj6S9kIJQxl2U/wGIiqpIH9KHx7b+cKyiD4Wa9tPrkcNuPtMLqUvesLHTOPZXtCGYvbLYuAoBSiJeweDP1+Qy8MRPFz6CcQfvop2Zu+54PwaPpo4gvPGAlyTRIi8144hnSLs6OPPR3vjMGfDLlg66EYXdsTB31pXzJVx4DOrECxdO/Bx5Segw6IsYSDIG3Z+5dtqBbhlymLa9M6d9sbKkyVJw5j0dpg27yH0lzehed58/J6QgJtGzeZzKp845Jc6rvG7hTM+GsJoXynQr5GH/j9zSWZLJCoHTwT6vIwTMiIgPHUeP/05i6X8LGDEpXV4VPII7Vg1xNH3B3ioOR4wsBs1XB25uaYKhaqbWeGhAlzZswksfn3/t98KeJ1+K/6KcsOT4j2kLDYcXvrPpWEHy3i5wRjQytvO5SHR5GohS+sTE2hxmwRPUJnAI2VDSfF2CCic1+fxbfIw1CvKrpcS8E3oUdyhW0E/PI/jsVNFkPj6JE2IXc6Sy51g1ng5CNVwg43OdmR1M4Pu2QaS8SVtKHYzwF+28vAno5gXrf7Ogtvk4UnyVBrlKgR3RtXBtGdqlLmwAh6sPUWjint5qH4/PQjeBeK/BMD8yXeMmf2dqrgXTiflc+WjXTBb0JYfhFmz/NzZdPLDCyyyU4Z7tJFOXPFF09G2OOHediz7YULTFT3AbekjVE85yXTvHXv887c/G35hfsgZAuFk6Lk9gw9YtULFkuu8IyyVmvdu4wdey8ijYBQEZqbAzxketLigHVJfhcO7S334p3YaLvDxJ8mpDlDoPobS96vD6I261Lr3A8iPHU5+wldhqZUOZKzZhdOXpJJ8sDi21o0lhQIpOPahg7e+XcnLlL3IJ+QdzQueD6pKcvBePhFir63FT65NOCl/FLToPKGJk+ZA9/VDWL+4CGQTS/Ftfy6X9SzhTzFjYOFmL3ARM4TGPkcSDHmAqmDJKSN20BJ7G/5yTgC7H3ZTzWNd6n52gwKPSkFj8kzceWk6ieythg9lu2jR1h5aKJvD8o0b4aWALtS5CMK+N2qQvykGRsS+JtO2QnyxYzcdmWNPHbLePPKKCj0S8uSTWyP4uIAMzA9QYWPPFySc7cS6ucaUoCvGggr66H1BBg0C7XljsQOHKovCBiUJvH5mOqzytMWIw4dQ7GMMVSg8we6dy0FhRiuHJtriSXt5MJqoDb/nz6XjDc/hm4If5cxYgmov6unVuCsUcfEpndMOY0V1NXAIvowXqjJY8L4Tdt0wg09PdWH16jnU1NzMOFean6ichIt5clCTqAJf0lsxq1KNQoRWcVlcP5iXfORnQe9YeEkcvI3LpUOKwrDr5SZuu9GL7tlSNCpyPHgcDyThY47YYSwK0TotmG+mTrfmTgG7E08pfr4NHqocAKi7wZI7PElg0Vv08TSDq73zAUP04GWfEhxYpc27Y5+Bvr4fVintITFTLyy8XoUnXvix5eyjsPFMIoS9GQ4hemdxj1sBKB9Iwy0blMFC9hu9dTyL/e8e0+u0f5lpqeVmP0vQXZHMTsOO48czPXj1yTHQ4B+QOvQXG6R02FljKhjsLkYNAVE41ezP31JeQV7SNZw4JolPCb+FP2f+9fPXO3le/S8qPacBL5yngvXyFWh42xe+rbiPxg69bKe4hq8NfMeO1WKYe208RevFkXO8/L8esAM83VaDd7Ezr0hfCLLBhthV+oK71iriefFo+DVZFWGIYYrMenIReMu1Hx7hvY0/cbxVAbRM+e/fc5sJls+n8ierXAjIIwi83gseoSOxPzKGbC6MwOTZV9FFIxt3Nu+htLYw/GYVy56Dw0Bl6QB8CHOEfjlzbr+hCnGd40Cq0I4ul+/hzUmG/D1RA+dcV4DuO/q0R38u95qtALlnpdwWoUwDN27z/R0R6Lt1N4e01sHU2ZMgx/cv7ZYuBUPH6/j1tjv6K0Xw+p3r4eyYGmhScKWz+mt5ztgRwLt9yHN/GTReXoCF8zz50BtZvjxDB6/N3YZ/glLgfuc60BytBxcOp9OFCEVcZBxO8b/LcPT8dui6/xiqgjyxNDqbYn6twP9uy8LxMce4RU+N1nmLwm9tVfiZJkLapb/odq8tRSZ48rIl83nmoBAoLC/GNSiPg1JnIP5PDX48HwWq8jsg5kAh2/ROpqzT0njk0HiwXn2PAn57UaK4PASW1eBqnTBaFmLHRcJ7YJHPBfIObuadx3QgTe4SlwbMBpFdBXS0k8jDsRSaoz0xXtMeLp5YCdun5gOsloGbKyeAQbg2fdYaBpeynWiyzlLInbyBDr0fwdicSTcGC3itkC74OrmSyFA/DUl/Ye/u1XBskw77pf7gZYGJfGLiK0p79Blj3kmASaYdR34LIfsQQTrqkwHXy71JqjUK4lwTqEg5jvxFF9ITTYAo0wZQ8Ujka36z2HfUcxLODYTOLiVuSyqC97U70N/amj/UjYb2oztA/nAAv9i3hC3+zfuYPYP4cOwrKBfSgBXTBvHmYWva/Xw4CIh30lef/78/KkLlsH44ef8gqz1IpM0uUVi7s5aSfvbj5DqCLxPreP5bU1Da1EWVm95DYmEi+rt2Y9O7A1SZZQU2I44ijRODvp3hIPQqDVr6Q+B10Gl85vKAcvV10T/HGxzsMyDYZAahwjSIa/8PV4o10b3uw6yu1E5rM9Lp3o0Mal36ENfeSqCGQmVSVhWHccte4Inja3h+cBjf3TCW5pu509P0EajTcYG7fcfRkYi78DNIEK7rVqNzzTyYfiyVtCLdQXpZC9/enIlF7j/p43wdHmu0hf0XMPyeUkOLpr9mmcMn8G/2hH9+VoJLvQ3hJF/AUzP7SMshgae2E9z9tIdu1o/gmLpkqP4kzt/fSJLTZw2qyG/lfbdmwAYrRX68zgjubA3EYx9m8p1F9fhqcCmdnezLF1b2cfClLhi48gNkrSfC3auGcIC+U9vmVizMuAwuWAIuvdOpPs8fbt4coBJ7a+w3IHgVNw02C9XhHK/doHTPhPUTZ+LPkEJyUyjHlWoFHGH5lneckoVuQxNY8l8Qbzs7Hs/cuQTLbS2hqvQETm8wopHdthR/ogA7sobj+AAdmJw1nT6v+spTvLXo0Pl62GL+kKYlRuOApzr4fHHAUntXBFcT2NfbDtVHnrHFUVVeu7cCHznFw+lRBixgpcSdUim49ugHCvc3BoxazPO/JXNbSxo5Ov5zCIVU/mklwfFVOVSW1AXWAnq4PtoI5p6UgqN+e2l6QTps/DAfBDvPY3qpG4WvP0khz8th94pPLHJf9B8HtbBw7VY6M5jM+8/agquVPqpVWPFIwxgs6RtGH/Ijcd8nU0gY3ARBEwgylOZBvLQJZ050JonINjj15SvN2lJAKtrOMNVIEsijg6M3L4Af1u9hNQ+BkXIljo3U4TWLIjCgagX6GofgjFfT4XZxGn39WMNiOzPp+yJr3PdXFDT+CsCL2dLoU+RBfU+cOSPIBDaticPXKbNgnosp7/ALg2KnCSBY8h1HW6rjn83ycOf7KIx7pAtyWeKkkulE5R4GtGeCGB3cuJbSx9Ty3YsTuex5GU9eO4a1HRVAT0sVEt2T0d5fh36sf4bliXeZxT9jpK8swVFl1Iksg/nbxsG4lQvRIvUAnbWJw+3izfghuA58x4rg9tSTkPJGH3YYduPf2ZNBue0e5U6dCTLb7+CASzc3Pd0Md+ybaWzDWQ4r+E5/b+jzR72pcFsuCEJ/BdGtpv2UkGjGpideY++rFtKw3493YleDzRINbH9sDjESLXy4ORs+BL5D3YP5JH14GuPbBm4NfEnL+l/SjhXP2M3bHKze5qJUwnny4H5q2PKdhefpsb1nPAxzbOXr+XnYfd2FnixUgHU3xDn5UBrKZB7muIGH2F08h0YbbICr0qswzXQWh7yfAqU1w+F2ZBVN36SJ8iM6SeClPUTFd0A4W4Lv7niYkJdNKrEzqMBZDmyWv0NtCYKN7b50+6ga3jG1hY45iKd/i8HxwQqqBFXUqBsHjU5+nNd1hLSzBvFY7iaacjoIb2QNwp4ZWpTy8CTbTOuD50YEcprV8GL4NvplWk4fNfvws8ACsLtUg4GT5hL4rMFJKkg5slog4ZNJ5V7JIDOQxotyd4KT6gvsv7oac18Z0JoV4+iuxnEO+ece69Tnc5TmRb61YyrPKTOmbbMq4IDKflww/zZMXS1HZfCNTOqMIevzLO5/dZTPRxzgwxQPX5Z+xR/aZWjX0cEy65Lo8qnZNH6PGCike3LgDmXSuPgD6y33sN/DeFgcZc2lSqvpUJkTdwbl0yolaWjPV4a353rJZOdBip1jzq3DFlC1fQM/eKPJe4R20pugW6DkJQMjt0XQtGJTlnSwQPl9rpBlSbT4Uw9/hFo+N7WPzf5F3HSxBUy4rQyDHRKgvUkP++PSUORrKjpNsMZIT0Ou8vClV0ZmMPajAJwr1sUP+6eS0pRn/GzWKgo9ngcNVlk8rOoprhGpJp2u33TAxhSk5o+j6L8a5HtdG7de60Bn+xcsqPkUu89UsPjCjaB8MoFHL1UGudH3IEI4FKeNiECZoiWADx+BcO4h8ur9Scn1wSzhdQA/HhgGOnKtPExzCsgpH6BGB4ToNEFYMVqPtgfngMqkd3x0nyinxIhBp/dbql87j7Qs+2Fz7026yC9x7PlcqPIazlemNdJ170vkuVQVlp4cBl53hbmucSdci/fBJz83g6lTG2LiDKpxPUcP3Mz4wgOCb5K7yXZZIz+tLmThA5EsL1WBi6dshun952DHsCOwT1YP9tdKwcp8H3p3/j1tTn9FH5w/Y434Jra9NYLPRT/FjtxHeGDLFKpplYGahIf87KAvWeQIQ6pKPrZc2kay7sd4oPAFXz6hQ/pjWmB5gxgIrToJo2RrcWOGFe5ZdB7uUg2GjxfkvmVruMSxAFyuKUF9wGjYVTkWDTPfos0TG3zg10peP27ATtNJOH92HYf7FpIz7YRyCzVQUq6h9vLldHVXIWiY+1KIyWJYUi6OgpX//LcD0X6aFAguHA/qFe//eTnBQsXjNNToD/q37kDBhGnYs8wf+2RLofHjEJnZaICdQzT+WDGJXJeIgJqAAvXGuXKKujkoTd+Nv/V1wPGBIHuJG0Lg0HO66FYNB1VKIOW/8Ry99DHsU41i/VwnXnMwi2Ymj6KZ9krwQXU0fNKaSv13bkJiXCflndjBksuEIStmGP4xloQ7t5ThpL4BTI2LJUXtCowQrYLIig10LXEWye4/zXtXLkEDvQF+mbcE8xQsIfFlLrxx3kqJuZPoTtVGPu5RBXmmygBxD2AK+FHKAxusNhMEueByGr2c8Nz6UCyemEIXbEv5/d4i1DxvyLfsn8CbEU4gpC0Jy7QHWVniAI9wOUZ2v5+D+sAFljF3hezl42FOjhnf7fqL63MUQf6RADRGtmLm9W5KUsrnveYedLizG03e+dLBoscg8jOUhL0nwwd8zunFShRbeRbOiJjB0+XhfGavMJj91UBlCRF0C57E4TflIenSLL41R4+M5d7jVaoCfrUCjq6ZQodTVVj3+1V4+HM6qh80AqlzUjB9/Bi+dy2J2iRceauYA5oMBUHyiM3kr+RJW+dfI+2UyVBrtQF36wWSyIHXEDWlGdfLPCahEdMwPSkTt3oUscjRnTjxkSDM3S9PsSVKvK6a+MfyNhAyPAEYbAkphx1oeLg5hsw7D0LjzOD+uNN4bnMXj9Xx4MqiVnTKKcK3Vp548vV8vPtpFNm6WGJPiCak6RzCBGdpcN6pQQ4L09lyTwkU+6XCfYFH0LR7GAuMWgZdd0ZCtqED/vd3K5/sUafT9AYHlqzntxdX89LeSNxzogVToZaUpRRh+MG30F9aBOQlxme0TqLw9T6q/P0Sdoz+zmr1izH45D6ssVGB6MkraIL/I2qbVwxLrpzhnGGd+PfYDJp5NIVOTtNhlQoZtlDVgGNKLrhLSJicsqVAKmckdG6r58appeQYzzzy7BwQVRnE9gQlyE5v4P7lwXB7nyfK5Ttw/NUKuq99nIPvy6OC6FVu2ucG63fIwcfhhTi5RhgcvHTR7tczflX9kw8uy8fw6bWoYjEdE6x38qfFWtDbI0Rr6oQxTeAFnPjvDyXMOcEZwhswX8edLccG4nV9Yaho+uetj9Qg+dU+6jy+kOLF91BffQOaL03GsosryP5eNm8SbaXZvRKwTlGb1+zT5hireHDMPYwaGxzh5pctsFJgMYy1NuZZvrPQZcREaHkQxupad6A/pwBFbhKUZX0h++o7eLV/Kp8yEuPLC6bgqMThEFRQQmVajXD+gihM1FDB684buN/RG8UMjuAJ813Q1MWYJK8P0q1N4OzijmaHPTlk5WGWHFmOC7fXo8ncu+CaEMn+Y71pywDCw7/5NOXFWoger0FbmqK5xNCMzueH8MUHk7FRLQOKJ+hTlZcKPIpfAZK6Fhw2WIupPgLcb/8fKO2rhZKj5ij1bQoqBDwA7buWsObVWu50UKXUrirSe+IOm4MmcHCzP4Z+m4FtatlcG9/Df0PUYI1SAby6Y0brDo/HokYxul+uCGbvR+IjXQ90ejqcx8JwlvsoBIv8FdFeSpJuRonA1fPSXCxZxbnOB2D36jdc3BqLa/6z5sPdw6DL5R4NPHClsX8G0X3oIhys7eMDiXUs8FOZJJ7egYSmkZyjrA9+37rB91Q6xIqXkkqfDnemaXP5gCgpHK2gmmuZJFomiilnTeDcHSWcGhHEIg1HyMz5PR72QnyLzXzmaT52Z7jh+XWnQUdsKuwKsaHjRxJ5f3whvdK+TO7PrblydQMYwRAeeD2XF0T883x7M4j+sZ/zfxhxzPWVoBezi50F2rD4wQNqFZXB8ORjYL3Zh0xL5GFTiRQvm3mM03PmY9/Pz2TVmEvyh9RJ4cZeDhunB/aS/TilRx9U6qLB8fUETnRg/NFnSHoZV0DMuJOszqzAp28WsPgTIbpWYw4LVF9BTLEbrRkWDxL3UjhPw5xld3zCTV6zYfgnAo03dZD11wxUh/Q5xKKGS8/X8ufOFTBFbRHm+rviglg7vnp/HguGIUhvloaaqy2gP/obew9pcOdOWf6xqx4dT9Ri3618GJ82F3Y9XwQR4yaBnXQPvHy6B+Okv/PIu/tJ+XcfLZOXoMWFN1DLW5VTJI/Ds3/XmYSehW+H6uFgtAW4DUnRtYMF7PmrC68/PwGDA27o/vA/8L1pDnJXqlH+sQOd9lSi25eW8YfXSpC/KpFbo6fAo/2yaGf4FOXCJ8PsKE3y/WXDRrUBvOyyK+xMsIUlTSHwyOAky389iH6z/nClpCrcE5yGKHkbpS5ZgdCiaj5tewV9P96EO813ecLG8zRigQotUB4LJfY3EezXwfDsObjpYRSmJYzDxdGlWFnVB/5TDdH7/mOYN3UsbNvVw9vDDfi90zYQcj5LNzVM6Il6BHzqaCPZvB+YN8oeUNUY+nW3okDKLk7zDORGWsDdz+ej5PGd/FnGmvKDuykj5jfu0Z4OewIKYfjiSLTfm8ZFrgvxnrobRt1zojmyk2Gi+jiQubgfxcVkwXgoDD/lXiBJ35Xc9TQB01UCMc9HCIxc++Fq92u68tSUtu9iqL7Ug3f2BbKG52Jy6c/CoGWvyHNoJ2w8cwqroxZCjeRd7FFRAfebguBpIYRnykew56RgUhNyYb83hnj4HUJ9WieWmA7Hj4UqsHjXPTTaMZrYrQZtTHrJz6IQPzw5A26SCrzi6BfIjtwI80OGgf9kH0pZFwZnxDNwmskFGnbiFo8I14YQ74fwrmqAp6VW8O735jDuUhbUbHCiiQUnOaTQjz8NuXJHTh5pOOqRe0QqTJVbwSsqx8GEB6o4Re4oH2zwwj96NjB+bRHIzLTDogur6L3YF87NY3yTowWXl1XyjfpEKn4bALYfPkFVQyfv0z+HD4/XUUf+P6ZlvMBx94xBS76P1URjocZKgX8fmUXhKV742eIUdEmXMGiIAT43oYeXpSHAs5MX79FFmW4XWFlrSeWGHbxnqyA+MTgKr2UdwHjGE9rlPQpCfXV5erY3OManscgsQ3xQnoRK4sMgJLOMd210BU0XWzploASWi8WwolsQTKIfQeMxa/rdUsbDDnvw9KAmZglFmLf9ByvfN4fJU37zLpnb5Ofyjr4LA8h9tcWjpeegvcmDI3QqYW/IG9jjOxEG1tWRhvNXWBjgRZNq9oJHdD1nhL5gWasE8trtwXfnaKOjlBY86i0D32Nn6JrXKooEPfRp/U0/zDK44OUPuKk7kU1oKlUWKsJ6tyDU2rsLJrgwzJlmgiePlYLEjYn45NwQibccAXJej8cDTcGvow00lQvgYeg83B3hBVfSvnJJ8mf0WCqOKe8D4OLri3zAciL8/1uAuvWyeNxwJ1T7buA5mjWYrCjD8zR7KWHMQ1hVl0eJQ4agZrqBtWq94PzfKnJcOwhz1afgX8VVtC5ZgRK7fvBY11G0n6eA84lO1m1qB7cjm/lylguo7XjOTrM28OmGUt7spINKb35j974J4LihgM1+SbHqtxvcF38O/Cr02TMvn4KTkkD68zFYrziaHDoNoUHwIsTNGITJYlpQtjkfD0R94mTFMBQPRlxltRrEpcXh7O9JMENgMyheOA5XD1+DvZeC8fL7A7T09hLaGKhM7Yl2tETpCT7xFAJHpQCI+FxMb9dog5ivBM/+54LGcbfQfcVTDB59DmOPz8LkbGPYj75gIJIIAe1pqN21Hi12NFG88XaOmDieC72kMfyBPn5nLbD4ZEJlHoAz79ynY43zUK1xLX28/I7+bhjDaeGT6ZuECGRaI/xaOwLS7w1g3yXm+lfi2HA9jfxnvof2ZYcp0DKCw9MWUvkaYZganQBf/jntWN39HB92kcLdvEHlrw3sSLzHo9ZpQrz9XghepgQCK7bQwtQWVlV/TDf+uVjRpFOoOmYvGBZ846S9S0hm3G2q/sf9etFPXDA0h3a4v6PLKiOhx2EsF+m6UrmeBS2ldJjxWI2txOVgVdx3kozqxLkKv6DzZSSWr5yHsmEnuc1BFl8H3edrxQ6oP0MVqg8vY9+f22jx/R/oeNyDKiX7YMxVa7jZ3seDAbvYtrEZnH8bwJZjXvwpbBInrZGEfcUvIPxfn6mLr4W9qfv5TORc3mI2AdqnqME8o/2o9ySWHpz0YPEL3Xj13T06kTofdzclwnG7QYw7eAkitotC2wEnuHB0FTXFqlDhlkHct0sGr04SgTLDbezyRp0aLivixA+jQXb2buoT+0gWS37RqcK1pKSkxkMSk7gwv46tnBp4073HGLB/GigEPGbvtCc4eUCUjzwPQUm9GTAzYz/sIjdcuiaOjQfPksgCITh74yeuO/acD77Sx7jrUSB6bAu7zXjJclVm5PyPZ6tVhlGWvgxUjphNV9w8yUJ1G1vKTeTXbgtoQtc81s/pIxDS4jFLBeB2qjRYOQL7bWunEbpN/GzkV2wsPMcKkm9Zb/pdjL8nT2W3U/iTtgwER0rhzKNa5OPuAMUdKvhTNoDmtSdh1yJHflheDZfHyfGhdIA7lwfpUm4lCEoIsazdbp4RowZjVW/TiPCFXLcylQOc+zHZYwSIjRziCy3i3Kafz1HbDNnAfixbD2v4N5NFtPxmPv88EA2b/zlZk6okjNlfSf0zgvnu9E2oJvQdlx7T5GxXTfgj+YB8p/vDvQxx0IlvxBdPFWjP9hvw2imcamOSgOxPke4PLwjKlSTDv2qsIALwalQcq6bZwrCViWgZNgW/1IdBiZ7vv7N8zYqdOnBW6xyE5AlDh3ktPQ7bzpuke8n4aQcvsNlN0ttXsfL8rdT8bDVbFB1Ax45x8OrKPlLWMQCpr4jxkQ/A6kU3dSkeohdt+6D/RyUU72+A+K+mEOC+HD3c9lGVC/KY+e5YLRxGrh5BsGW1Ctx33MDfNIUx+YgIDIeZbJ24nDcPvgLP2TP4/OAJvuVvQkJO4/jH+hmQMWM99y0heCj2Ca6o3MHA0PnUk/+a99zczB+9DtJgz3cwtwhngfNbQHXMdIgRqsEFnb7gM6UKgrJvw6E6pod3voLhVkC1vUbc1V2Asp+EwRoDYbe2L59a2w2TfuSB9ZrXkJakBcIfbsL5NY5k0KlL7h9HgJnXD1wv5kPeLmJ04e5hltjiix7taqR7YymdPLCVRo5cCMYGUjBz+kwWnHibF1I13x76QB98AnGxwB48obiAX3ovhcP+1rRwuTJMu2uLQSHbqYhW4c4/z6lQPRClg0tx9cSlTNpKIGZngM2H/nnUtWC4l3qd43dMI69FM2j4hwxeJn0VLMIdYLmLHfh9FuO8q4LQo/mc0nfGg2RyCsgdn0YXogZZV66D5V4uRsPYbZBwqJRr3CZDXdkGOLdrBjy+6wDWc14B7/eAFFth2OChTk3Ft6EzejnsnSoNhiaSkPFoP60b34JnBos46nco25aL0daQCp6eAWRdZAO76+Vgk6sb+bWmktdoEfTd74mB6SKk/+cB6lW/hEP3VeGt7TJyEzMHQXjLP9cYou21hfRlymIU3uDLO5xHYlHNNfxhORwS+/og22UM3NlhzDF6uuRm0sNVVvNQv1mJpTP34Zj6G2S//TRunlPO/gtGwBUnZqGLOfjQ2ACtbB5wxMuTWGx3BPVfbQLt9E9U/7Cf1lipgdfvK3j5+W/8XLwPXsTOoFfFn+j0pi6QmNVHcS217CL7hKo+6cPYkcRK2tfYu38Cys7yZPu3/1FynxopLhpJsk6ZlNnZS3nmw8Hgwm7Ury2jd/rTIXqDMG3sSAOzS2HkPmwWKrv2gWinBKfMkYPz2Tdhu9le8Cn7BYaDTrx7sB1cj8dBSnU6ZpzKw9i+QyiUIgThh1aB+AIlGn0lkMO3XYIP5uvwpepN/l2pRQZLxlPZRG989h0h2/UcTNubjCOvv4cm56uobuyAdcZGJGm9gpw3AOxIT6Ko/6ZBz7AD9PCCN3O/Hc36Uo4KT+q41Ok8eP4egFTpXBjvH48r8qVhy10fSM9QoUwjK1q3twDuj9pHY3rzIdzFHeIOZrIi1rFJkBYc0AynoT/S3KbtBnNmEtS82gUrTq+krCn2oDC+gdYvUoaI1/rwqGsY/G7cwZ9uPONNAss4wlKLOkrecd+zdhgb1Eyz7wrAB3dL2HkglT/vV4SuzAbSednL852jSKZzMpQcT0dfv17QWLIHpn0fB9kySlDjZYZSWx7h69jLHDS7CeYN2VHdp2UcpHiOJ1p2gsf8aSDfL0lfPN5BWEkzrp9ZCFt8z9Ia02Qen6DFOg+CcXH+Fzq5UBGsHa9S5noPvNniCOLPbKEhz4guLJfibK/bNOajPIc6q+MNA0WQWmEF43z94Je+Ekr01mKSx3v4sa2c9Gwywbl7NI0Z8IbfN0RhivsJENZeTQJ9Z6AnbjZIpJynqu1TsHqSOW2UPQXGh+7RhK8EHwVm8CufJyyn+wGbp3qRocE7UrT4xS7jn4NO2wBmVrRwuc1IGDb3PgzoPCXNfR7kKn8OL0ypRqUbIZi3WZfVT+3k4xWPKChPDPjaY3Jf/400Q3N5q9sBcohzpmDl7ThvzimUXh2Nh513Qf4CUXi9pg6+FA6xgdQ2eBVkQD++ieGZGDd4rCoKTdOj+FzMUQ6SkgdXV30SOXafEy5I4/ialzxe2A12hmbTefcYkt/WQy7qqhAwQg1mKU/ioA811OErDoOZIfh9tg10hERhdEk9vCiM4ybJUPh2lWGtrQ90FM+livos9qu4jGsPjeEfZ+bS+4s28FloDfs0nOaGenH4oePGhVapPLwij9ZqNpNMwD6uHNtKzXfr4PW4aag53pD6HmlATnkBHK0yQgHXn2A3WwFOX87CK6cyaeDmTjp/6AGuOjzEFvs0QbRKk/vWKaDzif/Qfvt9TtX4Qkp6u7mlzJ3m/h7FvQr+IBlmCl65z7h60XKUCD4FE71USGVBD0cst6BtxqHocMcPzJxUeVaFOEhY/YLJQ99J+KIU7/gjzB+ClOle6GnU/2MLFZ1f4KJ6J2xcqQf2eTMoSlqSzm6tZoH1uij+8yCmXFwIi1etAKnvxvT8lCs6iljAkZ3leNH3DHqOSCYl73b8A6I4TGYLzv7vK8smFuLnKEUyCjeFv5qmkGnfRt77A8iiLwuL6lXpYvUDWH7+Eht+e088XAAKwkWhyiEbFs7cze/mZkJSezd/L03iyjdXaMn4bXzKR5ekdRpx4WxjUPUXxdYSHTxy35jkqr6zu/QhfujiToZ3ldD7mzv63/zGpi068HRyPLSqDtBAbz0pjt6JXq2jeK3IRp645R1OSHoI0vrb8fbPCeBQZA0tkQSLjnXROcWdPEzgCj6crE6Jj+bi6GGmtHyjHCxQRFANXI77qrdTXdxG8Dt6mj+0PsdfD6ShUSEIbpRq4udapt4sXVD2vgTbjq7B8ePd2OphMNbHuVHKgAQmSj6ji14L8cy0SjZRkweFut38Z0EE+EaGoOXzSThJUI3PCxuD5qYHNMTPwWMlgMI0Y0grBlz2wAeiKzU5/Gcn7+5NZf91k8Hm8CLuHSqGzz4fcJT7ZPCU3AgjM7eS8dm1qA+vUO6pERySkyW39W4QaHQEHo3b+o914mAkMoHF5Z2gCV1Z4fJBom0/yWDsOs5bv5XXHS0E3w0/IeLNRFjzZiHFvtGj8oQ8fNV2CGm0F359Ic29S67jwsJuOnM/ipMD5cDJQhn1BvTZNLWcOlY7gn35flwofpD/zHsKnwY+0tRAG4z+Lgcf9ZLRVNyQT4xbRl5VViArxBQh4cQ657P4Zlw3K/cMx+SUCRCYfAW+CLjQpzFClHpzDxVL2XPYzw74+3UWL5SI57O6nylSSuB/xJ13P9D/18fPQDIimVmhVFYSEYqQlpbILEWpRETavqW0lBSRUpHQ0tIQ2lZKklVZSVlJSZkpl9+tuO7B5/M45zzP6/n+50BoIfH5idlY6HsTlp8phK2vU+irQQt+aCvCgNc6nBJzjDtADj4kycBH6aX4QPM2WsvupPw/j2DkotfQgP7wfeoaOkVj6JLWdGhYO0DbdMbzqWW67HohmoIejEe5xjm0MCwM5ker0LjAMbjTWgaORYbw3101MEa5k6c7xIKgrhoVHd3KU2d3w741X+m55jMYNt8cxAP/o3ShI4RJaaQ7tFtvh1nylUcn0V0thIM9vWD/giP4QMsIJmMn9h94AP+OqrNdrwVdPDMdtRONARe+5ozlG4Y8NIp0gifBgWg/mrTuMOHKz2DgbI9Zaw3IWKGV5g8egTVa6ah0cQUqq06BorlHYbe3EhffO4fjb33HbWqncMnJhzSpThUktkWzxtnNGJFsAN+eGECZsRg5l7fh7zJ7qLprwHZ9Gzn2fDmN/P4PtWqOU6mXIYTaNdLaFmny/ujPQq6DnDpwAae21EPCcRMOna5PG+qW493Zo2HYsxCs1ffjmzIC6LAokef4x9Md5QG0WjeGzsTtgISxB8B0LIC78Wnq8TSld+m+1FIpTHdLbUB82TqMX2HMtfXPSLnTD660D4ffi4CTOqaDROw4rl1fx1ekF5LXidN49Ngl2q7pj4GP3uOkMoaHPxJ4j1M5ukSPYZUbHbzZ1Rz+im7h+4dysVlxComONufUKmnwiIiHZ7c2waogFbY3HsBf5j7kt0KDKkaEsfZaNbj+UAKs36vAjSsqLL3hH3V+nst2eTUwLFiKln3fy+9qqsnvxiVaMy4BgiukIFxggIIvhnJUYzQv3feNhAWtOcDNEAwMonlRwld6/G4zF+QZQsE+VWix+YrPPu2jJizE5G5CyYy3nCX2Aw4GptL+m3M59qE0iPiuJodpCjA+ei+rKz7mg+Zb6Mj3FCrbl03j7y8lwScjoHzmRLBMMubHC/ypdY0cdkZageH3jXjLqJe/6OmSbvhX7tPKpl3KM2By+AZYYvWe7z2oh8MbYlhY5yLUepwkvU8imLmmiRLPuqLndITG97UcobyNWkY04MPEKo7dKoaamYZs4refP6dpob59Fcx1UIeCigtU4CdITous4KzKPDRdXUPjZlSRb484X10UjrGPZDC43wjq6+djgGgceeb/JY+sVSzvGQQXlwbR5/SVpLlwD9j/C6S34/Tg15Uhv5n/ghy/eLGczxGQ0VwOvp/Xweh4RiOz2bgqIIHFzqiBn9x8vpTlxF6/ZGBPUDVpbr0N8g9s8ZrAfbZ3uIRPfP+SjQhD/NlAuF+hC+U29+HnYRtYGyEHdfe0YYRSJj5PF6OVXU70+PxkKD1UStu2SXLJ/iawPhXJGcffUd7XHL68KwqcDTVh2D8R/hczFQS2LISWY9PpTaEfJ35lfrNgHW3PzYbdU2fQ/brdlBuRjt+MxoG7cDmmZViD3dLf5BzbS1GZ3rDeQJbGrBdlm9qb8Cf0Ax4b8pGqwdUQ41nNUy9aY7T+bPKKKuFXIoEk7OKDXTtK6KF5DiapqkDjuCJwbirkrwOBsLBFCV5v/4O5l5ZxYmEb/pFKh4ffa4dyvxEcVzMHtbx1mHUwjpxiTGDbQhtsOyiPp/Ytw/8G33LflF3QdFoBIv6bg7fjruHZDVPI060F5y1u4ThjP+6U7eBvR0ox9j9TronRgnVCmpSzTxa1POah+TQ7Nn0eRYcu5cJ1+zx455BF7Y0n6WvjCChT6MW8fi20bp+Ei4L0ICd2NsQ/2QyF1cXQURKLB1NdOShlCiwIHkO7Rp7nUXP6uW9i+dAwj4fiNcV0PzCSQgJ0MWmIIQWnpoCljxnq6G2CZ/Fi4NhyhwPW16JXrQn07nkFvRuy6UrWEkwbJwyCBzxQIUGCZ98/iqF7jrJ/3gYy+nWQSrRluDZ4EBLXWuPsO8qw6tojNiz8hH81t/KGCHvU6tkIiz/l0CwzI5xzLI9cLt8HL115eF8ci0ev+JCz2zDqeqlHQv8MIWPUQtikaIXtnq04X76Vw5ZIg2FDLF9PEqE3Vgdhj409QuUn9uG3pHc0EAN+dNH0O3FkVciwe7Mtx8T+BpBPhU+ndpJNcSQHQQxnj5DEeal76flfWxzfIQdGDcXgZtaETYLfaWZlLGYbfOVrH8LomYkWTAqewROt+0lGdQacrDuGISJ2FN0hD46PK3nreAU8ePEwNV9diku7C0Hljwr1jJoGMmse0D8/G9DbL4MdIq3gNOUJL3l/iNcsnENla2UhvqsVF17Tg3GUizhSlXVnq8PB108wftQ2dPbXx8ddN1DinBN2xQTDnnwNMLpbSoM33kHID2HUwmIWfiqPK+9E0KNsdTiQrg4WVywRv4rDwJG3eOrGAFivu89F55vgnKowfyz8CMVt6XTxWROMFg2BubkjweCSEryMDyDpzuPwUWknXBQSQOny2xgzwQ3Gjx2Do87ooavMOFDfV0nZCb/5p/sLkDm+k0Xc/aG5ZzM6JnnB3xJL/Go6EpqllKHdupprb/yGoOxdPF05mNaqJKDnDA1cl9sKabL2JKOzmUI3y4JRZC9MnwWYI3gADZL/45DsFpwvCJh6QJvzYo6gpXMB1u9lUBBjfn7EAcS36ePo5UNeVvGUnF5kYkWrD7TtPsHlbi7w3y9JuHyzEU7Oe0qrdwWB3MkvOPHoazjY/ZvHSe/C84F/+ObcW3zNleFMYBLkLm+CwKZyij56DLZkHweLvNlo1+XC44aPAWHVliFWT4WZd5o57lYiHVNVh7kGnqhe3QM/bk2ilVpJbGVbQBMPVUH1FUloU7uBP2gcSDsfIozRY8+VznxsgwbEqvTTrvJIHCH+Dl0XD4cLlgfh6eF5yLk/4UFVGJt9doM5m2u4Vz6RBF/s5ZCVS0Dt2FiYa7MZXrbZcP9fH1YvAnpa8B95ZIvj4wcNbKK/jY5ZhrLo8tEw5/JY7OhIRr3HSyD79gmepHCPOzTFYZGnJXnPVOLU6fEsrKQLIXVmOGKJG9zLvEIX1Yrx1y5drtLcxPkaCznipxoGOf5FuS1iMEe3H9d1mlPo+2bcvfAwba+2pOCen/R97FrqS5Gkon1rSbV6BDSZGeJi+30k5rqdFq4wg6+jxuIKzS7wuHadF9S0kujFF1i0VhUangTDtcGFEKuqR6b1BBVHimnHqGacNnMp7FbyhZTJYuBmbwBGW6VhutVLiI9lFtBopQ6bRDCsKIN3R1VALL4HQjKSuLJQFeYkn4bMJ2OoyySWNMKVSa/0EqTrROHkYaZQKtjAq3a9h6nrhSDXYh6tvH4I3m7/SUvuuWLVegd64qkFfUW1NC/tD1qWXERW1obD3X/YQnSoN+eMxKcvnLD17g98++kWyJZPxa+GEyjNajT0/VCAGc1TKFdhC9TmFaFH2R/Od/DnD/+yYPzpQ9CkdBerD02E+ZctQPe5P8or6uAB1++o7PIKnlr/AMf76mR0T4xztvbC/aWHyHyeLGT+CYTg4G6SeDSPdxzYh5/bLGHPi6ckGByGBs5CIGNii2PtNcD9PlDeoDOufyxDq9cP1dVGidOeSUPx6lqeE2cBSXXhWPtYGjbuCABTyxoaPOhEs85PZNfjN1ihqRsHhNpx604T/nnnCFunIty6lAZal9LpVfhayLV+R1M3PUT3hxNoZPIteO+7gJ50vQPb4wKweMsjLuqowCOBnvhuNsJptbcUo1iPqQeX8tZjL0ls6gwQWM0QI/QEnkjk0rrDqbyg6SAezX4KysOE4RFqgt7flbiyvwHcVunA6qLxfN5hKjk+eEsvX1xCkagcvn/YEKbJJpIE1aHFngNQVzYSnllex+6xlVhnPYoXLGikNQ92o/uBJfT8RReUrOtlP+0nfDpbFnYtegETAnbzB9sj6F5rzMFOG3lE1hFU6TxEIhaP8OqdszysWBZy0k1B9IseNL6ZT0a7DnLRcy8YW+nLGRrG8OX7f/jMspH2fpYAheUXaDnpw9bsfnwQYc1/AgJA2OQ4S2inoNzpg9AuMwMO2+hAjvEG0LOthOkfa0HdYhZXTL/KhYVxsOHUFDq99hk+C9mEToUAyZ05KHWgDU9/dKTrMROgVV+TxkoHQv6ZYto0uxJ8m0ZCR8Vw+NCVT7W35/K9hD+gKVLKw7Mcqa7DEtvqR9CJzyupqG8pLThsCgesK+G+jisJH3zGmY568N7OnfvqLHn3z2e4X/w4b5v1FHWc5MB7czY82bcO3ZU+g2/oaLCp2ouL5hxB9v7JmJPJO/3cYdbyCeCQuYEXzi8im4FOPpS7gEqjXPBd805YuN4ZhwelspnPWZbpmwhSYamw6lYxWZpPJNGzW2jKsgmsKpnPWo+vYVynLB7aNheMXCaBb/sNTNPegVNMBPBn7ivenTkKT7hGU8HLBzSn4CTK712AHgGiENLQh/UCL3EcR+Fr1c+UqnicJhmc4QnD1elKwVc46ZwLj0ImQ9eWZhLR+w3ufo58rnMdz/1YjD994nDiuCSQD0iGTbrtvK5NByZL34HSFxPYzDGVO/VXMdqpwLyqYOwwnwvCkokUf9mMn2hOgaW7RmJIuwob5blSxsYTLJqlgy+LFSj9+CM4JevIaYlq+FtBE9YURrL8/Ggy32WLe+ethcWXTvGU76L0s9oBLm45A2+aRwM+1wWNAzdpnKMtxRwv4Rufu1mjFahdIgFvarpgpJgMVC6zR0drQ1h07CPZDjuOgZnl8GiqEScHFdHibCmM/VXOZy3MMEa1En+PF4FT6Sr8MfoFLJCLho4FkqDwcCL1ShTwjVHvsa9iK186oUJvZ5jB8D2ytL+nmebnfsT1737SCA1/sNP9DttnbSY1z2W8uv0/vrFQB2Q91+JbgRyyUD7CF30H2Mv2KD7dP5/bB5rZNOk6xH07xNWHpkHiszd4zeovyKklwivxIFq1ZS9XdoyH++sqOPqGLCzOkALHmQIgJRYPl3wvwIo9m+hq9QIYPDxUo4UhGN/4m4xVkunQoo3QK8TQIjINw1o/YFj6W4jXMOMTp45hcZANT8huxl4fa3h88CbK3h1yhENTyXD3PdqU+xQtTzKUzVgBI/KyuKPkCbpmytEpH0k2zzeCb+sMWfXNMs7oXAkjLWRRv1QA9wW3kVeCFf6XEkfrz2fAYJ4e3BjuxXOEDMBL3RddTD7Tya1h+EzhJc3W/0pzx7uDwkdtqogYD7OKXTk/L5J7jfNA67k1G7q3QudAPjcv08C/5nP44X+HuXC1DMS97WHzr8dAXDQXvO+/h1W0nsIfHIVryauxIcQSbNe3gc2Qb6VcC6aWIn3aMloOdlbHoMD5W5z5sQdytn6gy155uK7Egx8sEIJfTv/Yu02DZ826BY3L/uCslyOwoF4K77XewzP75nDhbE3cEiYJQhkv6Vp2OUTbf+FXI7dx2vFLXNz9E4uLksh0SyG/2BrLqU6iIL5TkevrL8CIGTl8TDuYrUqNeNknXa59cAbevvekOT/sqCPDAObZ/YTr34up6PsAtdsbg+b+9fBO0Inmexpj7q+jZBESSGVp8uCUJgF+hwz5r+QKiBzs4MGkePyQHgfnd17jR4OykNi2GRp/KMI44WDs/RFIZlaxEPevj8BuGHxqXgWXr66EJV904dq7T7z6tQWMWP8Ol33bhaP2fqKvw4qo5t4OONG1F31CBMh3ajJ9Uf7NoaeFYOkoa77sGwOtEdkYGLqFxsjsgVkPloCQ9juokbvD8R41ICM4CXpmOvCuVR6c0+YPPQbKcNzwFn/Ov8b7XRZRdPI/8n34mqcZi8D2OD1YdMWVWmVPsEnLHujRj6PD0jNh88t8EB9+j8vL8un4Fgn45FqJ2wWLeFhhBwePOIALrC2wUWaQhh914OH34tEnFGnBzGlgs74EbaZoQYeeAxmITGTLxJt49spk8ngQjhOK7am3ohivTBSGY4L34F+XEB1yV6WmfcH8wFAbzeRD2OOEGhp03oXF199zifYMGNzVxxnFJhQ3ygdTO6tQ2Pc32k//A1WTW0H37RpqntUEdYsEYK7bWB5zW4LOD5uHrYs24qyln/nqTk/8K1QFAZUpMHnObd6GWjD1xW6wFtWCuWHWGDpDBt5HNaNA2i9MerYZHV5/J+mTQ7xp04edfx7yCe8Irvf5Dr4XgnjMfwVwNXUvrsrJZonUHK5xkWHHR9IwRcaH/pzOwo9tb7FZ04xGqohxnc0pTDx0DIRbmjl8cBPe/aEJb+TE4IB5Puys8MYXRXP5XbcVXP3bgzN6W3Di3o00OfkB1XmZwIQvRWQmf46Epayg07ge3yjYYnGVOr802U3O40yxtdsXxeymQ1nERj7ZXYkDtWG0ZJQtTNUYznEV+XDXsZHkq7fR2hpFvukqDUGb5WneYjH2XuaMN5e9gUVzq3hl2Sfs//YD9q9eCLXeC0nQYDzUpx/gpzoXaeEIR9zc2APpBs2oeg/I/kocC9hlYj9HYEX+BBid85N9yjNY8n49WqXuhtKno3DNpjUw73oZtW8PxuxRE2Cv1zA4OFkSbOdXUWXnHv7+9S3LKqTDCv3/aFPmHTwzMgUWyhNf+GABkxsiUeT6bMhY8pBaflTQoafO2DjxDWaf2AK27wSAJZBW/hKAaok3GHNdBVNeT+Zy5xYMlBqNjQb/YFROPccc28M3S8q49q4O5AZLY1FcKK9OeYaS+aPwOoZRZcBlWPZJCBqrc0HxKaJGty78muMOvV+fk7tRHguUVvBisX0cIZUBsQ3f+PWnWsiX3EBSZYpQHVuL5BfG84RWs8IjgpOBMdiSew7yxzqio7A3jF1uSIf/TQbPmWdop/BmaKnOY8MLV2HCDTm4KCUNVmpTIdjpGnkpF5H1VS1Yp+JLs8pDwVn8CzwZVkKKp0Tg9fVw6vMuoBwNAbAJqqNZdyQgxm81+V0ToVndPmg97Rdp2YVC16N2Tg/NIRmpGzS69hyO22QMz/QQUz4vwtTm3QDbvWlZcDKqXOtFwcVNHJxuA1b9BaT/TRbEiy/TsNhuvH3WCfau1GO5xoP0MNYLJEab4ozBBEw7uA3+3FGG1BVjQLtDB23f3mblMh1WvSRFcnIWMEPTDKb+O48Nxc1k4GoI931X8l3ZqRA+5KJbNLXgS401eR31wcmrq/FW7FzMndYMPalaIEGmoHs+ApqGd9L9C7eo8ek26ig7xq5L5ak78RnMDFfhevGJEFW2G8ImXGbXRHFyF51GBbOa2D5NhuPf1MGC2uO8apMDzXMwhKR+Gej3aybzz7kUlD6aV50I4+XTdPnsneHsGl+OXYuG/q9DBVJ2/8eCGE0eW4OoyvomdPsHwSgpT3zhrI4f1IXo4utj0NiqDK9HuMAbJw/027GI3ijcBxGdkbQiFfn5jdMwsMqJr+n74zlhUbDP6KCeubpsuaiEp+oDp+7JQzBLoCPJZ+i0iQYWn5sOjWdNIf3QVXS/O4MyLg3A6tHp/PB3EQybcZxM/thychrCpTc/6f4xGQgY2o/arcHYss4C//qnwf3QHvDON+GSn1855PAZ7glJhP3/xoDx2jYKkJ6P2QE1ID5nOZ8N+MLF31+iee5+Oq+Sg6PPtIOboDmoRPdzx/Xj7N6ykC7ouPHgU3XwTSzkw22neM8xJ+pyHMsF7YZwtLgdP+9zxGUvE0n+nBt02IbBrJYR0DbkMAryOjx8cjX+1JGCR/q32dF/DR4ZiIezLTI4Z8k/3N5YzWslEZtM1uKZlANgWz8daodcpLdInjIxgN9JXQPt7GZo6Y8G3V+mIL/FDpfdeEAjBSTgdmAQHVxmDWHP/+Ai4SOcV2PPyrN9mQXnwSHleNo4IQsKtEfCcINaMgm8R5JNL9DEcwIP/B6akUoH8kuu4YV7syg3cqg2VwXg0SJxmnEum+22/ePV3X0cNu8ZCz0XBZXp+1FxVhWc2aoOE+JUYSyPpKR+VZYruk6yfa+w2MqA19ftYdNF7mR76SsnF//jUzE6cM1zNzv3pdNs0VpsXPoShkv7Q3XBCXrhXEtdflN5iU4NXr1sBMv6w/D4+TweTBkBIl1W9LLPiwzERSDEz4f2qEhS9MN4TrVnWHpzPk5IXUXL7vhj/pmjeKqgAt9vnEe3H58kicxAUOrzgTkyMpDatwXX6e0h47AAUCzP4zWHR0DnpzZyU8/l6EYfjm2twaMbRgGoXIHnh89AQfJ0lC37wU3j2mjaoBP8UTpDgvN+QPcvX/hUrgsmt/ajPY+mwbleFF2gjtvfrmbtP9/56BFlzp8Uj/u/zKWOh0O5Zk4a7poXTu+2ttOc+I0g+8yT5veM4AbJDzxlVxaJikxCmfPTIXDAGfeM1+YYAVHe9Nmeb8S7QuSiG3hE5iT3PxjAweiz+GfPRBAe+QshRx5uv4uhxBkIJ/L14cfYC2z8aQ57OGvw5c8fuLBsAnzPVIcZNXYswYqY2ClFPtYncWrgRUzgE9TbkERnG1TJecAIxP5u4A/6PjA7LYsXCOpwYNw5KNtVwvu+vuK9O+RRbOU0Cu1QhvdTO/GqXwU1daewRk0zuSr10EY/PbQ4MgY+hh0Dw6oAzFTVheSDBbwoNwkOj9WHqOLTlPUwHXYtdKAnR8R5adVlumvYCeoa+jDy6mEa2DkMzb6Vo6dfND29mg0fZtjRGiVzyh+eRpG/H5HTeTEwvd4GJZeC4X7rYwp99QIFL0gOfX8IDYsXoWCdkCGe7KW/P1Xg0NczMNxOi1WNrkGZnzD/3TaCJ4sOOZehELhuUoB6P0UUmCkLF3bvoMZ5p+DsljGQ2zaGtcZ9I+HHWfTh4SeW32XILTiTMnYYQf3geNBanQZroty46HoWflrVztFb78LZtM20cY88DG+2J58PyvAh0Jc9r+hwzuiJvFf3Bry6VIpXGlZxue1EqmvfgdV5YmxyZhQYhB+jx4rT0aX3HXSyE6l0v8RJRRrcomsCpk/ngFbUcX5VpQFfrM+i2NOldH5bKlCnCC49UgLLPsTgtpQBGogxxknX1mKLkiTUbPgC6YonQBDtwOL9fjg/RZSnfF6OattiafHuubx+lAnY0VT49TGLmtIy6K1cJAg4iUNCezxqvVlOUT/UOWP5J05v7WUzCXMIX6UJAgfqwNmii/M2OYPNdgnMVq+ktbnZsLzmIqjfNecsPxFYohaF24758VnlyWSqYUo3K8bSK41YVg98C10pk6Eyu5K6q6QgnG2pMs6etjsZQPpxpM9pr8lp1U5OF+rDpXtvQslYVVgVqQ57NzVhsmUsnz+Uj68KN+Ls9mn8MqQO4m79gdId73jF5xCcUTYDdsoEY2BkIQouraPhP/bTai0XtOt0p1VRKthSbAqFF8rIBoRg488EHGfhy8sWpkD/ZlGc1eUESquXc0PXbXB6pQnLp00H6X9mcPx6IhxpjIURzqIk9tAZTqvp0SMRddqcuRS0t89Eo55gUHqkAvaKcoi+7njl0DN0vylHP57u5mHmu/DhpRk898wy3Oj2neUdRCHd5gw+U3WFC4VjeML5y7Dn/QxqVZMA+4SdvEapEpU75rP2WnH4+3gcOKseJI/eH5RQvR+LRpXBtAprqHD5icufncTGEm+891cWFOUvYHGpBUYE2VPhk0i8vuMT6D8bTvW7F2PNKmEQGgxlgdni8KA7l5OrZWnbzDF88ZYLOpdfQI0D0+mz9n5ccGc2z9l2BzbhWHB5HQNH4jOwNnk+ip/bwbdvqONl+oMNB77DLLFXZDrSHs/l6MOwVkVcOloKtrywxdkRk7H+ahjnC9jA8SR5rPsdAKLKvvRopRrYl0aA/MleaLA5CrDoE78NfAffQhZBQdMhslvhw/0zJtPWGWKgfOEADT/mi57TNEjMxAddWQpNu/aDjXcPVp0rokQDCYQLQyz+EAW/TkfCwWm/YduYVfxLbA1sbwxBnfgU/DDuAMXcSoUj9ePBIWwGzJ3pwaXqQ7uppwB/1ezjkXnH+KaZBG2yaqSN5+bw0XpBSB0oZce8ERTa+4U/eK/m/90ZjhHJpPaiR1TTk4KXSiJINl0SUu+o0ivR9+Cu9JfWCTygfZGTUedyC7nF9KLJTBd2LWwnJyUhyNSzZOnzM9H32U74W7oTdW9fhwCZdnqYW0ORLROh/notrRyjD7ZCp/h9SABcHTDBC6Yp4CCwh8szEkDaVBKWD5+P2ipjaeKHkVAlrcBSOzL4VsFscDIzhLP/LrDJPgfwSBug3OYT9MPxLbQO5fZl76PIM3cMPooQ5aXjK6BIegqoaDrQ6QNCtDjkI+kLWUByggJsmdJNSqJ7uCdOCkG7kW7mj4UnQUokbuBCZayKgvvUcXKINhxKfYXBLkUYfOU6f1F5xEedfODq5ZVUIpfGIqlNdLtakmbZKEPEBHm49iOXfl5Kp6sfk+iW+FnQeAz0bkofWD5MZtt6TZrJEjC69Ck4/F3Ld+fY8yxbWVa2TGKviCm8fu90CBuacxeNl1A2SwT2uJ3Dr3MHQXfRaxi33pICfr+ia/q23HZvEM/tM+RnqhcgvnsyWEz8SVduevKJk1V8M+ow67zewTF2iiwQ1g7uLk2sGynFaCkMp3q3UHayCx1YUsuZL+8jh7VjXfIxcJRt57XtMlC6swFehOrB4FRTuvKxkOdEmOB4rUB81X6ZV0xLQLOzTei3zgYMG7ZCiIsCfEyuQPPOClZIUcb/psykFbuXUuWNj/TFMhsu/nTHKfXGvK3XEIKjI/DOl15s0b5Bnf8dwq+FR9B9+ge6YRpEdzNXQ9/46TzBXBQiv1dQmed99k8x4LsWzSwR6w0njB2xt3gE6E03IPm0HPBMEoW3vZHoNlyY1pgMR7nrI8jZ6QH0yQZznsdiWKngx3MsxoGNpyCcF22GxWk29Om2Ic7Snw7VlzVpfMBfiP2xDae/U8CUqUX411QeUtvM4G1RNvSmacG0mrXk9SCAlTQdcXTQEoowc0c7/kQB/3RgSkEZ7vq3nwfW1UOsXyGG/7oPsVmH6drpgyS6X5Fqe7JY+5MEvNTfgJOOaOPcvf+w2zafDZc64rPej3Ru+EVWz33CDV9+4vnzOlCodZiPyB6m3hVqOO9oLgf9imSPDuTKvBI6cPArpGyfTN+t1GHDhXiS1NbktC1rsNa8joTF/dB7iNOmi/bCooV1kDtvCso3GoDS5iqWqtvCtiOfcMrBIxgZ44u16Wshqv0fGyZNoy8i68n8AkPDkTfQqeuMPjnT+EPWOd71RZoC3SpR+IYOtHmfIxHjECjQk4DVk4KgReEXeQpZYkNzLOzYKs5Wn95Dx3h1/hOTzn+jonmOjyCY6gqRuUY/H/hqjS9UNmC1fBkkbPlF37Zlcfz397hnPeG2MCnwKjyM2jl5WLrdD3Lu38NZftH88VEF+U+5TepVOvzC/C7LHZWB06Ff6OXlHsybsJ2fBrWTs/NWWH1yD5yRioBpntrY+LKREg/owMegVko+Xot1R/NwUdxlOCM6hy8H5+EKDUs4VhyDSy5d4zH5RiA//ytP+ReMP58Y8b2qXFr3MQ31SveBS3wMl6+x453zVNghQhbszingC/FVKF08nD8bX4OkqBUYOioJA8z+dxO3njzkWkB7kxEIHz1F4tIB9C3FgH4IqZHFyhb2ebCfI4J64aZ3J71+20C9WxXAVm0surcsgs47r/jM7FpoDroL1mdm0Mdj1nTZVxz6pe5CedgoSH35nN37zdiwlmFHbAmYbLTkuxMOoYtZCw2s2gGXnEej5XeEhwXPMa3iFzQcRJL5E4SjUk9QcvgjkJgSysZNc+mIoQpv15UE8f4E3qZ3EsKlLSDfJ5meyNRwVgfj2blPwMBoH5+y7KLqtuGw5Z4yfVrlSvEjtHHeiVgU8tvD9W1qfKmlm8vP3KRNDe+53HskrJb4Bkv/eJHs5QO02JX4ifpnFnv2EX+Pdcf5E0dTwoFJkC5A4CT4hM8muaL0p33UO/YIasodhfghF7v2IZ7zlz6nIqvFbGktAd/ttNDjiwMMdMiS684a8DbdxKfW9PN1643Y+XEq9oVtgI+KI2Gsbx673xfg8B9j8cUXIzrin8kVm2P50rkxuNHFDNqjP2JEsibUeXyEbPuj1HAjHsRtdXHimn+0d/seSmjW4p9NfThykQhEvB4HXw2ucGqGGsUFrYWHNdUgllaAO+qlsb32E63NHIZNuefgcJIavAsSYofisbxy0ikSnniOg2c38sF1k7F5wlT42jALrsrbQvZDRRitZAmbc87RaoUriN7ibL13yGm/VENEfBSbjp5MIW6TeHC0GNzo/c3N6qu5z90MX73fSUEHF0L7gfW84PgqzAqzATG1PpBaogGn+8r447XTcF35EsYdSOPMO29oX1EVzy4xRr1IO1bs+UZ1H8zgr+AmXN8QyG9C9Sk37BKNXKWHWQFPuMXPn+10u+HtFAcOL9SEi+fCQfObBMrCV3JLe4F7+o9hw6iz6BEpALaB72nOSVeKWTgFLOrf85Ika7aInQJm0Zcw5+pabnjwE+JmyYNW4STaUzqOtyaPggPx5qwt3UA7tMWhS+ULuzUNUlmmPMiFf4TbBuvwwb5yWnBAEpasWoBdK1di47f7KL73GPwSe8FaR46worQpqe0v5aXT6+Fe7Vi4SsWg6GJF0tdWUm96CcnLroepl3eQkZgLZzkIU0bSU9jkLQW9Px3ZHObTNw9VflstxyXLXdFoyiSynWYPSgkbIX7SEJPchsOxpvGcvqOJknUfk1f8aTJUaqO4jy9Y3ms6+IvtRau1VrjBfQqMOpTMp58Ycsf+Upz+ehsfNa4El6PZcLBmBTXrHqXQBVGQ8nc8vKUX9Ex9N5y/0UGbbDuGPPI7XBXrh/X3ivBi2wh0GNEIbxsngG7/Ffp17h1mtWZg9MNJMHJv4xD7rWnj9RI0yq3kk6WOGNxlDBtVR3HX881wbf1u+HFnIwWu0KWn+iUUG3EadYKHcZ9pL1i3KIHaxF10/WoZ7tyoSTvOllPtYBa8EiyiGet1IWp2C2u0HaS1MTLwRD2Jshxukp+IHVZukMcrRU0gFCZLWTsicd/AZvZ7o0MPvJQgy0sKZ3kXsKxmGspcSoSkXfb46tFLWux+n01Ml9Cpg9lg4krQPCsa64QncP3ue2STJs6+TdP5cfUW2tJMsOqaJ249HEu5tTNgf9suzmjQ4vfLj+Pkddc5M6SHp51IgmTBTJb/0g1is3azdzuA8aebKJklSaU/S+hpaz6K2ZfxZp/5cLFwAOdKRsHtQCmWuCsA8Tkn8fjTDnrQ8IF2tm3AipZRbAKVMHVnPbhfPQoevto0NlAXzPMvQJCqMDw+S7z8hjw/6tzICoYeGL3hIYsZzmC18AZwyFEClQePMMSkgtTfBqPWn0S2zR5JJvuqYemw5zRLvoTXLliFSYJjoPJxP818XQ5n26PZTKyUi2/vRNPm1fypdzzd0WmGpFu2ILBGCp5YrOGi4mtodKGJulW1eY11Iut07gOfi1dxfMIPviDezsb7h8EpcgAFKSKZG+2U2NoN6BSBoTFWZOldg1ZBXnzirTW1VAlD1ZEpUNvzkNP+VEGdjwNvL2hjPddkiBq0pPjriJUX7+EzEX1wjJEl5yYFEioy5dn4hmfteU1CMmpg4Hkc2ppcuU8klpKnGEDvsFxY51MJcXcbMNYigacrDTm8lDL/rGxAiTwX1FAWwCqN4RDXepBOFAaSs04Q+ukJ4MhMUf7Ju9gjMBgaTMrxj44yf/0gBWsEd4L90un8dmU1qxRLUNXeQWi9d5kHlFaxdLUXtFQ/Bc3ZGlCuF48aZhuo6aoTn7EepP2X5OjTs0KKLh2ad4hg8xPiNElaEl6ECeLlpmboSgOM/W6J/4LlsLXVDifNl8PykjJID6wC58GxIC72AW3nvyT5K04stkkD89Wz0EXTml+cCKJ5p0V4Z8V6uKOjB7sjXUHpHfCRpx6k57QTc9zMuMmrgUxHLyN3MUWc8fw/0EMLuDozDy/5m3DEqU34yf0HBf++welJIbB3ths2xewBK9uH+G2XBgSUPWD1dQvgzaVj/DNRguYO6GCVmCAn1vqzy+Z8/qG/liUlTMEyT4b0R7myZMN92FoqRI2kRQKdZ2lZXzIuz32CTYNXUXmWBJxd8gb33yrgxhBPLEhTA/kDm2GdfyJ6WHzD6nPLOC9uHQ8bVITimjugvn8AZJ/MQL+TetC2oZUyVP141A9veG15Af4+TWNJHSPQrz0EJeLR5LzQjT9lRwG+d8SidBko0d7CJ6JC6YviErAqMoUdN0I4N7iGz284Qql1N6nigQgn9LxhqWs9vD1vJ47edZii8yZATXowabi/oodD3Pqe+ZK9a+7SqMAbMKB1A+cbeuEaU3WMyhwD4n8fgNWBH7B/7EV8f08LT6luh/t/fkBzrz121Rryu+w2Nj5hDNZvlGHr0zo8s3gRuQU/Yvc5gjzF0wQ9TizGvqUJ5OW1DsYmjoFJuvdpoesxXq3wCW+fOIcjNhaBb+gZnJSnidPyC8Bd4R4Orh8DVeIeXLPsN80+v5BVisYg5pjQYQNX9m86BM9bz8PspY2UamYBE6IWo5nlc9rJ3aiUEEzppolIa0pgjOZ38tP1o4ljnVFmuiTU+V7lsfPioEm/DeoS0ilO5hZ1y+4gp3G6JPb3Lh9f8YEHSvXg9s8G1tjtA5UaNuiVuB5PKM+nY/njYeG7CPq08gQ8y+ilwW0msOZgI+fPnEf+fz+jw/oeHKmyAX7MKaEBpzLobBdjO50x2Co7DZ5V/GUZNQFU0//JQctdeFnceoj2/wVaVh70cdxKTL5nBs/cNOB+sQasrTPlTQs24rqMFJad8YpSJtyg/wRPoArcgoAHUVAVJg8hq5iXl1nzLf98rDw4gya6nKTvFXO4u1SLT9fcQGHZ/71ByYOe1FOo2dYNe7PnQPgEcfDJn0vclUXfbqVi/MBa1ilvRLEbmtA6YSltXJRNZ68a8OcDhBEzK8k/qpVFUtSxPtAI8kYtA+93BDoWXvhr22hYvTCKovyv4Eefr1yZUI9vp+iA10UV/oYnWXecAgSWjwJjucX0hePB7kUP6h6+hXVPdBmmR0KjqD3MFovDv6+0YHrzVVq0L51u7hnDGp0OOFXOG+5Xy0PQUNa2f15AGSHfwKZQBWabSMDyuV6o1rAAmpTE8Vh8AAPN5WjfQs4LnEt9y/+jyV9NwHOeFWFvHMfIBoLR/W6uCJGG7ZYzwTT6Cm5ZK8bKacd57s1hYP2hhb6XLKDAPZYYcug92F3MJNVLOSiZMQfkVWxgKyrgaHtlkDW2o1fLUsnosBQcuJOKPZXiMCeyDDqCBdEjth9y/M1x+C5zcHgwHiIUR/Dg1iyStPvGestLKffHDgifv4OaFfOhq2kvBA65a87fbkpYc5pCcBjaK3ZimNUJ2KIvS3av79P9mMm85OtNPNdnAt83eIJT0FvUW5AJX5d+o0jLKu7sukP+umqwaNgtOOiii7duzYAxDT/44JzVvOF1LB0YlwqW/YGQE/uFJ93qho2aA5SZ8p1j7bRh8bVTdFn6GP+p9cOApBn0yr+O5X430rn9FRTqa0sLX3TyuBeKEGwhgjl3z+KhpfqkrBNE88vvsfQ6a5r4sIHXZI6g8rv6sFbPAswcdmDV5VJwvWSP41x30nZeix6Bufj9zBvK+vmYVuvZYKP/JAgUq0Dtui34xEUTrx86iTU24rDQdiRJt97nh05JwM7xPFFyOiQ6r0NZ6YXQ3eUGOG0d5iSYs1i9G18aVMZ92j7cPqEade3koXzFAK63yOCEtqO0M/A8hd7LBeEd70Di4iqqmyRPTuLz+eLQPn+8s4Hi9w/xfpU23ZjQSqeshPHghXBy6VPA6sgWvLJwGU0bBAgCbRbobaOA3BZUPraTo9SWU/zW15zyegv8tkig4z9Ecdb+sfB96j9UaleHk09fwvZ35+DYkd3gHJoA5z9cwrsjI8B5cRSfilMGSVk/3HluMg6yBUZ8+DnETH9efXUxvpOVgPCsmTxQeJk/9qjAec8IOnh6KfgvNeB1xtLs6rgUzOWaofORGtV/mECDNw3Rd5UstMYvoPAzx/HvyWcgkp9L/70pg+pRUfx0iyld3mKGS622glHSRCh7P421K5YM1WklnRrjyxPX7gKHA9fgXUsKX3N5z5nVL3mdlgjkdtTTTIkaeGwTD84is1iiZjtseDGVrx/dCdMcd2JPijCFu0jDjKZsSgvcCndF/CBxxzVorbjFPafyaDXZkr3MNHr3eiouGq0CPiZpmH8xB9tCUyBvUAULOvrR8uMSXOEehK/Tf8LW3DMgJaQKK3dK4zcrB94trcRKktks8i4dy4f5g0tjGtSff4zmZf+wZ7843FR4S1iuTcsk67D8iSGOcSmguvEdpPXzMfssCIEffol0sF4G2rbmQsG3s7BypCkLHRmPk1wuUOMJbT7C30AhdxOdDAWOb5SHW9E9SPNmQU5cDP5U2kLtK43hytMrGLwzC/IvfKHDpdvg70tdcFE3473P6iB5qx0+ftgPmx3ToX0o+8y8lI3xpb/wdP53mlKj+v92/3dj0nuedeUx/x1fz3fLi6DrYiEvySxiLJHjD4fO4a4Nu8hsiJtFi79Snssiun7bBwLuIoRPrCfvlA48qbIOj9r+xvNOhRy43RzcR9TCDjQmq7Cd9Av7eV9kM6VOlYKy/yopZE0jr3eQBjsrdYgKS+QPS02w7rQQxVz/gYNbVkD43e1YOz8WpOZfgU7V2Sw3UR/eTFDiBUpVqChUjku89OGkdRhYCU9nMoqDz2P2o75wLchflAE3G4Dc/x5A1npDUM3bSGOWz+FAmyv8N7qO/av+4eaHPyBGUgmgtJpCRYtppGMYf5TXo35/BfLyHyTPlaU8Vekeb7BaiX1do2Du0XcwQsGdBscM4Eu5Znw7PoOqJk4Agfpr0CDaiBKxv/Fb2wj4sUsWQozV+O+WDqoaIQpnvvXz1uV1gPl1IP4bedrwBlIXHQXJ/9aD26PblPHOm04qZEHQZH9YLpIPA1dWYHB6KpQ/OsO71U1gQS1i8ekumnbagfYVvgJjn5cgFPeLuiPNYdXzGNBWMwG8Kg3+3f4Mr0dDy6GPFGkbg48+fOHlH/bQRPmFbDvkOKUeApSUqAsWSl9ocNgVnP2lBzIal3C87BoKr34AQd3rAVdfZBfPb/RWUhhSzs7ET95qGDPNm6umhaFMxjd+kPqEIiJTYU3oeZZzU8W8E1JwwWgshg7bwFHDP1HxSTsIH7mNi4yMoc7BGUS2ScPf8ipUTtCBfpX5GPprHodKenC24zSu3X2Ovpzx4d6t70BWNAOmV9bhUxSFQrN1LNtpweGaDeT7WgnK9Cdy9aAPH7t3hdc2zeV7jp/xz3BNyDb7DYH69ugan8bvVazQO3MNrRH+Ae1V62lY1yBVnw7h5wEiIP/OkhdsK8Bchd/g/SsZsgO/8ojCMxj++y5edoiAJ553aZuiAqhI+VJQ5XPOLMkghWY5iqwWIqH2sfzRtZL9TnvBT7ersL9rLDRFf4NiM0+At6Xgo6AMfi3a4CRylmL3CPLx8Al8r2cD5G4WApubU3jXbWdeJHCVA4MTMPXrClq+RIsHZt9jYelovh9qjWNW6MLwtHuU7hfNcfGRaMg1vGuUKHWtGuQqSTu83t3DW7R+UUu3HJhtdyPHrrP4VPceze6dTSkx9rQ4+QkEZEWRUtlRbvHwotf/VKGjzwxePbyFfs+CofOrJXGsAi54vZHvXNuK9btlhzK+JOn0TIEdyc9wilIi/FbOhSc3FgLFDXllWTOOPthPrfeI8xL/0Jf7avDa2g0CuxNI7dNVdtJ8AAW5J8HgURcuVhTH1e4+IC2oCE1PJ4HNVhOyW7KMHIuG86ht+tT4JA7KJs6l6YbHIe63GLVXjoZzQvpwvTGPY0/Jo7UtwBbPSbQsdC5WFYjBzSVGKFtnADYSZ7heWQ2aHbr4z6cleNOxAIf3TaZ5P61xSvdpLNLUBIn6H3w4dBxdXSwAWxf9Ac+cGfwn/RfJR6zDvjYdlsBpFB4uT1ZiHqCdcxMV5Awg7Zoj3D6wHSxOnEK3MRP50KdrVNWWSj3fpmJD1j1SSFOmTbtkQPZoEmwyGMpe0W/Y+HIHvFQJ5FFjTpDlLWV22GfEIWOFYaSAFhwVT+Id1v30Ofo6OwSN4oZJl/i2XDjcLymkqnOAy57L8rRgQ1i8uAp3ZQ3HhvEZcOVsFhikNNBBq5N87+omHLZBjBduekGR86XAr+AbbN97HwJzJXm3wliWS5hN41mS6o4q4mP5BHiu0UGCW3TB9/oe1hkRSkYjV5CxTQusDEpGJc19uOG/8yCyIoNRsYVrnQ3hjn0bTW7qhyI9XbjVvICb281h76SNIHa+nA7ckiLL1vPsbagAb9Mno5/xNpR77IViuVUgJfeDCn5q0YPTlvzgej6+Se1DGcPhUFMlTJFWdehoMIqdb7oN+foCDN9hhAu+z+frpQ5DkCJ4pSwIV1te0D4ZR9I6ZcNaYQMQoNKM8n8byWL4MwiNP4cbq56g1P2JMMF9Jv4Ky4R/KW5QdE2CcurlIcN3K3vXZ8LnfzNp7+0APGKuBbEeAvhzoTlq7k6gUvWnMLB3Ncy2ziZ5u1bwZEtoSN+DZ3cPg1M738Bcu4/wcc9wGGFZA0fLssjG9TPYHoxDKdkw2DjSCO4KjoBRPqmQG2WL88+fh8mXDlH0rTe0xX8S3SoxoA2+UnhYYRn4eihA2jYFkvpwGSysA9EOU8G/tZjOCj3kHHU9OuVng9Wmt/By6wyomLYF7n28QBc+mFPYn6kU2/WUkzP3kU1fJx8eG0Z3QgTRPcAcdONUuC5Skc4LroKc3DDarPwdIlwGwG37VWyvmgu/V42gEZnqQIVxsD7dlCIPfMOwc8q857gcbLxdSGOcxkL++vVsbXmIZXfLw8T6YxhtWE9x6dugOfUG+FYsop5QBreoKDaNPwK5U8Np8p8xUD3jHFvHisOKACe+uaYMslLSyKZlDTwyC4K16dfowv4cWL5QBYp6luBt0fe0xKCbdm8VpQVHU1B2O5FHpDa8aYyCDcOWcILWFIi7aEHrolKw0c2VuxPe8CfniUPZvZ+rnj+FynH3yLXUja2yJsAzwfl8JuMzvnT5hlpvSiBtTh96/C2litJa2O+9BCE5FQdipkChfQrt1XdGX+cRXLjPnIzt5/NqmyyU1Wsin4g2FAnYQFlPDGCLrzbKvnGBSWeX4p9d3pgSL4C6JxzBdWY53FQU53ClaxBqOhzmb9+FkxKW07S5XjwvS5K6TJpQZNEb1tJKxv8eq8PymlAsejse9usMR/cIEwiKrqZZOiMwd8EHWKRqzUenx/D2t0ZocngcfxARhOgN1rx3zgpMiLzBehcc0cOtlo+GSfINRQEcfUaD9rYpUe9CEcjf2U+hFybwEp+xtE94Cl4Seok3tWrok9pf+twjx/3r3uLOXcJQ80aPjKef4RfrXVHkIUONdz0ssLvCnL4QlGs2gN4rR5bfqAq/TxTyUCOQoO9n9plzCcInT+TDgkXgfXQeFaa+4W79h+xrZQj936RgcncfGdm8pTAjZTpxUAWz1STJToPwzVM32DXrCr2VU4NJtqEsPz52qI9mUNGVPn62/z5s3OTPGe3buWOtDysu1obIj2KQsf0Cmy6yoLVGx+lRnRDOKdbjpu6LPOmMMU17MhoW62yjJ2qS4Lu7F6e/ucdu7zz4b7g4n/N5xR8s4qhSsQUFFTs4du0K9HKQA9PxYqRz8R4H/u6D2X8ywSjACw76eIOjhBOus9EAqYxl0KfAIHRMFW+4V8GKK+KouK6CRs+7DCJTn1NbvitK3btOQdWMTQWCoOK7BzwmqnKvwn+Ueb6D1k+NZrnwAHxdKYSnTMbg19zfXHLeAsTm+fC0fj8QPPucrdIU8ZPXAnpgcIvG72+CcKV0/v0tkQXLRGHjFUsu7wsCE5XleP20CtskrcObZm6Qor0UqsTOIEyRxIojU2HC+dtsIfoGphZthxcaS3lslyfVl5jjdKlEKnn9BW8W9cL41nEg7VRAOzLng0njcEpaLMt+jd6ct28Lty6tweqY2xQj5wIqD8QgKVKGH8j14+GOsdCeOLSfVtVi6bvv4JDwfxSadzgWXhvH70GJMkJGiMgKGSlbKaLSUlEoRYtKC0lpi6SSikhGKSRJIiq0lNJG/YyIUERRiTJe79/PdZ5zzn2e+3t/Ptf1mMAlCSO2HD+P9o20gAHnYfjayR/KngXi9u3xbN4WBdkh0zFvRhq1Nxvi9rXFvHOiOixR3MZiBUmk0/waZ47fiZqXhbBrqg27ffXgVZp/0UfYjG/FjIXNVo9JJLYHzEJfkcpAA+0YKEVNu3Ro7G3lnermdCtwN0lGaMEwn5EQtnEqaJg+RuttX0Bkpy2nNYpxWPI+ctL7jl6XM/lLqgT8svDj709XwXSHIhRc04IWB25RwAl3rJ59nA9vc6aeP76s94lgR0s1VCun8afA7zj5jh9Z/FsNd8IY2xcvwmlHP/LDFXPo3RwDSCo7CK9r/7H9jWc0/nAKd7pOwywRE7qyZRJVezmCev8xdvunBhpXlDlP/DY53DwFwnrvaL3UXx6s82DLd0fRI3c47jc+DWYoBjZj9Fl64nv4GDEOAqzmcJNRBm64uwfGGP9AchrNzRpi7D5TBRYv2k2LpqrB3AlDdV6vR7/U5OCziTSPumrLTUG6cORvGHv9UIH2Y+mcMe8PvdhWg87aJbDpqB5qjPZna49fWLGzE+uCToOAiyK4664DWdlTHH4rHjb1b8WbItZoi7tw6RxzdPPcBPlKwH8NRoJvYBCoVN3gK9/Gonf2fnq5Tx2uLc4kjdCndDomHX5r6+DeWYagvecd9mXV48n5a9DlpTo2fZqII3/Uo4r9aFgoKIsX06+xdpEBmEoTfFT9ghWvF1L3mR/cMe8mPy04CUtGL4BVkTdo+v0ieGFhBCvc/Kh3/k2+rzQDNxrJc7WhCwfn1OKyTYFw28QWs3UDab6SFLg6r4JjCR/ZPjeIfU9bsMMrZSiomzg00x3QftEdejziE59PZljn58iv1s1Cl0kHOO3YCz6vsYbFFyTx8ijCvffd4eOHJu6qGQuTyxVhsn8evfQd4LpbcTzvdg31GI3jkZdtIc71Keq7feaFf4Tgmcps6DMSII3h9+CgdREVfOoFl/BNlJCVjg9vuUHetRTa/ncSdGv+4dIiB3K3zaGSCT34pGsebp6/Hsf3afOyAXuoqv3M+6+KwansCEgbMOBnQhLY2SrPWckH+f1eZZx1t52OZp+hw5sdqe2bNKySE8QUMTnad2E3u4ku5tIQCSjaMIarM5eS6PnlKPDUgS9ITYaPOg40UiqXq1495VcBY1nN6A45akhjjstLPOXazDcPZrPiemkIt3CAxSZqoF1nABOa9+CCc2fg1rg3tPFJA/259RMkBq/x2y9ioFLsxDMVRWBH8SeW8WvlSYZT2ackkbMrxpGHjyn8udGIV3xVYLmvP21JF2NzXAhXL+7ALd5R+FPlBdCbNoT41VD53JNjxERBXEMRzdLV6ZFMG3X86GOtJQ9Z3/gJ7Yk3hUUZZ7BN4gRfPDQeqhyJww/34Yh1srAsLI5Va6xJ8vUY+Gk8AjvP3kOJyI30dLYk5M0x5uUrJ4O0lReYPlQBN4nN4HduPNkHCMPWz0th+ORevv5LHtD0BG0diIZNyoos/aaXS5pnwFS19TRl5ycut1syxDQe2P9VCq70H6bX6/7S25pynlMO9DtVlIJrLHBsixGumhHDFrrpOCVHFR7LLob5Sy3ZbbCFC8Pm4YOsc6w9qojeZz2AyTOFqAjGQVeFNKi8M6Yf5T1w4NwQVxiEkO2CNnxb2ggWLelQNvcbR24NBO9H1lDS9x6tUnrh+EExLKkibHtzHKLMz/IrF2/w6d2DQX2e8OmNATjN9UQzzRVwoG4Mf9DeAtUOXTBTazS+8JOg7vxPXJfmTxKxVhAGspAYuoJLHs8AuYZ0ak5MozU0GkKG+0C3ZBssvTCfsk6IQkz6ArrqdBJW0ips2SEARsbv8WZ9Cx2/GkBHrufQ+IivOFJbExxfaPDq71nkTetw9E8vFDs8jx/tv4dTMlNo2elOqD4jxY0fZeDGtJPo9PA5GEko0crUAZIw+8UKUx1JIdeQswJ0yM7anw7PmAByi3zB08GELN1jIUZgJO1JyeO96z6h+92VEBuvw3aHQtFl4lgoOlvCWxLCKWnMAWhKN0fDVc08X70FnLZNJf1Wc1wfvQ03LhkFVW8i+c6iQI665gtfXsThCrkjwKf8oNf2M3yp1eE+6xb8OcIQYm6bsOTAb540Zz5fV+vi7NQC1NjhgSk/TlLaL2leLmICt/NFQEJ6N2a7fcJP87dC8IlD8O/AChyWGoYTdIpp7wQRSJ3jDqsGRGHt1RlksWEVHwt5Th6fjVnqqhm4l8tTQGUZPHbr5kyF4ax+1wI6b+nx5P+e0stAIdA1LKf2rcZktbCPC4zW0003eZ6hbU5i6mrgqjjU91tUoWJqGodH9rBRTy4v3eVIXlfU4VdVC323r8a6kHGg3xBMtT/LcI+VEW0f/hY3SU9DTGpAIaNhfCvjKYwJOsl5P9QhXl+a6zXaqSbMCH5ddKCulOm4LLWWbiy1ALuIw3Cm/gC3lupCvPVSMtZ0pvj0n2iluZTWa2+ld1IDXPhrORq1fGb7+M/8IGAK9EXu4xHbDDFr/hTIqJhKGcMPcLruD1S4ag0jZlhTj4MGhbRLQOKFFpap/EluKiaw5O1faEpbwbuPNsBcZV+wfLUI6mvk8XauBiydsAvmTfsO2wy/s7GSNtY+ayejBUqYddcQQwRMoF1ABhRLzSG6OgnKkg+BxGtf/l1mBcYW2bjUdyvErteHe/2i1Bo2DHRcVOFBdBPJzBeEb1eROn9fwI2rlNBlzzSWW9FCW/YlQGHRTT6hrAuq01rgT+JLnCv+HFrBhHfhdfJu6sHqt454MmY2DLPy5OrGETDu2n2Ms5BBemUKF+6JcymNhGZdRQrPUCetOR0072895Qaqw8cJdnTG4yTYfxZBgQUfabC0mERT8+lk7y6ulpyF1UP+EtqjCt9+b2WPwwVY8vwzhkY10/6jBzHffwrXLFiEBQlr4TfdJ8epEmBgOsD2F8IA3pXT7Reh8MT3NTeIimNV/DQSWcLodVeCf5Ap/B7eAcITxqJM8XMy+E8XJIbt50dZC/jCw2qI+t3One+6sHycFmjdFOdZK4buolHM3WsfQn+xCfqsXYevS96T8Zx/PC8gGf4WDYPn89Ox9pAepLQ2wWHVd3jvwE4IWGlE3aQL26TUaYGSB9n9BzDiohyq+W3Da88nU2pHDAZomIFUZB965GxGqeLl2B44CiPGSsIHx1lcF+lFnuqlYBeZzMufXadFMfd4k8cx9jo4hur+3mZIkIWBAjuofjGdNcLauVzOmDfXFLHpl35oeVSL1aXpoPh8HJQEWsPs5lc418QHIk+Hk8TWfBx8OhkGWm6AmfEurLyYxj3WEWS5VgeCz1rC6jgl+G2XxOENDvhmhy9HVNzBt+c38hPXIR7ur+M4YSv4XFRE1Rv+cMj7Dlr62Z+n9thATa0zW/4aA9Mv1/OG/qu8p38Y9N2u4mliY3jDkjQKsVqAWuft6W14FavMjeR49Zd4SCeD/sqpQc66HP7zVwHfC/bjSYtoetOZA49vdXF5wiLektwKCodd8I64HkzPriUOmAt+V9+R1KNBetcTipPjjChe3IRShhPlptqweYsInHy0AtzWXALbBcM4q/8cHxY5w7PEFqOdtQuIXpRAK++VmEmSsGlBOsbL/yRNDSCNLwdgpGcLCW//jrLTMulg0F7M8nHFhiZN6H8nw8kbd+Cn492s611DZUvW0XQlMVhx3WLotzUc5CUC4O5oUahwnQX/lQ/wiMwivnN8FY563kzGr/VZZ90Behbhj2arnbnlsDqcqr6HH18ZgZfVEr4fsJYaFS3o4AEnrpzrjXi4Bo9vFsDGQ6ZwKMMXVRIFyGD9FpazTeBTfVI8bOVfHPH7NHc1SqBQ32V2T5OH6+NsuCt/K16ZtRCPLPZlg9owvLxzHUyJFeE9cYOYO+Ucxbhrg5SJCpxMKAHvt+6YMLiI6t5vYpGaD/z9xDz0lIoghbnF7J80Dm6N/QhFiX5wPPYIVIdehpuzRsCPEh/WjNbG6zcf8EPBaLbqFYfbfjrs09aGdzcm4tpTqRxfcA/9+6YwSc6D1WdbocZ/AdDVSeAMulCp7s1ySy24bakZ9R9ZwwJ6HeT36DdvXlRJoXr9/KRHES4cXQMV1Rfwd3YZGtreQKVMB1z9Rxkum5Ri/782vlVuCTMvAkidu0A3XvtT6Q+GXy5PacOTNVSSKgz3i66Cs6cWTPvTTIdVTSDLwoZmdcST2ik1KF97km3O++Nv3TEcEhzCWat9MG+FDpDIRJhZvJV+91iT81w9KrQr5WzF1eyWH0YR5zpg0odcnCdvxGIbJEHQMZaWix+AqQ0b0GHjfDikOgMnbtACv78n+ewyRbYWTaEJsdpQqj2U04HnYLXLSBI+wFgwT5WTvp/GnE4zSNu2hFJsf2G62AQQMk/j/B9bQO98Dk5SnsXnL+pypnwfPF0lSZflF+LMyDmYdcsQXN+/YO+6RLI6O5Ui/5PlFskdIJB5lc9azsRp086C4MtVrGFsBTek/EB2ejWNOdZHLzkVhM5LU5zsGBSsvoSRg3Hw3nkx2anIg/rXeogWHcV/7l3laYUTYVrQY5Lby2g/OxeDHffg18NHaP1eIRid/g8Spo7mccdLSLnxIUd/+Yz/5QeR+fRa1PhXS5Ube0hojBjc9hWD0Jtd1Cs/jEouWcI0dQ+S3e8Lu0Pq+MVZD6i/NY4/jJAHn9jZ+LnjPfuP7aLmvGR6ryXNKz+uYZk1j7lFyIQsVptQw1OEZpsKCnzZTTtnrSVHxxV81KKCNvFPrKiRphqjQPK0n0lHouQhqqqT+pMjOKlUEtbzBQ4+4Mfedg2geiURu4bPwfEnjrLIOHM4+VYP3ypl0a8rubiosJ/99tuzdFcYBt+oQH2fKLy/35Z9CtTAe8pa2mN9gHbobgJH+wGYfCWHHjsnAH3MheSBLDgrl85h/wTg6+VmHNnygf92yuCzEQ/Be6UAuGTegZ7viqScEwAhyQ3kdn8CbJH4BEpqRZzVeQe8j4/HDD1hwoNHUMKyHxdUbiH54nP8eoY5fL8gg6o1UzhlghZo/61n4f3bQEx5OJwcmYqGK+Jw9KFG8FMH+Gi+iWQfTmD/3sewbo4a7L/ZDD4hASwYgdA6lAtBbzaxZJYUqIrNwg/FEdgveopfZKzEN4aXSEbwHh4Yu4MGjI0gWT8UCzyEQffZZyQdYz4Yn40BTXJQnvET0i+UwuekZJY5GgLiL5bju/9GwcGd7+iOUSIYz3wPCcKnaYBbIbzFiDqMfLk12Ik3Se+kFzMJ3sYZc7jWC77924zLgnW4cuRJXFvUSpeLTTggJQEfLYjh2RmCoCnZgzsNA1jgiinLDhTBDHgL3RN2wghxbTB/PMRre7v5ysRJsPRdOOSNreaOFlH8Om4rtUy2JV2nVpBpOME7AkPpr0wrXfkhCIWhOTTx+R6sKAgj7/JT+MLfnO7aEJY+WYo6rq8RVebS0oKJMEZADvxn6+Dy95L0YaYILxBaATkTaiFQ/gQGTZlLe732gv94K4j+vphjDu2F8KZqSIlrYIORY7H8zy7SOWXI6lpH2URAj+9JIMzvCqK16x/TwQWjwbNeG6QnmvMSOzHwkLkMlgtewHOegg/uaYJ5kjnuXAgY6PyB6joDyCo7k3cPnsC5Fwvxx8a3aGSoS86eFgCDY0BLfzi/1L4Ick774fizt5j06A+a3rUn2wPiYHTvO+74MwIuJy/jk+mzaYfDIozoEoKT95RQ4+UOvNC8Fz+fM4C45ZP4uJM6DDhc4/6Z5ui/IQXpSxnoeveiwvEMbs5TQbddq8GzNxYynw0DcaN4sM26D0+3zIAvAQlDDWgHS94fohT3HlAPfsCH5hbR535JsHXcx3dTD1D/sEEUaW9l/SRrenzzNW6OzyDNdR5Q6a/EBe6WcGA4UGr5NljxXIF+l+qAjOBpGJf0nLt3WxA3PMYjzRK8eb419G0fwFVTZNHHq4FWBs+k5K1xhKkdbBzmCdtL+9ncTp01702E+U+PwR83PbqTXYSCradBV3UVRugLgcK07aByWZMcs0JAdpw+mGxKobxRV/BS6BKOWZdF2yQa8XqTB8tZjKI3ygYkZfcRBsNUgaVucan2fVpW9Yn2zErHaVe+c4fVLtSPTMeQN7tw97wU9J2iARvuuIO7+lH6/VEWPCyd0O97Lv85d5UstmjDvkUCeG/GaDieOQXUctr4r0Y7zp0jSDvSjEnLTJJ+pshzZuhm0nmdSpuHv+L3ZcbwfM8GSnX+hMruInhp/xNIvrKLG+0D4MEhT0y84Yq+h96jgo8hlPn9w8rHL0nqbgdNuP8Z3e6Vc9VbQQov6aS72algsKUfuuoloOlpF9rvS4NFSw7ySjsR0ipQhCjTOkyx9KBRqyvxteJl/t45HPxra2knmVH0jMs8unU3tkYtxMbLO+mP8DEq9r6B61LVQGGlEYzaPpNOBUfywRQxnhT9HK5FlWHMMzk4rXoex/nk0K9hg7BeZATYDA5C0Vsd8pqmCFbHzWBrgAF1CCmjeUEXK837Rlae72mhlxDsSbIDuXOTIMhLAA5la4NATA1MO/WGtgocpI4v7pyyxhDvLNGGtGk5gHIZEHXsG9Uri5F671IOO8W01GuAzkwvg0gtF2otNQCd5vFcEyYIatbW+FZPFnbmb4HrLlW43k2Bt4+1hupRzWxaJg2zRm4CgSvZJLL+JNbFD3m5vAbYXrHhqCOBsHzjROgsOw4FX0dD8Th/PDn+AtsYTYUVHvmsc+sLxDeGc6V9HcWIivK3SkH4+E0K5ozqxkHnQRTacYFdlF6To605VD6RQp3peeRncRNtXqVj3k4ziJIVwY+9t/G3ZB1bO66l8rKlsHPjNVIVFOXtZUvAcoMkP7FmOOL3A0/clQVc6IZbr1tA87kWurxOjSXl11FthhUeasvHYxOlITcgBrZazMK8Ax9AsTiJH975TFr8Ds6zMCm8aKWZ5RPoZrAMXCkqBlEPDVKbsBmUCr7C1s2fOERCAd+6LONlj7/zY78o9BkQHpppPTzulwdujWgkTdHH8EV0kGh5HpTYO5LNGC/SWiuEaTXCsHN7N0fnvcfISY/QOXYb6MiNx0Kxt7ynI5t6PY2x6YQ4SCuMgv6kadjzsxWdO93wyeWrUBAxm5SXBdF5f1FeEy0EWvdWo9UeAdhxNom81L6Rzd1wnvxqJmzRn8Db4tR5lLAiTtwvSXqOnRD0nwksFr7Dpw61UMX5zVysdAQVrZtgmH86V3+L5tVVIzmjDFi3xwJm4Q3QHi/G024bgfK07XS+tg+ESn2o7IQJZqS1ssN/2Rh30QgqFAIocsNYOr2nlOmbC9S8ymXVn6r0pm8EnP50ERS8VXHxVFHIEx9yqXBzDENFqnPXoUWzlLA5cBgGt80Bz1chcPTSY5zjqAyJZY/RNa+JXiR/oHkCavD0nzx1K5TQJFknKk3TossVg/BszcihOtfw74FqMjbxRqnZDyFCYxa+jK8gcLpLP2epQHa0Ie0+qwLj7Nez5aFk2PVyA065ZMvmARKcNkkbE8aJob3WHSxK2EfTS4aBU8lHenb1Ky6q30Keh57AKPlM8nfdgT1fFTDmcjXO675B0y7pwV3vA7zs5zp65cKcnt0BP4ab08vUcvx86yp/6wmBGc53Yb+NJKhUBuO+FGuaIzkX6za2oiG+QZknh/B4sixut66gkcvf0hIxgOhfznxDYTHmjD9HdP0qi4bogK9vFyTKL+ATbxT4+FUzEnSShHlqQlTqLUmLt3zFQIu5sGnwDJfLmNHE2K8wZc5JOMQO8MZUHgaO/GVLtQHaURcBYsmHKXq1HjZLvcNt9e/pe9dmTjm7Cj8O5X3kgjOwoFeQF13YDCHftqFF7E5cGnwXbxUEwYF98bi7fA81rxoHDXX/kdqIe1Sw4AMVi9aiyuQr6Lt9CkmFzubzKzeCQkocprYYwjgVW9grunho/Vrs0p3ADo8n04aQcbSucAoIhb+gA+NjKMpXGuwjMvDdlCScE2JN10MyENfd5KCpNbhixUx4F/wTHmQ7gIy0GSSIX6VPmlmw6Fw1vm8TgOTx2hx0rRK9hI1hb2Ud5F0Igfn1xvDMu4oP5qhA3MrxfPTvVLz4Vg1dRtpC8qI7nKIRR0XN4dz5dyoE7xaGNCkrcp8+Gtdtuo6uusL0pScYr+d7UqPgco6SP4NxbcKQXheBG6q/gFuTAstGm5K4y0pK+/SMTD/E4Sf9o9gg/x0jRQgeCSpw0eWj+NIiC7vvHsQXfAAmFxbgxxNOsHn0F8z/fB/W+6pBrs1L7LLsh51CfRyEegDLR/PNS514oq6Ruv/exaOtA6y9UBySxyzlGt3rNG7efYyIzee1Ba20atUzzHLK5P0/tuITuS1QfksDZD4kQp5THj3Q/IYr1N7zvbNeQ31qwzeUV5FRZBOutvemZh4NDiFPUDPvOkhqfCRz70t8/v1x+HpFlr5b/IcO4k3YMaUHo/REYUFxBImcKyDTJZ0wPXQFyn7UA810fdyTM5pKfiWhe9phfJkxGn5s2Qlzrx2hgUdf0HzvF/6cu4YdMlUgZuZUjrbpxk0rZ4KxuQ4Exxzgf4FveN+JcOj/tBccIwoxaaYHO187A/OMfCEsjOH5KGkIevQG3XI7cYudNGhMPIav7x+jpbdVkZXv446uUn5uMBPnnDaFyWl+sKvgBK+JmAT2s2+j5xMxyr5uju8l3LiubgHdXikDEa804eJcVWz6kc0R7Q1gVZHDkTfraMWiLfx25GQ+bOlK9qNLsf2sLuwdu5YzTH5zb+UD0jc1Bt2jY1ha7iKnBZvihu5gbl6lCiMNLOG8uC9410aTd6QXT9q3m0q2jWfZa7m87KY4R2ZV89SR1wG6hoN270L6ZHscvh+6hxdrXMBuVT18Vv7AZwQy8Ur9FK6dGQhzHGSg9qw3L511ldpmZOCd7V10VtENq/ZZ8J5lRiTn8YYf/3PFZa+twVUwk/sG/9DIKjH6MsePP+k3wCr5X9ym0wHDnc3o6b5KlhhmAN6p2hg/5HMZ4++y6Vx/XPzMEBe8UmGnn7okvEoWDjolopvfODCLaIeskFuwWXELD7ruo8WxquS0RxyNtd/S7tE9sEjyND+aMeToBkJUYtHJy/qn89vx7rTHfCNf6HEm0cQOWjBhBPunVONzJyloPPSElBQ9SNzyD+DqtThp1V8Ok2mDzUuFweumMe/860ziO3Xh5a7bGPJpBon+nMLj/NNxX2wq9T0uhm2ahpQ7NgnDfkqz3QpLkND9jhZTN+M905V899J6eLXgEDtF7uRB0zO86P1yerTBGo40S8Fq+fnsKaSFN51bcV/fcK531aZrYztRacEAXFzYDSE+e6BaThNSXrTxC5FbODGtkVIzzuIFXREIcYvF94uq0GrXbq4e8i0HaYKmu+eoR/I4B6k+hhnJCXAlrpz+pn3iJtUN7PUhnkvdj0OkgRk4n8mBQU6hxtkvcW3rO5w91xgXbryF5cK6MOHGCs7tDOZDUoqw+rYe/+p7DVPOvKYy1Uqe/Wse/5UIoJmFOXDW5TrYWCeBzWUJCP2QjvNsR1D4zrHQKBCKTrZHaOmOz3go0xKm+8xD5Z3zeeY/CThcO48/HytE2fBt9Fspnk+t/EKGhWUYv0kTRGQa4Gb5YlCJFIAf36Nhr6wEzn2DuGWsPmeVqXBCajF7Tx+Hx7OPooewDB/KUISqXwmoFf+eJBXV0Eo+jX371uBz20f4b6kW5K2cwLnZc8n7xkQ4LbCRTzoe5UMvJeCYYAVnJKpzzow1NFNlH9QmP8SUwDu09sQYWBYejVveBVNTYCS/spFBAanx4GRSiVtS0tnX/D5vrPGHglFa4DDQR+f/zuSS6FKoHFSkzSY9NHzBfpivNAj1qh4ku2ToXENaNrw2Buc/qabtO1qBDg/jNL8Iyvo5gt3tfODhsotcctGatM4Kwv4EG3baeRn3PTbERYUqUFokwDXRF0FxbQQtd/2IEtGy8POUOlyc9wM0Gwhgtxjfu9UGRhr70L1Ki/K7u/nVt4183m84+12RA3GTdVyiUkSZhSLU+fg0TggN57CkJbzzZsSQ3xfRw+mDIHpMEH6qxaLG1FgyrIgi/f1f+c11MRKvncS7TfxIv7qGF85UYIdyfVipOhpjJ8tDlZUNq65IpUHrWt584DWH1OaAttEBKnr7kRe3T4XdA/IgX7aQJnIsdCQ+g2dph+h0rjeIq3jS97MF6Or+ADDCBOa598L2tyvQ4qAzZqeMgZ+Z+piFZXzw1leadEuK+moWIl9ShlaLMLgSksEqDUXwa/k5fHBkOP5I7oNFOl44d9Q8iP4QD2YDqrB6/3iQDTqKpSnKgOXS+M8EOXzedIz6sJ40Smvxi2wfCepPhXcuOZy2tpIyrQz43kopRDsZEq1Jg3+LHVHhwRzyLE/lzd9lYHiGLKhbPiKVtpvsNiYY5EXrePqqF9TXpQxdjSLUZtDOa08owMtfsazc+B9v90SwWanBwQKZ4LLFDscHTqB21xrerywKjV/F4V73NLhUWwIniu+xdl4LrV85hm52H0Tbh3PZMSWZLzpa473PCNsnTcJx059hRbs2rJwejaNyk9BkmR/euDgANzZcg8BjsnC2QBKeBnThIm1Rjr8/l2M6wzkhpo3slonx8QOTYWDvAOS0xfPcD4aw7q4PPBUxwBrr/Zz4Xzrvv6/OtenMfZuPwNqjZnTO1AoazlmDi6g8NC4th/6bevjtXiU8lFjBSlMVyMWvBLe+fMc5JtNoT4YyOK11g7SzBmjUtBbC0x14TvQ3nCScg+22mvxf4SE+ue8Tw0ZTyHyhB7jcALqn+7JUij3vOzkASzRqyRMEObL3InvzMrzxczjIntMF01fubH9VkE5dW8wrMQX7FztzT0Ml1FYGcmfeKIwSN4CG0LuwflM6um88QJf8HPGHiz1/9e7nB6JTyNDRgUYkGPI5fXlYfDAKjV8mDTGrC2dO/4iHjxXgxD9rOedIEUce/I06hQqwodgcRlvU4OaU62Rw1pJOPVuM+0038tviXBrF5VDtl06L1zty3SpjWPk1mos0z5BdQy7M23qRQ+6uxpebJkDrYk/OlZ7AF6UtIHXmZDgScxCO3bHGjMxqWu35mk642OIdOz0ozFtO87aeRhujYgy6KQVK7cchoSuIn0Rdo2PxHVS0aA+2LdoOU8tWw8v9vZAgKwkhjpPgv8rz6GSWRb83Af4YaMUnplfgXPccgjkfsf+gP0+wfo0vhhtA7Z6NuFdsKusNX4Db5IZyVDGWvC7HY6hHLYsZArsJt/KLaEXYZx1KI3aupQ0iyE4KmuAdYEV7tyVT0LOFuN7zOJ+WAPZXHAFv78mDi6MHDyQmcLfYJoy0LWH/dwRFrZe4/2kYmMsK4OowGOq5yfBm+31ct/cAbcwvodi93tzSpsZF6vOxsUKc+iYHst1/pvDmaybxARs8Ih6JJy9MgoGHJ+iJ1m+MXj4KzH+swWVLGnhZkSBsiigm5+EP6MS9FBYIS6KjhaGQf0CTJjo84xrJt5gv/4EqruiCkP8GwjlHcJvKC551oQR0+g+jxkRZaOosxS7JWDYNyiEPO1OwvzzEebOfE4d3QoeqJdw/Yotx+dUU+eA5b4xYxnTvDxxYZw22StH4fNdzFHCdAks5EFKyZFFm7nI6Yu/Eq07OgUXKM8muRwN8Gu7gzeYOqqgfxbMuK5JSUQvpZY5AeZ9Ceu0UB3fDcrg1Vgm+pwfjdu8y2uq1e4jV76HvUku0hM94Ykk6mBa/gGgNJfz00RRGzPGg3tYgFhtil1kK2zlf5Si8i/sLuz5/wNHvXvA75W4+eNASKkPqwWLWARTRMaPI7QchbO5+2t24l+rrxtIykMZnAddg2gIjuBzVApfX78Axp5bQpO811KZSzSB5lCON41E324vlKh6zh7gYGPpqs0+4OtbfOcf7/FTxQVUXPvDoRINhJfRQeDaGURM62WjCyBPNlP8wkofJIs0MvszD0/rRcsl1HN0kQOvHXObpWv50/MQUuCurA/5FF0DGr4S2r6/GlPemLOL6mEVGCvKzuaLoWaYAp4O0QeJeHiwtLaaw+tHQ/GKAdlcIwp6yOtxV78MLqkZj95SNlKGgB5JZpZB7wxwu2yCXjGjnvl/n+JqWIUuKZXHnYU1eHdsCRTLjwfPfDJr8bQ+a3ZzFQpsHcey6WLrtrwpnzbbSfxumYuPhcUO1Hg73fQkCpray+qjVXF/Tgp0FS1jkxjMsc++l7SXbqf56IbfFKENOuCMV7jwO+bu+wEaWoDNPa1kDX0HU+H48teIFen8UgvOtY8DEXBlXKaXCjCuR7Db7G0fLlEHL/QH0lj6Fj0wyUXCtCZctGQPn82MYg9PpP+/VqFOmzSdblrLAtv1wZnMLrquJZi+1PzA8WQ4MznTiUZk9uPngBn7W8IE8zulz0L5uElcyx6zVhbBjpiL3mSmAlZgX28nX4oyYbNzgeAnzH3iCc6I1qk8qxdoR4jy35Qh+kTeD+IjfUDLsO2nduYCXUr3xWZ4Y+6r549t0C8yV/QyqDWvg51NxkLA/AUbaFZxTFQnt5Ubw8VgfKFaUQnzGdC6534RyZwdROVcXJt1/yXr/7SC1ifcJlK1Br6mGPixeircFCrE48iWM3PuBpE7//3//X1HVpQAE/dTQ7ZYfeXwVQM/dDWgwNCMFXFZQ2MAc7HsuBaN/S3JITxoZhKSDc789WroEc+u3P5hoWEq6/4XRgY996P9vOLy66clJ9Y4w6+cImCCgQS0VbaC/PhHCTM9gmdAqXuF9nApSleCZ/Gd63OxJrcm91O1xHcZX1vAv1wA4lxqP4loxYLvWFKLaZCEywwX6HhCI9sjQs/Kj9MUgjXfJF+KE/DcgPyAJt1XbcewNK9jmhBjzLgtGL5DEthJp0s98APmlQWQYOJ6bZ4micLALicUqwEdPT5Zvq4SsETI8ZU8YT83KQrtZ8Rz78RKdmCGFh+zsUPKTFsQf3IhOoV747G0+yb53xrtN1lDw14rnC/rSxcVy/H3BOz5YrgwvnZ3J/po7//09gaZ+PIZhnXO5wyaPUwtM4cy1oe+eGY3N8gKAkA5jr/6HEjYfKXDeJ5rz5Cm8+C0BLTCfyyVsaFNXGn7MNQbXqp8gcz6S21VX0d93vfBnyjTY2CrKqS+f4CTDnSS9NQ0KsibD798bWOeGFj+7KArXzVV5fsMwgFODtHK3NGfNXYHywVHY2isLC3uHYfdDYQi8Lg1egVfZyNIYnrqYcX5fEs4fO59/zc7Bwf+MAGxtUE7ckTK6VpPyynIW9h0LYiVycC3Xla4uOABnBGbDcQF1OGchRQL//nGe5hmsQ0X6d+MUjWh1hervh3hLdxcbeE2F63fFQK2wFryK5/HDNkXYPho5tv8PqXcno5rNX0xa3QInLK+zq4U+rJ2YgT7Wj2FkmwpVHp1KHi5iWJ7fTUuld9Io3Tq+nFuAnpYmsO2cEvTu38rC8h14db0Et/73DRdc0OSoGCP8UFHFy3pDycpsMiw4UYRr946HFbnDqCFOHZ/EPsQxRSn4fcsTDh1ewLvSu+CYlwWE+tixkngj3D9hCiJZiZhTuYASs3zI794/LF5+hGQu70eKYVA/5Msznv1kOPuevCaeJ6FhPdz9J5ANNd7zFAXgVOHbUOqrAj2D8TjeKgS3TfjBqscbIbbXFWadPM5jbArZvjmNHWatxiOTxGF1x0RQnriX7xTdJNFWMXAUfElKzsdgxJoZEP9WF6OmEY+VHgnZ/aupyvY03PllDucPH6LprTIgMEGYT3mFgIPCcnAIkGTX6RPhwL0EPPbrHgj5JeBUbzfuvCrB+oaK3PIilSLuBVHrqhlouUYYaku8ceTHsfzcwBauKy/GdbGPqTnQA8MmJVCx13t41JsEpz4ogvvgazydJIYKag50O8kEru0uRoEJdli5dANohapi4ahwxmvK4Dk0xUa0mGL+FX8sXyEM1ila4GQ3jGNsm+Hs+bH06Oo9WPqXQfqWIjYaegGNPA563nn4PSQVRMAYyxPn84PXcQivq+nmSkEIF1sKty4F8SvvDLCoKuYHG03Z6/tX/rIljoROZDP1j0fH0ZbQUnARsjcZUt/fAFhSU4a6PRE0b99PmhUlzUm7c/E0z8Vn38dA08BlbAlDiFfaACdLfrP6hwfcEzkN7385gs5GzjTu9zJY2GAKhuv2YqOQPP9YuJA1jLfQr8xpkDdrM+5zOM51V/IgNfY+HZGRg4QLW9hP7gLunm/BkU/cacPv4zCmtZsUvmVB0wwimauf8O8LEXiw8AM+V1/F0/caQ8jXvfyn/zjuj3Hi/wLNKLv5J7i8ektlW9XBuvcI/ercO5Q9wXR1ribNyWjjpsYp+NhsPy5ZLgjbnS8N8fpk8PmtSWJDfVYzNgJmh+ay/ZwssFJaxFaLnmK192i4aGyCnUnmYHZxHm/2zYan4b/4ddcjaPCcjXGL2vCA3W7Ml26kJ7v/YdgPQ5BTrUKTNWJ49r0CWfb+BOfXXaTju4eKVmrQqWgRtpHyhtHuWuAaYwP61zbgeG8VWin/mDvyvWDZVTloK5Mmv5/32V5RjloMBWFmRRZPramiw7azUEwtl9YkWpF5fh8dEFTDM9u9eKfYA97bPgEGzhVQZpgnmKtYUEtTCt/33Eg1uz9DocjqIW9Zi16vEmDH+alQ0FAIBtYn+cetQHCSnMBKx8LpvrQs/VXuhXTF5zwrcAT4TrGCFcEV/MijC/y7d+PjukYqfvgXnhqMRafpr7jpbyqVvw2FuhdaoK3MmD5ZH4IDNlKEuAaKJD7kUvsUwIch/PlMNL/5upcufjcFCcdWahxtg4sODeK5ozG4ft93KCqspIY1tvifniQWT1uCwikm0FOyB20NGiiosJO67nnBrr22+PFKFd1SOcnm7f+AG+QJXGXgUsMY+BV/DOIF38GoZech/FgVGh6PgKYTo+m5wWlY5foAQkdMAXhymcNLGsgp6jZUVcqQb7wNbk6bBsNOmpG0hQ4XHL4KpfY6kOYZC3ceH4HMr20wYOdOcVlR5Fu9lce6dLB56jIs6nuDfo8NYIbNecwd0MGchyPw8a8oUD5ohezuBVbq3zD/nSE67RuJvaqakOaiS0/++eGLxVe5PsQVmjRjceajQg66IYbrLBDPRCJvc1CH5hNL6KrDMs4Nv0wnxH/RGuELFPx4O26LXUNetnJg3hPNUgmWUOzVinHniuHLjVbw7z0GO7X/8ZLwx+iWZkUdfqb4rSqaTbo0IeLlOJ5pGsFX229x6wM1Ft1gQCKZQfzj+wJYVbMAXyW1k/ZRI9isp0+Nbq9AzWYfm236ic4ng9jPVYgSS+pAc40F7Yx0gbRBA9imuw2zb0mRukoK2kicxZCOZHYz2cy3uhLY7Zkw+FR0glmOATyQEQF9Pzc4uTeTV80ow8Al+3ndLGeOLHtFdgMzINryH/VJ6g/Vdx/dSb6M7dY9IOh+DvUUnpL5vipI0e+GwYFgfGbagwu9lOHiFFccJaFL8MqX/3rb861bCbww/xHX9ZRye0w41+QE8DCXybB31RVc9Tqd33YmYMUcATxsZo4Ne2bA+byjeGJ/Nt84rMfvh3x/WbsxSzRZ4yjHFdzdP8T415wpb+N0VNAIx0/ZllA65OFLdfRBuz0bZ770RruiTXwp/Aq/3F8GZpnf+BS/4GOPJkKF+3Oof2ICzjXf6NGNcs7QWIDa59Ix382Zr3dfAHnbMAqumQ6u66bxcyETmFRwn184PkS7b/U88VgKemSL0MFxPuy4zgCrGn8xX6hmtTm6cGXJXA5eagylQpqQNLqOVn++iiVa2yE6rQMkhGLwiuBqkv6hD31D7/J2nxYbyn6jY2aBcEoqFDckPIWwd/U4YcNqaIw7Df/uDgf3ogSQa7EeYrVWGNf/gmbhUey6Gwsz9h8lQ4k2XjIEDXF/9aCMTqPApbv8tFAKvtSFwbwrriCs7gvecBC3NY3g7pZW6lVWg6/SdSjcvp9zagJh37p/qG0tj8PbY0l++Fhc/nM6P3RwQKetxvBarZ4OVW1np5up1JcSSmIvPtCA2TQIKjvGu3ak445ZBdBhMh52p5tBitQH+Pamgk1EG0EjNhrOuwhwx+oMODReifPap2Ns9FRISNDCW1JnYGPmHjQ6HMw3k4MYXBNxfEUyrPk0Cr6+SsA39qZQvfQBTQkYAM1zaiSRU815hmJc+XkxOiv4kabVenCoE6LqlGEgum4vT31VyKa7nvGCjskkPK+Ovx2Qw2vB+WA6E0kzr4fyZJRA3/wfTWrVBM9fthghMpIr/czx2cU4NJAL4eZN9dyml4gF40xAXS8P8qRlwdrXA4Zt+Qlq8zu50uYufKq7BV0mBRyV6oP+ahOhK2kOR81upqTlwhBr14Szv9RSe/osoGm/cautCVg4V6GaoAnspTq4LXidulruw9bSHahQN0hPny+l3bbnSVXiKAgk5ZHGGh3ovmiFoquv8pWM4/Cx6ReMcH1LJ2rciDOdsDEoCMJ/B/Gb22NB1s2NO1Y0Q+GhI7RlvSHrv1IlpeInoDxdka9ZHsaNlztJo1ER9lw6DDlOiXzpZThpiBrQfavt8OPkdQ7zu0fl/h0w3VwaDk0XhT/J0rxwqxfll1hBtH05LUsUGNpfB/bu3YXl4rVgHXEeXe4qgqOiMuaEf4ABvAe9k3fR+hpt8n9gTnNLkuFH/gwaXnwFVNYIQcf3/3DamibUu2bEH68I85lP01FEdz1echNClQZDOuzoyoczjWFoJ/QhHX5EyRhHMjjmfQ3NqRLnaweHQVfkA9zyNwaaG0fADxVh/nDpNe5KXoU6sQ3c2ZfB09sDKaf4M/kkSXKD3HaaOkoQGqbYg4RdGf7ovYDNR/5C5IabZPbpKw7WR9Pi/V+p74kSj7toAeHfP6LsgCCZ61kC1Dbwq8QPXHd/LU1TFYMdH3Mg7vQ9nHNQGhwSpMit9SqOyrUmtS8dmFztxcUXKzh7bhNc3Jw8dLdc+B1iAIIDq0HoUQqVXvjAr2/MIjWl/8hbZgKUDEbxaL98vNi5iJf5MfTceYMZLS/5cMAJNp9UBkHJ2hwSeo7NRh/F4ILt/LP6EL02GgMRiYtwwdg0MpnjDasK7lPTcWnUW3Qak/O3gWhEBzqtMKUzWmKg25aPf0Pb+FHqUb7304jmTsqgTJ+7aDjSmtGsmqecKMUtJQIg806eXQwbuN9lOPxraacViRtg7bw4WL+rhBxmW/P8hSawSkcNkq9nUOVoFVp3YCpNP/8NzqAAxLZ5w6g+QbobkMm3Kk3QVmMczKu/SQ4bE1niwyPqCPjAgTIulOF6EzGwG1UfG5GB71octNWGyPlulClZRFqD20ExX3DoLXeCoGMCv7mnDV3XZPiGwnhqjdODaxX/SGPlOj7cOxk+C7+jfXX6LEFr6M7lFZBuNZ/UfZ6hu4AknGEhni0zGeavLoJhMSvAYls2pLx6SYHHNWhEgydUebRx7xJJ+LX5BtjqBWBikS9XDTlO0Lo3MG91ALrsq6WE3Dyeq/mahPZrQuJXwvqiABQL2kdXqirRbd01jpQ8R6bmjXgsdxiO+LCQtDdogOlqOfht+4ZTdWtpovNSFN2fwu/TlXhYcCd6R0TC5NogerFTCvzSsrHpVwUILHGiAx2zaUCwElLVg+lIzwsMrX1Bf8ZP5OxxejDn7jW4qbaMT0ctp3nJDQDCXTRT6Sf4hWtw1VNbPO7mznpy46Be1Rc26Dah2NB6gdfH2TH0E6zJsySFeUOhtuYfj0say5sSx8AkvRPwceJiiijXAsMlV+jsiRjus5kDzUc84eU5WThcEEk5VeYw0ckEM9ZEUtA1R/qSLsWlj0ex3ZId1KBFNFO/ldrLlXGRkAasaWiBh6XjcJr4FHZwSAGxpLP0OWQ+LoyrwBZfa1q3ex7o6E8B7WG7sFdUD5cMvwCdTSmwULsDf709wqqhUawRcQi3NH3iFeOtYFxhL3Z5GoJelhWH1z/kQu8u1h7tAecKQrDy/TM4WpDNLo9MIP3JVPq68xlNaRNgx9RBfGh1lteI9JPpuBLactAGPQ+EoEGh5pArd4JE/1SKORWHc08K84ziXxjw4AaOinHABRVxONBaCMt3iYPonqsUH/oRbCauBQcrT/jRsAv3eIfRjsDF4Kt7CzZ4HkCl4+Kgb3IcvhTd4uots/mQ3lLaO3TGFHCFrWemc2avHXuc3AI3s6wgtfYSLb5wjZ74KMLcM22UqVPKD7OSyXlLLIq1PMK1lmFUekwI+rvPY7hBA94Y2IlmyzTQ+HQkx/4W4pW5a+HlYAKdzhkJZz5LQrRSCZfv3Q8rn/RjYX4ztbIFq1cU0Msdv/ntfHUwHHkQ35vrwjRhUfyXVQ9aIcHkMOY8x+6uAukDR9l40XhW9bwJRlJ9dGqrIuSu6eOZ34XxSYUM2URJ4czL3qBc6Qlvcgm7prlD6NL7WJStD3V9rSRl5EJHXc2h8exbHHPDFRRTlDBZZQ20f8qmLfPEsUVCBM4PdvDaYYdRu9qYxm55RmbFszn1ewmsfNQEOXedsL0mj90PjofKbTe56Gc25v67Tb+erAKFx+mgdlWB7+j8pO8O5+DJz1MMzUrg3qZKiWGT+VWwCxd1SfE/xb8ksvszbZT9TpOsbTDM/jwEBU6BZzFzude4kFX+LWazc2osPHoMhiS4wHrB9+xxPYgnmzfDSSUrsL0ym9YmpaCJyn28KnoMfc+Zodjds6wT/geXpC0hl7U95DzNBLI+/0HFgwY05lsU/rvJlPnEFZLV9tG418dh67JuDi/vIpXXU2Bb4yO8+NgF5b60oFnndgxt6eTwFi/6lujJc4uv0YaHfWRaLA4mATNoptlb8Jjmw24dziCxaSJWPUjF05FFWBAwnAKNdGGhkT4YKxyB/T4aUOoYCmMbBSk5dyaNnOQKIkWjqXLUA0xYv4ZTZylA+I+z/CriC5tqn8N/v7fh05OhNJAThNE+zSCx9wltkdUjn/mmoBS2AIb574PxV06B+4xGbHi6gWZvzAVhV1lWuCfBGV064Ok7CTZ/e42yZtdwXeUzCCqdQPPPOvCZoOUUHWeK8/R0oTU/mmdpyEH+63asavfhtWahOEEgGRXrZqBXhRpkmEWhWO0CMvD6zZdNjOBsYBKsjrhMS1v24VyHIK4uF4K4a7uwLEoHS2skYcqIGVB4C6B79B7svlZCunM+Q967Jmj10uJdB+/jXfMwqrO5j+ItkfTOVQCsWupQbrkVJ6yvYo3/Qmmb4R7+J1bPV0+Z8Nej6kT6+iCVYAzj8oPRIU4IihzSwTE3GGuGabCa4CmWtDeCGNtV4HPHgeMdZWD3cSuef3oiSsjokWBWF5bJLQMh/dV08lwErhkIxJDZPUOfa0CmliAr5SzGrIfSmKB1G6YXNuKOH3/Y/vofcp22GD7NbqLTc8ZA/NfzvNn1Ge1ccRQVOs+wkcB/ND45Bu8b2LLZhjNQ4NCDGfON4FehMDuNycO62cWgHyNEAqb1FLZ7Fw6qTMPafVchTr+Pt7dqgPyDdG50caLmZVVUudEYNFYa0ZQLebTxyGvUnL0X6mt2gKX9VBC2P4O7Ewdpy8Jy/hK1mJSXVuP4M+50eBrijYmNXNs6iWcxwYMHSdynpAEp9ofpZ3sVZ/wx55MfV3LpaztO1RKhtOvBmP9QF+If2UN9wxraWxJIs4byYaD6K346psY/E9N54brtUJzgDM8DpeD0C19abOTLys/dcf0hT2iaux59xp7k/YHj8fjObpz0dzFcNNGH4VHhfCxmNi5ZXA95XUdgasBTDJx/keq883n0Nk1+Yj0W/XWs4IWUN9w9PxHlR/4Cne5vNEziCN/+noYnsBvXv72FSeEpSFYW8LJoDAcc3UwzxVVY88F4/N2xiNXUn+KveC9yVx/L6mdC+dMlCSgq8+LTD0ZxVrY/r6bZ9GjtX9D/LgljrgCxshDbJHbwFKUx0LH3Nok774OJx97h9eDF+DT+FJR0LgGPOEtMPHiAD3uFDTG5IOz/iTRrVhQOfxLyP+LOux+o/3/jr2FlbzJCSUZGyoisNBUNIqX9MZKGKBWpKKGoyGwqiTQ1lEQDiRaFUqgoK0XKaOjX71Z878E578f1vq7n859z6MyP4fhzXgTujV/P9ocV4NSVUJyuuZ1/qo+CC4LhoHzJi29a5PO8o3pMxT1wa5QeeQhowHPFX6glqcmrhKSgZNIGUL/sD7LQSzdmD9C7mw44YkkJv09Soci9H2jbtn4YedoadoEvHPu4hndG2SO/yOWUiQqwTUMQ8hOn84nrKtCg7wnm04zgUnM+HNsgy2fzf+KdTYyl9lEYNmQATklTWH/0UZhZMY8KTwiDlfdkTFyyEBdbveVNxVIc82k97DliQLpfDPFrTyD1fr4INTsmwJ2tWqyqKUudGyP5yapSqnpuBhsqHsH2hgPkEFsD3osiQbNsIlTzTbj8UxTjG8ppWXAYrB5XRtlbZOjI771gfaqX/uzSQc8KIzgidRYNFhmwzgErOJTpxz99kftMXPFF0gXOjXbhkAJNsjPUAlWdHriwUJrmzijC/Q8e0plyLdoxqx7tPGMpYeVS6J1sgp/1TeCuSRDEK1fDt75F+EPgITt7XGKlNbLYp2WNgr+04Yu8IMzcqACLCkp52dyJtDx+CTQ3e/CC2afZ5cYA7WUHanbZwnYTo3haoBYEWYyk0PJC9g+Tx3NuzXQ6cg4ezHfjD8vH4d478zgxTAxu1ZnDoeFziSK9qNlOioVFLWlvnh43TPOgtXlXaPjsNnJIVYQ17fqgeeAVnEy+z4eE94G4/TfK0k3GEwVNpN8ghyG1o/DHyXA20RsJGS49dGvTGJqUPw71l1+kzeoBGBe2CbLDj2NtoDkPF/oA/deMYY/RFowY30sDDcPQ3CiKvv515KzPIdxQ6ciVR25jX1AIVzaPgUY5A7iXksVOPwPpvxglGpnuSIuntcCL32dp8glVnH2iju8tsoOZcn/gj5MqTG45Bn8it8DTE4ropn8R7p43Yq0EF7474ya7qujBt4PDOMOnGaf7P6HX9yRAbFkmNeiHwueRTyFj1Fe6pSFMPg5jYMS8v+x805beLQ9l802hZNEVgU8FfqDAcGNe7CLPC0++x4kf1GDY8+34TaSML7gm4/KL0dBT8wAzbDeyxrUXzJrR6PHrDeVMJsjyXA9lLR/IMrSCzms+hi2Lwsnj9wfwFHvO4Vc+8pCBJFhVisIBleGsN/jPS8RBwKOzgxq23GIx8yDaKbAKHMPbMNNgNhzU0ISRciu5JKAQktb6gETyfhS7LYQK2SHss/UZVfpZ0vAboRC3Rgzi6DB+yjHl2Ho5jjoXz/c8xEjnWQBJ3BuEqmub8IzObYqy0oYRwmFwsMoGx/wyg6nP9qL392QedXcQQha44iaHL3yVwuh0MUGl21ZOEqkH884GMKicBVLvlXHRsOm44NoI3ImrcWHuPBS1U4NPLdfJKF+B9q35j1abp1DK1CYc+6cTPg8Tg7DQ45x+uIEa3g2HD4uUaOPeDeRo7onX5T+goaoODZ/UQIfynHCPVCVWdcSy1hsbOLLbjbxvjaa7k5dxhm8plV7MA3VfZ7RR/g4xo9UhKkiP9ryQgJtKN8Fl0nEYIfIKih9Iw8qCUdRfPggzZwnBotG+mN/XDWHStnDWXogObI/n/+gkSw6VwYNdSvjpXiTvWmtJVy6nkGXsKRb4Kgpjbt4kqvTiY/em0MfmGpgzcQC8j5RAUUcBnC0VR/GFErhLRxYMAxrRxqKMRq6NgNG7N+B8k1QeWPAWO5624pIIK5p8355osyKYzhhPz3448qlLauT/8iIKOezhkTu+sEKXP1iczqRVCnq49ako2HnVY3viJK6PeA/HQpfjj2HnKWf4dzAquULmyl9hNT2C+lMyMNRuhs83GvGyVwZg6qqAMnfV8YRdBTutyga5tNvQ7fGQZbYNB/HhJRCysAVO/Ls3DorJGGutgN8WVuGnzRNoWtcU+BOyCs87qIPAByOK704Gv95FMNkml3xcL5NQ+Ei+UXeCGou2gJ6tMM5KHgc2satxcNQUdr7uz5FSe2hslBIs/pGHl+tWQfmjo5C9s4GrEeHH31AOEr0JE7/vpvvyU2md1hWunh/JGre04KFuKDlq7sCeCcpgFjmJ77/SJpfaFCCZXBZafB0sxb6RyaR7TIdH8PV8QGEHcWjJUMPqNUJwqiCbYfAL79p7ESWm/uOR+37ouLwLm8TjKHe0Nkx7YAVJT7Th/ZNA2jYwEq4ZfSTdPQnQgG5sus4dznz5S3DCChb1fgHnk9ewKH4ClFirsdSzIpLKPU0NJhXUPuo2P4yMofobctAakImLtL/A+K3SmC9xGXrcEqkiwx8lX/+iT5alMC33AqTniMC1jBqOp9UYufkF8jNPnnK3k9/caEPVvlbWzNCju/Yb4HeoAbQPb4FteqIU2PoZLJZ28luRUmj9dpdm2Qzw6Y3OFKA1QEtFNUA95Dys8zzPZ45X0sUd/nQ32o0kZ/yGB+vbeLTHaayxqOIzrAMqoX10+fsmPjVMF/wy9tHFMUt5hWAzWP1y5cDuf64ytRvHtpnB9rKj2HvcjDtq95P8mkTed6McdzrXoalHMbYL7Ob5w2T5904CNXE9UGpTY89X6SA8XJ1+jjDkpTVGGLXTCoJNbkP2XQPe81wF4mxPsMq72zzDTZyVe5uh8/RiNs3LJIO/kbzhpAjMFdiIK/eaw1jxeJ4vp8OWPeG8d9sgv99zBRSrvXmc9G/Iv72MtVUE0WiBHWR+MQWmF7jXV42tfynBn9VPeU7rFvz8XwEkmrXhipJYjkgShiMJE+hA53F01XmLZ5xNeEz9KGaXhbA5OpcC4t/CJomptLfXEubvH0EvhG7S84htFH1tJzf33sXg2i84YOyGR7b/4fSBLbjeTgjO7DzGblPG0ChRfaq18MMj0W0wa0I5D2wvh5lpoTw91Y7qBFXhYtkIuPHiGqsYi9OwVkXwepsE5QVVvD6lBH617mUzeWcoNbIBPmrKX07kg30NsWi7JR8w+AkvHozEdY98cbdYC5V1buIlC2xBQncDLrVtoVr2peKAWnRxrsddHSa4c7MvZibOhNtlHzgxQQl2ak9BSU0VDL61FYO8rfjlPHMyNfmLGl6L8G9cJOzV1QApK3HYetCBQn6MosXy13lJSxzM3u9L0c4dlCnmT7qK87Dk6E8UTpGCwL+3Ud3wGye+MUVJ8ybaOEuBjr+MxRWdrvzYT5cD1xhQiYECiLa1wkflx7DjWhKfHS0N0VPE6X3/cpoW7M1DRbno3z0PX70QgCVuF+lk8wcc47MKD9wJgITfVlx5/xPmHWpj8eh3fGn9V7T4MgLUN+Xh4tqffK7dilsrG3jKg2xYUunCzkLH2cCilJw1Y3FJqzoMA3dO6tbjzGlSHBCzn+uCvLnk7XgyXviWGm1CweaNFP+8PhpSUibh9Slh2FqnhF9/JkCokjTbvBYAjkti7ar3cGNEEmSk6kOplTAtE/4AbwJtoCV9I2WlbaDWU7Mx/eIsWvhkKxcoj8Kcq1LQfHQ+pVz7RTc3qkNmXC5dnjyRRFUlQGuKDt/d5YP3ayNZJVYFRjx8C+mtUpBbHE7SvwvYM7cTpnrn4vOBTOoXKaKqDD9UklUA17thWHTlEcfMXoAfjjjRh1d5MDhtHyqMdwb71tl8stIJxvfrwx/p9ZT5/jBFnDHE9OQOvOGTQ8N3JpFiQhfNmRUBFZKN8HutLrSeN6WFMVPp0gVZHO7wlSoeLGfb9yPh9J2NLL5aFyry/XC241hQiDqE41pq8MpoE1ZRLYebk6aCT85TalJthe7cdBzRKo/64mawnLsow2IyZf8EMglbBa3dObT2dz6vbTmPlwvOcWzSZ1YbMARl1228/8t3qPJup5D0S1w35SGpLl/DTdfj+M5HpG35yBl3zOHjRzcYnSrJix/JoJC4HDvaOvDIL7Jkb6FNqW2alBq7EnqmDINT8gH4Je4h3qq352rdo1A1aSF9nnUGZv9NwblCMiTz/iOmGaqAyPjxUPRrAXJpFeVWe7HY3jgy0lrMKnwBcyv16Xr6vx4vHwGBOufwZ8h2XrdlDzz49RRheghFnj5AMbJq5LxJl0prVWnhOn3wT5CDVwmSLLLpDl14toSERgSgsGMtfpkVw23Rt6mOglHek8By/HAsmrUPZga+YTP/Yipf3oqrreS41oXpZJwhO2hYsET4RPB8psMjFgdT8OwbrHttAf4Uy8Tbj1I44dE6dPR7QR17jlFGpyWICKSyyAhlqJhzm5IOjSGd9bsxZddl1oor4VH3pVFa+im7y40HU+1PYHjrNj0+qYDZCbthYoUO3ToryVr+oqhz9hj5GoaA3ikpGLZSm17ZbSUDu3YSa7amuqjpoIZx7Bi/An8Y6sOTkXIUMVYHJtxLxgdPC3DzoAsF2R3FVzXJ2H8ljSOMw9j7hzCMX/YQYzMZbP5uAJPrp6B8yVRyHL4Pe+xS+a+XCfRl3OdrKWJs4WWDx5WHgdIbbdhktRF6hYO4RTIH59RIwB6bKnTeMp6rn3/jYMXH7OEqAu2LvvDimRlkMWaILd9nwbhPa3lDGHFWSgENVP1HL5yF+PUdC3iRHQbyW1bzLi1TtP4SB3o9DRy1dQbOOZDGS5e2EAgsZftV4+DjmQ+4R3UF9szfDj8KlsCvlkjaeOEe7b67AjrNmBrqd/LHMoLEri4+o3wM3cOL4KFvLKgZlcAcXXP4vVieuo0MQLnsAd7pFoLvA4k8ussIV3i1clG0Bi7088Ku8jI+1mxHMXtu8qnZORAePwb8lW7S5nVXWNRFjCs2PKSET1KQM6hKu4fH8ofKxxjm/R9MfKoHjSk13PBQlYR2JlPdckEoWHwSGr4Poz1ua2CuTAWKquiDup0ubE0w561N61HnX8c+SZmD9RljUI012DFLFKoXPiLJzV4kVoOQ5fuHkwvf0LnyMbCjMRv3vfAC+yeFsLfuCZ7sL4TfCnUs+MkCkr6aYuL+ClSYuoSHRnrS5b5k7muZAsczTDEjIgmHPToDRputQLhThkNn5lGzgzDNLZ9Gwp2vwanGF0Z+2oz2WifJfQFh6kFD0PYejr1nH/G80Pn483ASDvgsROGHn/ixnCQWDR8G79V78OAKAum7r7ix1gCiqQWpJgyf2Pehfl8V7tgiz1qDB7Hq6wm4MFwK1JrOY8OSMSD8jwe/pL5i95lqsKX7LTsq2oG7vwCNPHYZv2iJwtQ/2+Gg8w5I6JCHRVYVuO+8BqXciAXn5Zb05nEmvnyvA9OWTQDnEe/QRVKYckMHWF3ZC6f4PeQCXMwLe/p55tUGNuza9C+fuiB0SpA3pUXS6Y2ZeNmqnXW7IylmogzPmfqa1IOv8buQLSxpogVXr7ixaFk/NJ7djPsS48CwPRMyLr3C6OXTaV62Gm5qziQba4KWC2cwdpsB9h4cy2mT1kFAsgP9eRWNXlsngVviK7gqLQzvjTXBOXEHHR03BfLEJaivYBNdP5BFe6V76HXUcugt76UzV1dQ3VIl+N68jjSvX6AqvSnsIVHJt+f28Y453WiBi3hRTxzJBJbhfQVpsI0QppDA0yzxNAYFVxrw55aJpBJhTEtqMsBr/zx69/AHPb0A0F1xg64f9SF13UWUpnyIR+huhegUCc4eFkZ+8g7smBBLI58JwzK50/A5aiOZBM4jnbO1oFKhRorjqjF4fwD8HPvPS8c0sT3qg9iVaHyxKZKHT1+EmkFXaFbwbdQZpk13P3yGueqn+fNgFjl5Dgf/hT7w8cIbiFucDzsUlVn3/Tt+f1mYtuw6i7LFDtQYZs7lG8VhamMp/MrezCtEGEfekuDg3YzFq7M5edcz+hHkTrLimzD4vDhUdYVBkY0svBYdRpdHf0HTsamg++/Mmp8i+TjV0FGD3bw0Shx+/1Vjv7eh/Mr2Li74dZq+GlWQvaM2ucoMcvilZninBCQopg9WOV00rl4dv4UFkfpqJ/bZrEXylQEkFG2LrkcX4rIZi8nx70RQ8tXGz6E7+POmzaR+/CnvuSfNLzM84YxeO9rf8OFTamX420wU3s9LYi4aD61GhbTfLI9uq6+hud9WsNnRNBxrsxRwZCAJrbMCdeMQzHmP5Kq3Ch6cW0dBaz6jW+EuFA2v42/KOtAlW8HfEkeA1ONqUh4SQX/jPJ5zcibvHXDmiqebMVDTnoW+N/K3aaXYJy4MIb7fOPLrM5LztOKWtWJQ73EULrVtB/3IQsqMz2EzuRT8oCcBTh9ycEr1NLxXto4O/T1GhxP28spdw+FM8FnQzrkHOVd3wpDbRHglM5fnJoiy9sqd8OyCBPpM20cJuodoX9pF8A57RC68CZZaIhx54w4+taNpRcQNaPM9R9prB/BC/yja82cfXN4XShH7bXl+lBBoyXrwPpGLVJizCiTj6ymt5xKM3/6c6yufgeKCu/DHIot25puDin8g1Cy8zGZHDGEgXZ8LK43gwEoBVt33BS1OPMcD65X4Usw4SHwhwmavLpLahlp2t9dBo/FxrOyvBQaJ9py+Sha/W+aibqwxKGV78brEF/TDRodqu/IpzeQNfhZxY+Hkr/BYw5DhSQ+EDDMARWVX8LjwGEpPCZB9+lk0U8gA7WlKvPzHcPCalQWS/p04ep8y/PxQDV8zpvDj2UE8MGsTlNUqkMz9fpyVW4R7S4RQX8oBl/43Ea48Gs8HFkmA1bw3uOllKU2RPEV+xwGmz9gNX5xmc3hBC35VHQHLDwSSoOoV0E5djiv32EODdAs9ks2l7pxW1PuvmOtT41nxoRREWjnys20jeOyuQNiSE0Alz7bxz6JBMtCZCEJ6c/hz/QEYfVIGhH98I53UvSjcWQyGiy7xzjkbSa7MGdRjVlDbwT3ke0GSrUYAbBgxwLuv+9LQrfNcVqkCfbGH6U7bEZj4JZ7E+9aAXFEJHO4yhg3jjMF++nYof7GC1Q844ppDvnzoZAmFTXnLaUG/2EQpnNXqhSHprw/OlrfBO07GuC9ZgCu8pGDVwcN4fUYEJK37Bbq7RWjyOksY6XOaPDSLISLjDefNd+f9i+ezV+t3WtFpjqe/KaPir4P85wmA+OYgdMvIhJx7qXx+2nMcXBNCH+s9KffjV3DuOMWZ1cYUlKgFuqKa5H2jnuLmXkQ1mUqsj3Nj7QclUFL2DE/a/SXLZf/B70ArWFhwjjaOy+MiOWcSkhvH83JP4ymfuXhwRix/SdfEmn9nFb9jDJz9mcpjLjbRQ6FjcLZoHK19haAwqgyDV93C00b/3tMvhtxjBGBayBMqWRqBy7WbMG/FTf7YsBi2JWiQ52M7GnP7Ari2qEJRnjgslP6CJ0P3okmjDEvOCCVz5fWQKvQWvJKRphTGsMhWTbifLQCjcnIBlpwngZn6KDLkBNmPfFh4VRckr9eFs4PeWLg+GJacZDBYuhWKHppQ8NtgjhLJJ0kVfdLRLsMj6iJ89/BYeHj5DxmOBDi3qJLkPT9TZtFKHhtSDe9N7/OD2ctxbXAOBXxKpk+5GyFhO8BzDQWacmASpz9Ox0/lrrBQqZ98l6+GnLpaHFlvDbJtv1DDajxMiJoLa2aa46W2INao18a2im7wE1iFKQqbadKE+ai6X4JaT0+ABhMjsr0hS9UlapwKN3C4lx0ZXt8Ntne7qd3tMWjf7uegHBloXxeJwT26nHB+B4ltNcTLt+rohpsP7I/dg1aav2mnUQ1n3RkF5Qe20ZT73zG4dxU29nWg6NJqdsoX5yf9PWw9SwfH2H5FfRM92JwYBZWZZ8j4egJOkOnH4oyzXPM0Fh0l1SBu40aU2XKYGmImgcDFU7AyaxXfCKnjbcvj2FLLCW4X1+PItDNcOTWQ7TSX4ogES1jh8oijLSPx6Yz/6K+NDIzrrSQXhQpWO3eLaq30YfOM5eRmoQR/DytyiqEjpe0UBt+sfRhW2Q2bT16AROtlGJOUgJd+eHOrgwFk3XHBsyUhmPmgiiSikim91IGLX86hb+v+o+o9mtgpcgx62zXBb1cknZE9zDyrGhwrpWBqayuO3ryObEPDaO+RcyTRFgIpgRPggMMzXvNoGvbPX8Yy7ybTZqVD/5z+BQWf7oTa6m4eIRNHt0okQbViNrvU9rKMshvLz/pEtU3xQDtcoGz2U75u4k5+BUch2twS5D8UwJjrG7nsoD9+tV9NKyZG0GjpDsrW/w5P/wGnyotxNHKpNLTOekOtRaY0J9KSTt10xhlbZxIsvQNBrZmwePZFGmXzBNce0YDCxUbg/jYOdYW8+JHyZI5VKGbbhe246JAi3WvdA8Zuc1H5qxEEFIajXmkTnmw14pz5u2hAMpyq7u2A56qJdKl1MtfujqGur2JwwPs4bKjShajZZ7lN4xAobS+HyrfHeP/eCVT3VJ191oaSYilCxpNcXHjAFxcp53Ci9wR6d0QOf0b74GrrG9AUZEdd7S0UfpVhf0IQeXRuoRazdBhZKg27pu3lhEwH2g2iaKPVyFXj9ChHzQR0DD3Q1zkUhuXNxNSrY3jgZg05+e6ErbvdYE6uNDrst6WCBkHQb0zDcef0eImxN9c/PoUnDx3lF/5iLNAoCIfoPO9Mngi3/xC0tfygu/YdfOJbIPWkzMLrE4hWWz3hP39E4cj3bpDPs2CxxTZg/KWVyuA1q547ia2exViy8iENZIjwNBCGll/OIBP4H8z+Pho0ox7ww1/iYCHyDNQua8Fdvfvgfmstr2jYwj3zdnGU9yQOUh0HdXOM2FDMgJ8uksaOySso6Nh2vqXvSFsMo0Hl7n/wVq0adgoIwsIiNZpeuBCLombScqf9ZBw/m+3mMjdXv8Zp7m+ho3cKzWhSh82pT7Bgw0Ja/beTdjmfJqEZr/lMdhqG/zQFyY635OmUws8yjMDpdh0U/zmAwna1OGjtTffUTvC+L3U4FsVgl9oCnlfQj+2JivCrxB2ltCNopIoYfurohWV3rHlJziw+nm9C59XsMT34GxY2y8DXagt2/PqTNBZsxpAjgyzRZA/c0omtb2+h1+EsntN9C1xFEO7bi/Ki/mVU0tsMmePVKdu/gXdkLKP76zpISFIFa89Pwfn3lWChwj66mCJHkWtvkJ+kB+579g1svIPpSKsbuXy4Atl1QiCoIwzrtnbR+z1tOL1wPyrPO4gnA6Jo2948/Jz9ne00pHn7hfmYsN0ULqTEQtSddKgzs+PIw+N51RkpivTMh82GWhTxrIr+uLehRpj1v3xfhM7Lx2BCowolpM/gbWo6+H1MM0t4PKH4tc+xxjyMu8L14WPCeorIKKAnXQrQtyaNje6uJpukBPAJHaBhokP0+9+9F3svDx+nXeOqI1Y87o4jNIQl8saFrhAwqIYHhqbSFrNGbhxMwrElANKWS0huyzy2+bwFz5Vq81DiPD53Xw7tnk3BWVcm4TKtFbxtriAoqFmB13IvjNq/CJJWKPLFY060+l++MVsIPSuvg7XqddRsVISXM7aDo6UW3e51o4i1FSjua8aP/ihQQ5YEeSQ0kHN9KIlZm8Hxk1F8SDEaSvbWsMrOW2Ryr44NjUvgsakKe3qI8cqeifDpjwls3kI8aUEnK4n608iWezQz1RZGnx5Nss7TMeWoKYprHefw9HGwoPgQWvY8oY1LvTh65lz6PqOMX9AhVFs9hrTWbeYe32xs+D4KxMbqk8k2fTIUCQJXRAgItWN3u2qaGu+JKxYpYui4cxDwVwd8h92lY/P98ISrLEsNXsIKz9+4SVcKY+eZw66Ezbj+hNI/F7CG47E/6aTLSr6wpAqeeMuTosk1TNCzZLsve3BSnTw92RoABfcMYP7kJlCeM0h+L5N4Z1gtnNB9yXpLb+L1zwb0dt41mJ+ajj/uG0PKez3sf7CRp+5M4VMaj4iNNVhRXIeMVESgM+AHOA+rwSNTVOFv6nlWePsRVdrEWGy3HOY7XITFigB2Vod5x7z73DY7i+U3G0BD4DPUvu3H78KecuX5LI4vSOVRvYwKqd54a0iL1R4SHtwIMD4uGPdJTCdJ/dPwxvssphR/Qf11jTBF0I+mRZXT6Yp/HO5iCR+WmuLJ/VM56PplmlH+hnZlysCOPaVoeKgZMx8P0WQdC2i4hbDW/DFfPWlB347l8lKpz6Ra+obid+uDnKMmHm1cyddKDuG7LWOh4HQfqmrEolRuATYUmDMcKuQw5X98ph+C9Poqh/wuxgcDDB61Aui6dyo7ri2hHrNPuKLyOr62auGdb9XotoggmOwu5p5bijC/o4R7rTthYcBZfqYegtEF5/HxvVP8+fojNqkZwy0ZgnBpGIKSezv0BdxB+5w/MNVjFW5W9WJltcPkOicUXtyTAK/3k+CNqQmYNi0B2y5nnDd+I4rVCtM9/1Zkw1J8Em5N4mtHUMiOvxjVpwOZJwOhedteth+4wm9jgjl+22yILFOjJa8X0fbHmuQ8qxjcUQ0EA1WhbMV++v6jDUfPXQ8pQ6G0q8MFDr9TY7F0WRAM6yZXVYbTIeX46fdPjBwYyYqTDsHgwFl6+/oFHb7Yx3o2zdAqkIbuahZQfOwoig6qk9RaG1I7MZy3Th8k+UsPaWj0ZJLe3gZem1poaow8DET20Nx9h2it0xa27h9gEvwDe6b+5IpD+mh+tILDdUshSn4YdCQsR5unJbShZwBd+7dwg/KEf0yXzws6ptGnAXeeHyAJr3eNhrsFcqzuupGXu85hneHn6Gn6BI6faYA37Yvxs1IuJ/gmsVq3IuxeLcU53eLoM3SBi2/4UJngbDa64AQ3tT6gg7YTlB0vRr+oMWAyGIKNaw9Rza45VN0WCproiovNvvN/m5x57bpzmJS8CV+nmcFEyVKK/GaOz8ZE0rrwWgx+rgR3l6ViqakRdD1ZDMrrq0j6mDUsC8zg87+JPRsvo4F8Ku/6tRzOh4fQrO1boPTWByxJKOIPZcMg3eseSnlN5r91BB0V58Ah1oF33NlEpuF9cEx/DAf/YwHvlVaw+agG79+vBQ7Dd4O5jS1kfrgBgSGKMFcXWWONEQ85prPGfiWw0HtEw55OxbCC8XTB151PtfjDXA0dSL3vB8/2TCeR7/PxkulIeBp5lCdfPoy7wArfFC2nehFr2ntzgAKfhfCPQwLgutec1e6NhcdqQbx+80aKtEvCVrW1ELrsIU30HkYvFWrpwuhwXFbczJfmCMBhXy3eDMMoqV+FIt/0wZ/nRfgw/d8G+BTjyeYkMg18jIvyxGBS1liKeKlH1g/3wGaHE6wqUszKRWdx8cWpNHJqFv9aNwXnLFaCgStF/F9QMhwbG40SvTlYKbQFN9jN5p2Palj0Siuc146no5YmsHBFOoXsGUcNl1TQlGU55m8OXtvlBvgxA1ZOUybHtX04+p9Pb9pqBEqxw8Bi9zQadd2Qr2zpg1fByykjdiP8LZKjyjHG1CCjD0/ny8MPxWl0y/0Yfdv0B3S9BcH44hDOGuygsBs62N4ylbr+iENk4CG6IVJJFt8/0pVXEXDHfj9eFTcHof4LGGTpTv67QkHaWwTWOxvChNpafP03kX12vOITWe/5wDdpuLrmNX4+ZUdDuzbzwXnSMK1PGcv3uFBsQjiJBx/FopjP0BQVjxlKm6Bxjw7eGH0Nag/Lwbl9T3CyxmKgiUdAIPMSve6uYymDt2B2IwPGeRSzUvY93HZQGQbPemLe2MX4PkcUrhoIwcrPgewT0Ao1y3Ipf84NzAi8w2NbNcDAaQzPFOin7l9/yHvUT3jrH4WtS7aR9a8OPDNHFDd3fIT4kyLwcuNPGtvowB81PKmy8zlnVHRRXPhLTrxkw2FKrnQ9Ip63W06A58baEJ3uQl3/faPsUmmUGvTiwwYz+E1QPjcveMS938UwXlsV5ohY4qsp9bxiTyscNncFnveerUUusE+fI538cxEu5J/g9NnKIF52k53v5EPDWBdYUP2LbsQt436/Lpjf28PVTa7srlRATWwDpL2edP8xildWJZwSHskvovy4pzETZ88sxC/W2piY/gQWlRvD2UAnmpUtSKM2a3HlqEAQEFwFWxamoc/ST1T43JokNL6xgPkYGD0hgcq/NeOce+LUfreNN92bh5MvrOEbUytog8s6FI+5z5c/W8GNNXlwMyULfW/MZtPEGip076GMoAF8eHIYLO1ewxHPpLjOZgIMtqig5NxoGH5bmuvt3bBdPQJs5rbzLtEOeqwkDik3v+HiZAP45K8NKxMaoMT/PaksVCOR3mn85vMxmrS2h6pcv8K697WsGiIFhV8KYND6D6qMM+MzKovo17tOFtsZzY0vYqnR4jueKswADxQHqYJX8FbVB1MaRfBUqCA1X77H5+o8wexdBH1csYNGZewhu58EE8atRoVvx7C90pRj7HPpz9l6upOaD1ufWNGC9kaIFk3CI3q2sGp9NEz4OsQ7Rd6A/YFIyC8wgl2hJlSUXIyeYe5089F0Vo60hTWaQzwz1YnfK+aR3sEmkglq4hgtB6o/XkhG66P5iuMnfqBGMLu6BDOj6yDjbhqkL9lAchuSUUxCgh1yQmhf0wiWOn4GWopVQLVeABqrGzG3bA5PuzEMqsfL4hnPV9SUYUebPnbwcZGD8OyKDPhtOcXJn4bQU3s1t+Zm0NDs26Q96wdc3Z9FLj4CvD0tgHMtpaCYF4Pv++/wZ8IZmt69G4M3OeJvsQEsuzAej0bP/8fgb0haRRHsHyii5VNhuipkzX+3ylDa7Wqe5LCIrmVdohdRyfixdBFV7hgHRY1umFp3Dk92FNKYpedh7PF32CnxgS7E+MH8sjg+mHsBVs+wAHepBliXmAx/FGLIXW89YZkxGxUPAX+YwtcfFcCDswB9SeYg4RkL0Zdd2f7OCOyuv4re/nPpVXoHDidBfFUXw5b736NliDhsOJODmQlHaVLidjxhuZ0XL3sFVbf18e0HdxwvrwkDCVNxzlRTCJNo43Hje8kx4de/XWshsa6luOX6ZmhMkuaV/ev59/VXsOObDAgkxdE84TGsJniV7vjMYc9+oBu7MzHJs5yCLb/D2kmb4c0UC1jSVQWG4ff5evIkIJEzME9yGi/1/cXaM0cQrkmnpzat2KoM8GVRD4adEaP9xiPZbM5juHuwhi/5eaJQyQwIOrkJQyUU6NRoPdgg/puyB3Jh7zlPFrGV4r9lP3hRzHEcWC9MBa8mQ4XmFqo7YAiHRgazaeZpygiwhGord7yvN4pHt4hyxhw5mCFyjCZMSGYLOXOwfzsanOPbwMZtKv52FcImR1Xo8lkL38xVYWbCH77zpR3aZGSharIIH3+AvOSEE9vaXOCO9hTWvn0bP+cqwcPGfKr+OAvLEs1gTP5SutU/Dg2GJ7HWdne0PV9B119uQmPnIXy+YpDHz97JYZGjYGTmHZb9eJOSOttQxU6MkpUDYPlGL9buWU/HTB/AxO9r+fRCLRAWXM59G/wg7e5x7H5YyqYOk0nDdhXYGvhxx6olfEbHkQL22YBKVy/6vdTBU6ojoPWDKW6rWQup+tNo57cGBAEvKh1opHPPRsDWiVv/7d81nrnIjX0mHv/n6nJYWdFKYh8HoPRlGGw884vK90rBg91nqWnjFJizOgtdWl+yHHvi6MGFLDJiKzk69kLalV+8ykACNolUsbXxu39dNxWaVa7ywkOieM3gGWyRC+em2gEQ3Z3AU4Un/s/+/yvTP4Hmzx6i+fvXo1LgM4jbN50bos1gR8oBniEvCJPBnZLNbGH/vlLI8NuAPnI2EJfZS6+v7KZ1e9LQo/Au7BDo50ZHIRZxU4YCzQh27Wngq/N1ySNmBA2MN4dqu3j8KhlLy0aNxaEqcbp4QRMCDNIxq8Qdq/ZKoIL8bwg/lkASxwZpXrYZS/2ay6XDB/nURivw+PcM15PDcZPKv7xMfs/qjzW5MrcT5n2PwLFjptFegXC8nGUDD8N3Y1tRJy9reoO2XvX4+PwNbnt/G2bXbEefvktw374Hzy8DyMmTAJd/DC56yo/jV56jR5ZFnBa8DXz8Ynm0Qxfn5t9muwAxsFj9Agxfn+fe0wdp3sFOvKWyBH/cu4i/wz+xU60At+xKxmcO8nDy3AmOeXUMdfYb4rl7B3HmkdUQE3IEAu4n0Oe3czBawA07hmtCpmMrZAgpgZP6EMhNaoZjUnFQ6HsUXCd/gXejD8LFA4/Ab+8Y0FnTjYVVjhjrdQYLywZo4yot7FY0xglznGD1lLekdb6PVxwaDokVm1C+uhne7ZpEThmTqfC/FPbsNaKFGlq42kwbItZIY4aIMvydX0JCiod5ytY0uGW+DpvOzKLrhUEwbeNbtP7vPtjuj4eaBCX4/egoT829CD/PDKPRvikYO3kNPn5bQmNF4rgstpc6j86E8KkIcVETOVu/giKzT8G1xF1UcVWKXuVOgZymJLCIPE8nl/WBzhNtuLBzD+255oV1iufYYcUGilzSBLa6fiwwzRnt9D7Aats0ehduDXWXz6HuGR1USV9HNWEXqeTGJJgeN4Hffl2JI+f/BCFjOTjhNwlkJ6bBJqUsjKrsYlnp6XT8537wnH6YpT66YIl4F9XIJtLEj+bgvewRxfr95cEFM/Da77n8JuQ2jOv6SQXBThy5/BBoHUyBgrFKELk+FbYLHyWJtGl0pb6Q5Vd44KS3xuTx9hVZT7vJBvwKu15ZgVl8LDTNcuCt5tNI/sN9bprzGhuCflHX6jbo9/2Er3LS/zmkAKTon6MP7Stg25/V+NNdmJtyFtD2/ky0UBpE2aCnnPhBEvELwC1t4sdabfjDxR8zfwjDwwV3KPqOK79+K4sj+16C7Up5iNutABe914Hcm3VQOMKcxlyuwpV5cWx9IoL/Lkni5X+7oGeSHAo/FoJ02aUUndFD+ZdH8OuWW6CnnU2jyqey6cTDtE3Ii6dUB9GnfdpguKcL2tJdcMt2KTzSnAG9E7Qw+L4juz7azbvCa+Gwy106Pl0BIuoK+WWJLs7K/AOpGrtJelYnC31vg19zvvE5qzxePNXun8cNg6w6Sa7vXcLCm43xeVUPHb+qCmmyWzFtjCvYxFvDPnVJiMgyhhr1szDPsoaUDxBeN9vFt8M2cJ5cClwyHU1ZJkFUK1zOJvV2cHp4Kdq2PGffE4nwUnUUC9Sdg8Njq7FguyCtPHqdnHAcla6Vh9ZUB0yK0IE1Tp8x00KZvN5FUbR3Lue6hcDOCUCLtnXjbUVNaH6sjTG1kyHJ+yEtT01DnH6DHj6ox+PGPpDdpQrbRWQ557sN5On7o56yGS1Vu4RbL/rxt/1HsG+PJ4ZoLqXwElOWnheELnMmgtF5DdTwW0grhrJAal0XXndMJJfFA3giWgdFMiXIIHE6F88whL5tB+hu93G+nCUD6z838Y4FY/m9uhEHV6WD2b4eWDDYjv/5jQarbCM+kpbFwTXJVNf6Hx8ULoHpVh3Y434ZL0VkcteHF3RM8R/XyVzizk/9/DxHjUYlRcB/qa9ZwccftxhNxiqXkzj99Tiub7CAiJ7d/O55Cmw964wh7eM5/1sLXVu7Cr4PZIOu1D0Oy2yFEYsJTuxUwG/nvLheaz26mS6Fv3aPIcL1Ne6+uwNigr/wFYlrtKzZGIqc93OfxnR60f0QNkv54P7nj6kv0x529oyi9ZuQ5QtWwfRyFTgXYQ81nSogseoTLzcxo+77+hQ4/gG6rM1AzwdVYNcaQ6XmFvDXfAO0lQrCymY1dNpozMOOOGDJM1ne3e6E3ooatErrOB3tU4Hy2C7e+WM3LyiPgfKLbf+Y+T/Y2r8a+6ym01nhKhTfnoW2q61B0KOM94xaSxlfJaB473IUv/QfDQRWgoPsNj7SFsYlo8w5+7ou1LbWkXtaLaqPTeWY4B+8NfMaW7Ew/JLswtdDeTRu7Wa4NgEg2r8Xbj87i3Y8i1N/RFFduBqffp8AUs4TOeX+EVS95AZC6qrwZtJiWJl5lq7NeoltDl9g+MptrGzvwvLtkmxyMBQ18maTxW0rMM6bhS8frKHC1V4gMS0PxQU76NXkIT6iVQV3Rjtgnks2GBXLQN7GbxjyS5njC6IotUAHLq2Vph+6I+BnnRJujYjlY9YVuNSHwOHKeWyqfMerLz1lM6UGis4PxSTTp+hsOpY2rWwlwTv3SbpYDX6sYtTx18IBlZ0kOZTN5VIv0D57MRi9EaGJTTXY+9CdQ+VV4fDz2XgUW/nqYR0o8whhl1GNXNgrSNuHTeOvz7thm8cyXOaoBtoNTuD0fDIlP74Pgzv7+Uvxe3zplAgceAtX/JWCO7kM18onwLDtU+Hx31ngrtmLKRtPocXp1xTpfYpe5xegT3cA+FbegHpWhUrvVBjZOAluDc4Dr649OMvvAT+f0AhBCjH45MNKSAz15NI1CmDhr0JdmnXkfegdVVxypaK4mRR1LBGt8mzh/OnfeMksnSKfi8KcjAGes6Cbl+vW8xHJBJa3+Agp2y7xLu8FWFQ1jQv1RlBlKMK+K4KgPCsNnTcswVJnEzgX9YC2PaollfoPtPbgNjjokA+5cyzgQM1Yej+Yz9uSevDI+hc48pQ76Ih9xznLq7Dww1OY1zQJPWxHQVXKS/bLb6PHD69w8yZ50NF9gWWXV5GhwVYImKKNtdem8uhPABNi98Ol7wPQPr0dzJSCqTz1NyjeP8WFk4PwXU0j+b0zoID4f/6rKE63r5eQyewlPNqxmW2GufEopzNoNt4HdCMSITzjJX2PtoEPEUfho8FFLDt6E53dmljcpJS18ypoxUNbkGm9AVo59rRwpCqMtfgF8xNu8Rm/QHxdsAkyBXt485UzGCNvAcWxV+FO6wh+YWAFV607OGfubQ6YNoSd8wPorqkKRzxUw/b+IdpRtxy712jxZ3tbUDB6zA83jOa5H40gattUvnmvjw6+v40jAubDXYdUSF0dwJNeK8JGmSxosJlDD2Xf8cylW0lYPoPnTq4D0UFz9POOZg3BNs4/oQ+GZrL8JS+ehkdrQb36Tf5wfQ/IzBtGMxMWw5TIQXbt3UpxGxTgV6QO+OtOg9Ctvay/wYKDRsjT/ichuKWwGeSPqIPFtmVEj2TAvaiNp3zsxHatk7ShtobmaprjJ7s3CI5VbCQwl+3kkUbJCYONrzANeP3h/WldsGToLKzxdMYFqqvwYKEuZjhl84HERbT0sw4saGgD49Z0NjZWQ++cX/RN2oM0ikRw1qF9bGg3Bct0L1H0SVNQXB8CIVkDtLhzDBlXKLJk41j4c7SLPKoPQOPQSXDYUcQvdoyElQutOEckDVrmNlC3kw7MDRUE2TBx6rf5CDY/NPhO/mFqHDMB7Mc34aVIF9ytchviSpfAygcn2TvNAkopCsYcGM+9753J/+NokA+VwT4FRRLVDcb3uw6S3f0lMN5lBXRtfc2PJ8yFlmYTnLjLEsRKbuG9zjx0gVJuv+QDXnLzYUbHN85v6ED1y/82N2wPHTgCsPWMMKh/vAreM46Q2ZRTmCu2Bg2L+wATJfjvG302mqXJLvaGUByTgzpP3nPTuViOGXWBX54L5B2h18j1/793qlmLS6kdGl6rwdT4Hv5b7o8vX2ix+qohHBzdwg9TJtPV3F1w12YNB7q3496zBDezDlI7n+cWFX8KSBwFcYHGID4/Hv1b3nLOjt+QJ5WP9V8VYNvRSaj4+TM9274akq0fQYq6F54tKwZl26/gbLyLImyucNcfG5j8rR9ip4qjhkshdW5GJJtg2DgjCVYlZoNF2TgQSHbmMid5EByS4Ao8xQd6NUHWfDXZXpKgva2GcGVNHX8v0OdR687DuCVCcOJoEZ3b8Q49HIKh18Obt6Zm4Z7Uegy8P5vuziuC9cmxVGIyEq7P2IeTCvohu78QTp6SIpXJ0lReeJdiW53JMDyLs4viwCFrDCTusCbd1iPoILUMG8/XgP+hTCry/clBWz6zadFhPHzFAOXny4G6lBZvkd7Cb+bao3H1Exz63sYkJgWOH8/h+OILFGAaB67WypDjNZ31Ri2BEQ8kweqVGN5+sBZ8c46DiyxCk/AzWtm7nxc8mghiJufpv5VjqHRoIducKMVEt0G8eu8BTtyxjtOPilPa4zsgc3EkmEcA18Y8p9uFv3jnAkloaZ/B9UprYB5+5KixDqwyFMtREyaA3v0fdC7yCD59fh2crTaS4JEXMNmyAFaEWdA9jWVsle+DkknW8MZqOnptC6TZ1p1oqrsa40oSISAjlra0+lOiqizrhtVwV7o2WN8S4nvzqtD68DvqSI3kkMZUePTYAO6tryDr84VgKJmPd59oQL1oIS+cfxESbwjSu/kqGPNsFqnMBPidn8/P42eAtk8D2K20hmoZCS7sLOED5cp0WeI+7j4vgi+7nEDlrwx/ObWQvAbH8tlmO9AYfpxFJN5CtupkWioRTjMM38Guvr/gLpmDGuNlYcngKL41YhQczvhNJ+Y6Q8r4bj6cKk7Sv/2gsegxtOaJw9hbc2FS9SnUOzoMWsOSQemHOL5/MpKCzQYoQNCdNgy6kLN2BeZEvyH1fw7VMB2hfdxRijl0AHa++MeRCzNR7Vol6ArdY+u6LRj/4R0uvqDDhqt1oC7AnwSbmlGrd4hOi/+hN9fSqbP9NbuVr0fV/UvR6kwArtdRhwcdF3Bs1Xe+qJTIts4dPJp8eXZZI/4X/IduBa3lPac9Qf8/gIc/x/LPhlX0UE+XHbxO44eDvuBz7wbOc4jmH7dNwbZsKXvIqIHCTEE86rmBj7slwp0Tn2CbZS3bWBtC/apv5Cx/B5xk03npBA24avwWJ7SPo2cZEpB6yxiWfSqFuzH6ODwziovlt9MDj0X4+oEt6P/0pmNr1nDV3BYaE2REHffVYWy2HlzwNwbhpXZo8lCb5/7by9BxS6hQfCPaYAYKlqtydHkA9AsmkWNfDZlaO3B813BcUGQJKmu+olrwEVrqPB4bWvPBw+4O757+ibcv+48bk1IhLW85GAYhqCnk4fUF8ej37AF8v+BLz38nw0Lbi5CzMQ9OJ9dDt6YTHlisD1r3v+DuSyIkMmiIFtpeHGKwDBzzS/BQYSbBLmVIeC0JJ//5+WIncVSpMYcDc0pwxM6rdCc+jfybS7F/0X0uqbzH60K6oWmjDEzvD8JKNVFutThOwTuzyE+dKPijDLUfDieFmhz85j4TslPkINI2HEeaWcCdiH48ts0fv6W5sbtfNvpnvaQNVZq47/pofpouADK/Wml97mVKVllNRws/kGXzJT6RbQvZZjk8RjcHTif+Ic0t1tD1eTgKuafBsN6b3Lq/ByelJdGkN5fpa/Qo4tjXsM7yKJ2pIvgZYYNpWWGQNM4Ax24fR6IbNoBozynYdq6A7nInG6p/IIcoAQhvf42c9QS7CvXYRsGQfLPzwL7jK927r8KHPybgy5eyHNUvC3z/GN7bJwAPn4Vgte9zHPVxBeaeCCffh98odooUGk5Mpjx7QTh7uAxvuy3l6v2TuO6/K6C6fhz3DXniU6ljWJBmgQtWVZCdrj5IdydwnNwsat42gvrW6XGNdCxeHhnM9W/KYPrAII2ovkaLm8XhqVQe5kv1o3DkYvYLX0CTdSJ5vFESe7x9Aq55YuxRsQuvZquDcocbCg+sgIDDT7n8bDK1dA+h22tjOHZWgU6ef47eGuPA+MNEkLoaCd1Z49H79Us4MLiY8e079hd9zHNsrSHgpz5V33Skm49s4P5zI1D7YQaJ6/L4RocH+77qge4mUZi1aDPW359IhoeLaLKRNUj+6+Ucqct8/814Wkl7yff2IKx4LMczPu7H7QubOHHUf/zSxwxYTA6XW14hpe3jeUP+V4gs2UcqTVOhUPYlmvo0UuKiaxyzTgRuzVeE52JfqP1iCu6NP8XjN1xEMaOx/7pkFXVojoXxillYNygAJVoW9CJ/Ndf2V5PmAaBx0mu4W/krliwQw8AiQdqWdhD+GJjB3txfqNn3ALf9vcpptwZIrHwae/4aBu2aHrCWg3BArZRjNIeB3LhF4Df6CoeeX8C7J8WTSV4oNkv2cPL+1ejx/hH62ZZTWv0kmB0cRzuFXvOloXWwVzWVN9n+ZfMdGjR38C5ZbF/KU4/54filZjB++Qp0LspiHfG12DbBlSZbXMXjEUAve1fD7IOm7NTXz6q/GfS+fcejLmFo3+9Np/Vt2TEjmGbMngdpDy1RTewZhBQE8ZbzljDrvD4Um36k/6PovB9C/Nowfg9EqbS0p4oWSlNlpGE1KFuICoUoDQ2FipAiEi2hlFGkolRS5FtWKlJSyMwoJKTy9v4Jz33uc12fzy/PKc2ThO0ZD8A+bjFI2cljaRdw258R8Lh/NyxxN4GijyfZEcohb74BhBxwQNOGe7TxvRqvc79HDRP16IK+JDj7q0CToA1/OZqNos5b6ciqFE7cp481Nx9jkfkIDNT+yi0zc/Ba7JAvZBWAVFsFtOSuxjOvPLH4ewxdvdKDe+Q04ebhKLj2eCTXXR4DUv6LocYnEu0a6zhhUIm8VihR8pF7GPDMkzOSZrFt+mMaZ6oGnXe3gZdLE6zq9IQPV+RpdU0lTFE4wp/Sm1DK1oYvdctAQJMUyE2UBwUvJ1Z0Zlq41Q9Swj2HHD6flZWT+cW2B3wpOwH7YlQBJjlj619/SnC9gD36buCZ58oR3x6D3Mn1WLPuNzZ/WEY+6QYwer4Zam2Vg7/rrUnl6gF+/tiY537YhBJeLTx8aM8/ieazjdo0SNkzgR837oLMtAhc4X8SH7AuXrqrA/uD18IafR3+3lRLyseHgVJTB7nI/uPFdh/gyovX7BL6mdNmCuDHkTmwWTidfJOL+HKCOcw7txwdfXbxjRuWEDHEUuGLnXlVuhFFzbyOZ8+UsZzMEZ6xUBscrs6DRtXpcGH3V1qrGARtQWbQe2c12urGQ+WUkyh34QvMOmkB5+5MAptaIVwcIIPV09MoDAXxhJYuNocvwRAxTXR7ugnObxwHRXGCuMX9K055Yo+3vH+gzrdyPHI4nzIF8vlR8AG6t9ab8/6pwnatYMa2djA3D4INCVl06NtytJHcQjenzOZ1LaoYbaWJT0dKwl3t08gDGiynX8FhDj3oNmEnzskGnvziJLz5spvs9k6jF+PHg5yKD+/sSIa3a/pRSkIJdvpfxJ8SCzmtSBYdskzIQi2SfqcTpDZdxK+jZ1Da7gGcrxiDFVXRsHxgHH+sPY/J5x9C3/xSHi08CUZuPwBnnVzIOiaGYg8KcOdgPU3d840irRjj4hxReOJP+i6kDg81f7C+zw1eo3kIF04toJLDNfByC5HNpu9UEtbPM189IvF4ZViw040Err3FgxgKat+fUbRHHfj0yXAadkBV4Hqkey/wiZspDHN4w7XR6TR7qR1n92nAnkmbUbrmGngrbOJYjWx4eW4NqAYowbVzGdQsvBoWqe1AGXtP/li5mswK3rJcpxROdVwMbx0zUeOWHqxb+Jeiu/RAIbwB+1bl4tOEm9BpAniqUxKKamTp14237B8hD+bPluDCSicasSiXx/+Yg81Fu/nh3dXwL2MHdbfe4He+5bDCWAIaJm2jK28C0Ns9Dca2b6do+yzO7H9Ox4Iv8u/M2SipcByvKmiC+i4Z2ipYR48DxtPN15s57qgrBD67xXNSzuOZ/8L5qmApPp6GILdzFKh9Mqfc1tNYmbAE5q8swZox/1j+yhWsH9v7/3/kQWymBhxpaua1KwyH5vMT7COMaJxVLE9TUIby587YceE/LNb4ASY9w+FJ9meIXLaDXHY6ol3/GVwY1Q+vl6WwcfN0MJosSxAiSHEDCCfNcplkx9DKk5KgV/UeU9bb4Y/0SDwqHMM9Da448+sniEobBXBhEwfsNAMb8zxeNdeXm75vZtUoQ1qs488yx1NYReArGimbg9JEDVY0Y0p7Mp9/lnjj1cgTYF7ynDZXv8flfYpko/4UxyWIgoh+Hoddyadn89up0nYyymlLgmPhAnq35iPPWb4W5ldJ0+EhPv5gtQjfnw+HqZ2l4FeSQM9fnIcJMi1U/RCoamQH64Wl07pX4hA2sBlev1jNRQ1KIGdzkMPnqpHD1iXsF5POO3tG4PQ7iXCxSBx+mtpzyIc2FPwVQmXaeSCkCGw8w4vmpFlwq0E3rku6jffvjYaspjTI/3aAHulYUHXiHW501eDJ+QJ8P0Mdz9Ztg+8fiujc5ykgM0+CyzfUQcKAEMqlBWBOSi6Ft5wDV/tBTnIrgdMv7HFPsxAIt3nz0xGu0DsowhpW2rg7wxM6qos50PkhZZU6Y0xMG2+JUIMFkn0QNC+eXokN9YaQCIR+vo89XTtwzhELClV7SuLexVxmMx2ue2yD59tOsmppGKa99eLeS8ms3O1O+iKvsE9hPcZb68EpX3nw9q6CaLEkOFJ1H8a3TUGBwyPwnkoQiEzxB/ULbnR4+xLe/08L9CRN6IdOMCyDLoyNH4/FN7XBzmMY6n2uJQNlRXa11ISzOVJgmCmM21YEYezdiygiZsuxsY1Y0qzO/K2H5s1IR59RPQTfpeDWZntSOX+Dpsn280KDW3D6nA/MHoMQ958/a/S48LB+aVQqFgFDg+dUWSfJEvWRVLHiNT3XKsULOivRNfoi/n30l/IiZfjfKC3QPdWO+zW3oYP3KJ5XhzDP5wfLb8+AveVxNOdsOC5ccYc3TdeE9S4Ih+f+xAebH5LylVa40B/P86d7wzh5pKBTDhygPpMbHguARexNfiYdR0UzHMg0oYeHzVJCg4NHeLB2NenOfknjzt3iac/N4Ofz13Qlsge1Wo/h8LsG5O5TDGctg7gjJxOMZ4jwy63fUTvYBIIam/l27RwUD5Pkq3+fQnHgJzxT1YShrichriCQjAy8KP3CeCjb6c7iPpKwOEyZHNeI4yaDKH54NRnmC3+gp6bCHH/akC06hWFvmQiJRSWTz8FUFn+nQscD/3H4wG/8MvEvhscvoMUlLyAqbgT8vLwKz3yMo4zOPrLsjITudZ10y2c6bP4ZRGB4D+LWWGFYvgKs3LcTGt8nY9aILxDyXzUlmtpCQYsNjVVYyTqz/eBwRh3YvdcEg7hd/NFTjXvPW9Oy8LvQvXEyqvw6zgYpYrhOYTzo2oWh6SILSAtwJve/C/jF2CmgIldM270XYE9DPb0NFeLNc/bQjCddmDlJDmapHaeVtke4xO0ayYVvJIEAdXo9UwQm3TCEKitZ9jl4HytuIJgkmYDt6gT+GVJP0eUb8OWedOx2kWOdr6GYq5uO26ZpoJORKnzzZ/iy/xPdi4zA++9kcNr6RHh6PBc6485Sy4SF2CktCWnVY6Dzxw7UMfSjpsEKHrSfDZMVX9ESkU/8UXcPax3VAHVNf57+Ziws8EzEe0V+6N27E27tCsKk2BMg9XaAlH9rsrr/E9QTa2XfqeqQE5QATXPPYnrkbPpkMh1uv0yFrB8TqDbEDU5fOAV4dxJGzjUBz9s7eZdUB8v6zWS3GnEyM9GnL0FSuOucF+n/K0fdkh98q10botbZwf3THfy97yC+kGyD3/tP8mrbA9ht2UcSc9dyjXAa7qgXB0nrCiqUeM8CI3XJe6CfT909Ac1X7kBb+RESXbuSdo0z5YUPRSFPdiHP2/kGjy84A6duF5Cj5D3cdywdqg5PhkqxVTxPYia9bpWFlOc2POLzCbz4/AG2Gz0D/e0emDIqhs6rvecs8730a9dl5EppGD/cgBx9jlCDZg85vHOA6PpVYHNXEQ4usIXRPrLw5+RBFnCVgVCrg3ArWRWCJRLx+XgnvvUsm70uJdASQxm0dziBvcJfOfWeBYxvqMd7blk0IWsT/am+xZl7V/G1M+/AKmEtQu49fPtFiD89kIDKcRd543cHWKuVhAldW0G10Jbf51xk8ZG/2OfiK2i/H0rK/ZMgxgVIOvIGznm3iP3TjCEqdD78WKcHJSmL6I1nMS46mY3Xw02gLr+G3MW/QUXcWvjjsRLjpoTy3anfUD5OjqKHP0SvTlFWdRryqqc5sG2xInfHmdEv6WMY0JkKvnX26CWxAnq3K9KS4Fi6vtkQJNocOS+rFaV6GuGgkSqLbfBEr1W6GHRpK9qqDOXvXBW+VWAE8lvayX3pJVTBOzT78GM+3nOMc+rng2JMIP8RWUe5K3zho7gynM9zB5ukW7DUJQk2yaYM8cIEdJWzZ1OPJThEinTG7hSOdZwKu9b5QGjADSpdr4/KPldQx2QUDxvhAKnvXnOHx006tSmZi9TkYKn0CDC508uzYtP4P8tQqs1eRx+fLeb9sXb0dl8iZvhvwcZpWtAWNwZ3uG9i1YDT5Ml3+XSPMlVvsMC6ODsoCvwL1KuBmtUiELllDD0aowkmI5Wp5F8fft2dj32l71DgzgqqPRgFJjMEoOvGVGhsLIPG3NewJbYGF+dLQv8rZ36qX85vP83F7BRN3OrQCD+TxsDO9Bnwa5c/9DuVQFGCNR1akkTgi1BRdgCXyKpBv/Mh3FRoACcnTkEycwXHTcLUXZ0IC1ul2a58MsU0BED3gj6+IdMFiW+0YdHqGpC8UsfPmvLZXD2HlHEnxRQ4cr6qB7rMv8yxmmspoY7hlOcGjk4Th20FUtSjfY4uPfoGmc8sUGVVCA90KMHqS458NFMCDDTcqO9MMH+z3sijOiLgh/58Kn4YCQH/zrDco5XUlnsBn3/Whbsqalg71YlfpnuQdE07Bifk8u2VNyircxrdjPfA6JATfM9EDQQy9lOFTgoOyLzFc0ZC5GM0SOHdB2CB00rQn/+dC13s6T91BThuk0DCu3UxwGQcexjHYk3RQ0jXVuWX+XswrycdN465QLbxcnA8PQN8igXJ83cn9hpbYH6VO4Qm3OWAVUWcNXwhW5zR5OSt8hCQ/Jz9PqVSWWYhTNmRhl2mQqAdd4LnrJsFl/Z9pb1eATy6SBWWGzTinYJz3NfQwkuC75K/7jCKspuEmS31KOy3h6wuBGF5uyVctjkDWd6fMa0liMctTOb2DxdpgsI2mnrhG+4JykJT2yZwExwLn15W0iKlHbDzlSTXaWXQs+JjHPHsCfcGzMVa60BwF/AEJWFtCHKRJmMXT3QRr8PsVEabimEsFyvP/8xDecaGIJ4z5zHoKhCEDhjx7LT5MEf8ANI+fUgoHscS02PR5ngaZzTb8qiUHTjfaBqYP55JW+bdxczaFBy8agNT1VJg+qI1rDh0TveGOr1xlR8Ge1mC3rmFHP3vGyZqx8DxWw+hqUKNZ1Rvg32LxLDjlS6ovvmGI0VEYdluEZ7cfI9UcoNoz3EPOFPnB4XlCbzldi+MECrF/U2ilB2mBnfU/VFaYxLLN8RB4eNoiO4bjpP/qfLZog3Y6nyblQbbOOGdMBz7z43OT9pIRUcEwbxbDfjHRVQf6wZOg/Pg6XptHm3kS/WNI6H1ejy+u62Ca0qWQafAcP49v5kNTS5QxU0ZzM5dDldtfqC9jizIVTrhBuslaKRTALmfmnimtCA/fTAH8pTvw1QNa3JSXw45N8fCpfSNFBDgho/sf4PYwHDa9UcH2p8tBI9P5ylm6WyUfjGJBn+rw+1XS+Hv/tvsPb6CY8otYKr9QvrQeJuv7lnNCYd+0dF/O0B5tSXs6Z7Da65XE1x6iKRwiN+bydOV9baYu8STv6wf8oGEIripYwyjukZDq5UGpXfowK1DwRQ7wRLlVwRQovxeOiVVBsHPE/GKxZDvq/mDdsgyniZcDZmlkeDemMEHfJ9zfsQYbtz5k6P2n8flwiZQ2fqZr+bkgci/FaD/CDBy0I5yL9XABZNKVjIu5eEvG1jYwACu3G2kjsS7tCe7h1dLt8Ocp/q04ttiPOiXT3SsC3Ruz+bokpEwK7gOfXOO0tHmR2i/9iWGbTuHyZGp+Hv9adpkugDf3KvBig4NUDV3pSnql9CsYywc1HrGS4z3wotDpnTHPJnvbVhCvYqvaZYng5JsH7032wQdC0ohWO021LzfhJuHul96USlNz3yBg7cNIXqeJGwnf1jVkQJiZ2fAU+cPcBrOoGj3RIjMS4daRxGqZwN4pK0Ii21/wRURDeBTr1mw/BiaCE+gZZ83wNrE2fTF2hbUZhVBT44ebPhvCTQWxFH2owh6YjSeNnZZUobhH16lII/+HrV02+QaRXTqgcm2OFLb10Qqb2VRomI6/xKRoawGO1hv/wUVA06A8+xoKKiWBhXJDRx8cRBagqSIKz5A2IsiTj1EOHvrbY6ZuYli93/jhd9NIF2tD6/nKUGg6HXsr6nnKyeLwDn8IhY8GYGLr2wEO/cyXCAx5BUyz0FIqJG+jl0KKyeehprofviW38KDqTshPkwazFOAXo43gpwUd7yquZlrg52gNtYSPPxMILXRm0o0NeDyH0G8tmYEOL7VhWNfg+GRzQPU3H0ZlH3q8d20ZyAxVg0b3uSzb8YpaonJgOzjE6By+izujrKjv6YXQSelEuV8StGsV5gLG1z5uU4aLPNq4mMFAK7DAkFZp5zWvpnKNr61nC+1FbZu9uSvjuJk/dCJ/Lx348vhowGCakjiLJOvpRVHNxtzuKsJqjVZ4pblG/j+dHt8eHY3C31CIGsh3DbLDav6ZclNZB/vkasGXRt56NjmjrFCrZgQXsQtNzQhtvc0X5ApJKspVWC4cAtKxIugunwZ+AuepGvBkfhRTB5GiOhAwb2peNHpBKTveIFmY79SfByg9de9oPXkMY36PgjD1PPo2EszkEqaCz1d7/iIjgT1W8zB5TfmgMSoy3SWTvJsw9/4n+cCtD4yDP4sdqMTd/UoJdWVqsOEIazPkXub7/O7/P004eExvp96D5qkVCBHuRte/lOnxXNkaWpWLf5tG41WYzfSoyeXMMnUnLO2qNLKvbqQXnEQemUnQauyMG+K3Y9BB8dT1oOn5KI+nT8LrAGt+6spNGAqfFE1gh2qK3m1zWdY59GJt85GoaHlOS48PofnRSyk7G4fGlghCb3LD9Gn6Hd0xzoMyt/fB4liG3A7JYY7cnIhojUaD54Iwdb1yuDjKI3qSTt5z49kWJutgtbvjQjzOjBPSx+bjswlr5l/yPL6GHg1chsFlV2h/04G0L2Jd6jabgvHJh7iOJ6Bi39fxCvDdOHWPxNwOGUAvC0EDX63w5SfCVTilAK64WMo56oM20tX4kzHcaQwRgfGDyvA2Z37YWH2bwx26sM/Pg/YLEgUn17Lp4FYG8odNATZuUowL2U7ZV5LwsnCtZSabcXNeYvYbecKKsy+gN9FvPlZZRUucpGA8s8n8aTqaNyzaxOa53az7+cEcEhdCJPP3kQU20V7o53RtkUG0u9OwN0RU7hhbxlgVARta9mO6XJJ0LHsAYR+OkRiMwLRSm089K9rpH3BpmyucJ063nqD+N5I+HlkHvhI/MPdGYchJ68RVkw3BfOsmzjBygD+e2WOI0pEOPTdQchV3sMJ03Vga+kKGOZig8FxhjCvcxxmT5gJdecioNBpaB8XR0Fa/yOwMy6A7Y0nyeGkAx14MQbuCG0mX6VnFOWmjf2KThwTehVWLrRlI1sNDtqcSRJ+W2mUlwy4n8nBq49O48wkZ5ot7QHp21aSo+wIGPU8BFfP/kUrkof48+5EeGOwHmyMesDvZyuVr17JkvZDTLv/NZ1+ks/zXPz5Q9FNtspVgi8Hr4BiyTZOnHAFXqyTgW8FyrhAppKd+kRopM5TflU9ifROW0D6kZ10uVOKJmrnYHLTUzI6pkodq2R569cfYPHWmlq7cuGZ6ATYMms97TxziXd2aLG28ita2I9U093EXiMe4e6l0mhNX+FA1igIEpkAIuoSXPx5LDzx3wgu85p5plkcVM07Cr79s3iLbhm1mJuBy0EhLlP9QKUfr9HRHZbYUHuZtJLMKe+tJY7WfQUhn29AQ60EmOrIky/sYvfqJlIbVo/Dpg6igxJSRYYzVHkzLXifQIN2ptArIUJnVIrg1qolsElyJL5su0GpY3Lpmt1lFnpXAQdKTrOstBnoX+jAqWWJJBNhxyP+3sWc+BBwFDkPe7zXgdRla3KwP4FzJabC9T87OEV885B3rkCVeUc5/awJ6N/ZSSuXhLMipmDJ6wXspqIEFqsGWebYHawvqYExwz0gSeoWrynO5yoHQ6yxbacgwQ00MlcDSlY8gK1m04CCgkFpyEcv9i+Ck0ql6BZyB02lHmBz2W+oFVcC9WvWALOmw6zN4Sw8RpHCA0/TRKcgrPVfBQNT/enNEEP2rJWAPfO34Hl3I3qtcBeMYRaest7OG5M3UeFSLxR5dwcmaB/nNhlV2JpjCn9a/UFrRQSM70mDfSYLuCxyL6M4QOJwcdYrHcvFQ9wUNmovChg5gh3u4xE3DPlMfjZb6Srx6aODLKfSz2bdr1A82hzCex0wPXg4X03cixPlgkn16ADcljOHlZtfcMv0t/BR5RNPeqEJcl736b+yNWwZIAbuvW+p5FsVCz/ww9PzHuGd/66wl8cr+GImCWcacjE+UZX7ZzvhQaHL6HuyioptLpDcjRmUMUuIAlymUuul6dCcMIg4Kh4UWwfg3FZndH6YAOrXnalpzE9okJXDqZKiNPGoJNz/85A/FZ7m3jfSuKj4Hn56vASFItP5zsTPrGcTgM+F3nIDG4Ku/DGe4aAMqa/loKpnOcdenwnWec/5Z95b2rGmGYrqvWmnmBYs0X2Jy31c6GOdGOTFTYGfA3txYNsubLnlR6bWGjg/3pXbhJXg828DdojfQeupDMWC/dFUWAPrRWez6AxjNtI3gsfLZ+Hps4rwsDQFpCar89hbEthk9RwGf7xGl7gfcH5XPs3Y6odWt13pN2iCfaIkny6XI5PZb1iCQqhypy/9d/AJtS7pp6wVR7EqCsEuSBkKysrwdeN8qLetJqO/U3ihQQFEqwlj7LQQtn/WTRe/OlBTpikkB3tAxuRavONbhLm2glSzI5yMI1R4kYwlhvRU8Y2qaugvMYbXm21gZLIDaoo9offmLynkvi6ffx5F+3e0YLKhFdinuOHZZgMQdvXlWfdaMaZ0AS++Mgoyel6x6PFLIJtHcEqkjQtLxUg3ThluFIWwg9ZFynpcTHP2/eJdinOYfRXJaNU4oEBPvOJxHF7UE1z4mYkfDMJw46lauiDaxSfWDFKnwAdu0Abc4ZIEha5C8DpZFuYZDMdIsd184eRnMNBKoPtBtXTCfyVLTciHVU4N+CVCFR+MGg4vJ+lgV4wx2unV8nXjSegdHQsfPUtA6q0gqh2xoFSHRhSsl4WNbmdwXlg4HRj4BVKSkjj/K7LwzdPY0NKMDTNlKSKvFMdulwLRaUfhekARF2kZUuSwG2ymsJ20hN3h3Z4DPCXSDV56teBScWnQ7PDH0KRKEH5mScsk9ei63Crocw5jpfQiFK+KIrMoDRDfMBnspp0h7fq52KJ+n3OetFLpy03ksmwVXP1aB9OUT5EgKXKvsCyMW1qJB8wT8IpmKFbt3M2vjseioaYSFunP4q/m2jDL4zNN1RkD8TUNbKm4nsJ8r8NxtRLupjtssKUdExb54qWsiazzpALmSqhCyPp+HD8/ECvUbOHDT0Po+h3AsjLi/E6yjg9a58Cf3X+Qo1ShyOk4aISsBGGdHTQ7LgJzF9/kA5InuED4GFqIFqBa5Rl+OB/hfM5+vGJ/DFYoDqdXS3div+A89H9zCjZdrcOlkdZ8PrCYCko0IMpfAFwy8zizbQRU7TuAgSNU6Pz4VN7/5wtZXfOlFQ1rYXj3aCiYh6wh6MSHPumCnH4glWQX4o3r8hzUMAeufHBlXSM5FNyvAF3lEzHxfsrQ3qTwjs48mvB+NSTpHgGjGxfAI9YTpryOZ4dPStC7sp+eLL8Fi73D8IdZM1TK78aVbXd4ybKJ+GG3Pg1rOo8h0wjem0fhj+Xx/OpsJA76DECUwTR4736ARzV6oHW3J9WubwXVcEV4dHQ5FIr78oiNXXjV4QHutxRli31S9FhuCcTWGLD48qugd53hzo0Q1NZ3xmrHG6AyLZNHiufCIr9BlBLqoEtpI6imegMohErB9L7J5K+Xwu0/h3LkcyGPdhGBEy13UOCDFj6sV4ZLoqHgKyUFn2L30/AwK6rU1cW5C5vxSjSjfOZaolBByKmIAKEce2htYhirtJ5hbiS+f+1Iv6dfB1W9Bp4fGsbXPfzhz1/EJVNqoIyMIMNjNqXuKsWQ1IVk+UMbmqcL8MXnY1DijApsLvZlT9sS+P5bH2yvraYSa2S5O/rwdNl+tF43DHybltMHyfvwcYsSzR4dg7vmjIcD7r3UUbWB/ZT30KEADxi77iY29gqC9MFrHH34LomTBUjpqMCc2mnUNWEtnlkTitp2iZD1SBX+Oz+KjWJ1+HeWEDZ9PAsmYpPBfd42epAhj1+8DSCwfhYL+rqi/s7HXOmux5/OzoGi+E6aN3RuXevmo+GxBWD1cyUET5FimbG7cfW1z7CyWgWzfjRyj0IMNDtpw4ccRfapXMXWw7XgzRUbEGu7xlI7HpDN2j5qF5oOkzKlaHGoALwJmsx3tzeS8NgJ9GPrGbhsMAtvyfWAp64Pg1HsELN7848QHVCXHYTyGdVYb1nEC83PwuFeQxQ6tgte2ouDq+Ne9Fm3C9tDDGB3fxq0ys9mu88NnOdymJbP3odTTbaTQpcjODuM4X6xW/zxgDBopmpx0yU/cJSRpd4/jeRmbAvP/d6ylcJScJ73lhJmWUJN/jCQXmZJs/M80fhEEFvXz4axz6Rh0wJvLJRaDTeqHeneKU9MNTMD/KKLoxL10e3AQXAYnIYxRRX41diGjm93BpuAFTBzVyVRmAFs+2vPN2ds4vI9V2Gr1SnqmleL19K7MD1Amha/UYfyrCyqSJQHB/UyTiqOQ9c5PbTePJ/PnDcERfepIJ7WTPo3H8On0ETUD1SHC6+2U/7wApp8sh803NfA3wxzurV+9tB9T+JnEbup+HojWKlOAbHSOVix6j8yjhIGCc+FJPZiJJ1M34Lf98bS4Ja9/FdQHdPQAvqTRPixoAJdVyunA//M+FvuU7p/tRXfbdaisKNutE69ji2/aYLvDWmuNZTFjZeM0Qb7UEnqELeKHwD9hBv8OPUTLLjSCVqqglCtVMZuwsbgk+iJl5XO4TvJYzjCRhi8r9bx3NW7+GnXafY8bQm/K8w4y+8jPfxSxaVB6qxibUiPzD9T2FMdWGBqS0Z7r0LNlxEAY1/St1VP+UD2MxCbJ4p1/oE8z2gNrY+OhrtTj2GwuBVuMjCFM4HW/CjpBPxUzYbre00wz28H+Cl9gbfNhfjC/AoJfx9OY74KwLgFNph2PxP0LkyBnquNlPN0Cqn+SWDJ30UsMpS9vHwXFYzSBYWtu+FT92myjVKBE+s/c46vLPRbVaD8sAUYGLuAp50cR+3vpkLehH+87XY2f8kU5/NpgWi3ZQQfM5qDOcVmYDjkFa6H3WihugqEf6yhsY90yd8fsMwgFlVGSJFZ20NUWbof/+w/gTOX/ILgIZYM9Gxi+2+2NPbaGnqv8Zxl2xG1PYZT573f2LvSn6UPi+NxHg7GZ71wVu1LXu4kzz6Jezjjix+EVm5i+8cn+JDcZZ645istSWB43kVYK+FJTecaaLJUF62sSqfXdUEcLBnCSY9yUMnMCgY/icBTeT1KMHqAXhssUHRJJ4bP0OCl5d40viEPg1JusdLxGPziNh7Mk5/hqjGPILAik5XW7MRcNzOaHGAMz08OQ+daUwSRvagXqwo5W1thUswT1tQJ4hHbJpDNlhTQrp4N8fVP2TBECT//mcIbm4xg7flDdENnGUbONIOPaMy9aZnwd+NtalWRwLNeAmSSmg+hq8YDCzqg/zkl1j4TyrGjfpHHSB0au/4hrfnQAg3930FLfT36GMvAxKeNcGq7Lm0U+glZNnmg9ciU3Sp+8utfDiBwXoW8rmrB6DW6YPz5PX64qMC31bbBkvpVNDLxHvzdNpWXPviM+pW3SW2VKBbcGAbLfm9Cs7cb0c0ilwo+r6eMjyLwI+UvzfDvopz5p3j5ZIbFCqpw0/cx9+eHwB3B5XhtrhcafqmC8rOpFHfZgn55HwWbU/vZ0ncMHM3VA++oHNo0VhK1TJZBpmY8zNlTxuKDYTQ89w0Ylq1BiUwDsLNTpezYfHZc7ELPnTpAprOCRg0bxa+KHODjr2HsL9bNixSUIOX3eZ7uPpI/CMngyVxJsh/8xAe7JsP2DaNAY9oE/k95P4zxHAk+e0o4NcUPR3mcpQubx/Hg3+sovn4umdx+AgLey3nf2yHP3TgGruUz3f14kwrD2mBGmSkPlo+AdQ6F7CTliBMLN4LMk82QZmcMT26Hw81WXf6WoQGuL0dTNW5g6VhNslr8mf3P+oGm4Dw6mC4NE+ANaeTc5hlm4+hgWAAFDfXT315fXikxhQYWfedW7UZavGoKlJ96Qtu2LsCRfvl0y8wIO5vFKDvyOz+wmEPrvr8hx+Q9POI/VXh83gFsZv2h5kvR9GV5BrvNCoPCtf4wcsUMjB05hS+O74DtU0zg0se3VO3+jYslF1Lh3JewtXENrqG3JLngNX/ZtQe2emmAh5Y2tHrO4tikKG4L20OP7zwhpWtpVO21EVofPMf/jonB589rSG7DRPh+YQZd1Yln77TNVPrqAu1aIYB3DB14V/dYdjcbgE/qn/nH2iGvNPXn0xEyNPdYJP0Jm0E+kwLhVpkaf7XQAAFYTacGKmH7xHEQ3O3LB58W4A47MTA3i+PNpmoYvu02l1dfguCtwdy6rRM6JBTg/bRKCmysgobrcXRKfi3vMrsN/aKqJLBBmtScw8CtYxbLxCuCQ0sbXVWfT+7nHg6x6G+8WbkQ/lOcC6mXOymkxA3k1trD9x+KoN52hm5Pn8syldPw7NQzoCoXhT4vq+DMkQ9DXJpMBdduQPo1UxBvewougZnwNaCZ9gwx0ekIAYhW3IqXFu/gIMlA+OFxlQ7UmkO77wX48WOQtntdxHdGKynyYRemlHfwwtdy+MPgG2g4/WLrTdOh64QMFmVEkaj0dT6r7gCzTs3gin+uVDURsKIvho4ZmUDvf7Ig+Swd7hw4wtOSW6H5yhF4KHOQd+Ypg8m7R+SXOAViNxP6jJ8A9xatxtzjOXA3h0D+5QUI2m8NJau2sMiRZljvn0qWSquxc+VIiIVU2HxpO5d6CqDQmot8/8kvtPnezpvMEcsz0+lgykLeGScAql+PcbzMajDWPMzv74VAe5swJj3bj1F73FnE/xs1DGVn9WiAPf2L0HlcBn3T8qJZ8sshxt0e9s+VpE0bhsNZwbW0MdWPLscbQs3L0+hzp4tuzxwkizUDQPkWlLNtBvrIVaJZ1iDYeq/msCYTqN6ihWUPz4LluziA+joamHKKJ9oeoYzdoWBY5Y0Dfpo8vFIbLnTFcru+AvruicPTV+6yg/5lrNb9SQXyS+lU6SNs3GUKGjFmINhYipFbTSjY15cOOzZwWcE7rnNSQJeNA3jubyJg3n5aEzAatNcLQ9EAkYraTTJKyYZbI1Oh+YAF+m8dR2el10GVvB/82KsIbr4j2G6RFRsXfMeWZDuyrfoIqwtekLNDHW4fml32xm5WXGQIfe9SefUrQ3ChOTzTyYZvN30jOfs1cNutCTurG+j2yh08R9YSLj5OQOFqU/6VY8EPfsriohkd0PNFi84b7uHLplWsUHMCpH004Vvq0J5Xl+Jmx89ccrcU9vt+A6kh9v5iNpccN3yFUdPlOHw1gzO+wMen8vDeOBMQKjrKV0SLMTNGHCsrUvnXz79kM+DBurNGQMtGB/w22RS2BGyhquzdEJ4pxJWXFvHNtGd0d70zBeq1oIGSELQlqaCY/GOIf2qOP5JMSPG+NC455wXfpW7g+pjD4BKzF1w2aMHmTfdhTnIVFmZn0IOBaqi6qYVLnilCiY0JLd00nlQMt8DTqQJg5naGV2g4UIGvJUlcO01ajt08Wnojiv1RQpfFUyjK+Swkj7KAk2uv0xONehw58QDvFY6kvmxHitLvhvb0s6AqeJXLbGbyo42SMOzhckjY8JVEmjyo++dVeD3VnN5/eUC5suqYVCQ1lJnz6XmeGKyOVqbelnI8LniO4tu76D/XqZzbpkmOD+5DUEQw++q/ov4yQzhqGkkL3XpR5d9YDjgrwjZlH9jByZImHcmib5NrwN1UhmMExKG/II1cPjrCm1gfSCvQRrd3DTQyZCT+2/mKX6xawMcG7/CH3yOh7K892ORsoBvtFSQuOh9j/kShyL9blEGfeNmL6SD49xldH0/gvt8BTJaVw4zo4ezP3qxpWMRhTi74ScGSlZ7mg+DItXjr4ET4UFoI0sb/QfeLO/B27XsYL9ILOlq7eVn2V1jlVYUPdipgVo00xO8b4L9Wiiz8+iXZa0xCj3su1OatyK2DXUMuPRIvPdPGg/N1wdZGny2vW6K2VwFdWr2dtff64NJDByj9pySO0LXna2Pmg99WBZjjV0xRJTdQTnQxFOqNYJxyF3HjNlwT5csRLQ/YuH4Gt30ZDbsKdchXOpX3WC1Gs6tC/DwxDXvSjsGL1sf4Qt0Vk47W0Xo/cai0FcN9Nd78MfgULne6TzorpDjQdzI8uboBytpj8ErEC5riIwIHto4A3xU2dORJDr1sqcUv57zB8PA/qnW9jHG+C+DdQ3fuM5sAEf/u0+qj+rTT8ih3lxSR1aYQXu6fgLIthyBjdif72jzgxxYGkNeTgGqTB0H3ugNbmjjB8932YNRpDOZNV3FHqDuuG3yA/SMkASJHwNjAJXj/zQacm3kN/v9W/akjBTin+j4cuGrNyg0nWWY4w4viu/Bo5xpOC5oM//QFSfRYKMzV8+Fnbx6xpu4Caj2zjX+kWwC/nMKnrb5jdMNOaE1LoU9PFamv9i+CQydeBk0kxy6K2WMI3z0F4PKehZD63ghCPxSz4Z/dZK8XQPEnluGqxHTWs/ei7Y+H8jSwlsM8TtOrnlFYluIM0/zL+eKbOvgi8QB0nbbR5jlreL7WMHg6MItLU/aCXuRlshOZwg9L97HslwfQsiQNl/kHkfwafdDomgT51oyxE+9TUaA2fR2ZwiEWvhzO9ewgFAP767bgNWVZUoxWgzzrRiz7vA87lNbSpOGT4YfAC2j78wjqx1ZAQdUENN54n78fmAInRsvRpxZ3uF49BQ9/mgDHQlXBt38yZezNhku/5bGwLoHUNJSgWUcI0l5H4eNjzVRZ04qXyhz5wp9GSJsuANaq92ly3QiQH5gAQpOloMRjJssWjafbhxSw6rUKKw7l64YPplBiKk7T8l5x4ljtoT4UZsvZl9l4hQQfD7hNdwsnstzC52Ry/Du0JHjxvWl6mKwiB75vJKg7NJUrx+dxSdQgTVW8ivsa2+DUA1N6uOQPxghfJukvo0CxWArcU1dwVIsUJ1wYIOMTnhz+U42EnBbzhjpVaD/DoDpsGmTfrsLFun8h4f4AC8FtqKEGPPvWGEK2DHH9y5WstdECS9pHwr6TAfQ06jwmpipyzI4icrEoxMTmq2x1axqI1j+DNenO9LZODeYPM4Kkj8dYpbmbXTLSKdxTD6yezMW6KTnQ9VSBs4P/0v1DRvBy12Ps7JPk0LEFPPdIHwp3/KH2y4moDUGgfHgDVk79Dn0VU0Fs30Uc9f0Q1Ty5iHZ2K9HrxyQcmHYcxyZ28qTkMViNuZh/ShPEDPuBzdXhln04vN19HlW/B7JlRRWfSomFqEV74X1KIFl1CcFFo0A62BeBboZi+CDzPNcfN4INoSfwzcA1FP89jfbfWDTkxvKw21WRQ4/G427HmZBX58oCF21wa7Mi573L56y9B/GrySG8v9YShmsN3ctb+nhjtS/evvaLD3vNxeMJyqRZXg3LJRWRfD2pYYhRlQWVyb9PHG6Gi9NBpTrSPSsC+iONIBFP86Xbe6ju61x4cY/h9sszaGx8C17KR2OgejhNWxsI63I94bpBHUyz7aBtRudx4y51UN+RTKOf5qHzRyEeL1IEG0bkwyx9ZbxhmwhtziNhy7dPFPR3InjlJ9NH01uo2jqI78OT6Czvx7CER+xjnUGT9h7AjKl/0KFADCbK30EVhQoy7BFgi/96sOA00UDQXjB1jEDXyFp4efotJRydDBUnB6AyfQeGLojlx2uPgEHzBTgs4sjD34jS9CgJqhbbS08bR0BxKdLO3Rnk5ZHGNQXHKS96K3wVbsDJbZY0+X0L2/ouxX2FwjBerhI29c/EZXMdcdL2lzyxKxaLGrLZg+/DyjPNqPbmJHp1ICRY3QQZl7VUcGU2Rk9+RXIHJEFmnDeMYEfyCQ/mn/ePQcZWXfgZKoQPg3+A3Ggz7FFeA+ITB2lkQws6T1oDMScvoF1qNU5Tl4AJ0lq8/QvBZ7PJNKCwiaWdH3P58AyQn7uNNe2U6NPCzbj/kQAEe23Ep4h4e1co/ur+TZ8lWjheMI0+iEwg9ztypK0XjMO+qoFWuxE/lIuDGV8Wkut8bZq0qx1WbPtJF4M+gaf8RErikdhxUguivE6A2rDNULz2Mt9NXsKi+Z209fJidD+5Cj8q5MIUURFaf1kFDjhXcIiQJU9aqseJN1PRPO8JqEpcRmvjVGyt/wH7BK5CwoA8nOyej4bOSTx47Df+GOLX/dZOlAvFdOShHI899BswbICu/x49xBuGVO6rQt1xTrAQfDBMtwlyFrzgJx6udEPDB3uTktEpQApmJfdjcP1ucPt0CpeNKcK6a3/4emobjTOuJ0FIpPHvV/DG4CmQ+L6MjLT+0d+Sc/w6og/Nt22kkxdMadPjZnoRtxjO9xrSz2ID6Ip/SL3PPpOFYhAahEbxJb2PNH+kH2ksuQQPTwXQ2uOrKXy5JXzrfMFFIb4kcPYPxh6vgFU5Tth/JJiz1Ippxm4JaFt+hzNdTGGpzmIOPFrLzblNtNQ8CcZvaSWN0h9UdEoIKiXyYdzdU5BoJAN5i6qgY9havmx1iz4sWYlLRQPAs0CPVAQO8qdIIWqI/Yym22Doi7biuAnhvGFrPgWdkUfnlYCtax9y1eePqLY3A99nRtC+wxbw7OAUfuemhos+LsRFQiOo0q4RMotEYNuDTIyXjGPpkOtY4DQMqg5t4vKx7ZSUZYStF+w5xvAXRJ514ukXM2Fm+0meIC7HS6aMBIknNlDabEp/j61E+2gH1Agcy2NTovHU+NdQkK6ALX/eU+lDRdjnPItazjTBaHsV9hE14/23Y1B4IA8MUpy4ZUQ8K34XgzUmo2FO/XCaIf+dp7xbyRI/ZFniYBL1j7KBqKOr8F5NPuRpr+MXHhowZfxMHEfyOCPant/YrudOh3sUWmfA84tNSLC0nGFzNrWsN4TLLyXZrtQdzgs1sfGtLazVfZzPZn/Dv9M9OCzqL4hJyqGLlCBovLUEw2ttMOHYbq67s5UyHd5zhEYF5F/rw7PXssj0qQfJrlaFp50/oKHNF3XMdenDJVuUXFRGWBaEsn/Hkt/rdBC3WMaTt4nC3vgOthi/C0yUhvrRppAOfnWneJU3vLUzHx5FnmGfNdkklGEBw0qP8O+vejBVaj3qHXiIYzyQL533wL0a3TBWcDIGZFeQQcZ4qFWrhdb4dzAlIIdublqEj0YJkElyBO9Sn0Y5ue24RW8L1MmJwtjWRqwvtQLBImn8o7GOI6R+0zmHHXik6BXWHX9B5w5fgHvr9KDW4zAu39jG2UcE8b+uozQyTwN3amiSgIEgXzgvw4+NEsguVBKuS8ZQp+thDFwoTuXlh0mqbRhXxKzH1W8FwLzzAFucLsP9VqNg5I0buN3pNC9ZHcpmxRY0zXMAFnxTZXuB5/zkUwIIxHRzd6EOZK95RL3/snHeDz1K6vkCEv+e08femTh9+nYSytpM+/4eYWfrydAUP5xPJsWj3J1/WCSQwjf2X0MXpVfo+foS9X0f4JpyX3QqlIQy41C0mv6L7xXfBv+OB5A3zBX+uc2EP/nXOWW2EF6VHQZOgQyjXSsg5uoYalKSxtVd4XxoIJMkjh6lySOnUs6m0KGesCbrmyPhVa8LbC9+QIZ+ojRK/zjvOy2E83OCIDJwM9dlTaXX3y/T6scy0DUvC7IzPbHU7i6FXb/InmHXcZHbaf6QpExXLyWBn6oGbPxmBqN71+A3/xLq85qKChlLaf6GAfwy3ZKqH43kLQciKKL4Fx5ZawoKX3L4fFsUXBKpg77lqxkTPtPH42cgz7WZZD+YYU2UMH6pVhnKvxKc93s0u685SMO/JrPOqHeovtWKXg1IgmikHYgcc0bXsqlDM0hCN7ErcHD6dQxves4Lba9Cm/dOKDVsBPEVU+H1kb+0+bYeTBjlhTlC/7C98D5pNdfA+HpN3vL+A8nNkmBXvZu0y6mfE84qw3GFpVRQJsGhrbV0a9ZFvKKlw2P6KuFY6Sb6dyICNQ58g4u2AKP6T/MGG0mY/SaZni+zgPCRvzmiNo5UIv5DZa8cdq/dxbZVUiDaLkUirwxpeYEoxHglUMkMTYxsmk07TpzF+ap+JKGfS3aiRqDi1ozvNiTyRe0A/n04hxzxM0777xjO81tEER6tELfeFsXDlcD+0VFuXj8O3xRfQs13y/nlrz/0cnoLLtTVgsPfs2nCI1WOiDD5/1s8MPZ4B+ZnLqWJ2q/R5UENhLcaUmu+Fz1KnscvWyZy3w4lMBZUAKG81zTHXZFnnwhm76tR/KDoN732j0ZVzUWwe/ooXNpjCFnqoSyycDjFZc2EtTpvWXBGOv+n85NnSqhRjvJ/NO2BDsW+nw6Ny1Tx7u+11KX5Au4HBcFv2c+Q2LudNfQCUC2wAa8KboKVkiJwUyKMnJOfU8i/KthRi5D+T5zrNVpor+I80npsi7d+u5PrZIKs40fRQ0IfNSLMacXScfwmU4m1zrWA2BUl/l58BVWDNOHTSxE4d+QQi9YL4YSkaJzmNxHWNL7EQw1N9FBBD66PLoTyz3touLk0fL+YwcGzD9HX7H4q6L4Hi3+Iwfif+3hvdDxv6lsPEktiUHSo304tiob28R1U7ZQH6/cqoN2386Cd3oTPlI/ht2+JeGiLGhVaG8HK2gfs7/QPJWKGU4x8CZ7K+chFz86w1o9BTFkWRdHbpDCsyxx2fmnmptfraIT5eo5eup5Qey4s232BcgW2Yr/AfL48dQKuuawD9XWFZHMoAieXTkWBC3WsO10L77fug+6QoygVM4o5MhpdgybBc6nnPP64PVzrKuYKsY8slvuHYqw8QTzQBHPG2eOOfUJwebYMlFbWYWjBdlhV5UnLhUZxf/taFBMQg1z5XeDmEM3C/6mwX7sRVHRo84ewu3QsXI+yPrngisdLwUYqiDxTTVDbOxnm/TJBmW4G3cgknrh3OGvHPqZrhzfx7c/T6MXcydwtYU3xCktgs0IM9GhrQEBzIp+xbeLH64dTsrcyFA6zphhpCbpQshfivPN40PAQHBdVhFwRE9j03BGKCleD7zdt8rE4jY8lEL5Mv4jtJ8Ro8PdpfFsuAglelhx2chuFBA9y/LStOLtpPPxdFwJBmWJ8Ntmdw45VQ6OTGAR5PWHlm90w9/1q/iL6gB962EJryhjSeZaGaTEasMsQkL6PhgmVCyD63nzyulXL518ps5v0TPbp7ccEre2cqetKKnMC6B1PgXNpQfxufDXnnzzIR3Kj6KqjODRLieMRz1TIf2GK3z0zsdbBGARu7GLzO94QkXuZx/2S5HWPFVFpVjCP2/UFE+zcYc4cX87Zpwc9xWmQJzIfbpaXY5pKAC+Jr8HB9An09VcSvAz5jyokT8DscXowXaiX2pdKc+Xxv6wSMoeKb2TirDRxbHkpirIaPRSreYP60qeD9+HZkHdmC0ySmISL5IfDhd2MngpJcH/HG5AUmMGbzQZQV9UUlsXeg0jfEH7tSShRJEp+kWr4+9wy9uw5jRuTvbBeIhadz02D+Lcf0FhEBZaLNLJo7y1eeHAe1NxeSwfHFHFr2zi+U/ERkod6a+brMFz3QB9DSraChWklrOyvgQX/9KllVQnorRPEAeV0bN2sBKP8ZkDGoz72nbOHB8bewfzXl7ldLAvpmAqcCgjlpY92UGCmDig8u4U/sgjPy3aBTcpU2D3ZEOcqA+/KrMZCN3su71JH7VQzOPbsNMDBM9z9DqBdajLs64uEZYWfMGtrBam/leIn8wKxT98Sjvr+I7XBtRQylVFGophX1FzhX/svYPR7LWwv+Ima+cVcM2wU7DjaQ26DrmAXdxkbNax4x2dZPP9MmqJHJYCLxAC+Xq7KH8Q1oX5LM2DEBJS0ncOPHmqhQ3g4dHT7UOLKeFx5qIqrP+zBEMPRIGqRwnuuHKLCpbLQb6oG+uX/sXaPATq4HeN+2wV8f340mtePBjXLvewYG8KOrQfoSqcErAp9gBU7pqFK27mh/tnGOqq2YGyuA/lLAv5H3Jn9A/V9b3wNIXNCZCykDwnJGJWiKCppkjKUShKpaFSiVBISoUKUORFKkkpUNInShIiUkGZKRT+/v+J7ce7OsF57r/U87+fmbCzX60P5uBK2iQqB36VB6KvcDL6xDihlf5J58yd8KmkypHFjcVj7Pzhi9Qu1onXZXKketJNPw9v2x5y48DD6Vm2hOgcteHRsJC3ROou+rx6hTcdX6vZKAolLwwHWh+O3sGXYHOECehemwt7OFyg1pIMt1xaSlmcUHzqVyNkPkjlp/Wy270zDy4bLaWqIHPxQM6DY7EG691SA7V7H0afQOIiInExW6Xnsl/UPhBu9eVcWws7usaxR+AkqGrbwAqMjGHT0KvuZO6Hu3i/UfnsnVymmYdgeOdBsvERNi2+T1GAsecSaoPLe4Tj71x5WejoFrZakYed7Pc51GuKNpnV0+oQ/lkWfoPIWWYwJ2EtfT5tjRZoUus2Q4v04idd6DvnKkWHoFhVOLzYeAvODrnS1aDiXfPlAJWPjeG58GBxUFOZ2p6lwOCMIHT8hYPBIFN0UN1SrBGj4CmFmtCiuXFeEFVeO0pknStAydQcmhYrSKbrHC46/B8szFmBaqEEFWa04J+YmTetfhY02Qxwm9Q/qFzdBpWQ3VG11JV+VGxiWUMifEj5yj10oavQSvmydCFb2Azjx9BbufXaRzq2ejad2f0KH/76RcvMnLHvjD89HHkDZ/CFeW9TF3yZY4Zm2OiwL20Qulrlc5XUaPv/0Z+PAPP578hXMvDAROiWLofrgLSocLotSk9+xr4Et7Zfcxn3/bmK/cR+9nKdFkz31YbrKA3DRX06VSXU0yVaJpkSK8Y6Xoajf20D1V8JJSDQFjyurwParalD+yhBqPENYUbSO8+b9Ias9vRw+3gFNR08B/9Igij0tDZYftkH7wn6aH3iZviTa4kTdfXi+Ig/3RqagVYYeJ7wSBNdmWfhjZgmT00eT8tZSVh/ygRMd23DtOxequ3mX55cLwbYhlh0TMQ46RvrwxY8qJP3jI5nlBuOpk7r00igYZr4Vo74LhqRW3sVpqwTgetBefhgmSZVtCfhNfwq03srHkIguCJvYi8Y+UzEx6SCMTJ4MlRMzqUf2Co148oamPn8LYxtX01bnuRweg9zW8wVkt4/Ew5+FYEOGFu+1H0c11pXs/qEdJbed5f96n/Huo4ZwN/wQLPpUh/sfmcAc4/lcmxLP7HgIdc9pc+ljHZp24gLevxEIlnFiOD9pAFJXmkL/lFI+9KSBs/YiaAo95Wm7fmN0riZvPVBKO0d+58Um+zGtUQPCQ5R4ZE4fX95iAs2NdrRQsx0aDmdy1sFCfv9yPdhsicGyIkOQ/VtOt/M7eMWu/5gz1+LYee28ZcZ4TPu3i6i+i68tOA+DETJQ8F8WXhSNg2uPonHdHjFUbKlDbVgMzh4BpM7A05UrUS5KChZSLAZV34Xbsnsg7D9HklQLAg1bB35aOZNCErWG6hoH+S3G0Dz7DKm9TqM3HwVAK9SILzbPponrkL6/ecADqxBnxk2h1TYakLPNhsOWTwcx5RWYMe0Lbs004OpgUXrb8QgSV+jD9c0dnOMuCjc+pMIolyuwQ8yWlz25Rc9GbEP9qlq+/nGQeu+ak8WqHxAnPAp0BLK4vDKbshOfkexbXRboLgYX92eYcSgESFQXd0+/zALnJeG5dDm/sd2I14yEaeSpu5jQVIJj0gFTNhbwzVVduDj2KVv1ikNJVSw37L+NduVP4NZzbey/NuStm/5jA8FePrfkBsrutwHPDYYQ5PWFh58e5BHfzDhUJ4yinbX5q0gg3z47n9TVV8DZlKOY46sORkLKcOewPvy3by96j7fiU/UquIOv0tPot+T+qp+Voo7w1Hg9+J2+jXp7DmK39xme6dtGe77sBzsFNTQ6dpe+RKbyLfkkLjxBAK7XefiPIti0xxEPXplEQna1HK4zguqbR8HESHn46rEHc44rg7/iTUwweEk+pjbwNMicLlR1UESWL10XEmXrnma+8NQDuwylYU5pA2TGyoNJQS0/DBDDia2CIPCuAZKbhGlFTgv70i1of6EOqyOm0qs6HV4XLIsRV4jiNQfYe9cG+FTqCjxbjpa8ecESyyxg82knFH0njXZFjvQ3Yj5YnW3g7//uk1+GNJ1cv5cKYzbD6/vq8PhyKAXnz8Vt23aixU9hrD1lwZmOzviNBuBO5WuKMbgAi0JHwbiRO+mJhwxeklKCxRKxfEh8CYYe0edMxclo9Q3ZbvJcbhAWhDvwg8bu6KCA29GkVeTLy0fKUaGrMLT5aIDq67O8wamJuiJNYGauC3jJu+KSlQkUUPYWn+rXcc1RGTA/f4dTEvVo/PAkvOihDQUBuhi2PAHrGwmWNAnw+qLtKJ2wlX2n7QGr5khYEnyHwzyHeCiomGZUvsLIoUz0Dayo6nwX9a035X/WHyleLZhdPziRZaAsaLtp8KUdp3nDGlMSTLHhMUNZJ021Guq5Fqqlr5PFqYn8y2Uq5BkXUEv9atp4JZaWqRykYx07oG7uL3I6ch+CM26CTmkBBcSZwkBVOln5fCGzPGegxDOsuKMTVGKr4VLicew6205bar5C9g8VWL/wGxvNH5qd/UMcIxaCWTOdOCzUlh2f+1Lplmn07fVH2uRpCnExKzn5lwacrznLDnCUt/sp8BRaiJLho1DoshonbP2NU4ONQX96AAWGLaFX8YEcrHqJB50Kec76+3xxoIcHYifi20POfGuDGSSkepD0lsksb50O4++lcbjHCDDTrqVzMYw3P5fjhs8OvMx0OpS9/Ad7Hjay/MXJXGlfxtMUrOFiuAvo9g0Hn50imDtcCr+2TofDIRO5YGcLXcnPwAiLe9CaeJFOTarg5yU7aY/9fJxBz+FrvgUYLJMh/U2l5KcZwVaftHhpoR8cyLCjBSV3qWK3HFyt7MNLqjrQ0RQKLaorMNaynNNednO2yll+YbGZFlo6UeHZ8aATuQg9/VRAPTGPv77/hHuEt4ON0GlapJ6Menol1ON3BYoaV4KhtxyLHh0LU6pXw+Qw4mW6F+DRZykqeH0RvNVkUWBpPz5ouMZ1Tgir30nB7B4zlgu4DrH7N+KZHH2AqhhYce0qHywHsOn7QDpDPLk/cCLEl+zE6uA46j4+C+IWTMdT/TmQLvaJbPTsuP+oBSS4OZD/HoDA+nEw1dIHl7ZPoYS4Ql5QdhlPRO+lj9Gr6fqlC6RTchziWQ6G9V8n69ZYOi1ymFobDqCIzyZcOkuRlCOv0qf8zRxj4kob146DJamVsPeqFxTEPaB5iUlY0T8GWh+nQvDdAZYtLqKV++5xQI4WHL6nj0K/33B5/VlUtEgEuPUe708f4KAaSaoYp0hH+2S58eMEWOLzkxtz99J+v+e85OpZyioqh9zKAcAZntgxxZ35/ScOFpwOH4ML8ctDf7wmIEH/aZrgvjILOu64nMalx0PdHXvaMioF94nLgpykO4c+uk3HFgfS3G8uQ7lViMVHDYepVsP5mcIKOL93JhruV4T+cSLgaBeH9vui6XiyO8dFTYTnQz7953IIX3sjQ55/w1HWSgUU4CJerRpg40WzYXTYSXjcs4S+Zf3loguR6J32gY5JvmKzzZNAt+0Zeuo8gakiifBu/i7Axl0ckHKS3F13oH1zC2gpC1PzfWFoiP6ODVU50JTWjiXqi0BnQJylm1zpP9l3kHY3BX0Gh3RCRQvCVC2o5uIEplMDvPWWLbfIHgSjj6nUMPst5MhtZ5G9VjRnsiI8uN9KQvYHKbjIA73sc2Biazl+JxfAhBnY8OcpPsrwwPsb1OFnfR5H6NhyU9ZtzJFIIdUsGV62VJQ0RMxQac5mELYv4u3+JjBh9Fb+JpNKyeXKFPvvCK1tLYKYbnHM3H0OXF6L4opuQY5aawxWec8ooOkpvt45lU/eeUhTxQi+a/bAtVcH+IzZSOg56wzn00zh2sFsTFt0kqKLMsC2RgqH5z7FVn9lDA/Zih8bn+PNj4m0zEoZfppo0wLJKXxPzRtjHvcjRj/ltVmqaLxDFidmGMNH7UC+56sHwg8zIGjwKoiczKSB9C72VermbUJr+OfKOjr+TJ1Gfi/CI6enwpokNVqwrg6khjR+V/NOmlhUzGJCRwDlDxClT6Qtlpf5u4wR2GvnsGd2BA27qQcxc06TnqQz2HxR5wvTm2Cmxgc+YXiIFay14eKZUDhs1Ee1Hk10rmM+pRS5QPgDVf5Vr4AN6bY8SvM1Jt4UABvvJyxSvZbeaY/GZ1/cQODzYWyqa8flirew9+x7tPTpBNPxUjB3VjCLGSzH1ye8WL3lI8mt3kez9z2DyhPVtFjSEpzFrnFh90Twj3ege7eG+n/HFrj4wIbMbaqp7qsWJfwRgNML5XCpqg4/9xeAy5LvcM4ea+q1nokWDX/4vEEifthzhO8dfYmnG6q47J4lNdQZwPsqaYyPnQd2Zu5sOq4c7hZaouelCNp7Rwa+pxfRuQmdeCJdDNau6MBRDj3kZ/aSRRITUTPkDMLCp2hs8YMffE+DxOHLYfMWTXjr04HfBz2hutkL7WpbYQJ/IUvpRqoOGM/ryh0wLECSAndKwFj3o9zzQgp39f7AxaOl0NJqLKvMzuJx+z6DJALJikjR3kBJeNohRCKVi8jRpYj3Js3mRb+WoJWJOe2abQsfok/jaLdreNVPEBRHfkOpjkVQ2enIOh4eUFPZDfnurviAZ0GhzDPscgsFyaH+Cy8LpfbJI+jHuwzCw3VUn/gBNBQyQH7eKjo3z55XjS3FJj+CP4tWgveJ4fQkRxpj9ewx3kKE4vdVYMeqMtCZa8QLA+t54SKCWO05HLFzF19Xu4fP+n6QwIpIXjnKgMautEHDzUpU3GYEeU+EYZFpIqje3AhXijeAQtcwNlNwwllVVqzlKQn0JZ3l/1tLQf/MwWPeHRJJM+O7hzxATa2bMr00aOf656xx8D2Fxu1DoYq1fPaiLIRJpTAeOU4r3N7zv23HoPrTPe57JIZVyul8bUgnlp1AyBeQgEXDl0BDxnYujkqGtc1/MM0xEcXHJ0Hc2md4QvwIan4+gIGVcuCsY8L5F/N5QvMtmHx3DVso5YFhcQVKrF4I7xYW0HCBDJxyVRbWLx9HRx/HwooLZ6BGu5AF/q2gDWYBYKL4jnN65rGrz28eUFcEzXFCLNQmRgEKH+j6sd082sKX7viFgEq3BtiPGNJb/QiYITQMHl+Px71fd6LaryiwTu5Hq9I/WHJIE0U36uGVrt80WlcfnkpJgOCXXPyggbB+gSPNj/CApc6W7An+KDtUi4yjMFYKbgC/j4Jgf9MfP+5cSetuOHGS8SkQ+XKU/oo/x/7QPxwL72i1uDvsSBIAAyiC2Z4luDzwK8uFFKLF/RQScSMO6vXDY0bd4BhWRfEDY2C+43yUb3OCPIFYLrM8SQMKumisIYmzMpfgAd0CbthTisG1ABOfFsPgjulQMHcWOPm6w8lXJ/CXbSWdTeinwY2HWdXyAZkMjgN3hVqwCzxIMjOAVMvVqFDJme6d1aBEZ01+3fMdNzyNxqRXmtD0bSnNnlqDIqcHSXjKUnoxeA9NfbwhV8kfddIPwuwzVRTbh+D1uBG1NBJIkyfihepqHrEulb5rvYboiGKs3uDFPzo9Wem1KUyvzwG1D25suWwx7VXMYnvHdr5/ZRsfeuuArx8k8K3Kl9z0UBv+4l4SPGDCGRGF0HfjCar+6+Q+qVXQmz6SlpRq4ZV9GXyrYyLcWV1NSx8Z04cGJRiluJB9El5xVpUMW7634a7yZyAlf5suNBvA1phAlt+kRKdHVFBvhCQtWtwNuR99OOd7Ho3RtubNw47iF88RsKlbFV/aeOGfgIds9COZ/MYlwWyFddzZmcvg2YKFvB4vRIlBjlE77nh9A+pF5qFfZBSNVVOFndahNEnFncvEL8H6H8b8OFUPIjVdqaroHOz99xxVY/Jw0sgcfPesilbkXYcpV7xhTscgTRqjAD3vG7C14gBGT1qGB8230RMrETgW9Ydm5ImCqOx4DP6bCxNMBUFUwIbPR6znHSUd6PjtDzy+ZgnT/j0FS8sKbMntBd0JhyHo8VhYdksHTq7PhiljAmnv1GJ6lCqJAWuc4MSzGpJIrKapN3t47EdNKJDZhU67erFzKEdYLKkiDeMual65FdNrtuGnH87w2nUcRD5BkPPpAiOHYhgntYvDVjhy7IEFbPpOCOqEfMA8UJnqRKOxq8gI5KOa2N1sFpQGiPJqnA6HNmwFW2UvvtnzGnVmlqJKYyKp1QGofPUmdZFyOD0uEh8+dqXoc8IcLjuM9T0rQC9zDBqXWLJl5XDwSEnkVfdFWHLXWnI+dwjzDB7g+SoR3FY1i5ec0YC86EEU/j0SCjb/ALEKM2retI1sR7lS1JLDuO7IArr5qgDzPERJYON/UHFrMhx44EWLf4bBQNhmPrdwI91eZUNHClfApeAJBN7TSUzoJV++LgwOD3TgxoFjHHHRjebeB/C078H3bqNgodtCsrmRioJtwL7mShC6agtEZBBMcxYnu64zNCr2Kuu0FQFs/Qs7dyvC9U5HOJ8sAoeaq+H5ic0UJE1gmDcVdy8ewxUif/GU5Cf++ugcJYtmw58zkjD1eSTLreuA2WK/QcwtmkxdZdCnr5gFtt6AXX9HsFHqMLy5TBtEYs/ig/IgPC5QS9PSbnP2HWfaJX0NJAyNWNZJmOM+hNO6FeNAoz+NE7fcY8H8Dtr57yWrx02GiYmSEBT8hz8Fj6eysSE8O30MvH+xDl1eq5C7fwLX19fhnUZt1tv4nbZJBUP1EgfMSz/PVVPkQLS0kXWOyLLT73j8/vIMzbgzgMFlr1BYYA0566pyZ9dNVO6aBndfJuNq4d2sVhlGkgX/0cbxxmzW9gIuNqjCnDNbYdCgh9sMBcE/Xx5X+P6l9vpeDKpIpwpTb+58m8w9Gl24PnoZteR1oLWpJMyYdAe3baxAzQV2vH/nMBjsCsGNERfgaeEwbkr8TGdSd7J4zBTQLg6D/6pCUE10JHwxKcST5pfwxqdyPD7gBVejZMh3+jR0CzGEU2VWtGSbBMG527DxnwyeTbyEk5Ys5CMKrXQvwYi9pu2GTlEL0NRJZpvuubDh1SwmdIKxNcIUGdzOg/s2wd3rY7jVOpaXmzCUtoxGhUeHoEbMHHKC3UjRoZGnfWqh2Nx19OrBVr7ECjRn+XDQDIlDw3XBBAk5NHJOKSZIAQxInYbkwd/8S+4ongs9ymH2OvDpXwztF7Qgn7JDXBJUyOMllLBy3GPQ9nDCJDc7MPVo47ntIqAQVsBhkqOoebIyPFq1A8IbjWB2vDls79hAhfY/uf/kFDxXMAXmbDxLM3b9A5GsbtgzpxaMpbLwXsoTHvephO69jcT7rVIYWa0MNp/eQPzrT/xIag2sPNXMvmWFbL7TFS8vs4EWhQF4ZnYKzrwdB7dmLWRV5ZOw2voGO4Y0oJClN0RaSeLZAGXuvfof5spYkWqULBQoH8THiZ7QH24HyoM/yKz0NJpIPKHk+IVD+bkL3gffwjEXxkHOukTe+9MTf2+0gsPDLsKVgRgcXqgODi9a+XdbCH2d0g7nl2jCtUQvvlH/gC5N+cHxI6+Bh85nlrpeAeEt32n3QwewvqoHB5xM4MrCfjr53Jy2npsNHz/Fk79rGw7EykPW2iScHywLa/X78KKMFHz+18oh5gchf9o10piaDoXy+7jp52Nce7YIqxyaaevbtay4VBwOuywhEb9U0r1iQJNWd4GBlA5Ldb5ljXXd/MBnBmZL36VMf2noGfMecnOlMaHpCN3bcxRXxRuxY3wATFnbw2H65jTBqZG3RWmAleYCEhh1DG6WT6Agb0tc2aSF55PVuOrxNLQbtMem059xdKk++Dx0waT9ErB2tRRl2NvghQWOeGjBFYqaWYUPb2/k0HMhKBE4DSrT55KeVxm9TaqjRe5u3LqyiRLvq+C4tcncLnuFdIIvUuoYHUjVVOL3k3LZZXQ+FjSXQvjWyQxKT3mgXh1vtgdAzepDxBo6YD1/Avila7FVah/IDgjyvPOvWUoik6Z87sfR4IVO4a6wxk4Vet/5YoB8DYcb3CG3Ydv57tYtOD7rLbjObeWc5eGwYPMoqvozCrjWHE0c/6J782c229ABS/fHs9GsazDh7mdo8fyBdSkNaCKHMBgyBRqC/+NrsqZ01M2aj7/+ACG/zaBT0ZKLCqLgrpk//7s8CWSH+5FdST6t0n+BSx+pgSvOxDUTziGv28TTU6aD2M8ulpo4FvLWisPR4NUEWRtgtU4f3bP+gmGnOsmmLphWrv7C91S1KEtKDd67BtFv1XwSqlxBSyWFIDPAg+uu+9O0Z5bg1WVOI7pz4N0vFdhwzwEOXPnO0p17ILJenWOXbuWoq1KgtDMX1f9aUmPZLrweIggrc8T413CCIM8zkC5+AyS3voctpu18TToYIESNxgTupLeTJKDB5xd0jl5BEzMJZSZvRMdQOb4ybitu/M8T98Sm0RqbRvijLAgfQ7/y6RfSIL24kW7OlBzKsJPRraUf19V/geq/bXz15mwYGCkPV2vkoDj4H3rv1wbzNfOxgWaz5ioZrN8fiZtHbIHCG768O9kYVqT+BVUJE3qW/5E3zZSgms7j5PYxjvDEHLr8fCbGaj1iIWFT2O+pDK9fKqCCbyvfMhzD6mor4eKa0SwVuQfkZ1SxgUI63nslB7GT5tKdnzcpN92FctPmQ0/VMw7xWo+J01LQteUc3M0IBd2kaeB+RpB2PVFHXfmRVCvizhPc7tDJjickkvOYi6Z95xe3pfGf1HQIeX6B82rO8YFLvjTe/S+ZzT1GAZonUUrkECZN1sUbP4TwnZIeLB9wZZnlj1Hs3ES6vvo2/ZTx5jfr/7KJuwm+fLaUO8zl4bLZVLDbvQLDZZI438aZ9r22h9aIHgj8mop5PrnU5lZLJTOC+SfLAYwQgN0el3Gz7SqMfrafs5aGIc0uhdByqyEfrOaznm+5+Z8hpDXU4eQ7wujV8guWOPtBepIlrPx7B9sOKsLIwt/gtKkLUgWlYMnUTkg9mE3OenncOs4PdwX0YveIEpAT70Tb/eNot9J7rP9lBu+Ckums+VJoOLIM97X5k+5YDfig6cPnPj/HDytekqdDHyY3KULIpieQdk6d1cMNyPyYGCidSqCnncfYrikEgnuH9nFJN0Y/lYSvwrsxetQ+PvZ1FgjMlUWVa7/JffFfclU3oUPCYTwx/BefyhYDW/UQlNxbD0vSanFXyxr8PayaoicLYP7TFrghWIZ9Tn4cZGgIld0z6fj6VEh+f4sNTrxiqYgf9LBIlM2sXSjc+RFnz8pltQIBeF48wJ5ObRTxRBy3THpJtybl43GR+/RmTzNpbK/CrR+XksWTKXBRSwCHCcsRb/2ORcPDefPHr3DvdD5GvL2HXp4CcM99CuzONAHv4xFQ8qYFCm4/wOy9gtDd6wKenrG8Yu1dNhKMhZqpc3jpMUMYFWwLf0Wb0N1WA5flr4aKQFXS3WuKd/+dwm0G/0jVfyHMfGkETy/u56+HO0DJTgc1hp+CIvvR/HuLJZ5dnkAODnuQJ3yjrgVqULq/EV0+XuY3553wutZiyLSK4ShdcV7cXwGJ6xPg33zCB0YGsOTJYlZepU1W7Zl0b/Mult3iSwqji3iZvCpY122g4xeUaEKSDHyBXgoJ2k9Z0YlUAA0YMSCJf3OH7hNZhE9/D4PUOjtyO2EIG7ojyPhmEsNsH5yyPpw9vc9xf/xjaLrWgj3rDemnwjE4ZD0d/Af6SFFVFjY8OUkrw7U485ESxrmXQ9tcASxPdYMnsxaRWI4orFlSDLv7zFlTcjPfj5SijqdAAUdKUPzyKnywbj+v2vqOD9lLgvrUDWD7qxilvKdxjqQrJGv7wpkSf+gRu0kB3zzYcUYJGzwaDTXzMqHu8DkysPlOa/dcgRsfuvnVu7G81EQYj1r+//9OHak6B8B0RzQ/EB8zpMNL2b/RnowOlcGc2EqQS/zC2+U2sYCPFGRrK8ONjTs4zigFFIZtAmlVXdRauJpGTCgl5zsVNLA5jkYKKGKN0TjQVneGq0+2osk/OVqw6zCPKn2IeyPmYOyElVD/Owhm1hNdH0/gbFLPY2um4ooEOVizDjgyvQ3KDWZTWUgKVIQYwIBxDd3dJQHfjlmwoedwNPx5HO1GvmPHEansaumGeUberMti8ND3OPIPYShddZFHFGRAmPYclKBHXDehC6LiljM2/IRblll0+b/zLPtIZkiH5FGG3wKVL8VbqrOgPEuZrkeZsmNdFAZuV8Yzxx6zeaIceK56TcKn12LK2TiQ13uIZa6/yfHLDFSrH8B17fKc8DGcs7sVQTD5GsasiuYLNY0gaysOqxp/gdHSQMaTF0lGTRUVBhfhrZsi4IYPyGr1KVxUO6RbQRYgW7acB9R3gLDUWLStvYYCe10pUnMEdGrngc2IRtxQO4LbM9K5ftpJtFouBMpbt4Pph/Mw1V+X2uIlQW1cEbBeKfTvyuB1+ob4ss2ap09xxb2WKRR14QZJZRWz1dpJsO78W3JLNaK1Dw6Qxf33jHmSnPEzDTuis3FjRycXlcjAKTFJuPPZCa82CqD98fEUUDOOP0aI4kedOJSYsoEG3yjSj6bvQxlUBX4YD3HibWmYqrKMx+YdQttuH3J8eh4n1wG5BdjR9eeytNNP8n92/m9eWzulbDnEhZ2RNCJyAJ/elyHB03dBxec+Za8soqDYRHRaxKDjEYVVErt5leloGvminS1d0nCV5Gs8MmIZzDuzn4fdW4afzqvAgSm2IFQUg/PuPeTW7b4QVLUdvjZXY5DaXMqvnA+Dx5wxjEShQKgARR1SaddndZg7D3nfMTNKuN+BFVFzUKV8PbxwSYVxJ2TBdsFJiGl/xI++zID1Xhac3TCK0+0fosfO2XRMsIL2Wk/GmGNjQPHIAk6cnoO7ZENRI8EDb1pHUb/PLBgncpQVDUw5gFeyd4YmZDgmUNU9XVb1VaL5TtYoWnQCInPtuBJesV6/P8840Qyaa4VAvmw91E/6haaVq2n07b14acx12O+lwi2n0+jWbjnIfZSIjyOmw2xDa5ju2455/8zp8eVgTDoazN47feDO2L/Ub/UdFjYHcq/mBLh4V5n3X/+NNtP1eVhRCe3sVYXDaz7igdx2NM93586JHbAnTQvMDovjC+kJpPtEjOpzDfHXbiN6YWLH4ban8WyuB2jhAy5qHgZzbGeyQlYjB+09T7UvFBFWWeGtdZbcNMWAdLSC+dLyxVS4cQJMr5OHmmHz6OiZG6z1TJtlTLZB58JCfltxk37+PYGVsX940oAEdOrrw7o/yzGy2RVOrutknW392K0kBTI2Mjy9fgE/3PuUBVykYePoKpzUrYtigcNZ/kQwZVIw2Zl8gNZft2j6GB8cXVXOMqM1ILXZj19+P4k3e3+ju+9FNP405DmWzryg9TCd6sni4xckqP6AAvj+/UAKuZsgqbuSjwicx80CM2FO0iYUfFSIh57K0obb0dxnOxo2fNxPfn+O8h/Z+zSqfxCd83PgptIB+M+sDxcFGuHN90vghpEo3LL4gMe/z8TGZCn61jgP9N9rQ/TI3zy2RJv3isbhmKRqsPGVgx2Kj9hN5iPP9buOoZdEKDZLCEImfuY9JzxosPwSTI8N5vQyWXhdMxHy0BwcxxvQfes2ODrmFVRrtsAeq7/U4VDNDyJmQtL5qbBfaTs2yavi4aoBXJ3/FZVkg8kkuINF19zjb3fncezLAyyqKQPCAs/JUymJ06UHaM85Y4wxHIWXz0RT6YsocLLywa079oLAKAso9WjFwrwi6uqIgpy45zT17j+cX/kO3JriUF3iBiyUtaSV9dpgIquFnkXtFCl8kadgOSv6aKCM4hYef3ouvv9vO1sOM2K3SAG4+G0UnhjpjDn7pOD5vkFYdkF3qN/3QeeRLjrSDOjos4qu2YhBvXQcJqaNJPmwn3R3cSu3jZ9Gld5FOCWqE+/6ddHm4DRYZSgKb8p/YPwZc9ihUQvbZU1A+7ANmJQtJ8X5W+D2Qmu6udyOp18wggyv03zphh46f1iB5oKhMDDgS3FWj+ho3B5o9i9GY0sRrjBXgRWHt/OjLSfBI3s399XexeKQOJIqlSbZTGMWObMXnXMu04xsAbh1+xumSLhwrdVunB8kSWUiShRhK02FqrLUtewsnbXr5Lvm5uBmuI78QvfxtTQneOn/l4r/OuHrzleweOc4+Kmmwmb6l0CzTgB+e08GFWFBCCBRsv+xk1zDN+FSdWWadqcW/3u0EqR9x/GP2hEwadk/DGm+A4Kza2nhSV1o2lKKVwft4aZkIggfMaDm1Isw9c8k2C7dSSpj4mhLXCreva+LDWO7UO61Na95eR2vJMbBsR8X0W6qPmxcuIAEJePp8boZrGEwDRUvpqK/5TEIyz3NaW9mwBqfzbjjnD44ecfT+EymgydceX2BBZvvP4LWApY85fJqfrQ9CLb1HMP9ymNgy8MHtELjJSRqz4PRwy6BwuJGjKMCXFTyBu5uy4Qwcy+SuC4H6vsEiCb1w4InbnR5M8Ni8Vt0MdQRRixaC0+3RWB211V4rj0VZlVepNZbIRRisIa1bfJIVOA+fO2ShSfiqni58CenfA8FtefD4GHQY6xYJ4Odl7xobeJpDl+ZB+uElVF1XBe0uMiQxRct9nw+ClazFL6Ie4c7fijC4db7HKYYAzaZ27BD3wluZXfz6KdSqOIxBsy2PoCA8JM0781D2rHvDGwqeAWkH0V/NpjRlz478AisR7UJo+Go4hA/tGbBIUchLL09laukrFFOSgq9Ryzhq7tcyHPSClQepQE7P+di778pIB+9g0rqTvAf12sk7BVG46TeknxOIBocEIOtqybBEU0VDF9cDGfCTCjgTwyHFESxvlgWqSsp4LTE0yjXl4tS+qNArIDgwgQvTCqLw/qbCuyU1MJRhRfQKWgGTtDZQBc85vCfVQbw9f0LKkNldF+sB48Cq2BxmzmEPH1OVmJlXLH5O6rnh8HXUwYwo/IwKY7/jLeSA9gvbBeuy05hU4mJ6GhrjvsqBfmz4HL+maEPt0d+oq/zfHlAooWOb94N6eU5PAM2crP+0BpKiYN7zW5aoKQKuwdeQMHJMxRb5YuBY8fQwruz0PXmKJzRUUHXDu+CH7V26PRaHzwVGvj3tBpqmCuDYyM/kObDTNhjIUmHTwnyMdtouCw4j2m/EATc6Cb3pFJaONsPP2hFwqDDTHh2aSk9FSToTMzEvU+/sV6cKBwRu4aZ9hthj/USOL9lPLqd1OHm7lBWuZTBDvK5JDRPlx7V6sCKx69R9J873t17F219R4NMUSIaPfTi2x/dYecGHb51sYGGTTKD2LrjtLpraOY1ZXBweAyNOCEGu6w1OM5am1R2P4fqD1F43UkQUmc/4wd5+Ty/9Dzrpc7m8Z4/8bFtMkQ5AqWm28JLWgpnNsuAtoE+e4y2Y/l9bmTT+A1nDeWuW/b78Mptou/NlQS/y1jTa+gbd9oxd8dCNhTcxtsyK3HMByH6YZWANTnLQLJXgJR+9sOXn1Mh//ZS2u5ykvY0rOMYk8dQ5h9P815b4WdBaTrcmss6hdMx74UAXFp/GTOsi3HeMWlQMD5Ee6eacqVMH29e6kDGNf9o9s6bcOuWOvjPq6QNnq/xrXktfzW9ywlVC/E86bP34FAvrBkFzQpytPLGVND6XQvdl1fBXIsbMFY/FleEROHRcwegbWktZF0+wKpSEpxIepCpPRHOPqrG9swQ2jtnDsj/tub+DlcwKu2DBt1cjvW4iV9GqoNP5lYuvJjCm68sBpWoX/Dyeg+qGQrQp97lJHIqHeVGTQfVDl3470gbrxERh3cau8G+KIVeGLlg+E8PmLPnMLe8nkDJtqXY1T4Z3O1rKGCZFHdEimOo1y1280qhqmUX4P2xizh1cy8KrtuEfW6i8KDKip+8nMlnrnVSafMtaFhRRI40Bf0qFdDKSAlfSoljtdIYiLwrge7BR1jsqgbXPJNFo+TnlNUTRw6mq/H98g5qlRpGNl3acNPuI/T0D4OwyEiQrhcCD4f/OMnsM/93zo5LDavZLmk2KoiawDQ048Fn52lr40kq+J7DhnM3gq6TAGwW/Ts0C5J0InkMHDujDM2JV/nP4vH4z+4ZVYt/ow9bjUFJcBz6egXD8byplO6VS4Pt/0HmlJ+obVONf4Ty+E6xIDsIFZP3nDlYvToSngYsAaPE3TBDfxyoDQuBB5mqOD/Gmn+bC4NO1gD5V+xg15hTPMquacizXUm1XQcOJJxF2fiPVP3WDjKGLrntMninwo7aLr1ms7Lr9OhKPX5+rgnjkuaB+ykF2LDYGT7N/0o2k25B4ol+zJBUghE/N8DAw0yOP2kGx66GQDgewlX2r7hfLgJsVs6lhuNpkLSlmnyfH6KYriuw8ct4iJC/CSH279g+Rohd9/3mgqgIPhxwCPyW2tAfl9fwtPcDykgOB9/4WYx16bC8WZdd0ybwsUQVDnqxFNcGfsfzFkXsabIBdonqguGENvq40h4jPPqhMliCXa5EUMr8VpqycgqqZIrwmzdFFLd9BJRXfObBBzY4fFYtttedB1CsopgbUrx+YB282mHH+Ztb4EfBJLj5Zxglml0Bv7XNOOG8ExprusBng1pWGeeDU08Jc1/qZD4VMwFMUjNw9vhyMFBcCiv+DK13hgHOva+NujLXaZrxBfS/rEz7ZQWBDf/BPomdsOqVE75ynQu7x2XjnCOzSO+DNuXOvAd18/VA6fAk2CEbhINjQ3Bx+lJQCV0AM5yzqXX7exB5WMA/Xrah18VoWJ8vA17bnOma4GQsFBFlzYFWnNZ2CQUWKJGbxF2wv/yCtK/Zk+Z+VSgxAG7390CXznS8ePoLydnPhWa9eMw1tMcCCS8OSzgDzvliICfRBmqmFugToomrPnyCpsx4Lr5wGkOtLlOArw2dckvh0vHTYdXzONCuNCNvCxV6pOuMOiPsoXnOf2Akmozr/YX5yaQ07t80CjQvTYGa6EWUn32Sel6V09nORDhslErNtiN5y959uGwoE4iUjIB8gb9UP0YaM+a+5rQj77BESZX+qlTBOJ8UeG+EMGupPpsU6oOfRDglHBSCGp1FtPDgGtAp6oUt7/oo+6wXhFYeg+C6GN5cwDDW4BkHfvpAnnt76frlblodvBZTP12luc2OfKfzAVWf389bBpUgxW0PdHstxivV9mB6YzZEvj7LsX4r+ZHlTi67WgivG8Zwju9Y+HymhMaW9KGVTh8lRbyAiNOLseRTGDU8SgPP0nt0RfgBvQkDSLgtxgY6/TD6aQofbHhOisn5LNNvCMkTazlr9BGoc/oJB3aPgtG/F4FvcCu55L9GM7+dbPrdjfJrXoPkx3aQoX200j8J60vGAgxT5JZWffz9dCbsCrXlnbCeDs8dxIWmW/mdwle0mTQDVC4pw51Xpzh0piwMerowrBoNsVLDsVr5Ai/deIc61/SDi+gN3pQ9FcgjAH6vnAimcbWQHz40z/o9nNOiStte5OBbvf9ou1QpCY1RgWSVK3R5xBN6dXQVv/UW4zEm+nAuRpkGv36kc9NqUOleDZ6LUQGFrQGofzWPpq3UgvcRB0npkA9tmdjK2aIz4PCFOviSt4ha1+nCsr5VaJAkwYMi2nD3MaD19BCQcluNrf6/IL9vFQXqaZGu4CiQHbGaQtNz6Lu8O65c0kHz0jZA1bTdECu2EgImrKGtlXPBZ+8Y2PzOAY1vRLJjUS9+rWrhHy0PyPh8NJS1XsAJqRPpxs0LrHdSDUId47mwMZb9utv42QJn6Blxk776fmax5W/AzvQxJfkLUE+qPFya5ccGKe0U9dQQn/R+5gZ1YezJnsiiW0oosGgjXaLhbHdAHcyqsyk7+RE8aZ6Aie4qtHFqBo1f0A6nEnvxnWUFnh5YT2NUpcF0YTSp5B+m+8oXMbviA8mOrcO3QTG4pnQp+Z13AS+3ULw0xGajK7JofNsH3KlnwEkK0fB97gU8N1wFckQvcI5WJlwTl2KTawJwIe8Gy8negaP/PlHC7yQciyJULvWCpjuqU5TmSvb8+hwvFAnBtYhenKW5my10l3BMtyYpVTpAVPkwaDUeywU/I7joqAv7DuUosftPyDC1HJZUjGZN/bV07PRwLrD7Awrh/zBFUB6W5xRBh4Uo5JXX8eXJL/Dj7Uq+7lsAsvUXoapj6D0NT+GZ/gY47D2ZUz0tQF3sOT5+FoHnq77DrG5jrJaYQweHDYDdxDbI3BWNi+Ia6MnnYXD8RAS3nv/Jz16epq7FFtD38RGon13DejWj8Lb+GmoX/QrFgcMgX3ksrSvcQ/7eOlBn9QY/PP+Phb+J4dLlxyj7pxklly3HfsdJ4Lt/NferhJD4eiWyHmLYNROcQHnPfY6VPka3JFz5/JA+YoMuJJbFQ8wsPzwePI8PHZsHFZ/eUOHjRAzOTIdFWpIUXuUNd/LUYL2HKCpFGZN/rTgt/HIfo0Pmg9GXaPLw6KU6x1541/YL90ULwMOXB3G4bQ9uSjPAN3FXqHGiHUZvkofK3mo4YV1N4ifyUXqfOJQ4TqIK+em8W+QNnplWCG9N5WiCkgyvaJbiuRuvceVxSxo+TBrEkqV4v3gdp/g7Ylo3gtslE97oYg43FlznwdWK6F56i9yPGkOxjS8K2nRyWZEuGBf7U63UJ3Q/8Red/rtCZ4vS+Fn+KliULA3i2MSb1uyjOc/vcN0YKUhKNcP7xW/RXNMS9qUcwtjxQ/1/TwKyhpjxiEEk/1jWxw8v5ZO/VgpZfZ6O88TP86vv9Vjz5zLbnTAHmbcvsdn2K4rtWYPXHPbCzdTjZJ32Aw7OjoCFFIr7R3nByDPjQdV7H3q5DaDHFRmcMOYGur/8zB5K2pywsJysT+5C7PXlh98UIXn2WwpWc6HGVDeukNXChRcO4b8bi3C3cAFfHXrGyGMUjPwwDeQHQnCZWwhN+52MZcWf4V6KH82Y3Et6gVcgVX0mW2n2wjlLNdDeeoZ6c/aDwu11kPBeABe+Qho/5BWT6kvwQ88UMhBR4zF+GjAhe4A3Pu0i1ZJNGLHyBcb4PIGDWb9YLMaATja9pkzJ62xxQwacU2PQceoXcnZcTM79hngZzrKMnjlorw8gMf1VsHblfnymIAmr1o3nisgDLJ88Ac5tKoWGr1Z8HE3g0pcbZBq2hqZrfMSGEl246nEA7sXX0PhN2pjdEoHKcqXc+WwA5m45AE2HczGk25HeTtKCxigbvJysjJt935F9qjNLOwvxbq9efGVjSjbParDv+BWMrTKGD5HVuFBMGA+JWrCa0R6eIjIGZyRt5xKvu3TfZQFqZ+fh5qkKMMGsGoY5GGKl83jMr6miRZWOsEwfIT3uNGgbS2OW4gl2my8AH+wj6Pq7fOSlwjjrrATfbDXivpHi5BhsSIYLurDnuhDHr58GpVcP08rMA+za4IIau0SoNvk4KYtNw9Q2Udg6PIfykhtJzEQZJKoOwP0HFVwZGM8t7sex6bc+BFv+YsWCKpQtXsIljgcpctAUdJ1/wMhiOU4JTuKHlRZ4cv8YFNa6AwufECwSvwS195N551QLEFBehoOT9KF6x2N2XXqGFMRCsVIiBTPfWWCQwnx4/mU+j3WdAIbqGyEuZyJO3jMDho/SpxPhLfgddpLeIwcONE6Gj1sX41M/Y0hbngqbN2Vwz+wVVKpmjKrWXnAqLwdiTg4HWykDCJND0PQyhtzdAiCZgfCiXZ4GCy2he2AUH+0bymUW1rghMoruPynkXlUpWHu+Ek2utHJzzXHq96zl7BHLePGcTfhloBQNxspixpVQOpCoBYWntMEiqIfz7H7CsXxt9jLfRq9Nj/Jc5zJ6X/uMi7aLUu/yUTC3VBk8Ry+h262H4ILQJWwpBVhrYEuzZgOvjc/i6KXuYPlKBWRiRCih0wotE16R268tvOX3DIjviKUp3ba4aNsDhrpa8KuRhc1OOdSoPgIVTU9wZksBvip3gwNRsZg7ph2LBz+jlu4hNn8rBmvFN/DNLBcMKGzHnfbFWBRoDVX/zLFl9n3o3nARPooLknOb6ZB/7MKit1e5Z4cUr5tpgW8GzrLZiG6a6q7Lf7NF0CD3BxYnTIef4WqkZ7EZk7b+IoVL0XxK9gW9+3wIOr3d8IqFHB/UmMipSiqAMiuGdKII5itpYen9Upj3axs3fbFg2PqYrcofs7L2OXIo0oDm+w2w+O1ddJUvwRSHQ9yTNw+H71hA0i65/LfwENSutcV7EyZC/QR/yM4Z4D0zDMFn8X6MOhRBo2s24KDmMH71SYZ+wgXwOm8O22cW0bp/kXjgaAikKq4ATftMdPz2hHuGOYITqOJLoxOsulMUOr8KgWZ1C6PLRqj0CyE1k1iq+XafRngO4LeyNjRR92LZuvEQbPKTNY7ogubJRpy+r3to3yQgbrMIfhZaym0+k7GhfQ6leEpAsXAudxstQMfqJMo5ns2VChmgtGgHbZ1hhCe/XMe0rH6Y1j8WLIa9xemp1Sh8fjGqt8zgnqLrXC3+ixq7BWmTqgucfK2MG/Yow9/bTfCLd/K6Q9tg5tnPOOu6Pia47wD5dCHiwtHcEaoIIYri8LEhCC/eieCllsWg+H01y53qJ79jZkjSSmg1rwOXBufAf2EIIz2y0TNriF+cdxPfskCHgkV0qSoddjq8wmfpzJUPrlLTPi1Y8zKaSiJ+ok+GO898UcC/3jvA+D0/eFS8Nwc6DTGo2xT2fgTg0HQGUj6Jk1H7Gba7FoSVz7px1CZVjl83Bf6zD6Tr+d6QfYehXVURE6Z78IlPheTWc4knmOqAx6RxUA4zeOO9SwAt19D5qjo0ND7C9Cve8HjHcT5UbMX3f0Xwt/GH4YjKTjTU3s5x63ehbY4CDCu9TFe9JSlhSxGHFAhScddzmq13B1IW3uWZ0o288VkQVa8SBKN/zbha4jNuLwtDo3uFkLY7gX9+ukETi5/QnsCrqPM5jJQnjQabWhPMVxHmgx4b8Ue4KhpvzwTbT59g+G4BzPD8CYvrvfFymQIcGj2LPlx1gmlHn5GQ+SDuUbvAd/e9waRFKRQuWM4KF46wwigt+OL2Hh7YCVFYTj5V3NiHepUOfONkGrQHzKI40w/Yf3wFyc8yBLfNm2l1zRLc2hnPUpcdwEM6glKdE/h5mgQO68iFkBnX4FGMPGy3cucHy83p2oFUHL3yLn+VvUy+sxfj2ANr6bVzEPci0987AI/MlMlYbQ2cnX+SFILW0aIbNlwlVksad+Lx9OdannLqFt5bqQcON1JB4E4Zuj6ogya15xDqH4r35+eQaWYt1b3IxkcV67lZ0hxCDLbjb9cIOPfCnqSiI3HjxbVcdvg9aae+Yb+G46SVrMd7HkuCtZgE2ykLsUHyBx7jsAsC479yUlccmO9x4SPHouG5bgA7zxWEZVYjcMSqDNyC0iB8xoi+netAhaLdVNH7D0LCT/D6Zztp1xwZwF3a9GfEKp47WojGuoaAe0oBVq91oJhlKbA6M4leNEbxnUljoUzjMg2Y7IK7phNQdfwqCi0tBcXIDyxR7sl5/W1grvEbileOhOWX1+No1UqaGBzKOQclqN0ogBZMy2bFaSOhT+MvzBILp9IsEVD48JILDD5C16IfHDs7EneYLQOlilaoehGP3SldvE/1JCQGScLEe4nozefgWtodNld8Dj9jDtNflhxijTzujFjEjeU/wUtED/ZtyKeIrJ+46VIxNn37yh72Y0hrrDVrGuTSpPUzuXj6HdBjfUixEweD9vN45Z4+Zk2QB89xC/FMtR771xDoDmlH7xZhkvDWhOJ9pzBpsjFxuDa+sbHAlgMzYYTKfXjl7Uw211yg4ZcABD4xhSTPPC57J45SppNoVN8SyOtM4BFLXVBh7SeKaiSUOxVOWQJjIW1pCqct/sHX5dxQ/7QT+kktpjYFRZZIE4LnbdXsLHqWam8Og/6aa2ARP5PeP/zFRSfM6PW5E9xUcoEUapaAV8Z78Pqoj00BErBItJ0XzEkDpzIvstT5hX196Txnti1GidmzcNwM9L/4GXebqMJJu9Ek6TCd56zdBl3fxNlnugvtm1fC3RLraWTGKxzha4Xxr8wh11aDrYaY7v8oOA+vEN82jl+jHSFtlVFRaWhqKQkRKioNs0gkhJQQQlRmRCEpfoUQlRaS0qKklCRkhVIoLUV6e/+D+zz3dX2/n895zrnnedtQxz5Dqo5fStWp+bjs3FmUTlCmn9l7+NQcI/C/J8jeTuKktS5yqKMjye5YLpbn/6CHP07gZaXFPMF8Au98qgkTtw0QqAKGeH1nBd2p3BYigVUy4/ha1yKKNHXl56J2dPqSJayccYKDCyNBf/Nj8NBogJR4R7waXUS+XjswONeewzaNoEEHHRAwtsKgo8FcW7iJPcxy8dPXo+DW9xqeelaj+pUhBjVVQdX7QjAv2Rgjp6XTDKWrtNXehpW0/+OC4c2w45EGvvRS5/aFqZhULwQee5BS1t6Cvujh4DTwB6faLODVVRPhpN5FOmjRh9k2V/C+oQ5cWDCLik63Y6SYPlQ/u08LYj5S+8g1eND9N+ZOr+OM5FMUoy0ClVtXQ7V+HkZY/8IVC0IhObsORU124/xrGdy71hDd9tvCdkNJ8P2+AO4tYxj76BiV3J6JMR9esK7aBMifnsc9x92w9Pl8aNQRAv9EO0rxbmHls3eoUjgdzsRb8HZZ4hGnH1NFwBguGONIVheVoSF8InS8/8NjFmThslAt0BLU4y6rm5ygsoxH5/2hjqe5YCY2BbSPK2PYpOlc15XB2uOMMF7/ClT93kybe2woZrgbdMZIYliNGiwZGT3E+I2YefwoxCXPQ9n5CeQ21B16o8/Sr9F/YAX8AQ8nBsPyg+ijOhc1n3RjzYhWqonZPOSlCLlj48ijMA2NJlaD1m4ryLL0J3/pVFzhdIUuS/Vygsw3DN5XDdJzrsO1n0VwpHo7lk03gGEpJ+hp3y2wtXSDzE4N3mjnRl8MVbAteh+Ynx+J53ZKokGOJHxrNuCsyjUQ+i4dr7WVQs9yXxJaaItrnUV5+JbFGGHynCP6TeHT0FxfzmmC3NLVnBq9k3IPmNIJCW18JuLIqa4v4fEnYXTLU4dPP8U4UKiCb6nvIgX3HEr6nYUPlLbw8UkvcXndGD7haAz5SlrQe2svrtwuit2HbKl3UiBOC/tKd0/X88sh9FLXt4ZmxbcY9hpBplWcBDX24t/yYog9dYeW7XCjXbJG+DvgFxWZfoO7zjm4vH8C9BYt5PMQQqJenTT13kmQvJSKznfywPvSKA72z4eFR0aRfr4KXKm9Rg2NX/l34AN+OnU8751dgs8NDuDkpnrsGNOETpddcK0jgfrYIaa4kg2RT79x69XFPCe4ncYfNoeaUYPUMJAIKWqpdOW4HNzN8ofdkUE8yt6eCuz/QvmpLuSms7AzbQtLhXjxrxNCbDp/JHxf04Ke9/bygyUHiK+I4wjfJzg2fDde1Q6gx9uuc0PLGly4Vw8WtmwDk/u/sDFqMjiNicHu/khanfGaT0wopqaGx3jFJwO1N42Bc0tsMLNNgU4uFwTpj8Y80+UiZX+8jip9jTzYPQJ/DCrjhw+CsPX0D7qgbUSXf1VwyQERPO3rSb/d/XC31Xqao53GpZnTwOCYImxJyMClezdzdiPjydQvdD72DpzrPo25g46U5DGTTh4dQS6D5pAnXYQSFQ9hZ50BWYZ1DrltAy/78JCsjy+CPWpevC7JH/c1iIHM8G4wm/uXDpv/wrI+A2oXJ8ytM+UNxnoQYHabRS7dJ2dShI5bp3j34ZcouuMlPbEeAKtXeyDmahALNKRhtFcCSaeM4spFCpCXaI3CdQPc6FaH7RMV8UFIEmxU/EhJBlv46Poy1BuYyG2rhOCqy0X4ciQN55z+SfNgOgpqJaB+wRE26rdCBfgB73SG87zJuvAOJ4L5Lnl8q+kOyi5XwWnOG3ye5wgZZ1robMU3cBaNpc1fx8KeAltwsJGgCAdvcl3cCVKDK+Do7WJUr1rJXrmpsMRhC8jJmoLnSANIX7oXfKZ1wPzQSj6iaA7S2yP5XOVEXramHYzejsQXRZrw37osEjXr5iUOBzBtVTOkllzAN5pF9ONvOtjNc+DJZgu5c9oUuD/mHeflzoFNPlfgeu4I2iRQgkYpZ1H8UgpfyxHFTLNv9HaVJNg+y4QzSzeg0BZf+JI5Gb6PnQ7+EiowtfwhTz33FW1GeYNshQGsGXmGbfxDaMXterIfZQL+MY14YXcVnAxeQaOPifGJpmNYctQY1qb4QOrWaA79U0AHpm9DbwtJ2rBtLqz98hZjuvrQLDUE4bguBHnEsb9XNH0RGAeLpE/g/PCbdDZGE9UidXml8zX87z9fiCuRgOuSogxxryFrsj5C4yiSmy3HbT9q4PK5oyg/5iP1Gm6C2G+m0BH0ivTmm/H34bdA+IUb75B7gGeVm+lDRC9svWjIH8Xfct4DhuEBIlDT8g4yZv8mpUvb+FLjSpaPsQS5I0l0PG8GaCQsJUdLJfjz5ALr7daCl96mnDPNjBfabMKAvN1Ya19FTrKSnCNnTz7eYyH+VxT7bwqjBdaZOFLiLjbvDOK8Ie/74BeDiYv+sY97GfZf0YC/i1djUEw+Zvw3NHt5qvi4KRUSU2ZikK0Uey5GKDjzm3LjzcBlpBzt9m/kqd8+UY5/PRvZzyCZ1xI0vo8Ydoyn0rn7sdTHHAoetKD/0kbY0LyYnlW+ZJE37vBo6l3SvBDM+0+PBjXlpSCRPhzOS8zmC0lO1Pp0HsXeisKjxqVY21gKx9/s4qDuiTzT1JxTarRg+/UikhY7hxW1/+H9+vM0TMUb+9WKKPDgXHy6eC7Lv3xG9+YqAX0/wM6CtnTt53iY7RSAjxIO4WbaQa7OcaS4Yci3znqA1lV1GO/9gWuK9El5oyyVh3Tjv6ocjrcShKUpOlwZrYb9Gz7z7KHvMun2PkrEn2BvrgwiC6exjCaikNxILAmzx7ubHuKV3SJ4R2gs6M3zx3EWoVA9JpTrFwyAvv8otIKvGHqrGVXzRpPLtLUweFURav9L4kHjWnRPbWCly0C/Je7h5e2ZmKd/nTZNi8XlR4thCY2H+S6OrJg8Fv3iI9i9eiMrqkvz7mnjeIrlAdYPKaacn+/w6BYlQPcMOqEuh/O6JsPrc40wWWUK+voeZg9zK27c6siO297Ayec6YPFlBIZmeEMRhfDJ5myyGuKluzWbubvckW6nLMfH60di7hcDGH86Cm+pPaMgLyf8ekoaL8aeZa+/Lfxtz0re+LQNE1c+Jg4cBruXLOalZ21oZFYnHXn2DgLPPcGt6c8xbMY5CG3Kpozly8luuQSMvlNB+1uS0PdiJ82feh0++x0D4YgSXvvFmPYV5HD6Fg8aHiQBfrnn8MihLbTUKhb23k5kuaWZEK78ALpWV3DF90oIlH9LjvnDoKvjCj7TjoNDkq/w/rRXtP6UJrX+Z43xrAjfxI1pxeMO8guZCgf6t1CUyDw6MsWavLau4bu9FaScoo+KP5RwrYYmzJ4viPVnNaFYZA8/WxWHuplx4Dc9l9qF72CHfBWUrj6Div/VwM2sY3Sr0Riu1H/mGtkrvF7BF9vmDKMgaWd4ryfGj+M+UXK/IgjG2aK+7Vhw3/OBU24K8qnvD+iBUx5pDirDr4tX+HHICEB/bSh1PwiD9uJwY5E9bFj9FcRmHoG5dTr4xMSeLn46Ql/eh9LlabfYVGAddl+TgsqVPmCbNocuvMmg+vxqcFwrxrUdxmQtv5s3t7RBjUUfH1JE+BmdDqdkz+DIlK3UWSHOqTq63BSpCKYp31n68ngyri1muZda0LBdj+3lHfCKsQW6NUlwd2IEJs5/hannvLDwlzvfuzMNJxXIgnNpFLeu9oc7ZpXkeMOcLFZr0OGE63wqbpBvfMiHZR7jYWr3GFjvuZcNVx3hjjVR/CT/N74Pv8EAL7lmK/Bah0TofJjFYTOE4ZCbKJ97aEbDrV7whEkHqDg1iJdrKbLnoAv9MbhGz5TqIeqKGczMi6Te6gZ2GBYPSfajoCu9gwKdd4GAhjEGNJdQ6YgXfLDbHMbbGdBlPxss2+cCsc8OgO3b43z7TS3/vbGI1mgdwg6/r2C3Vgu65Gvh6vBa8LFt4oEjb6m9fD/IyJvi5+os/BNZwNOd4mBRvDHITXgO4ndNyNy4nyTD2nC2cDiZDDfFBwI3KCPME6oXdsOwY2bwYrETFJ4V44LDdjD6ixK/HcrpnZl6ZKKYg5c85vOYCz7Q1q4AA9He/OloINjjRgq0vgfr6nfS3sW6uNnzAoRbHeTktzkg1ysBq/YNUFjlN5ostwU62k2xKVWfQsK3guL82SwjPQl3B3pxv6AUjPBJxmjdckpv2sejByejp9Z2Gr68E6Z513LirwUwdYcGqf8zhvUjlvLrteUg8HkhzMxwBo2xdfD3XRz5BDdixQx/qtf9xXcUhCFopTINtx3NbZEFuM3kNt3VfoIHM2fyKycpGNtTwzliI1G2TQncta5zYcJtNOobh+3LABsyNblN5Do/uaGI48YKkUG3FCmdN4WPeYFs5l1Ip2Y9wvP398D5Z/PAyaEcvgeL4i6tOSAXtQ9/5OvDPjEV6prXzsejBkDkZAsrWSXQnAgvTL20GX4VGEHtEWmacpJh9C8NPPJugLf8qIXJpX50z/4ZtofK41ynHmjxlCUZvXTaEaMNwdsd4LZVKgScTqB/Q7mfNz0A/n1r5e2bT+Me8duwQ+gLaw7ThCCJd/S8qIuS1+zCiSM1wMw6ABoDR0DJy2ieVx5PM1r+8fRUOZBw+U3fj+4l46/78cVOKzy72Zivbk3Amy2r4O6XIrgXKswHE4WgW12SYyp2QbhhKTZEXsWrz0fxyinisLr/Ilhcl4CiQgkQ/yoMuwzDofqnBHzMOoF5C6eC9hEZRpvzWH3Ni0+H1tLA3Qq41z8FnpzLha8x3jDzXROqCN2i2XdP4N5N48jhcwDYSevTn4uSdFFJGRwr71PL8+P8UX8qXFVdSAYra8Ft7XT6vikZp2rKQpNQC43pM4AwNWGeE7kex8cehrRfp6AzspEbx07EbvbjzQNjcdGEp7w8VBA2962FBYVO4FHcAd1uGqjz5gWONF/IT7Z8hQ/DQ/nHhGpu3zgRNrQ+xgOaUlikU0lUcpjf1iagqn06zpouQHF/1ChvylfaYzAZ1rxzxpIRElje2k9FWZNYK7mI2619YOLl32gZcgvubqiA+tMEOg332LhmOj/eeI1v1I5iyboD/GK2BAQG6HFlmzA9iq3HyEvSkLV5Fmm0G6K5wWEc9u4XbLpLpHnelw7PiIa9SrNZ7ssM1NorAVGCzRy+wJdH/zkHL16sgOGpUpCtaUtrM8+zX5gqJrbsheKxZlCl+Q+yU/diPX0jH1t1oEQ3TP4Sz9EzRnDQutlsrHGGBDZIwsnzQy6m+QAe2pRTso8ajQ/cOMTeTjxssT73NHjj3a5nCH6TwM8hBL4uMWPt/c3YE/kPvC2l4NoQl7yzSKdzuzopVtaWl0dNBZMrprCeJOje5ESYnPqN0p8Xk+kKUywYawt6t9upa9MHBgUDOODnxF/KNWFnaxy+DlYlmeI3WBlXjb7hK1HQ5yo/iY+lmXelYHR+PryrzqT960LZc20Y5xuspALRFHa9a0PPTvhxflQ4Cr2ygIebDfCx5FLQDnxIKlMjcSEdh6iDHlzTkMbX659gwdt9uNlnDNyIfs3xl+7hiWl5WHV5EfuoV/GP1h64X9gE7zf8GXK0FgypUwGBoB6eMsUcHOyIWjWK0GhOGRe1/UfTD+RSyvuX+EL/E0t6TgZr5UysOJ8PEVtFWdY0lJMtckB12WdYI/COX/RNgJ2fTkLlblOI79lEufUruP3XKhrmuByqwmMgRusKWK5PxPxdqXD17yQcSJGBrt4//CwxGFJF1uPR2sd4f1sCug859odLyTRWUBMSl74GLRFV6HK15Yu6Czly1w2+PteKDRW/kX7jA7wmrEpF5X/5qpkSx+lowsZu5nftBvjAknFJnCI8+FxMSr0VnHnjJw6c3chX/ETwWasVRDaPp31Rjaxz8CqF6hnwk28K1KerRgEHNvAVvslm+y7yiUgVGHN7GcxzaKea3L98+I4bG099g7o9gXx87W/M8ZpNs1y2ssY/bTj9rhR9lnoPsY0MPPbxBoE0UdTK3UkP/Bph1MUdKCtkjXoRKlAt+AQXHvjOavrt1PT5BT1wWAZFBmX0flIzdBpuIusnvmDuPg5EInpokbQ3Wg75wWPHUArZYUmBcmWYK7eGBkO3k9OmBRyyUwV0xW/w1fWxVF3sy3bGptCjUE6JPdXcs0CNfr9V5eXvHXD3UiXIOfePUg7ocYSsLEnq7udPTjK0ac1JbAqcyX6Gd8BlehMEH7cE7bIy8FvUwTHn7eCAkxcMutmCcclD6Cgahhb7XVix2ppWKIwAn+w02DZeE04X7YKVdfn8bLY1HtFHHiN+iPru/IcPNIyg4JsmbO1wgYr8M/zkWRVKfTNkVbdQ3GiuB/vqlvKzJwrktDiMJtiow7AuUXSr9ofz/zWgdEU2pXEc1K/J4Wfiupz5PY1iaw+TQ5koeIa0gdFLKbZ+eRsDbLUpe1IQPxy9CNIeekK32SP64yiHRhMloCN4PfprbCZ1iObB63qgXagJf8vTcJHxUXDVzqebBUg3MgGUGrRIqu4D6E6aT26Ja+nIpL+obrECd8nuZ6UpC7htsxk/PacMwQrXcPfeWpZJMMEYw0KQSwhFPd9lFOHait5V8rRVuBmjkyzgZ6UGfne1RE3Pibz2kgQ4J/wht3+eVPmhmvscfvPCl1W0IX4SHJ81EbT/7McFscqoOL0SsqTvkLHkE3g+tAfHZ6eD70RXvDxTGLpK5lPSDy/6cnc+hkcYQHZPL/pkVdDRyPUQc2wpR8d3kpqLFsSa7uJCu5VkHCkCdocV2PLdc46Pv0xLHcZwvvdMPN4iyl/ttGHFr1qcKt5EebJtbHAnGVdQH5F8O/aXH4V+IQGqCZmBch4SYNdRBQv7rdBWIAZKHy7joo+z0aryLW2LE4Y3++agemMTrEhThodna3FjVwl3G37BpUHS5G01h95sHY/vHzzHLd/n0ZbrWhRzRA2yXDfjiRGXwFI2DIQ+GWKW9m5eOPcJn/t4CnRnGLOq2R/qa5gAjT8XkfEPFzgY5wHT5Ayp4kEf/TjkB52vPTj6cApLOEjg6AAhmHJIjkVbb1LV3gxYPcsJ5CfUgezgF06/MJLilJ7h7vMhrBIqBZ5jHOms/1pUPXyK17Ekf1o3lXLDq+jhbTlo2RnG/8WGQV6DMLRIP6fLby9xp30NNrqO55Kzh0hkZSGbJUwgV7ehc+6VR5UQcZBf1MCJgRbUsewPjhEhVp7jzR1jfHDDsTWQ7fgbN0xw488aIlDk4Idpq/aQllc33+9fCbu7r7L9DRtcYz8Hu0TNKLz2KsV+tISGS//P4A1UfiQWjB2KKGpWP31coMpH52XBk8p1HBs8GrpjpkGe2UpsCTAihXAXiBN9C3TbGuTEDLDrSyPOG2AQGL4Sf1QpQ5NALnm4GEDXkbfgYlKIMUE7WCXNnXs/avDI4DVw7k82qo81gYkJO3Ch0GqKLPzJIww74HrtCcSIQQxIy+Cwvx0cN/gRk7Ybw9+HH7nS9jMfmr6aAs7msFuRJ/0ULaF/T5eg2LcqqjH+B66O4yFw9yt6m7KKNs76xbGa73GtwBvcVdJAA8LidELtIsDEkWDuSZA6WwyFlynBeZ90KDk5BmOnfWb3kwIw43AMXioaCzejb3Lw/9/MyQjHH7l/YX3FcH77VYSMV6TjwrIluPJPCrSMS+L2UdogtdcAJD+MhhkXZ4BL7SALsBT8q9Ih96eymDpuLK94WYSnvb1pzU1D2B66Aur2NPPA3iryDPzM2Sc2kVvADYjsqiUnE00oSS9nN71xEFzlC11mZjg39B8NrrrJ0qOGcbywNDmOm8kajiVQrCZGdoJWcDmnDnuTS1l/9QH2/hHAcdUdcGiVFMxZWkfunoEY/3A4rvssBFX/vYMDb9RZzC8Ll5yOozr/gzhZQY2yBj5QyihH2vlcCPPkjeH6xVhyehAJpU26LBFfRvbfNmNaihXXXhaHaSYnQEAkERYdGOrVQ494hqU6HPL/Qb86p8NIoVp4M+4SG76sJuWPkbgCBXn6Rkuw1/nNXSNXgu5APS37c4pW+DvTl8ZV6B1uxm4T77O9oTkXbVaDEabv6Z56H7iv/4aXnKbB1Ni9uL5WG0sqU/nNVW3+fOkAxzkrQ2d3Ak64akJh7cfRysuOncdL4pEVvaB51pc07XdifdQPsH4vB7GZodCpdIuPZcjz2DIjCJX0RI19TvRCQYjFZ3ThgmfqZFUpDLop2vxPa4BCDT7TAu2rtPWbIdycvp+uFypBwwMZmOP8D2ahIST0Xoc9fAGaD5vxxiG/aBUXoT0Zpui2XhY3Pr5HHtSGD/arg9yhuQB9p6Hfwx8yV3mCwMtO/tTXA0ec0jlGcBuIr/3Bg0my8N+yclbd14xGmhd4VOtHMNYXY90QI/4+ywXGColBlI4Nms1FmHKyiQJPqXKddS/MnJfCU4v+stXzj2w+xgJqjH6Q9eLHOO2jBLwbZUqC/ltwbJwRTPWv5xvu8+nbQwcKfpWJF/v64fBCIf7eJgmuqQ7cF5UHItsOcIuhNGRq13H76w+wfasDr5V4gR/VDOFUsR7c8x4GvuJpZLfsDZdX28Kmw6pgN2omTxA9Cql9XVAQUAUm94dD8fH5kDb3JN3fGwvv4xJonwZzclEGH3trwE2zrrH37SpaoT0OXp9qwLI1IZjo7AQ7vlZgyG55+J48Hb+8ukfGjwRodtVwaPMeBcsGVnP4hnwuy/SAU1ZGJKu/EHPDUhGuGLHlv++YdfwxTVdXhU3me/HNukLKPpPLHVekoeHjGR5pXoquL8JAT2cXFgYt5LdJujBH+QZssJhE8buU+JjnHA53GfJTu2t84v0TDE6VxMhzLhB1ajSs6o7lh1lJMGXXSh68dp9uSG7lZLsfeHTTLfQdNpp31zHVpAkAHTUbOosFHf0qjNvLlwO66VNp+iqSGW0PWpdfsMuGMhxzbAxozghFhXVT2DXeFSZGv4SE7ASWE/Kn1Usm8ZphW0BzwIRsz6vABZG9WH5eHYTr3sMImTyWubEE08+Vsf6SFWSTXY11va+h/rwJVDR607Xzc3hySyk+//v//+K+HDmhgcw1nElD5w2uffsG1I4pQMi2WWTRfQdzPkwAgaH8csv/gefbbNCzwonlZu1HmT1F9MJlHDzMFEaZZDfS7VlIfyujYY1jMgdkSABgMBpv/wWrFw/xYupICPcKhk83xtDUC87gcncM/doXSN8Eb4HlPUfqaTbD9c51PLhsDBwW/kBtPtvJ+sVltI4bRrf+mGGegCyp0AcY8fkA/nnxi0xTEDaKXaSaa0dgcYQutz/tZ3z7i3dQBLwteI8V2SK01mwb/lmsCMazZ8DGRUthlkkPaR/P4Yh1DwCPOcDGKa54rPoT/JsXgxnyihBb70+msp/41cPdbH7jJP84WY/a1zxwg7cU1Fbp8oZOI/ZYrAYr1vmwwjJXkPkZhGGBz8BYohlkI8fgS/EHtOBjF3496kPJvXJgKzaXajbtwRlbZ1K/Szt0mkujYWoRy1V7QJfgElp8tpf/jVKHnCQp2D5pyLF9Myg/LAYyQktwYIwsqsiJw0TJMGpwu4akD9Bu1wqzshGEIkdi36l8Jg0PUN26BHNXNmBrz3JetHgVdtYpQbzgC1I+nw7bJFNxSc4o8FlbjHc6D8O75Od4f9ce/jzcFStaCezy3XiOxCLYOKOZE4WP4zeXYsheWAZTOhLo5/nvMLXQGOek64HCb+CYmifohiIQpbaMvh7TwrExkfCh1oqybrnixv1L8VrQSFC8OgOOWMyGfXJbUH1zJd+aXo2lwq509lg96Nmlob//LoJ6XZCPH0WNRd5Q3R8Apqd9EdUWs4PUWnp+cA213u6Hae074PV5A+heWIWUrsomTmE0/ulrTjvwFS2ep2HT+9343GeAPdV2gVylAMw/WE3uxxpB+vIgDwq5sOjUGKLKdLz5NJGuhNygsGN9LLTCDEZ/8+dLvRcgI62SRbcdB3d04Sc+a8EyMpgdLlqRveV2EL6iCX0ef8nmgBTey8hEzbvruETLhB7tzaAn3s5Ycc0RPGXuU0i6AgQ5y9PXLd2gG/kfb1hrDQKjLFFFvRimH1bm+VdycOuxA/y7ZShfIgNpYL0mWOlpcrfrBxw9LZzK5SpJJXcXXpQRZ4VkBCkLeXi+eiOXzdhDB2aPRd81IXDB04buDq+GS1/kUXfFaI7RnoYOk41hzuAh2reS4ZCHHmjmzoADg97kft2cm9SWoKL2KfzrfQzwoSD0jGqm+MFIfpflhbpH3XGdoRHE5PhzUFww1zzSRvmZK2FRoQ6ImjTh95VbsP1iPg07cZt22xaif+oqGpTVQsuD4nhPZSeItiN4zxLh1tkKNEl/gBfmVuOWLQtga18Jqwbq8bJn+vjr1zY2n68BI1+e5+zx9vxw/hboPFTGIitqaYXAaPwq9QdHvH4Px8U6oHSEHISW55BxRzc+75IEVU8TVFZ4g2OM3FA+p4S/6c7GqjV69GyFIfjWd8H0uW6YVyuJn7WkcEnsfhLuLwQdiIbtmrKwVOAGjl2nDR6t/+H3ayO4+oY9rZJx5r5hQpj9xgqkNCbAf/1DvV2qAaIzRkOZthfP+GeNHwSW0byvp7DC9wKPH8jkj+157OZzmvdEZZKB/kTYsryBsvKb2O/pDr52SJZPKu/CiqvXwb5kDs8pDKMPT6VQwVETPun/oql75qGg5wkqarqPDUsOQ3lVBwhq/+LsKHsQvqNCci/0QEOmk75MmcO3G1rx4qGTsO7cJjJ67YeOBofI7HEGXvSZyv22miB6uZSCqZcu2L7nR8G2/FLhFj6VKcNio/10ajCXQq93cdUdTTA850GGR/dDc4Qa3E2sgkqvG3TnqjFdS9wLUY3e7Ht1LBzbM8SlJwT4qvFt8HtSyjKZlbj54GcqEI4kh/NKWNI0SFuG9t7uhQpsWPMeXNt0YF2uP7W7RXNkz3VIGG7M1UaKaGCTz/8ZfEb55bKQtvo4bRAOAIfUiRS9P5hfrT6NC7YkwcPvbfwkaR6/dljJTsOEwOuoCCbmaFBL+2Iuvt8CqysToebHCbquHMTW+zrgwbbZdKtPHn4XnuPbxh7subaLZpy5Dc56rqghpsMjV7diko8Ar4sLZB0ZIZjxqgZT0y/xMMHXvK/uJxWb9aDjtkSE0vk4fbEUyFcuwRHPx8AqIxkssvsNt1s92ODyU97wIB6891kSZS9Crb7XDDfSuW+Iwz68UgYb81/0q0oZQ1Tn09TdVhDtcIlTHI/RQf3VrB48iJK7BODdqgbOWlwGXjFPKfKoCP2RqeN7s+5Aap4zPrH3wW6Z5SxQIgBR+w9h4YQETN7dTGtOAuVkVPGtwkDSDTOiP+1KuPieDzyePxG2lqzgUgUT3Jf0G7/3nKNr0leoPaEQi42vQ8Y2d5Acmg+nYiWYej+RryW44/zwBnx7ZC9HXWonpSf+aHa0FqP0WumEVAQFZmrCib29GO6wCDdt34cheY1YZXmV56Y94JPT/GDM4xRS9rqBMzo14X1BEZeGC/LYKcNpxy5FOni1FxJPytHL4SL41iQOp0cbkoy1GnyhbWhwsp1lcqbgrfVttCNDka69lGW5vb3w2cIFxaZNpiXt8rAp7CK9/O2OYgr3aOZGK/QVDmTPKZosaerALf1/4aQs8h51MZim/ow+tTnAulFqrNAkzGuvzEZPHzkquqROuQGi4FDQiq/CLUFFzYX84R0v63Fkje9iuObUTcoTfs029gpgY1yJl5tPgW2jBMh+WgY9mx+S/8M0nrdgO/a+Os3RR3Uh5eIVnnwmCzv8DuA/R4DtZd50Jmc7P2oYR5ZDPd+RKMQJbja0f3IjftkZCWfuN1FmxhgQ970DX2YuAfPCqfDu6SbS9MwH3Y45OGBQiL0nqzhr7USunWgOs6dq4TjFeXRfcQG3znXg1ZPj6Zj2cqp/1ACnSxkuNz/kqDkMo77Ks1fhHnD7YgUSMrtZ71ELSa77ht2lI9En7BDea6uGU6floVVCAgw2p4MuTAHFyqHuibMkrYJ5/O3TP9ixxgtrxt6GX8YMFt6/oOTOKP52+wUbKt/C8VK78I9pLt44tREV3qxDqxmT8d4bbZgUe5nulM0DnT+pfN/6PSial2Dw2qts0FwLWVMDIVxBHjuL9GHjhOMgv1+RrCsqeGrfBD43txhDxH/iwYGXuP/bUVzxxZFGhcvAqGIdrEmshH+ru8Hf/BjHRTbCudJUinmlT3z/FE67e5gkXg2DFFwKmzc/ojFnN0M9nee0CE9Qd94CZx8NcmLIcrr7ZieHz0AQ+REC6tY/sPxwFAcfF+ezO4JwR/Z4St6zAwL6L+OI5c9QM18N6hu24d49ntS/yAV7D9/GjK6tEDVfCr+L9/PDyDdk+e4ju32UA9elBlj/9BVAbgdVdHRD55ZR2Nefyb5zBOFSaBaInm0gxZVCsH9xFXX9zMcds2UhuHgfR2Apb5eq4dtRK3GDVjNNGxXOs1YRjLM9jAWtr3hJdQKMlhoFHVsdOdgojF26HqBpZyUv/tqOhjnDYMSKQVJ7NBlDRynhypQOmu7/GGV9GmBxWQ28/rSSrhZ+B93ROlAVP5ykWn/hqdhO0HQ1BqcryzggTwf//071MmkDyi1qJf8qLYjtl+CTZQ/Q2N6Jh3034Y1zlaivZx9Hi5fC7uglWLTkCek81AGnumTwdi6GyasLqDBnDZmnimNNmSrr2FqQ8X+jQeCYNqUdVIRL/QvYkQI5bao8Cv5UoP3l0Vwp5IEcqgBXA39g9I5u9PgsAqr7MkHm9HswPV6DBuZ7eMmRHvwU8A50FzKIfJrPDp938r+jGtCzSQ94RCab9GbQ24ctsGiDPrRl2KKLhCsXqGyGqvxlkHtPBtQXDqOMU3L8WYpJfWc/iru3w7cnPrzq1EL8kTsDk5W2QUSmHBzcPsC7Bh6gSq49HpJdAXuTg+iY/EmKf/4fGXfqg0T8FbJdOxXk1tnjI8fjPGp4BXmN8MdVj2KotVeEKoKVMMQ2m+qeVKH6h5GQ79VB78oCYPfMR/C1tIxOTLmGH9Kn8MH2dWwn+o3iz+TBr4PC8CA9AYSdOtG3bzZtTzQA04EXIBslQFfHa8M1bRtKWfIGvNdZwJU5B1HIVxncbkZRWbQ9lM8eSX+ir8AWj3JI+Taaze9+5gW5AKmzF4D5x/NU7RaAYeI6sN3+Fh2YL43Fe5vRynQdvd2cAPjEDPZmNJLCjC7q0oqjo7wVbfbZ8eVTR3G2VTalp6yiyet9oWj3GMC4AKrxdESRxYYYHKRIr8SCWfVsNlpZvEMD8dN09fgZmDxmPCQO+PI0Y3eOPzTAXucvwPkPC0H3TwCd/x0Nv4LWwoEpJnw7azIcN/vEBVPiUVbmFnv75mFEwCQUexfANmIRfPvFDrqe9Rcab+mDp+ZeXHWkH201jfnZaweYJOQHmw0H2XKCOp79fYifVz/hJKGpkDulHRT/GHH5MCHekfQSb2Vo0YYfhXT5wg563pILd1OKqfgWgejIs4Azs7jn3wK6cHoiu6d8h8rWZA5/GYnlq3Ig9GkB/HilCp8OD7naQjt4KlfNKtE9HFAO1K/yjovK10O+3SEUmqgI14aPhL/h01jn4E7ujWiESW2P+Nm+Qgp+8hYEZ+nQX719KNDhDEoHCe7qDDmZyFW+ce4CncvSpLPJStQ/cReFbjMA+3plmBd3ggebjeGAUDi91SmmT7saeUuyDtu0fkR/LQ3IDouClyLPYM01CfQ0mAw3pR0h4vAofHjgKbz3rmPs8OI9H+bTIXjGD3VfUdBJRV73eCLYlm0AM4U+MlaVhCOiz/mk2x/OMmmCKj11DPE7xr//uwH7p04CsF1CWwJyaObP0/A74jpCzGLKGHeXNzwypDWHV6HOkk9YVqcKC8p28JYZnuSZpg8LNN/TU4UzEJqlikXu7WhKYTAq9gxX1SrCIr9//OiNJPbfaeH1HfexL1gDk3+/pKhxp/FfoQS8lVgACjwNjATrYF9BGA5WB0P0hZMUrDSVrg1OwICYRBxpuZkVDrSwt6MceL6PZ+uDVvRydz2J6P3DNt1y+qHjD6HvzkDEtB2oah1PrslTwGB1Czg7OKP7bSEUO1fIh1wbOehlMn0/4069dgHUEnUQH79TAK2XrSgb/Rel7iziBUovueSMEBVe62ajJQYkqkNk7drDOW3isPhxBRRIFcCSw35k0yONHzeq4YzkDqpcOBO9HzyAt+YHyclbAU5YfgfXccZ4K+49/K5Mwovj73HFGS2u2vMPFgbPp/evY6HUUQEmLnkFhdYe8LiknHPSe0FwzH2QUL2PcnamzLZmpDOyBBMNBWFU/mh4WLoPL94bzeMjYkl5fyi6PHbFa2JLOfDnc7x9RQRu95lA94khDv2XDV0x/dD7woQuPlGl2xKLYbazLyifVsczPsPIzUMVHqgL83yygCNi6tgs6g3/hFxZf9UuvJRWxY/OL0L9F9vAaZI6mE62RYnkdFCjDvzZeJnbOzPg3TpRrthnDcceNYPP31SaWDsMrtyqh1WzkuinvBMp5HvQmddBeCjjPe3c7gw2MbZ4NGQWHX2oCUb6j2hPmD3Gl7wGb8kAXurjC01D2ZC+8w2bdAbhvHplshwxFa5ElqBgYQFKjRxFFsNX40bnSeyR+hxN9eZAhs/lIX/cjL5+UiAS3gzrQw5DXuky9tWWwdaPp8nYxAzNftST5tEPWHPWlKd8HA9dfpvIrlEX9nqX02GZH2z2CnH91QyaFaPAIleb4eCHJHi2VhBuSG6n6baN2HU0EvVlq9GlzRpjnSJAvboCFrEhy4eNZWkDC0g6ps/3BC+wxDZL7FT045IppjB+RRArSwjQuHdfYfGlz9gxkyHo9T9qOFvMfoqaLGy+Ho61arLC+IP0+G02yUk4oZXDPwxfqASRtQXss+c3rVuvxPvm6GCmQCrss0yBH7SKiyqboGHLT95zSwK8ntrAhzAXSvMIZbFsa8rcrsMtAqu40/Y5zfEuBpNIJc6qMYOCaWYg/OgGRMbbUl2EO9a1naFl47Sx0uIk7+oRo1cak1iz0giydy7EY5V1/Ol5KO0zcOOsCn8IkfxLbxLLWa9yLx2Zaor3PglCqd8DiDG/RIVuX0Fk9WP8PHcdfT1uQqK3m+BagzSYdUnzJwcVKNZJY/uZJSgd/5iXqrTRyqUX6XHmCjYV1aPTfJNOt++iuc4W4DnXitZPSYfX6XvRue0z1HeawcpbGZzy3yFQct8En145wVgxXbCrK6T3un4cPnI+X5QSBLtgfy4dYrTZf0P4bJomvlmyifVX6EGGaiEq3bsHKaOicPXHKlySSDAsZDJ3rfKjz7e34xHr0zwvUBv0rX1ouOU2/jW/CWfWNEKSjjPnOY+j5rlr6HXrefiWOAE+P1eE/apFGD29khMfKTOFdPG+4dVUfsmPxR4r8MMzu1C3awqszZ8Ab7JaKO+4KcjamuDH/Rt4tkwKR7geBcvDarydWrFZoxRWBWlAYsI6DLm5j6t2VTI/2oidASfQ8Yw+3P2yGTdJDJDiHB1WTZsIF0cr8YglaWA5u5snrRjPvS/z4YtAOQTe1cJV9ndww3Qr2JttAHM8mznmtQWj7Ec0unyZ87yP87vv9VC72oLmNXpQ3clN+DhcCjTm9oGLczwdalTlWZIL+dmhW/ilsQxbRBfT5PRnoK/tDoHKapDzfhxHG2jirCOtZJF+Ck9UWVPfiV1QlpRI45qF+GDiABgNGsH6T+Z8tuk4R7xxId1Trpj96ShpT5+Jo1eIsMzTEBKXKMIZ8xTgm0Er3JjkBYJLB/G/QBV6mi4ArwJysLl6OZ6REsHYDX34PkoS/Ew+onnIHbarNaeg00N3qakMP69no8ClgKG7DeCXpeNgdgGB1sAQb8fGc0/iRoh884Z7OnRg3IJ22K+TQpldonh03378VjkesqMlIUoxEtW2WdCNa2vp95lg8k5J4Y165hRV/Bf8R5Vw8iUAWYNSXjUynE7VLuALzvUgr7sInZdb4ISbzXjTPIF1Zs6l6bWqYDPggW4bUtg24zms8R4Ey8BBjAzXhyMy1Xz+mQaoFRrS8nPi4HSzD3Ua/KE8SpvL18fS2yJpmjjCATbOGIHCH+Xh2Zzn8Pf+eNDo+QRpfpV0Wb+bUjbupHgtgIEnldQdfpVfbVoHYj2eWBAzFjo+TSeHG85QtOsSDP/eCifF/kFZ4W9uFRUk0SkysM/vDAxLGgfj/wSwx10ZOOgQiHrd9nDh6nW60ZRAnou10OjoGCqzOQcfBbUgaWhPTm8d5KVbP9OnFYdxTdk5zEi3wZqcRXi90BJtZolQ2xFRkDz5A62nLYf0GTKocb6UxVJHcPyU6XRh3woqTvvJ/HAdLwmdALJPzvD7vCr+4+zKMxePZ+NhGZy1UYh8j7bRg2vT+a5oBZRIqYGIpTBVu1ziJx1GfF/3B3/y6IDaETZoPHYlTEr9ik9ixvCMuPGwZbYQjkqUpwnnf2P0xgb8vMwOcwPms6RiFC7Z9ItLG7/Qi1njwfnBX5A2z0dBOVHceWIiH3p3g4ojG2nVSGdycMnnC9IvUKzPCE5tTaKxv6Mouf4JPslKpEzBapBp3gwHDhZw6cwF+DL4K/s9VoJXE1fTlguHQPjXIt4waTYOxm6EB8vCSLxnHhe2CUO5iRqGKMiC0uup/En1MdxZ4knlXZdB/nEveRm8ILXD79nOaSTrfNsE96ulYO7kybTNSgVAYg1utLiHitvfw6oLQy4gV0Z95/7xdEt/lh1nCvFXStE5+gE3l7WT6+urPDEll+fJAji3jwaLbX2ssmA74rVpoH1aDY1GnIU1JyugNuIsnvfIxrrNP3jvzdX4w3kbvDz7mDyrJOHgblWKnVAAn4XaWOSsL57Vncn3Em+x18X/IPxrJn56eI+kpMfB+g+qYKa1E+ZvsifplDese6YJxN+9p5k5YmiYXc8qEeLwcCnBHfsyqKlbR5NkHnFa02Fyiewnw3w/SAocyns4xQphLWDcowQbRzBZXp+M0ncN6PC9bEqJiGTRmYtx4SRBXLxrAiRIL8KHVWNh98p7xEH9kOFQwKN/veCB1T08puMLbbh0ivIu6aDo1iU420UeXth8o0ZFWUzaUoLnXiHcPZPF4UEG9FtNGwpK5+DAxgOQ6KoHsaeuY+j9YrocYQIBz0X45xh11Cg5xP8OBlHyTCM88vw6vb04EQ7mPKcj54LoVbYuWrlNwWcXHDgbr4OD2kT2aonAxAmxlOArC1dahvGtA7LwI0KTDd3/YWeaOeQHyZLBcmdIKLqDGSKTYFyKCKxdpUUH/FWh78wy9n89Fyfd86Cc88pYc3c49uk0clxfN939rgRu0vrodCATpC9MwUKLMpx6OQL37LtCj/p64MWicRAuFAQLtiFMiySaOTEKZQZucoJ0JTrueEWFauU8vXE+ZyiPpcj42xA53BKM0xL5mzGRZWU5bi2xBtF5leRUlA4p3qs5OCGKQ7dMo72JlhCxsAB/L9nKxWr36fSd71TvaQUfWzzIzKmBI+Y64B6REzBMehjMadtA7+8ak5NcFa55OBk7Fwbzu3nH+N8beSBZa1xbaw57rkvBCZUYWGX0E5i1qErVkg699aLq499x19webtjmQaaHRvGILTqwJuc+2QWbgJTmFZYa2YB2yZNAU9SSLf0UUUs6AXTT7Dg4Zyo8G6FJMwqtUfm6KMq1boOoS+uw+/MHCrISwxh3G7o/sx3MJbShzEUI6ie/BXH3fq57ZMsqBsOhtcsdU29NZY0fAfT6WA09PiANWY+vcKFCAZjUBdKQc7Cy+2nMSfQgtSEn+L06CW23inHkl2ngeE2Zp1gng+yVJKxuriUNUQvKlbenU8Wp3Cnyi+9lReO7+fIgoGFO8oJC+CqpHqUT/uNdP1Vxzk43prfHIOX1Ozzpd5Ie/zceZE11Mf95OHpFi5PzDUa5zaehyPYj59/fgxuPfEHTQWuskh0He6YEsWFaHT9rsofFRnNI3WEpOF86SIvGxWFdtSgZ2TfjIh2AGYU7oSDkKewSyIOVpx9S5rMxME/+Nh4/94q/ynzgnuR59M52FPx7MhmmLWumF9Ei3BJ2gTflyVHiETHa/9KO122fR66f1uPuSaNgnkoidpav41erO3mL4H/87IwYVB0Txh2KPxGfVuDPDx20xkMYZD/FcOQ8H9jjnQEm8hNo/eaX3KSiTnWBCmzu0Igb+ppow9dpULzjNd/xb8PdIiJw+utGeNWQTkLjs3F9aCSHtmdBtY4rZ+UagvM4bToXpM9f3s/F3uVrsTvBELa6TyF3WRc4WJnIek+GcfcoSfC+IMit1cThSaUQ+fQmGpea0cScFdQ/ogNm5b0Gmfu9VCopDElay/mMchlenqVK9zpzwGvyBCitnYOy/27C8P3ToGu8EWkMzYvn12+4e1YQXpixF776aNPJmO+05UEvmK4azkLrEP999sKO/0bD40m1UJgnxVHXduA7PTOoCLAj8747pGCwDX1ndmFVxVpeNdYCHIcZUGWyDq5ssSQXLSd2Eo8GUbFZeH79S4wxaKCtGfp0pUUWLhhk8/tbZmRp/og8tqmR2/ypWHw5ABPy5uJxFORxFS9oRrQWKLgp8lELPYT033hz5GpeGnqZhFQe8NJbfbRs2W202VUAi2wMYPndNmwv7uKDIYtJRfgTq78/Sdbjennb+EK60DIIh+cLgcALAM3pbpQ99jWUXSrjA8d+4FFPTxLQyKC9wfehaMyQ775fQsO81OByvgR3OccjKrvi0kOfWHPXJZp78y3OWmHPRdfsUVpjE5wfgVC+bTsbJL9Fz6dHQC7pKJodUSb3id9gn9okOlJzHHy69OCpOINkoxAGDf5Hx477sonQB0yxPAulsb+5ayAHTrwJo8qaR5TJY6HHqxf1btlibVk63fb+Aebm82icZBz3f5eGY8ou6H3vN9X2WkHBmgc0J3cqtQ1+AYtZbXg+5A4e37ASIsoL4NHavfxw9moQWjIZxu5+weXvlPBnVwitGL8Iuoby2v6kF9fu98X5hZ+xUjyJg7NFwCpdBGxPmZFo/VV6fS8Itoh48E0hO8pdEwzj5VfBh7++oOo6EVTCQvjfjl4+uaEaTzZMgpfNAZxUn40yb/y4f5kP2/f/pNmgCecLYmmWwlocLabCHqPzwNsWMaBgIb7S3Y2bbkrgxj/xsHSdOihtsITEmgk0u+wr6fXqkoSOGxx8UY5jfv1huw1X0evRGO5XN4UKrZ1E8cJUEneIPw5Y8IK6JKixP0yv27dh8qFYyl/TQzvXi4Pqh5U0ftpOeq6VBptTx9EjI02MXt6AT9fU4ok308iv+AaNCJwA91XKcfH7G7zt/jIO/ecHtq32vHGKH8Q3daJqkDC6rjiLnz+PgYkPfHBvjRiOz1jHbZrVFK4RCmeLk1glZgd5X0qAR59iaeQaUxDfJQ3Z7n/pjFUcFf8q4FyDemoPacRvcsFwtSYcrJZ64gUe8gqRVs5QvQlHH66DgLbjmHdDl02MX+AO23p6e2Y7RqrcwJdbDOH9gpV8WmECv525BzTj00ml8AF29L5C5SWX+AIEwpZbVhz3VRduOdngsbWSVHI4nkwsXGnhiQt081oF2X5UQsXsPkqZpssLhPRg1MBBGBEkj890K9hR3oiOuEmgwo+dLPTcHeOFy6lgXimn6xjAfbFHNPy7O1SY1NOK+4dBMGcxHQqrpJGHj+CxTTpkYnCXnQ7LwSsnFdy0MJcuqWbS/YIk1LMXHfJLAx7b1cQDb/V5emIaBPxUgWPbf/Ni6f3gaeTIP39rUI1SG0Q8qGC55dNpr+kINih8y68GBWD+u1cs7zkbe8a7s7jEOf6QiGij3cGt559BhMYxMtn0hV42K0Lqn1z8ORBAupolMEW9BMfOV2LpQn8sufMcEzu6+K7RMJDeoQ5fwqeDX8l5ePRamW9un8LnQ35DoL8NdzdtZZuGNjDsEaQJg5rgZmgIR+oiwDU6gDItl/BdjVUkbyoNLaWTMTdlJM+VF6fO91PA4+R9lPefjls+h9H0U0n872Evh82KQo8Nq3hEiSd2l0vxl9EmIDf9f8Sddz+X/9vHj0FGKJlllhHZWyKUhlLSkIZVGlJRIpFSvkohFTIqWiqiQUuhQlokSVGolBUtKhq4XLfidwven8/7fB2v4/l8nH+cqVj3vpKf0ykWjgjCVS4D5PP0HMxMOsIffzzj31LheE1ODUJFP/B6+9vgr84c8Ps8WIRocaduO4TucwfjinJYcvwe782zAueCAni78SXlHynDf2lN9MTdGQbG2pDPt0BKfn2Rz5rG8p8wYRB8Lk9afY24490S3mifD7U75vDYkHoKjkSOvhRK4wP3UNw8DShbux6pQ4Dl5oWQgMEwdlJ5g7odfdja3wdXfxI9st7Ndq+lwH7YIb55/hc9G9jAHvsVQG/0kN/vMYTDE5/y3JsxXMhdeHIZQ4SpL6R8ncZeUZUw69kazu9owwc2mjy/YcgVVrih3C5TPvpCFDT0NWmiSwsIDdyiae5H4WSiMW19dRYaNsfz4gltaDxvPQjXK0K09T106ChGISqkYPIBJSN/VN4kBXa3HCjSOxrv3nxLu2v0Yd7oIrhyc99Qn35nWZ8i2lLmB4WSrvDQIR6fH+miQL1oWGtFsObCN7aZOohrujZAvZgx2VcyvQu4TbMz9Kn7QyTcSp0KXoWWsM5SFNRE9GjJc3Oc+Og3REMYqO67CPKVWpQ8wxsG339joZOKsFskAHIv5bJYQhbsVBwO5rX6MEHgCcVfscYI72FwQEQOAq0MofabDux8b083F7lzZz9y3O5s2BmpCr1e07h9jAraXsuj79o2MHyPAdpnjuGcj7FsVbCFL+hr4V5Dc8pcvoaKpz2ENgslMmYdWP42BKfWn6NMyQVs8OsmXalQR4FtHfy2WZbMwvuxN2U6zQy2htWZT/hp9DK40itDvZ8c0DT+B2VAKmwfdQVTXQbx5FU/vKVqBGGn5fHOr8m41CGcY8+r0yItXX6/SQb6KyaBXMlL7Liahff7lWGKiQjtL11Gy3+dJZ9fB8FCZhMkSpiAdt8bnO5wi0qWeWHkt1GAT/WpZosQCKio0dzmRPDNNKDD9WNxUsIrPFz8l9ZLnYT/AqxhV04NrNf9he7XUjF6PvKwqcb80LWLrh/QhaWZtaBxcBkP/gG40B5HsskJaJw+kw0390BrTitmx5wj8Uc59LtMBpoH9lLA98kwymkXPT/syJfO5WB19kvI6bmCS6bF0Nw568mA/8HmznY+NkIEMr2XsanoCoi930une7rASyUEPMfK8vu9nRDtsgO2Cb7lcL0xECN0jJ5GFfPc9fLksc+Mtn6+AHfPisEkjZEk/PYvXH9xllbKj4fOhsu4v+clb5y3CvTvLcaG1Xuo3N8WTbsu8zhhBfDt1aQwe2V4V3IcfkduxZ/TU7ik8DU3LryHzaXzcVTqNBptoQOG8cY42UsSXE12oK7wcpymfYYiOidyjpE1OOS1YObtBygx8S66iQmQk6c0uP8VJ4+5s2nmgi/0tjoAJv8sY5cxdnT960X6WWzAq+QK0apJbug3vYZNfJee35yOoyMPsYR9Csu3XAfv5Qvx8yJfXrRTkcYpa4CTyTw8OmI/GW6bBjsTbfmBwnsQXJJL2R8fUXG+N58S2UV5yxB+yBaw4d1+bso+gtNXKOKS1FNgfW4b1PfI4M1qQbpFz1C6TRV+drqz4n/TIcvqBn3t1cE9A84k/vwDb2qKwqj7vvylO5qMgk3Ba+t89K/QQfXLs+g/v/WgtXUmXvCU5em7L/PBCEtUWp3GV2snwZej9yF0tyUbttXjx5l++O4skm6aBUop+LCvymn6ut6KDozSAgvDVJCfAvhA1IBdz+3jDO90nu02jHhKGptuS+WH9qGQmCAE9iOUYaZtLP9LC6BtdSdRfpElvV6fj6/HbEJtzMJRKm6o1yIHRQc1cO6jPWy2JgT+VbfxTV9fnrlGDnxM+yk3JxPLo/7jNVeVIeqFIc4J/sSGakdJr3cmXNkqjZq/qkBqpSkN9yjma/kCQDmqsEjtBy1ouk0DLrJ0L9Ufx6wexv/kF8LAmQWk0nCHv6l/4i8TJoHkdS3K1nbD7hgjtLvwl6V0n4HPj3ckN/E7Zzosh77FodguagilT/ZQQvt1sJ6zGZ1vxfGb3lCW83OkkIhh+EPZBwX3eoDlH21o3vaCrVpP8K79c6jTaDrnGS/EjRIeuDGoHqpq8tDdXxgHtSfDhrh7cGd7Iz6ar0kBFl7se14G9g5exw75KHyR3ohub4vZ94EElBxNB5t3RbzFM4Tvj9TEmo/dtPK+Asl2H4JROxbAV6FSdFKfCDPbfehqqzhqOY7H17IfsG7sV6rpisC9kfsg4nc2rZFuAJs4VfiXacI5bzeBxaNydN28FFwOhlOnZguOs55JKzy8ufunKJz+ag7HRJfS5lvvyDfmH9lm3KfLHICOk51pGqTQw5V6rNvxlhOlxoGSuC6cnmuD/+Qu0OkPBvRtRCZkipwGjbPHSe9oLIh4naKrR4dB4u3doGW7BVZ+3s0NSjXQMM4eOuL/wByblfRu4QzQW/qVGwJsIdhLHEMzfsG4faWk6HgE6kX9yeXxIOocecG5dSEcqd2P+kUqEJ+xBHWKw0DcpQFvrhaEkts7MMxtL5fFncdT4uV4+MtkqlcRgWl1L0HAyo79H26ABumXePlxJe0q8KWEZGleVa0L0vXnMeacETRtb2QRAxs2sbJnn3IvvHi9HfVrZkFAxCbedUaETMddgZsbtSBdPhDvi0+g54lB0NEVzFnXZmNxchBofJ+EH+9Z87/ag9T9axycVWqH2pmJ2OlZB3k8hlUr47HVVoNbf8/CrV1JoD1ZA4uLlUFo2E3KlB+AfMdmTH+5AROn/iOTyU74Garh/bvxaHI0kzffGQ+7Z8bgRC07vHlNAOa0xqBalyltvxQFEk+bIWHUe/hpr4YLl46AlhktVPQ0BQtODOCJyn46km3IcSPHw6iWc7hgzSoa2dyPwi4IN131SKf7AbYHl+Lg+fcQozsZPQ650dyuRP7XvJZDdPazbZUmeB5OwJwbrvCtMp5+7xwJItY5KDfVilUtv2HZnFx46TQegvdLwb+Mw+jpu4kTyoCfFhwCtU1z8JP2Hv426xDI79nJm9qc0EdCGDb36sOM9bKwyHVo7n7NgxPbxfnumFhYsdYRjIddgkPO/2FvlSz0Ol7BhJHX8QeGsWjeC5TXFeTKl8JDvajEi0+tAv/GV2jcKQkflqShp/hqmmyejO7nbHhe4g6O6fahNc+zhuZYCX5VX4aFCWawXzKON6+8xqJd2RgToQQZ5ofp0565qDGhlMXcx+K4p79oigyCp6gAND3Ig6cFYSB0OpD6KoSgV6uRKe822JRuo5vPZ+GoT7ZgnpECkfEetLfchM65tYDCnCwYMyuXtPX80Kj4HKcb3cTT5+Xhbc5ttBn5gK6dPoAlsWnolJzBW50qoUVPj7I7ckj/dTaWZqpByLwV5D3PghwbX9Kiqdvx0r8P/On5U3hw+w452l+CZ73MnZfVIR980ETuJV9+4s1zkjI5//cZzJKczBnVkbh8iizt3tZE2+3NwUblNF7gZk7d3kPPnkhjzO9L6JNfRVbLX/LzyhdcoHMRA19JwUjXWpgt4wdTXRaTdjRA78d28tWO4+Aj81HKXZoFx7TylUgFONJ2E71ZlD8dX8eSV+MgbWYZjdHJglkiUiC++xmfrRmO8Y02IHz9EKbZT+VefyHAcA1e4FxAfp8341uNKRgu+BuGrzGiu7sJ9swdDQ8zgzBZawEN1D3j4LwU6CwW5nnTv+CM/SM4MF6UdLRlYJvKHpj1u4C/ZqxD9UW+MExgIdnWW9GUdfNhfdoXCLv3A7wjJWDn7K1wUzQYcx8L4YbeM3QhUJMXPvRmtxQpnO2zn26tfUApTtKwVM2NrHYdg31Pm/FBRzQ/+1NJc+1ewc5LYzG14REUXR0DF3aIwtS2GLgXZUQ6L5fCtuTHGHltBO+9dht1vj3Hys6peLvLje+riYL/LEH0796FElft0de/BxcEroDIliJo/5FIL29sQ78+OzgXLg//tebw7W8/QHCMHEXPsOPOqV9x+vY12NOfywKhaexW9gcMpBSh+7Mfbe0K4Bl5QfgtO4XsW/3pk/0mDJ2QBfe0VbCnZjwaZ04ClxFA0YbnYcqpbgjzPMiusq/Qz5CotUQI52rMxtsvd/KsRAkouv2Erzb5QvX0N/Dg5w0a2CgC3xobMOBSJv5NV6IXz6/TVzUT+GKxkrQqxLgmQoz+dh5jqT1fUL3Sh0dfl2KBQ2/grkcYHVw+Dub59aP50dl0aZEYiTUnkvjVNcCKs1nJkTlHQ5yb6mqh+JUK5B51gz2/xGjesQfUUFBJl2bKkFXXfyDoHwNNGjb8UrSAHhgOh68lu+G0cQcuLQ/DhVee4ofEYEy8ew9fCfTQNRV7fF4oSBIjJeH48j9o/tcEDz/QwOE+2lzXk02VzgtRsnoqrwu7BF6uC7B+qiasQV2+kbgabr3UIZEZSWzjNh52TAkjobmbIfNgLkZ56lFpmiJUblRD2Uhh6nmjRB7qHvxCwB1kp6/ifdHngNuzeJ8egeo6QTiQXQ4nizXx0jJRziApMGo+BVG7j7Dz1kWkt/cx/b34navOMxxxGQ6pYUfhUGoqOWoL0BX7O3D6ZT88GXYRjNPewMXNmxgFRGFAJou3qRhjZcZ13LhxHt2tC+SgcS38ZKoFdWaXwdKCjzjYJQGmsQtB7dY2XHw9AFML5/Nsr+uwwtIRrG5lker3ZShNMXBazhBWjhVF8b/S9GHDdK70ycUVomvIKkoXrHc283Y4RUrlH+jmVSMwTbcBSZkAPrHSAnIDhfDFlBbK/Dka53iOgfRnEpQcpca/7CdCc9lF9v8yiDMmfqfKtp2UPHIStrjEg5p+BeWIv6Idl8PA89IESGkUhapPanjPO5l7k96hxPt9ZDW/BhwsbNFv7U/yClKhOUYTIE50I9YvCqUTWyRJruYltMW2QIKVHy3sWQsvkcFddDPo+wqCfvgMtE8JZsHXcqR76Qlu0CzknsfRsCdAEs+tNcIb5ZmwbUADwib08+1nKZziPo1Kdh9B9+h+NPnyHAtmxUBHwWIemeyNy1xsIfpcMi1NtuGNdoZ8y/84yo1pgagsASzryAaDigZuupKFlKANqh6CHFUUwtsuOXH/gDqe6a+F2Mn7eVftCNRSdSC51QK4eMsksPwVC86C1njYwAVOJwzwksKR1CjpBmH7DsAN6yPg6P8dJq1TgpW+82GT/n9kUO3J4bsewNd1S/Gx9GUa1iAEB5V/sNgWC5i02AIOD/ngkhuXWcz5C9rOng8RCZPg6icjeq7gj2tDg+Bo4g50H2YDoa8q4cn4t6z5XxTue9aNGh+LSPvvb+y7EkMPmrpp/dTzbDlnGKgJJrBeTRHn6yygg8Om0yLJQ2DWs5Ky1ErQeZ8/VtxwRDn94ZCRsQbP+Ouix9aNXL1pDUv8qUGHUSrQbVuKVo8fcFJVICa1jIYDu8fQdqebMFd4OQzcPE4f5orBqPmjcc/TLyz6JZrbBMW4ZLkg2JUCzh+/HzbbB+H2sYSpRxeg9xh9tCvpwPim4dx+4C/sCpkA12rXkuvaOBL8F4j9N0Wo5c5XvlGoy73rG9Gs7TT6OAZDqJDxECOWcHZNC+qVngYI+0GBoo+5YVsVTpN9QmNEf1HcE3nomWQAOqL/sOrTRm7RkqBz8SV8K/U6KrjnYNDy7xT9eg0VrtsNSiayIOTYQFX5OawWcx2V/htge9vT/LTTlWeJfKCi3aVgRbkoc1QFhA+XolL7fYju9gChDV6UPLkD5s2OH3LdarpvmM1uFSepVF4F5r+KRt2PI8C7czNH1JXSYx993laoAj2K6bQj042XbWrj2ovK8EbUmxKMUmHNkjI4VBeKLhvfw8oN79GwQIibzjxlUa8KeHpLGtwyrpG+fgPt0kwj3xs/ceaOZVhubUX3B634sW0ie4ab0KVMG1i0/R05aemRc+xTlnw2ALNu/0KPojjsupUGrwa8sLFYFfrshOD9Jn1cuCoTvK8/QY/CfvBf+hKFrznjDp8neE1cH1PTmlDOWw6u7P2B6hPFh3jlPxrlFA2DlsNgWwjjJJ2DcN94BI46JQYuRRNBftdXVgu4h05fPHBkXBBlbHPgm6OU6ZmhOVTpfeeWDEk0/6ML27P0cdAtAe1HWNLfMiUQPyQNUkJBHKo+Bw/P20g+hY+w2g+hJyGXPySY4ZPe9ZTzcjhuzr5KiW6FQz1TzY+F4infrwa1u6XhQ9UZWDNXieb3z8Cwp918ofUlOj3Pp5KNu/Ha2jzeWzeDYpokIF/vGU9d6sSJHZK0O3QCqFa3Q+OGsfTSzQSNxp2EhiYzuLlSAi68nUjve23RymQ5z/hqhBlJTjDsbjHNuNpOEit3wYyPgSTpIwO9ur95w9IUCioc2vt3qzDxvyNwqTiV9joEYc6yS/RFaReVd2rCnAX5dPLASXraMxFPbsjGQrRgLZ0F6JdvM+T5AbC/i9HvuCTsvRHGXf0WFPHTgGZJ6+CcsVdh8bJFPFdKgZU+L8cv0w1p/LwR8Kn4JHhZnsY3lfKIsfNg19JvEBx7glaoZkPyaEXUcUzBgztU4ZuKF6+d8wg/z7kIGZucadBmND73mcZCW7IofVcJFf9TpuQ3WnBlxUF+M9TBkWcdIKx1NvhvUaTio2+4t+gUHxr8zfnTS9D6/QS4sf0GfV20DZ+u9wEX0T9oeVQAqiWlOUdCiFa1haIxFdLNEBtQSH7LkWkacE/vNTa6V9GA5lackZLMQVZyoJC3kda7pbD6lREwK3IBV95vRLtr60BIUZTnBJfCZbcnODY8gi6tus/mZ6IocaQCtFXtZJl1Q4HIHg03LwXBhN7VcG7VAcgcXcN6f0tx6w9nKP4iD74uK+h5bhOWfl3J7kWWMGPVJorTOYLXMqoxz0cKc4TloXmUJPydPpM+r9Hjjl2ZELb4LZ3NXwDPPhdw+WtT/vkhDm5b63HtMhvIDRZkj+31OO2fK453MiU7M0/aYniXJ84+h65SnnAyNxLdhotB7LA4Cqv24dlz13K71ToQs1KiY69FYf9/xdi05TkOiiWT3psJsOejG86Mfws3mhppysSnaJ3ewXpl68F1rxULyt2D02GjSV3IEuILH8O0GZloMG4Sa0hYYm3+Pwhq2czOhrPZQ/sh3++rpYV9CnA/4Qo8S1uAJr92Y0RjPYpoLeX1BregeOJcmhN3hmI/lICMjSyotj3BNcJSrL93GDjW9lDU8ZUoWaeFp/I76FtMMg/0XAF3RUn40baf9+/O5v7wR9zxYw2J+geiS1A879qjhQ6fNnHhqV6scbSEC21/MGGlJ8sLmcH2BdNh/eFJWP7dmq8fXwz+H2dhfmMq6AUowJNqb3wYpUi3GmLZNnQTXT/nwxKrO/iRwklqCUF4sqEejVW0wD/5LOU/1+GsfidykxEF69mzQHDLOapNOoWqjR9h/aQg8P9gBu07F8OtO6M4K28rH2n+gxUJS8li+kackPWXc+qH4873AzD/ngIMGrymT7LfoOH1AbqReRNErzpCftMijH6kgwOWBNEWc3naEnnYbVwHO56K0xWdP2TXrIp/e2x5i4cwF64aQdcWh9C4KUY4YsjpEpSQz61nknyVzw01j7BdaiFi90VU39GPLQ9+YkPvDirX0oZq7WXw+tkL7tvxDYNFi9E2vwD+WKdgVsVkuBU7Gm+1CJOr4BjIE95Ie+r1Yc+RGFp39ggOqoWi29d8LCoSpzEGdrxKbzi8mSP1P/v+b+H072SKP9mh3BtMj1TghQZ3lu27To1b1WhRrQg2atlBSp8I2Cd5oZJQPWrVb4RXOxVwzJ9AWHpnBCyYmIy63+bDgdtHOMVCBTxxFDw/2EF2mkfx0EMZktihDpqzutB2ejqIvmA4oyZCx9fowscZCznrzEPst3wHX4ZtBY2k73TBMJ9v9njyynhd2lGVSctkZaFkazi/nXGZIncHwYi3f2DesMu0YHgVfQpsw6Ktutxy5wnYG4pCoOdmSnr2EmLdXLCt8CqOKHhISoZneVHJI7zy7zu6bz6In/JNwEAEqT6tneOkE/iW5SfuVBxOIeGrOH3mKTRAWfCwe08P1EZCp2w7x7s7w/GwEaSiOYLN9pymmgfEPwKMyUm9DzuE/0JimQr8895Hbb7StNtrPsqKj+TT/6JZY4IYzdIcBaXuy/BsTAIvOq0I0iqK1Ir9uFRRFLeKT8GBKluWSnbmUbduU2voVTQNf0gBZtrgWpLEpatLSLYgDIymiHDb/BW0/ZA9asBlbujOxct1xyBxoi48BXPaZ2+HOx6bkrD6KlyX8Jtkbv/AyJVjQWz1cui6PDTjwebwIiKft5oms4zfCJD78pptBDfi6XQjvjOYSt9XrkCfgz4QGDAJ7n9NpfoyL8yO94UFPxXQQrEOXg/dS0BELEimqdH0X7WYO2UUNGAfZwu9okNJu9DeMoUaVyahsF8k3fnjyhaSRZw52gD2CirAv+pBmjnYDovcztMjgzgYEy2O9bWa/PzcMy4RaqIxe+5Q0GNziNX1RcVLrdSaPIUnS7ij18531HIugD62a9D9ZmX6u30eGaZog0T8djz2YQs+erccDwc94tbqW1TfFAFFk8dRnnYVxCx7BB/+SMLdWyOxvcCC/P8YgWb2e/JcdpK+FKky5VXD26iVbOyoR0ILEJpzrfhc8lVUCRrH3haOHNYdio/uXKDf+3bC82kz6FbISJy4xgAS9t2j1+4X4fF3P75SOw+2HIhG6522YDZ2NB5WEqf8Q+mct9QWjsWcx9qba1hpewaJttajj+w+zns3gu6WmVJs6TgcKZwA70/qg9nmf/hYzoEUzMrYMvIdZj//RF7KCVh5bBNm3t5Kn5W7+JudFDTuv02ny4wxrEUVF1q2odLdU/TKbQqr7xICkj1LJwfnkMthMci/38TWiTdA98kfvFaWQL/NhVlzyINNrznRwsiJ5JlTDIe3T4Jtryppy8oyShJ3Zok9t1lCxxMtGkypu/8BFj4URZf3T0FCRgnST5qx8rJuTNWeCHLuv/mt43eaW5/GAlXj4UjZMbi1vBJ+jBwP7o82o0hgAM7T62Vjbc8h9haAr9cvsJdwHzdfiGalh/vovocSPKx+xC0C3ei+Vhm9jN+gXeo72pxswU7PvKlYYiw0rSTUFDeEKfESFDDsG/h5jkPUTaWS+mgcfrGXv741oVNLdmCn3ZBlXxv6v4ueE6ncxR7bI5x5OR1uRsSx7tNq7HkfCWox+1jN1xO0UtXB69EWUto/mg6EfmbR5gMwdW4gJ378Avs7FcC9/htYLqmHtJCx8Oi/T9B7sxFiVZFvSoXTofwKfFFRAredOslysA+yfo2E3e3j4MTWVF7b3MO2QiaYeX45HJUSIV3XQhovGzF0hjzeexmMux4qg4pAGdWY34E8mdlUvvIGVqbm8rHX4fRBoIvCZtqRbsB1unN9BGi8uMqLRgOOPlwLN0wf4SKrF3j1AqFIWB3fHMwGx0FxcJUShBuvDnDGbWt4PWM7if00omXXQ2l33gmM1p6FTwdkMeW5HfTFKcEdZSOU1O/E+o6dnGq8CWe8UaOgpNP4/uxsSr+YSh3tUbR4PcFg6wvMCNiC40Rv0JScl3S4dQsZrr0DLaJueC8kkOcdO0ELgibA8S+lWO6wCdNnzgZbUSuGY+IY2ypCi0Zs5tVmfaC5bSm/PK0M476Iwf62K7xt7ziKXfCGJ1v/pNAzY0BF8Qakzs/gBaei8fNteVjVFEWOFdE4K94MPI48RH2DFho59Sg7uI3lqb6rKe3T/aGsq8COr+lYLnGIgn784V2DObyJ38Fm1yQsCjjEqXLmcOvxJ8hPkYBXq19wVZIPV1Z/4EeiQaR0JArShrI2/eQgLHnfDA/cnnHsnzHwT3EU5VpFUM9RW/pgWU4TdbVpyjpD6LkTSgXTY+iL42lS32oNz0cpEUb/gP2ujyi27hHdFZ8Fm/LXkoLVHXTJ7sUI8RheYSkAW4RzUc5KC3LFdDi5zhIffzLjw6mhuG3wCGUl2vO1+atpirIAyC5MQ1INoOoSPZAaf4g6Tf7yk/I+7LF7yA+Pe1Dp+53wcKMmPHqoSLsz3aHIzoZEDmhAl2cmKa9bjKffL+AekxjOMyimJ7V6sCH7DE+xbOWXyqJwQ1kHHPUKMOCaMRTH3cDWBYNc73kENM2V4EZ5AovoB5GxlAV1GOyEuBPugBlCHBRdCqFHzCBXWBVOD/nv6V+TYI7gVwyoS4QlKbPh6WMXdNL3wdYl0/Dj6Uo6bnMKQ74pg7rBEy7d48mX2k+g/CInKkgK5Ic9NuBcZABj5wVTSMsAbtU3gp2VVWjZvQkudi9DdWkJUGszplaJFTCxq4paLc3B6IQpKH/QhEYjcypWqabw1uvQI7AD9tYMuYT7LDCt2A6LS77i5oMbscZPH/6K62Bb+i5YFLORGvQeQfTzLLjtaU7KncvobkcHZzw5gbMUhGFtehyP91kORVpnsan/F1wYNoGOXEqBINk2PmebhR53/8ODcQZw73IePpi8AvY9tCfJop3UeP4L9L5KxA3L18Euu4XUEXQCrmuogY1HC47V3k+2S26TQlAlVs8PILPauzxzz23oMNbGBt7MLa7qMD8ih+eLDqep7svBfvdVvPrhA/Lji5CtsI6bzQZR59UotPo2GqZuOkO7pX/AOThLZXXCmNq/gSq3i+AW6dWYNeQAIV+X8IcvEnBVK43+vFXiGisb/GS8FTKf5HJAyGI8vFWIdj34j9fH6vFBPR3YMXY1HxTXxiuhG8hXeTfcOmHAC0370WXmRjy06y6/vFDJ0heF4NBCZdaOiKUy8aV02fUjTQt8C2Gh3/BidRJd2vYOBNp0+Ms/OfD8sBGS1k3EFKNN6PZkBP5SreWUSXbwIfgjVL/eQa/W91OjpwI8DfgI/pMOsYTxAzw7wQGMyYwjD3pgg+JXyDzqRUdPNMCMHHMYXdjIc3umsIfrNfx27CGZq57i9Xal6BO2jlBIhZJmBNPYhEkgueIF6n+7iylFCqw/7zbWvHyOW3uSsGKWLEo9asAxUdE0oK0HuyQa4bROAqzdspmCXubQontGvDPzHd3/OY7uPVJm72cjMXS1Jlx+X0D3TxMejmyjihBXdNxbyy/HzCPZuXPoREIoHv/sgtLLFOGPXQuaLcmj3U2AH2tc8PLaOdxidQGnd5eixsq9WJH9CivWCYBX23zUWIuYfX8ij/a/Ri4zPTnZK5xshdXB5XwiSFeq0dcsgjFxgzTh5HKe21TOrR+aoeC8Kw7IFvDetCSYc68Oj6tEccMLLVCZdofFnhZR5Zmt1Nq4GX/ZT4ONM+Zj6ec1dPBdM79KfUZVSuPhRmUunY3aA61yHWQ6tN88ZLfh9k+f6euv/8BPdTJEfJxNWX8V4GpsB27xkYAVy6T5qpcOG8pIQcItR3x3tIRmFM+H3UXTOcBPB3b91qb2wlEcfdYaxsusw16vdAg3mcyDR7fAqV0XccN5WVw9k0GjOAS0jCsg3l+bXlkX04uukzy3/ABsGleG9w8uxzU9I2iYxygY7V7GwQ1mbPK8ETSPHuTwSD16/3UrRd0vhVbPEVQcO5bGiVlChfR4WpyxFlXEe8A2KYf7Nz2GCIW3XOgbRxU7y1l2RTC15UyCmjOtfH+CM7dvUydv39soEq0M/7V3QLhPFviGfeSJCfvB5IrAkNcJ043K0aBlbs5X+n6y+/cQrqrsgx899ay24CK9DLs9hAVC0L0im5/tNaG/dpPxsKgEOKj28eqIzXTnXyB4VV5hR+ffGCCpAFtv2PDkkcMo8sZUbHO7TnZHa1AsNR5b3hHd3NBB+mfKYflvfdD1MIJnDvlsLdcCn08ugemSo3j3yPeQmv4e20ys8NGsCo77YgBB/WF4LGMp+/qNhcy4mfzTfT1Jrwnl9VuX0PfeWAxr8OCYVRZwetANVhu5kf4/JT67Xn6II26ztJ4tzcp7SCe/6GHp2qMw1VgUVscwnk2tgsHg1ThVVoJ+DvMBwYr3FHBykJLfjCaLBVvgXIEKeIXlk3FxE8/4+Q77FI9Cl6MryN7fBD6T++F40HVqb9pFJWnWcD5CmFFyFjsnRfCwCX18vNQUTkTcwWmDQbBxzhZ2ulLHNmLiMLtOgSr/u8gJk9Ron+Nkhpw4HF6SDpq1BWxyRwum3hsJEePGwdfIMrLtc8dvjufpTdwHel3wCrWiI0niejmGTLek5O44nOSiDTl/sviKWT36vf3Hkn7OsE1oIn8Nshq6hwVYUxEO5/brs26PAViLyoJK32TMFW9nyyU14OpzBhZo3uM1ojlkdVCXv7tagUj3GJCLeIHmEyK497Y+e/fchhl3NKHM7wWFhCzBqHFfUXeCKf2SFYVNNW+5M3Qkd819TWXXuvl8chaeUS3kNWePg/D/v0NVS2DfBTLwfGcaKB4dRtmX1+C24v0QPukiWBUo4jCHbXBJ4xfEPlAB5Q5x+C/+GziCGwYrxqHaMR+0DL1GUR9+soWtLstdK8cv2YtxlP1IELw8FV2l3XHh/mjqCPmHM9ps+UvofJpQawmhzzez5M7P8OqbFZj/bKbq2G460rOPD2/Q5mORDdBj7cJX5d+zrYwgyLfch/FD7Pkv1xSGtUyEj6JhcCXsJC3tF0bjkUcBXG9S4eomvi2YRed/KcNfYwv4kVUFySVrUMBzE/6QvYOzXAPpcHcwLnmZQHmn9sGpYBEYnPoVaw+uJv8Cf5qdGcmXRqWiy59EsPYzod4NbmB2IQE36tiC7rFgnKemN5SbaPpcvggKfrqjlN4p8my4g2IfL2DDcz0u7pKFX0uSsNvGgobkH1UO6eOyhx/h4dwPeCDqFywveQvDzv+CCnctWPXUGbQPF/DwHFl6NvI8B2o58XspS3S+4EzSdSepvu8iGsXrQsnDUSB3SY+6vsznLU/n8dUJ6qgS4AKi51cxS6dR4flkul6qDQZlojhwTQHDZtRi9+GjbKmgziGiOtz5IAiu2cpTtq8O9FzVgr1V++haRjLYz68FlaI4iJGzge9aKTRzvji6Rfwmtfsz+EwRwYQPa2janVYwd0hBzuxj8ZbVpHlQk1Y9/g9nHQznxspUzC2ygS/np8Fc605e/icPb4nJ8DfNWmqW/MY3F22i3lv6+NEtiBes0ATHG0XsPM2MR5R3gon9YbTMDOHV32rR/dJLSgl4h86n/sCJbfLwquQVxg2x6YuiNOq39OPlK7zhwLVLOOrWESoMc8exp0LhyYiJsOvEds53iGLZA4GgbR1DFQXNcCZKgX235+PB2evo/oL/sMZAAQx+hdKcpgQI+eaABTYO9Oe8Pi70v4cpd3z4COtBv2wIPNqsCmXKZjD8fSyLdk4H3zg5cvgYy8ZhGzjw1Fl2bLuMqRXuUB+oDtrHqtDpwH347CKFeZO9KM/Ib6j/c3l+eT449MSyjvtWuDhWGmInDUOrxYEcNmkazrqxEeffdYSFb0OoPmM+Xmc9Up4njhLOonBp+m5srxRlYblM0BVQ51z5kbQ/qpa9JJntrwyyRa4JR0gqgmGBBrlGTuYXP4ejTPUpKuh24hNvrlKK3DQ4KFWPjyLiyfHrJChdM4L2WspwxcM5GPeyk6cumkIPT+2lsuqD6OXgyg7Z1iTzUgnCG8/R4tl2+Gj0IOgOH8rL0Cx1aWnxItgH08fU0cfOcjgTOhy+Z6tinMkWts39xapuZ6n6aCEJOiRRsVMUmTTpoN/jGTQvxBR0FtqA1GdzuvBkCT6IjaKsi0F0+OsEmLYqA1fIK5G/ewZLrzWGVFFEXOiIGTkr2PXgVgh77cgLY5LwrPIsXL18NKoIN0LSFCnQvi5AuavKsO5NIpk1vyDFNZ/o5P10fGtxkUdVJbJX5F7IKRwN9eMkQcljKu9yHcY/79vAYoHzKOcdwmpVk+GdXxd+umWK99IsIDVHFFeNu09jNucN9f1J3LJSCx/G24NSkivPz5nM77esgJw1mvBd6R27lp6h98cOcIL2Uzp/JALTjwpSsNJZVFMQ5Wmuflw6fATEHHeF93OyofBOFWVdnU1uOYoo2mFOe+1WY+TT0bRT6wuUGplB+u5gPnxSnzfExkCt8APq7lhENxaEst5yKVpvb82B7rG88os1/NnsSmc+TqAam4U4I2kd/Nu1Dpe/HQ/JVlq0qsYLlix8Sx9DRGDEwSTYd7yZRNLuUMXWSDw6z5GGBoA00mTIsTmAGqb6U+RPXWh5ewP8jm9BWYVmsB8cwd3R/TD41Ig9ffph8WEJMl4QSR5HrUDtwCYY/30hOu05QoPHNrJ7aAGM2z+by+b+wd134tBCbRTQZkUwyJfBoOp2np21Bd1uxtPVr+lg8rwZD+yei3OWmfGSAjNUHG4O9puWQv5cZ9rveB9XXvFB7ZQ57CUyCdsdJ2JIwj/wPAH8slgZUm2LuOz0GcrKiwbviFxANzUcUPWiytAj0EwX2Gi+DZh8koALO0sxuaAKUwsDSFXsHk55v5Ec/8XhYskyXHh4JRmtQbJiafi5fxysOF2KulsC0NGiAWvO1LF9hzT6JjVByYLfeKH3Km8vkofZOTvwiskAvd0+jqyEHmF2+kQIrotA9VQrWtV8h9/N/0amaVZg1CVHmaOqMOl+H0l8v84XL8fxW7kQjBm6+8aAEFjvUEui0uLwZtcPOFHTwTkZG/CBy10ulY4jy7VpHF30jJ6+SWJZQUessBYD97+e/Eq5HzWuz8KuI5P4cs1Xujb2H19SRzQ6+Q3+5YXSn0O6kBAQjIqWkeTm3YeWUWno3eVETSPecN1+e/5jHkzel/azoqMBLB0oZfHOd/Tj+ScwDA+j3o/f2VphiEcn7EP9kjzc8MoWqwJU4LDZBHysXAHqDxI4ql+D7qbrw+1wM8grvsguOttg+9hE7pdRgMLAZhARWE9HgkO5XjsHnaa+oPJZ+ay6wJ88agRg053XuGT0ODCsW0xPyhshr/4aCFWOxCUeq2klVfLoufmctNSXfzhvpgW11jCAGXR21R/YttOI/6zN5ONDrBQsII7+U8O4LmUMi6fehC8aRqC+SRNFZ1tQuv4G/nqyBXasm0h7o87jkR8V0FsTzysfCwIaTIIXzslUNnIQpu935s4DTrRdPwEmghuMR3sYKC+jn+YPKGyEJmgnJ3PkWUtM2GcAJ5qRPi72YiuXLBp3N5vvmVVQm+Ex8gpVhuIniWDjOIBw7xhFBr6DdXfPwRWvbJYze8AyeUM83lHNmtvEYXPENR68kI+VgcdZzFqAyj97glP8AE3e/A0na0dQ2B5JjvqtDL+OGoO8YyZ6jx8NFyslUXfZWloneA4s2xNY8ut+6M7YM7QnxoNM/yzwWP2Kg8YbwaZ1K+DgmnRYJvQJNKecw+2ZDPJRdbzzwnAwf/cao6+78QkHVXK6v5CqtUdgivkqnuPoBIv2KA450iVafMoImp894BLvLlAsUoOXm6zQLnIm2B5bRRuF1nGHrQc8iqkjgWXy4BIuwC82O9OpC4fg+mY7ED3mQ/qtJmAiMJevnS/lpmHl+E1MCfbIPqXvwb/hydlf0D2YjyUPvsDq6T7819eWGiX1yFo2l9eEakH4wRkUcKCdul89Z6dQP7Ax6MT1z46z15p+UFHZTLPSrvIfWQsQ1s0gvVuSnNpzEA9elIFcY1vc+rYbFzU1ccbY1XhmxUqYF2cAPWM6ebGWGsWe6MUDMhch6dpJinpnCHhzPXsE+nJStxibXRQHVQclniJnxldSuvCnXS3Nr/WmvoHDJHC8HcbPVsYe8SRS8tGFp6fuQUJ4PCntOwDGw3tIJvsw7M1bh0F313NBXhn89/AFZ8oOgxfzV8LU0zUoPzEURfZ1sJLADkz+cIR6ZrwA5TEx9FDmNd6YYAbtIwUg6IYHP9FOJrdEWcza7wSitsVU/qkFK7Mj4PKOUAy21IPVMy7CklQjSFzVT6OcG2iQv6PEaTXI6M3Ajrd9JBx3HkRzxSApvZj/zKhjz7Z4bjM8y8tbZlCDwyGat6kHQicW8LmNHrzYwBySPvzC9a8WgdPnKrqx/RhO8r1MBe3uPCX5AVREv8H27kIKXy8HTdVdKHKxA4Yf64O2uvlYtmYZOaSEU2ZpADw7dwqWpnijYcs4OHBgO794+hYlFwqT7bLvfHblV4ohQc7P+E4TdrnScr0XuGUhgVyiAGYUzeALVfNx7PIBkOjuovIpLzF8bSF6/UoGhyAHmjPSCFQLlejp8YuweeU5llCIggrnj3S4fwcfDPXHXcVVLHl3L3zVk4DwfVNB72ogdQntJFv7YCp+8IbP9B1lZ9N0KLriShM/J0Nw3lhwE18IFUd+0D+rtdi2LQxPzdbkGyszOLCtBnwVvpPv9MUwNloWxvQ95pTQp/jwy2Z4atBEm5Z3cE9SBT7wGsDYvgvs2nmG0i9pgOK5O3x+Uwbnxa/HhoUh1O0vzdNnLyWfx0/BbVwzHvtxkf0Py0Pz6TJK/lcIQqOm4biFYnQxvZSeaIRCTP05Gnixircsfo4aehogkvIJWmNC+PKe87xLqABX+j0jZeVqOFr2BgJeFmLsmWgId7MB3d+eOP+jCdztTYPu3S0gmX4GdTtrSKyrkG+nB8HMQQnUS2PYobSCZi7yBcnkXPoV2IH/cvfBd38LlLl+mS68yMAdC0fB3jRNCK7/yCtUTVG9PZH8IudC64S7fCh3Jx/c9Ywcj2xn2b0+MLVIFkTmXQG5KRkU6txIM0O3wn1LZ9pqoUAjVl+A4F1H2ar9Fb8crQe3Ov3YusWQVpkmkpL6B76w/z5Mk5wAkreuw2SRDKjxzMPX17ThWvlM3DDsDTjsMIQRApJwYM8nctT8BoEXNMFUbC4JjCnADyrisPuBASRE6YHXAlOY+6Wa6jJPsEfqXbxxzBdEK115idc6+FQyAn5kRtK9c8yWM8vgSOFJcujWp3SBFzRu1GU8qxHMGzZn4Jw/6lBy0ZM98vO4Xk0bH00swydRk3nFu4OweFQMBu/YA88TdNDlpgScqdoNHaYLcI73PZKfdhnfO9pDXtYefPxBkM9rH8VY0YlsP6gHM9rNafdDE6zeWgFnt9zBKrsd8G/qep6u20tiOw7BGachbnceCapObVT2XwebWbxi/YLxIHL9BSkFV5OQmBFOe30cHLOjUfL9MJhzw5LTZh3hlT+Tub5kHEpNbSSFddeoqugIPs5rJFE9HYxwGg2CQS30/KQwng1ZxDceVsDB5GbaXVmJs5TF+O3G/1Cm4xjsaLWAvKYxIOzfig6XQijJ8i88OVoArhLLeYdrA12xWAXZNXH419IEhEqiqSU/hR84jAQX17X49/gmfPori0v3l/EGz0z2Wn8KvN7pgesoO1qXpIHbHxwksR5L3Jt5GMZ67IU1jtHYfqMMs/79QP0dGhDq08qef5fyrqUSKDjzIZ+NTcVL20bQOGEh+Bn1BA3Dz5Brjw0cs0zHop+GsH38XTKePZ0maW1hF7tXHL0sDHYLtbGY4Qn8O8wYqsWnoWv3Zz77cgWPdbwEG+QsafhzA9qjO40UPp1kx4yp5DyPIDZCGD5BGWurH6Cd189hyGtfGLa/Eb67TgFdj7Mot+gerhC2gbQyAZbU/A/U87N5dpslmmgG8uBeVY57Mg8vBM+H1lgvsn2jBdXuppB4wYpjEqag7E8V3jxhO6RIfcCZUn54Yashya2awvjdFj6Le+L7iBuoaDLA9s3nWFXrJiw4vYO3GQrxjddGqLTlPE2N14HLA/541DgQcv86UF/tAZ665Rd9swyFsNhajFzVRxc++pLLShM4HG5CuXL7Kd37OIfvdKAjJ6thTFYVGp0rhvCR8dC44Bs59KjDlql/qXVoz+4OW0WNfYMsefYM3VnkDbo5wfCvXB//rA6hkeYKILlWj2Z7x2Lqfxa0SuIA5UImH076A19uOIDA0MxV+qnTeXkFMIz9RZP+HaFPYjd5lVgk7Pw+GrL+rBziQDn8dLQQi1cm0xs1guwdTWwSsgwvVs+iC4eUef2BNp6wwRB7gwMp5pgo/iltBRHTsbD2aik/32/IRT/G059L2ey4+itOCS5Dv/xWrq7QB9UD4Zz9XRVMXiI9X7mNT30Xwn8rXqFreRkIigTjngQ9nL53Mbgvug/fd+rBMBcTlpDYSmWFpzF8qhJnHlNj24Y4bJ3iwe4eDlD3QxW2fAWQSKnkVRNWcbumDXnvk0PnrNNgaKJP/aOWc6+OLFb4robzwxCWbgwfekaDaH98LOlPjsToJ3lY5xDD1c+24seAhax4fhW/sxGGPmtBGKZYxd/NvbAy5Qp9nrgcUodF4KZ9LmS2OgM2lN/FqGozOLjpAM4y2grqCxp4facqn2ypoMC3t/j1zWb0fOGNJTFVFFQ8Ft4FlbKA92pekljOgWwHVpdPkphQDtZYNGHvB4L7L4zJIsgYSmpCoa73AB45rYdmsRYks8WbCn60kdksGZKQ8Ya4svMwu0gA5NJfgVVPPLs9qYOR3QfIyMGcVVLF6ZpiLUt9y4e2rgd8abEIjHpUjhOVK7CtyRWdlfW4x9YHp6+eztR1hk9LJOLatMuwL0QBvOe2gHtqKKrMWIfusf/BR58wUv1Qg6WPn+OlHjcamxADSS/MYMa9Hzhl7W+YaP+NL1/fCUunzsPueh1YXF0GYj3WQznpZmFRUfBrVub3ukp4/UEfZMa347QlhmS8+i7eWn4TByOegJKUKF4wlQf7hdWgabGL4ZII2Q348feYw7i58jJ9KVHn+J9x1NpRBfW3TKDbdjvPTNxGj0LaqHJyJMXMeYbSKgpweF8ipkwqwfFTduCDLZow6e4UvtkwgcZ37sM1tyRwr/442mvry4GL9rNz6Wz0ObEVG16PgtuCL6BQtYBkpw/SG4UzqPRuP8/RXkaGr2PIqd0OpOEgdQqZg9+QJ1kfi+DlH/fxmLP61L54BR50dYLwT+94jYY5FPtW4FoxWejRGM7t2Y4w624OTarcwlQbBrccdTBKJoXFJCJ4ZloYPBPVhiiphSRVNA1GTKrCw4LDMeHsPWr+K8ZpEy1gQOY4/Ji9htalmoGN3kQa0SI+tMc/UpfOXvKLCyB36ZkoefETptw+ARc/+5FGjiE0/c3gj7PdOHu4DrgZlICrTxfVOy3kmlgJ2lYbSEWvTDjGHMFFfQ+EDLmq64HPuHqmMDyRGctrA9Jgy55mWM9tsFv4AO6S1oR/FvHwbMUIfGj5Avpc7TnB8APJVo1iDyPEhJTb/GCbFojIqMDTnd7Y9+stgeJkzunzgK4XJ3mZyhf85roAzD57YNXo+XBxzXjo/6qM5TulcXObM0fE7MXPZxZjwpVC/NC4iF4NMtas/0uHDphCv2AX9gjXU6K+PL6zuwvny1rJ1Wkslc0QwaqP4hDpYoqyozVBfL0C7fV2o1tdjmSs3c3p5Tfh004V0Lz8G0ZIr+Dgff78NdQcKtZfxJGBelQXoYHX4qdid850Nnr9hgUXqVPvIVFOGD0FvdqNYFZRIZxXcOcFZ9o4ZnoWnohazXUxDzg/qgPlDvTBMF/GqfLi8DzOlZJVs/FN7AaIHzmJH0tvQ59bJ+mV+gdKWFGCtf+y6YeFAjz87IMR8acwtkGEA2rqSPtNHDhPyOUwfXMamL4SJtSHk5C1FQT9EseEidfIf+RQjsYYcfwXdSqL1OEfUfth7bsxnC74A3Su6EHW2ENg8Mqe8qYT3rl6gguD77OhZAv9ijtPc/zd4OSjDaD/nzwMXBgH5+9W0sradHI398Nj25ZRZ5QUHpmQj41zLpOhUS4uMB8Oog9LwXTEcJZ8LAez9vqDxnZ5TvrvDZZ4TQN9FWXw2nkHn7YimGzW5AK3Ctb5FgQXViVAzeq0oTOnQFSdKVi/movGxpH85LQ8bPfQ4hOabnDg9RgOX7Ub/+id4qy/LQD//HlnSQ7kJmXxkvLxUAsqWK2dAednL8Ttx0/SxOpdLHPSH537wtngmBxOe3EHw7xHQEHnNSwSfMJaVhPgkaYl1dcKYUrlFfxt8gZVdZDaxS5hW6AuKIq9YJklz+jNiUp6JByDbnaH4aPMbHipf5TN3S/ysUvN3PpLHURbEqBi331s36BI4yfXsvWXtyR07BJOnNnP8icK8Ny2bXzMQguWO/SQ6rYLUDdnOEXtiCbhiGE03MaJ7R5thav/x3F5uIX49WH8O9LQENrapT0opdISskpIZSQSoaWEkshqEEIpEU3KVrKlUhoivySlMiMJZSuV3q73H3iec13nPvf9+Qh2ECbfhs6+Ib6PqaZepfV0+HY8eiVPB+1VpVQVGYrxRudh8H4WX5du5UeeMnB87HLckBWG6w7uI5eEsXBjRTUL6sminPM3AoHXmGtdxN5aAK57xuGr3ck46ZY5h3hF8tFVZaRSnIbji3bR9e5uhGALvKNkCp0PE3mpRziPSVGhMylzqSTqNrDsXDa+NJ7Of71Gh+ossfnlRJh6oh0v6smyzQZdPnn3B2blirK2awzKuIpCprIVftUaT/sfa8JoVGbXkpvclnaW8xznkFegEP8wsIPr755w22AzTJjVTZUbjOF7508y+BgDbVqJ9N1gDikd9sHKaw6c39iHsxIzeZjPLLx+wRDU5uhhqIsbPak8hVqKj2Cazk5ShjywdVBn39ML6Ip8DWj5SIOjVgwZPnSnCY7e6LbqHb45/Arm9x8lx1cXsc8yglNaRsFVbYBajf10474VX3jQTG+/RfED4ddY+2IQPkAFHbWoxDe+DTjHxBAexO2ksvXFFPzeBFxunwNRKws6Nf4KLlg5CNk3A6FQ+TBuyNaEd59lcPK3e9Qsdg1PFGkyN2hRteFi6rq8HPdLK6FNwgrY3jcSdGYPwESHEHATuoWX5/0ED/NzHFO8nIc9XMI/h/2BQMVUaPPWgJp5T3F7TjZP/pRNAqJFENHcQTcmM+jpCkH8ri5wODual9mOhwcj98D21M9senAvq7Uf5ln7LUBzyj/E40t5pNNDGjTzILO5yhC7Xor6PTvZdccViBpi58kyI7kgKgP8lr6CdmVteBX1Ao+/NgHTuD1wcGwP9Sd9ojPnjpM6tKHI4g+sm1QOp/Q9IGRsPTSYWUHL4Tis7wulCNeJrGV9B3XPeYHSGV1sq3LlnGGT8aVlzxALKcPMjjxSTLkIBfYr4c/rp+S7Pw5vBRbB7bY8fK8yEa3T+vmJlhTE5WRirfJobvg6AdbOtYPdcABnejyELaOJgpVsEHtV8OcmHWhS3c9nWneQfJ8aTFWKRQ1VQsvB/7s0RDzdACcdbuK9pcJg8mA0vFz4DOolGFr0gijptCdP0HkEo7tisO/9Hd4+5hSuHVphmpaFMWpCwDgPPs59gcHR++H0yFcsKyPJA4IBzLuuo185QJO6HkWHeHL93vn4Ues+Ne814eBxqvRD+hme3GHPW2pk8VSmEUx4dIYknixCyypBEnkTxE7ngWedPodkf4TuKnuyqN5wPrZVDIQzXaAlVIWPaiTTeN8pVJ94H/Z8DofMd9HYtOUTRYhVgNHgRMiGqTha7AOFHfemWEVZWnjHD8QOzOG9QVJgkaWCly/4sgaaQuTW+XDg5OWhnvfmibvzMe6pNynbxfGSW4vp26xmvmnqjh971aDTfB2ZnsuAPyJxPLLIHH+GetGBoD+UtlCL3Vr3g3XEC45YJAmHXaVROacD9YunsJe1Lr44OBEqerr5gtcgFyQg4BQf1DccBdkrNmKtcTbXvyzi5mNbQa3pNuZ9c6f5T04z1fSh3EY3zhUdB6p21bxEOwHLD1axV/s3CFDS5RaPmTztizMHRCnjzNP3WUFOABL2zADHSXOx+qEvlTz+D803lvL3GC98HVeLHx4GkIemBL/MF4cZaiYoGbKPL+TPpdrZitS60BDsD8xD5SoR0KjX4vZNA1xfpAqvg17ynbhVrJlyhx75lPAd5S2Y3P6etsqsBLeEa2iSqMgruqyg0eoXlb23hZdpx1Dl1JCPrTAjO8/dfGu5N+QbynCoXg4+UZgA51N9SCTeliXFZlJpyXJKKXnHkyJPsmfMXbTMrGYhd1k+MtUC4hxG8LhWC17powc2d1ayrNUAxLg0QEhNKPv29oIva6Kdnijs/dTAL9+t4i3pEqh2bx4G+vXgkYorsHzRMr79tYxT9kVx4iFNMFS9TVtn7eHnd5VBpsMPCy9MQfs6G9KdsoCVtnhD2PuR+Ge/OISFfOIJK8L4dPtBeup9GqpTNWh0vR4Ge39BybaNFGRYgE8PCMDyT8qk8MkIJUav4k831/JWs3LuME4k1+TnUPDRlWumDMPR96VAzmQl/RdjSr8lMzHzkwlFWOigLR5iGbVqmNH3jG5uLkUVSwOIe76EpG5J4h33WI4tGcvVC5ivCAtidOkrfPfBmHZ0POQn/1mA4ypj/E0LsKCiAO7s3Yorw3woUNyHpX36+P6+NNJMlCE6ZQRnDtrw5vrbMDg7m1NPzaExpvksun+QwPIC3V7QA6vnjkf9RBkwTHkAhXVL4fH9FChauZpXlNzGxm1J7LD0Pfe6O6Bvuyg4m0+E825/8XP9E44zO4IbnK9gYboj58pO5voGVy6xqAGs+01tKlLQFhNCO/4bDie1ItlN0o6eZJiiUJ8LZO8uwYb4Yn638jPsq7SAHwlKbP4sG1/onAKD1BRsPiBO6DyKFisNg1rtYE6c5ksacqNg2NVFaHc0hppyjqNj2jhclt7JNYve4u5WAXKJDcRRWs/pWZ00fGFVFqMBkD9lh9UuC7E89Cuf8FuCJTf/8PeT8fR3Qxv5fJAHFI9gdQkT/He9HlMjAO4kl5CeuwffObUFL2hu4LZ5abC23RJ8TkTDavdV+F/wLDb+e4wf3DgGN1tlYapsA+9wfkvnQoL4DIyC1Ydu4qfkL5zRLAKfg46SywhJXn9UlO9L7YJ5SvVUfdQWKvykYfLfEdxra83PMy2o91Y+Vbt/I6Mps/C97RM+XfyXDshOxTFBplAYuhEXmGzhPJSjd2dGQcwUC1Z87oZn+i+SopkUvjneCaItYhA7tZRvnv4HiXkvUdZrD7lFjCThv/Kw4YMd9ru74ZIaBXgbJQ5WlRvQ4VYFrS04gU8vD7D9w22weNoGKCp9joORyTQ35CnPbGNYLmaGN9LdOa5Kn1r/XaONnrUY4t4LSycG49Lud7Ap4xwYWY6CjxF/YGb3aLbYqwuvqwcwb7QIDp/YxRuqYuHj6RhQc++H9YusoWBzDr03LsdnL5wxumMLFeidwrlrI7HgqxJMO/eMZKYV4/EuBGWJWrimeJsndt5Bq6I5UCvzhueHfeJvSdIYdiIV+Od5KPikDc7np0H/0mcknxpEt1bLoa/pTZp26CdI9I1FO+VXPNx3AX2wFIcHZ8NRofEgDvx8RX8/pJH/xId0X8UGGsNlwapNHQMlPlHSSSEQm7qT6GoOVU8/ApqZQ/eyIBW712qTmZA57ZtxBn/pDtK8TilQ3RlFK5O3U8lMYxrdb8N5AfZs7SsHDW4BZDs/g2dFO1HbSnlw2/mAj83owQPzj+G/A/0o/6OHRR2OcWPOY36jtZZ9X6+ipPN2EHXsBmipSvB/3/+x570SmrDZFtuEBVl9zzsyCx5LmyedIbn5kkCbpsGXXXvh0hLiPy8ukckhWdZ+uQs+Z/6Elaqd7Fk5HfTCDGGzmSRtN89HvU2XOMtfh1weZZLsPjUsU7EkR4s9sLnDAtcmy4Ljp4eQd9mHBFoaKXpgMdrVH4Lk0W954md9nu1/AIuEfahfQh30PiOdCDyA5eMrYV7lQ2xoDMYtU0qoQ9Cc23vKuSs5CvI2ysPPL9/g9qAJFUfE4cstF1Hv1U/+YN6KDaMnYui633h6uy30dquAzIldWDzenf/ckOLEH17wb9UyPBCfBicEdShwbQv/kBkODvOMQd5TEN0FLnCCqwM5yi2BGU/Og+Q1J7RZEoQSP1bj1RwPvlEhBtYbPCj990bSv24LuveyQHbFJpjxYDqa6W/HbfvPsFD4Zfr3SADEj7yEnBHn8fcPeXgfa0HD2yxhcIw/FxWa86JRyfgmwR6vqqnC+VJvyB7ijlX1HeR6sxyFWu/gXvtYvFtZzSp31+J/542wSFwYbsfFQHb3OjRYlowjY1aTd1EwB1QDyQaH05bTfTTJyBt5jRxcWxaL83+IYd2kvyx/whN3eDnherxDu3y90VrPF4YJq4NjjwSMbP1IgdF19PCSE95rDOWTWXo04ddv/KavhzkOR+hapRkqC4vCDGljlIk8TcXPMniTuzB6+VzA9rqf7BvZjnpPJvACY22akqwBAuZMjwv3c+kJAzR6EA75k7SxQPYg5Z36j1hKH0u+RHGWoRaMWfGPzUqeYnrsC4I5PvDPRBLGNVwhg8GD6PeljVNmWnE+2MHw7zthkmUXvnAz42yhdCiRcmEdvwHWnP0VpW0yUD4hinXvSYKAbAYrCBihrmY5i7l40tjnGqx40x0fBNxC16ClPLzLE2fdHQ9+KvPZpNCWG+QvU9RnSfD4q875UkvwqfFI+jn8HgrYhfO2eC2Yp7KMTVq84IP1YraSs4aJRt9gQcJeypg9En37j0JYlTnZrbUF8yH+rY7UgLRN0VBe74giqTPh+qkgmD2gi3vW6MPb9DyWWywOHibxmOR7A3+u3MUai3fxsSMhnOY+BQdhBQocacKxf9Wodf44mKe3nC71i1HqfG0+uuIlt32OwcztXqRx0JM8NMLAO28bxi2yA5kuEX60fD5Uu/fwxMCNMNqxCsd03aXGUW7YpyVFbxbfxTkH1cFhRAbuIEOeHaHGrZdsIe++EBvYDfBLJSfomyFEabOkWTlKCGwqonmEbjhWvF4F+5RGwf60x2T5so4+WEVxxJdPdBwycaOTMKSInKNF5Zegbv5J3Dq9jo5HJPGFtlaU3xlMPN2F32uKcu8aDYhfv43E13bz4zQxGvH1A8vVTMD2hWvQT3Ae1f9Ngh7JJbB+rCEkZ3zmRnsPMC46waeXbITllk4Qd00KNy3bRI8Oy/AH6c+4WWYc7Oo9zp/CYuj0lS+kEFRGDRUfeTBsDecf1eIVGy9Q3oFUlHOUh67Z2yh8UQS9uLiU4t0WwY0tb2HT330YZREGw0IfsXGdH7y4TBCqPxVvCiexXKI9qzV1cIJJE0rhTRo5cB7VG1qHrOU9iq6ZCILpX3DPf3/I5tp5PKBSikItYeR9SYD8T7Wgy65k/Dd0XnkRASiYq0Z1M9M5+XMwi6vcB5f8Irri/ht2O3XC95c74MK8BXzN0AbGfc/g4f+UYZ6uASa6DVCSzDg+MymMvpaPhW8Zk/n7vng6c3AU3Cr5C8tFF8OC5b9pptR+HhyTw2YpMjTu7RoObE/AsSNjqGyZBMhHLObPwmZ0ZtAYpAWscGBcJ521LicFNKa3WZewwc2en7eLwX/mOmCjMtSPkZm0M6SRJx6O4F3Pj7NedS0NLn+FY34p0ICPOdySOAfWIUVgbxGHBy/bgmVZNjm/2U79Is/Z9FQJiizQxK09Y8Eydx7ePOKAu0QV6EbrNtib8JQ/XnjL9Ys/86pAS85QWw6C7hbgsnMVm49ezpqlruQikYu5haWcuewYltp4g+yu65xaUcEdH3VhsOUkH62WwRz1fNy+bD1o3vTkDg7EK4qjad4SH/qa+wuXPjaFhptu5PrJjO+KzEH9jr84P/QuPNs6GVRjNNEg5xP0SYTQ4uWasP39emqNSwNUPk92W+bylRcL+dHADswf1UOLlIXxXPQbnmwsDArRX6GvYID/BhuBvrE/uLksoUkLF3Pp1IWw20yA526ZhqfFNeHniFs4J20xXI0dy2WjbGBSWT46CjnBTLWzrH9rBKqnNJO7oDrsHBnOxtkCuDGqEgpXamKgoxPN2JHMrumu5LrTHkMvTaGkVFUQKUasl/Ng18B9OD61Dmw2BYJT5xu4vNEeykdex+v8Fa1/CoFXuzcadm2nwYda3HFtHNoF+VDM4U24+2QrLuiVRBmezF9qbMB+6W+KXVrKeNmVr6zZyJ7PqzBbQp7UxhqT798W8AscDtPKDIbYYxWq9HfwOzdjfuK4C6Jve+Cxo4VUZN9LB99GUEK0MEQPZeXUXlm4q2SAkyPi4FDPJ9SNXQs/z9uSjtEqODkpgESPP6AN+qIgPU6S0wbrOGJjLGQue4BKuv245F4uaz024sHGGPSHNdT9SRBC/PNw2cUhFx4nBN0X/1Lkn3R2dfLhS6nvWDFpGE4UOURnleRA7r9nJBlXzY7P7Sml1AIy/9rQw6lpeNA8kT+F/uN0wSKK+iIHYqtHMolPx9uvbPGL/l/4l6FO64x06dtBGb4iOpE01hyD00ka8FemHNYsCMPhe5fyAQUbbrrlS84puVy5NhFVpewh7G0FyXTrwSK7VNwVIQqHp39G+SOZ/MkuF0sNh0PJg4scveArnnv9mzQXToBGcUe+ZLuAco1K0ShyEuq7G5FX3TZaqrmTv02IR6fxueirYgznlSzp+7njMFeyE26WfkA7boNHXs1woKEEbcv68a12Pa6INIeptz9iv+ZH+KNsjuERTWCoZ8dlcuPBWO4QWHlZc2zmYpa9YQMfHEdQpmojz3Ir5bPu+mycZcnO99fBpqrDNE83HyOai7n8pCmsXOtBgtl7aSwvRXBdQa7j+ijqSRj2tf0m7wOB9PZiGUodtIYv1ZNRJPcZeR9aQo9+joBvHwp45fkOkL52n8tGFuO397dIr0EBpkochdK1MlimXUcWlT/gwUkhjDjwFmKft+JC6+3g9d4Y7mWKwS1nA5g6vAp2mm1kgxx39FJexCmzr9MXgR60Mtegx2lbcFiOBVS5W4GelzZn/jpPr0zewomhDTo66zEVLd2NjXndkPTElx0vGME/002gMrsB0lARpMblUPDtv1Tf1Imvls6D18am8G3H6KHN1gITTW/Yo7gP9fVVaefrTM5fUYBX/4Zj1LxArjOLxLnnDrOuigWoLzKHN8JCVN2nSx6bx3JITjbdkthGG998pX1Fyzml0AMvewJUK+ynnyEn0al2PhfmFNK7xFW8YIk2XtcR5ntuSlxz0JTtBWxhpfBBXjZsNy04dA9iAgEW2UeQ87MjdLvjO+nm+dPxZIC59SKwMmMvvNhjDF3mW2C2ggn9iCzmXWGj+YKzNpfvXgQucg6cGjkcbBreU/zMAb46XQetBTSo6FE424E2TV5zk4z8N3PKUSXWva8EM6q8uT7gOrdunDzkD5l8qskMDS/mQR5eos7N7ezq7IQNU+WhoPsjf1EqZN3KjVQa4MpzpDtIZJgBezsGwaVnhjy/yJUnKQrANM8+Op1rBVt+W8DGRAQBtcXkPzUJx89/C6vN/sHsCf2QpicG6euYh38ZxZMix/O2uaHwYJ8Cyx66QsWpl8GY5GlkNWJy2Qj49MiQd7/NhVrbkSDw5RC3qtTyC9VM2D/vDC9eo4LTU7bCiE2q8PFOMBcOxOEkp2V4b3cyvJ0eSEISnuxZrkw1j+vB42A93Uy2hIzHRVi2y4cHzEZRZ89iSK+wh4eFbqRmYEU/g4Ux+u5bXOZmDhclvPmxdwoOKn+j/ulLsN7gA08VqUKXRe18PO4O9M8ZR1OHPCrfogEDyJxftLniyM0nsHNFCC53vMxj9kXChylW3GWxFX7N1YA5eWdJd8UIyoi4jycbfmK0tj/rqZezlkwr1WsvoYOzitlHYwI8jM3lnOgxdD2vkO/H7OL0Kb9wln8q1SyahJq283njt6/kFyYAZ87Wk2NwCEfmGGCY0ll49nsxrKmthQVztWicfCpURG4maTaBt6elYZ+TPd8Ik0P5zV3sU/wfrzNugaLaThg8OgzoWgecXGEAISMtaY7tUB4DHTgmPpd3V/0HAUdP4XGtp1SVacSrWysofzND9oppkDogSCW/RGnD56E92uIPNqVT+bWAJX94PopcNeuhKFIKCod9hujpDrBjoiw4b19Ikpf2o/vfhRAk7IcSbyyh4Mdc/n1QFw4SMc2P5kG5BDqj7gdznnhicuU6WCO8GrqfxCGkH+ETabaQ8CACtmQGY1KzBqYfNIMREzMotKCKb26fjONH3ybMP4nmolpw+/1kaIvLZAf1Jqy53QUjkspgQaI+TDI3wGnuH2me3Q5e9GEiBKhU8AY7XxDuvoGm767i+feb+HW+NqTeEOEKBR0Ye/kzFF7RBcX6Jxhb0Mu/Ml0YhnpTQ3AQJSuWY6exCEYGR3NQxXB+HCoDyx1f4TdDR7h5dCvd0TzMq3JFaN2kFXyj7ziYGCmhos1kWBVoBxddY1nC8CvsT/qLQY8VUdD2INhdAbC186TNexzpsMQ3jAgVAKPlLnh0RDuPvpxMk53/UOqeZdB6Vw53fJ8FypKn6IPEe7SfYgSb1t6AU14S/E83HkXu2UBH11VarmHF0zoq+PujJp54aDPPniUCi7IuoOm8Y3xmSxet2zD0P1dfDu4JgQHZCazSETDUZdKQ3KIB3+Ov87ulnSByfAZlaVfR4ZkreeyUQA7e4EzGAsL0oGMR1EWNAPsgOyxbXw29P2tpy8VWtKqpRbfGXOL4Sl75XwR51tbStP1qEL+mhAbrCyD5UQ1+nyNNhumakKzYjFc/e2Jd4l3ccaCePJrHQHXfIa6TUeUFyScYIu25K2szuQp7kKTNb+46G0YokM6NpQbQ1JLK7VuiuGODCZeE6pOdlDRkdw2Hiqoc2JyZh5PzwmDOWkOIsCulQPkU3lf+mEPO98PI6FnYe24OJLd6Um9iIcZt+YRPz4iD2zI1FnZ6Do6Xvw3lcxMsuneR06VbeenGXJodLAMJEUkwvcAW9nwMYoUNN/hD9zkMbvCkn2MCyCluB7kED2OpnqsULRLKi0YIgsuRg3B6wV1Q8NyCC2YIcYXcG3qg/AF9CmeikJULrTtRQemSxmDySh2uvhzyZpHzpCu7n1ZYD6fUeA3WnNcMDweN0VjSnMpcAMqH7uKM1mGe2ncKBeRtsObuEQ4I1oYRtfY0X9YO+kQAer1UYVVNKZ7vvcRvcvvgn1c4N4wMwM1CByH4lAs4GxTz9fNOsEJbAGz969Bs63LeO/cBVPS7gPFuZ3QXP0IVzsvB/kQIiGvX8bd4QfCbL04ecbXsZ1mG8s+l2Em3Cp/HvwC5+eUUuf0ep0Wm4/ZFiiB0y4GTjlQiLU2nswblGGbrxWV9kpB1zhc9k8RpyaYJGOllC6Gan9m/0QVe1zSzxeEUNJsfhg5GKWzyXzkXBz6BpUJHWeSXIPSfF+Nbynv4V/10ysiQROnpZ6lN5Sr5793DhwKtKMAnhj/7yoD0je0smyEPgf4j8fwUZ3goPwKKDHppao0AFG89Bme3VMFTLWPwFFSj0c2eqPpnH3WPcgZJGV0+YzUCnWTUhr6nzlkPNtP7ejOg4GK+4DgWL3w/RR4Kg7DY7heMsVqCL87o8+PCKKr7J0qgqgS17ZsxpXEz3TO8CJ0pO8FLbwbnBuTRpUZZrK2YxXNaB3B89kiYs2EaT7KbiVUVihCyUYeChZvY17wGF4qdwgu74vF9RxpJmdjA8bBeqjRSoZrej4iD1fgzfAbde0Esd2MWB66rYWfewsOvycM6Ax1yrG7iKYv2sYjeY4jUmAV/Xk3mry21fK35HM0pkIa9/cNB2fwKXTSMwLuHH7GXkgJ0Z6RCl9wF1rjdiJfiKvHxt0tcN20SNB2rx+5yLbi3YxGJjzuFompPOGTGcrg89wxZbMoko9ojrB4rDW2ROVg7YTq6C2hgd+p+fHrzLr9ZgzzWvwhLHUbwz7EyuHEfwZr3ClyyqJ6DZm6G4ouqcG27PqtO60anjAPs3y+JHqL9mKGsDkoia+DZgkAQzLpDL87uQbv1MnzxUgLGpJ/jc6tMCRZf4A/BBMa2ubyifREfIxdysSunD+vLQNI/BN2fTIRqqXQg7Xvo8FMQpqmsg7TZ9bRf7hJrPd/DVg3B/K1Eiit1IvibTSo/WO2CKtkIuv3LSGHIFeaecYPFKQXo/E6fVmzsw6r+bk50eIsPhN9RmPlosF91javf7OJ7Ys6gN/AUR1mW4mBCFmX8FYfqxz+xdaco606Ug3Hv0vhUPaDrr07672oL7D9ZCvO3iuD8za9w7dunqDw1jRXvAFTMb4eD+dKk9WEk1wbF0+2HH2l0kC36bYpHCVlJcD5xkktUJ8HNu0/ZMKqADYMNWUAyBkN0d+DytCTU+H4UurRbUO7yd5yXawi/klsoK+otx8YbY/NNd/AoPMZJPbOhIsWKv+27h9bjEyDExgyaxvfxKu9B7jdEPOuUSo6Fo0hh9RL8dXwPl7gPZSm3CJNemEF71ydYoTSTC0fEwdvnwynv1HTYZbqe3osl0gzp4xizbAE/KJcBxQOXcf/jULyxTY90SI6PD5MgNV9/rt60nuOeZXL4eENssFWDxnli/OpdAUW+OMqHNhfwpsN3+FJQCj+57IY/+vfSBn9VtL1gAhcOXcV3MmJ8R+MJ36sqIe/F1vjxzwzqanQYehMZaADh4CpnB8V2EWw2kEGrezbRV431MEFHiCNOmrKfkjcVz43Cq3EmtLBdHi5Ia+MPZ3OYd2oxPxY4yE+KhCBs1CHQ3+bBUxpTobr5HTTpmYJoWgT7x0ZivbENHov+A3uLEmiY8Uo4kJdD70SboHRBMe4NGAYOvS3Uk2gH00/vhhGfn+MM531DO6NEAjtU+JnZFLiiNAy+/rWD1pxZYL6jAJs2fmTB3uE43cuS7k4qxqRx8ZQ85gamyL2jcFUD8P0Xw5tvjAS1l5lYk30TL2hOww7B2qHaFKWktvfkEWEBDcnSsHOhEcT8smDbvS95WO5WNnWv5HC7X3h2qAdW98+Hh8edqWGsBUjvcOePlbMoruAl+wlfg+mDcpgjE4I7DS1g3KgH0Dbwi8qyVKFafQs98LMjy91TQLfBim1OLCFhj2TKa1en+q0z0XbtUfQqtIbhA595mJA/VdFbthC4CDkdo2j1WRlYnWtIU0x1eL1EPCav0oPRwXbQeOA6/qXVBGeCcIGXKt6KccPQF1fQ53oT6HWKU6DyBPBX6kBxz0d08X0ZGN2R4MPjV6JvqQqWahWyy9UoXN0yjQqn6kG7znUusDxLjiHtZGy/jeWz34JWeh3EuGjz1qB20tObDJdcTGHh2hUwLb2Et+U48ZWAAfYTFKK6vLtDvLgYz1w5j/LcTJLd2uAYYYZeB3/Aw13jaMWiDDqkf4GaE57Cm1OvMclqK9fp5oFBHUHiZCfUedTGgzYl3GLczR3h9ThTJJCeQiGHmemR5MovVDxbAvy2KXHLUVtcovYeNed2wdTNr6l5zxRc5XuDvq8uoKbxEejbMsQlYV84d4wiHCs/youF2uDQ2h4qPCzChbfSaPKMTghwc4aXAtKgqjYW9cYm8K9RC1nmiSb2XbSG70904L9yW9ZTSMSx085Rtc4EmJMxitcu/gHiaXfAqHo5TNnqT07YiAvOT4D5v2PArV4N6gImgnfVAShfYU4tNZup4qoxByba83eHVJjd6ctpF3Lp6eQsXrN2LEwInIhrw1r45pQ4GOU6iWuKs1nccwH7+NSSUslffpcyi8LO6kD7l2wIUlLBxtFjqHlGH37c/xvuVWfCnmozer36JV36bMlZXwj2b7rMzcMasL31Fmp/7uVrl0u4WTmbbAUicWZKEIW8csRkXz3Q3x8K28t2o4CxLX4oqORhpzXowozRNCjsj7LHm3BOrwiHBVuD9/FUHPnnEi11Po9KFVM4PCwHo4t0MSjQH676t9LDlWbwYZIprDPcQ3uV7CkzoY+5w4O1ClZDcKMTvzzgyPein9Mew7Mc2i0BXouPUq3mcPx6F+BTlQSPfmRJk13a0Y2EyevKTH7k48Tbr6jBgUsR4KOtja4t5+jO5Ansl5YHO4KDYbZ+OqaudOa1a2wxoFEMEvXv8O9EF6oUvUJ6a7UwXbkBMbaGareUwx7PRSC78AGJSVtB6ZKz4Hw/DPPanNjcN5b2OhJm76iESx0P+Nev51ToP4kOFIiC5KOP6F04hc0lTnF3TgX8NP5Mjzv8cfGad5whno0zEkfTcOkRoLnGnzSObIEFuZdYdeZeuMmGkLvvKm0NiYQ9s25y48JddGKfIrx7rohqw9/DxHerecL1qZwbHQYZP9Ow9vIgxW/4xpIfb2F3vgWMaWzAk48CULB1Jngl+/NOgdFQvSoUs1J3c7OCPTidfAiD96TAc7Ul7vGaxT16H3D+aH3E6CPgr5yOA/dT+Zh5ABst2EPijWPA49sWkBqzmjVflUFr0mL2TT8L33das/m0Vai6egqI257AjPUToXjMYxxfyTRN/CEpm9WwHt4A7f16GOVizFfLz6JwhDicTh9ykIiV0Lt5I5fYCmH5em+ISg0go5J4DA7yhoAvS0nK/wJm/TSBujYfuPi1iGixKL99Pxdnar+HJAMzmKExDo9pm/LRz1GcfEcYfE4Mh2P52tw7WYlnXBIC32RFHjfbh46PfoRFvccxc9weSAk3AikTHz60RhnzE17jAYVXKO+exQpSf3lZ8w+YZPSHFyYewdnuqqBUmMI+Tz9SvvJZnPjOG3688Kdrf/6gRIQud87U40MKc+nR9TGw6tYvKJzsDHMCbmPVrxbKKN3Pk2Y8YsHX8fAdvsL1sF10uFoe+iT3oOq6mZhcVMS/759C7Rcn0FS6DKz9N+Nv4VAsG8yDytN64PLtJgxoB8Hf1TrQ5bYN/PzOc/KJy+AmIM69UxLg0dmNdL1LAq5+tsSM+HvsKf2V6Lgv/3G7wV6/e+h13zacMcOS+PUIbrojCgs77+HHbRJ4Kf8uxV0sgdbMSg4ZLwozDZfT9Fv1qDk9m2a2SEIeC8OY0PNkPvkQBk+ZTCXdGfz5WinH9EnSoa/r+MLVcBhtaQEjvghhSN0PKjyayO9ijXji4GRc9iuf3s4W48Yfwvz87HoUs5eD4ZF1rPvQhFWk8iDz11RWaiyC/vZ5ULxxNoT455B6mhLPLWfwfrKTP29yo9mXY/BpvhBvXZdIs5TCoEl5N8vcUGerrN8gcWsYuH7q5d5depBwZCP9d+oQJGEfvNp9D64/WgKWnIu9bhuwfmgT6XMsrXURge6ce3ymfT08PBWC4TvEQdJbEs95+JHz8XJwr7KCV5IOsGCaND4uL8bbi+ew40UXSHhpDPPHveSpDrfhD6+A1h8T4KeyNAv1HKH102tRd+R1CC8Koe12qnxzkRvI7w/g+eHDoNFVEt6miKCtyz7apf8fqwrNhv5/3rym5ijmmFaDoIEmSGV8gxWXxEGscypumjqWTlUXgKn8MrAeJcn5pkrwaHcWKMm/gO4xA3jjwzh4cKITThsWg0riLcpNU2CpJb2wLrMAS4s1oMtkOzpnT+BPyTpQm3YANyqrwRvRLNqiGAm18AUGHvxjCquC+oF29Ezfg+9yBeDtRx00iHkDxR+fYlHxbDYYo8VzZD5SS/pNirVK4ovhyHdPSYBozCEqjPXEPNyH2Q6XKFzjBcmPl0d73QD+Y3OY3p/7RG8ypOFOnzYbxb8Gh9I22CNkyhlagyTTrcvx88QwVF2VxQaqyG6eMBwBHUqwsqPiaU/BuWs1nlObQfM3h0G3/WPYLF4Ml52F+PsQf6k0JeHbG6OgOvQ3GkIlReQ/oWFjK/C86yL4/vwXvF9oiCuSR0LdrzH0eNlHip50l+rPfSfjH/a4pOwJRZz+i28c5bFB/BK3N1tCcM0UqEnfzK421pSZLw3vIjNhjo4WXrC+it5yw8jEeAV5bJOHX7XStLL/KVcZuPAI1262Cw6DGKnXFO9XgpvtzqLiBxPWbR0FuyfNx9ezdWFDsS6K3bXmuJ1/gDQeoldNAY+W/MLPf+9EvqUIupGPaMzlCKxKD4YzDQm4680/qjFUwiwZXWr8dYK3pjSwqhXAcI00SEqzppPRk/jylTEoo+mPkY9swftPOE+q7Kbtz6rAbPw4ODviLUdQDf/uWwYfvRSot60aFbSd0HSfK/6XqIpduAP0LkuB26xa7r8nwpabHLlHZx1VpgSx9eZGHF9WxmX5eXR9Uyav/2/IA7cdgXbxKp4qmkxFYw7gGeVLML1BH+Jsd4JWpjlWJYwC8fEqkBlRi5LdVVgyfDWo2tZihG8g7/XZT5of/oPHOt/hhvV+0PZSBck3E/D495P40Povu/54wY2jhnNzkxkvuDgX3po7s01/MkwRUQQ10XU4r1MT0oIX49EsE/rx5hp9rU5GVetT3NERhFsmTiSFm1Lgp/IQM6a/Ib/vehxecpD93+eA/bmjPGL8apgi/QDz9lqgUtPQlqVvhltSZfR1VCgrDrnq2jF14Gpxg2bO8oX2uAw0O/WaZ4xUhGvBvXw29h/7Ov3kC847YJj2Wh4uOw55eD+eKv1Oa/qyIWc+gsSdnKHdvYyCPXNx+sPJEG05D0abX0ODkT3UsfogOwwxdVyBGnQmRJGR1WcSUmfaG6rLfoueUYXcTho7N461sg9hVPg6nCBrDA4Nytx+9BZOmpGAo87b8tya3dCTgGiR5QkHp8wk1cRIOFCJMD7NA85FlHGkzBU47FdCCvt80TC/ghYMWwdXpZ9QnmgRLFgrCgcLZ9K96+1cHhEN1+g25e7/x877zUlBKBI199cQHE9gmWZJuHI8Csc92gQjHqjC+BlFWKUlQjknRvGwst88ds81fHFDgfe0yoLlswswrSiZHgkwSrjPYZUHq3jTpMVkUZQIrzb9oFs9s/hAqQVIHI4BlfYeytKL4Mdez3EgvQlaWgJA38gcPlc08GdbObgTLAMW39/T5l3O9HX9MPpXVceK1bv4NSRQva0jh73O44xR6yjMUhrm/ummff57aVqaFleZrYAds59Dz+BGNr/ymKVXPGG7H4dpUrIxlLycwhtChnzx0VtEzR2QODoOpydo4rRv06nqRCdr2cqhdaIWuAuVgvyxGZAs8JBtW+Uhye08nLDdyh7ulTSQZoavfEvRvXAU3F3VzreLpsK0f+v4p04b7h/Q5L2uZ9HPNgdklcvp1Z2tpJwkA58dbpLt90Y2yH/Ca6SX8otPTewrJcWm40vhdJYWby0TRu8fEnBb04OxVh/m6k+BXdlatDLSG0bOEiDlg+Pg4Kap1CH+i5VzR0KukB8mDz6FZp2j+GZtIeQLtcCXp7osf1mdBran4Q0xEa40N4BVY76yrCix9gZ7cJy4FNy2lsDDmFgctssJupeY0n4bXxDfoQ8RRsMpTVcF9FZ9YUhNhZHX91PzZjl6XCGORR05VGgUzWoC4nCsNR7e2OZjTlAzxd5S5hFxKaw/sJzKvJPQbHY2jFq1klwNrSD2iBTMGx1PRsvMYWdLMGxTHsvzitZyDenwjgfhMLPmM/8c8unZnaGwe4UCzxn/nKZIPMGxex6AVdNmaIuwxQWmKrBynwb9/TcJxOok4fQjB/AbMZbSDz3Bt/O7aeKDZ/RhSy7bPlSFL3OekNZVZVg3oASbfn1lgbtZ7DdCEqRK1qOtaCc+5BhI6G6DXI0DqBM3HP4E/iGlNh+MqljHhds00X6HEc+MH0eOfmW8NOAqDMzdy9L+InA6LBy06qbj9fQDvFo2mhdOKONXH9aTmf9zSla9zgt+RNBmEgGV2ecx6UchTlFURJkRa9Fi9QCrqH+h8q5juE3KnAuODZCpryFUtE7C19MWw/P2APSbfp0Pz3/Px3cXg/Sk35x0NJu6WwQowloFLhYu4M8F42n0gDOhqxUEXgpmncnD6cL4M/Al5wV+v74JSkusYJbYJJRQvsxjBQug8sw7rOvPB7+x9mRg3MduTguwLTGW3KIIGhcq03Ll3di6fD/s6gHS3vCT738Thw0tT/mhUhcq+zDu3CgIyS+WoNDvYr687g5NWUOcJaPFv+PSaEPHryGnmQZFoR78WVEV5IYlYIvkc6yf+5zNsxRBckne0HllGJZpgY+rKreoJ9LuKGkw9M0FXa9msB2jxK/be8Bj0hpUPB5K7p3PYEzdNZwdrwZ3ZmjDXYOpLLuvh/ZciAXXGAcST58JrUNMKv7DhhvD8qli3i9S8RGE/Ub70eRnHwSnb4TE4CyIU1wHP2qiadOWE/DQ/TQH4w289mAM3K9bikuz3uD2cE0WOKQL1dHPUf3GRoTbR7Dj8ht4dwH5lJgR7NiYQyE0k5aesWX1E1YgY6SNcuq/KTDbhn33ZqPx5BAacLODp54JIDwsiQ5JryK5wGeoGtRDUTptECXVxEHvB2H2kkv48ZMQmBmfpvLgQpglogmrHMaR8IljqLrKiS/rC/MoKSF6e9IOrPomwJ0fN2gsIkvYVqHq6WeIAzp0MvwBV7mcpd47kWimsQjySmzAViUG78pc4UKZVGhuicacrip6Jb8azhXEwxxpMc4abGcXN3EIKLpJzrs6KWHjCdrxzRpFtf6i5Jpn9CnFhb8ulYLvTSZwzccUngomgGGqCjxK0mL9OkXetUKIeE8gXYuTxlSzzfyn5DwEGsmBhOMh3PtjPfqVpOP9/oU0y+gkvz62nmK7rVH9YyiWv6tjtW5z0A52ZAe1XzSl8hxHlb7B9UHCPEtlJgS5VFOM2Bh6WVeLStvF4ItQI8+9D8wuLymydCJYHxKmpbJVvH/7ce6SyKBbK37iCjNFUNnlAAOTPGjgWjM9rImkV1Pnss2Pm/DjkwKndEShcqk5pj0DOFkvzypephh3y4P3PlbFs30LoMDlF28dN4tKM1aD3zkhzI8xhWfvLvHLcm/sk36MZe4V+DpKEdzS/DH2hg95jzuPp0eHoUHRcDhcKcelHnas8dWGpgQ9hvHTtmH8tS/cl9VM1xoLSeijEhz0GgXRc09wQ54OxPsM8r6ev6Caogu9cj24VvYvyOe9p+afF6nBSRhaHpZA0IlETKdzZJf5G0ue1GBg6x7Y7rmB0y9chw9LFoMAjoDdXiosyMdg1cmpGNM3nHYlX8D/lB6Rpv93LrSIo6tCozn+nB4c+r6QdDbtInf72WxZ9gXuh6aw4JJQmpGylB78YKw/8JfVv1vDM3cLdhR7xW0BJhgQFYa5IfmkF6hHtwWRdn/Qo/7Ov7QnXwG2TdemcQaTWc5gI7UIZkDu1UGsLl9Ia+fVstAYX6jrfI/eX4aBnoYJ/X77Cw2DFGH8iX1wdac9h/+nTQcP6PHq7gB4XgmsfksY6nYwbhCYhUs3XCbJW83UFeCH4vFfOXvdYf461xVzp/mDbKowoJwyrbh6GfSfZlLT5AiatnEKfo3UgC+zhTlB+Tf1xCYzJFiBqcUnKtjbCMvbBkhGbyWqXWnj0cd0IHLiBD5vkgrnpC4TFGlC8lqmux+38Nm/ShTxVgWMY8xgyUXEIyr5vP3NX9rXFMGtyXow9mgfXTr8iVfZ7sNgI3Hae0OLbdZ7Y/jYsXRO9DnmmxdSqaMuqBf48w095qJmC/x9bSbM2X6HvGU2c7tDIsy5eho7FWdD5nEpKHf8jstGKvK9r+E0a+IWnPxMHRIKbNiI6zjJpockmzagcIc6ZD6fwSZt07n4gB2tj80GlafPwHPLbEyu7KK+yiOQcryGCqImgfqOSK5wWoRpHxfBnXwzfFnwF0UM5UDR8h69yGgAvR9+rHxFBaS7xMkwSZsfS/xkwdP6VDZXGGZ+vELDTqtCXcx5bp43Dt0/DYOoUl9MkpCm9IctKP7RGOYdvY0OTc/QWlOQkws6KXhZIJ+dOQb6Ng5Q2kNX0HO9jxy4DWJz7pNmUwkLTiO6kaNFM+IDUPWiILzce4O2pmzgo6d8OKk9lRfviafY1Dcwo6CHtZ5rUn70LzjxVAJqdPX4115T/LPWlBsuX+VrQoRPf96jxvue5FW9nI40C0GIMMLLWDVOVTPgvWOX4oEyBzrnvwNSH7jQoY9lMMpMCaN4I72X1IJNhxVJxMuCH8VJwAddb7o9uI661bv5y9lYvHb8M3xI34Rdb6zB5bcRLZ4qzVbrnuPknlSSXBZICibK9C75INkkqdH14d845SyB34TJkGb5HiZelITLKr8oliuHchdAxw8L8de7x8j1gD5Ml7ACdc8iyj6nT91tHTTgoUgZznH8n4YWSr9PgENnF/FELRn2vW0JDQk/0MmgGuYEMNfWilH30yw4tOs5y01RwK5Z4dRPepj8yBIWLh1DqCqMtUq38FrvNJ5YeIMf5FTQuTWylDRzAk14QXinl6H3eTcWh4biIzMj2rlCBlruZIC5+SdasnUcqp8/xCtzpsGyCG0o/fEGNaTqIbz8K36v0KN/Czai295z9PPuacg/KIzLFguzf50ZhOSr8kehZ/Bk9Hs+rWuE5b7fUKXTgnuT2nn7u/nsH7CT6gwl4KpHHE4+uRLEFAhLDulRUqQ5H1nrixu+psJX77V0uOEwVvYIASbswo4tDai/bMgj5TeAjHUmZZkfJO26S5zYcQirnjbx5GXa0NUTTVp+rrAzYAlal1mQ0d+VLLA3gX6OOgzDLObgqTvCuMttEozQyR3qAXXe2HMYTxWGgP1rtyH334Zb1JgTHURRGLr45ApBkNSqwuLJtXzv91Q6kepN2cWngOzFMFHsBqhUesF8uzYc2WkB9zIU4GFCKR8W3QEDRaZwqMmOqp47YXBJIa/d4Yi5JfpwutAaxl72JO+SEeyb3cjZhxfxxeEePD2ymX4m6XGOggY9u6gL5dNNQPK/FICfS1h+6gfqSR1GctcX4HGd1Xi9bCTbLzsGksn23OVlDYoj39Cs+TJgqmdNU3UD0eHcNv5T1ICi15zI2SkIV60yB/8WKUi5/gkP303FhWHGFO6xgiX2NoHLvlSefzEQho05CvOCqwGEx8FHvwe8OHcVlFwyY5/9J1HTO4Yq+jv4Vc171vE5g/uyZXnWd4Q5a+V5ZPQLWmRsSp2Cjfzaej9eM30Fs0+Z8lWYT88L5pFmyBj48bKNtg0xWtvjgxhkV86qslJ41Okj9MQP0NnRz5ANzGHibkmYJ3UCnY+VYaDqNBTasBKWfp0LN+YVs2TXaW5Qi0SvIx7UHicF0b0GuPWGGQf4/MLkF26wr8sFRjTtgKaJx8BKKRiLLolDwkFpaN8QyCbG1+nDRAlIyRmJ27eZ0nadGiyr1sdOmQya/i4WRm8bB3LLX5O45wiuaQnDvxsk4dDKHJwWYgtmV0LxyL8MnBDrh/diRwD1efHXqr+w1+khhPR0wIa8WbzrWz/5Zf9jLYUHaOPsyTuKRoOZWRD9leiE/tmP2MPqBVebFWCicRafsvLEz+r/4NzgaT6XagqzTKtI94sYzf9UDuH674l23Ea1fD2+taOVXRefRL/cdEjIGAvfX/aBzGxrLDg05Lp5NnBIdj+3STVhaNs4OK5iwidCK/nibEtIT0rn5CNZGCb+AueuKeQWgdf8/sYA50VrwZuEhaxWfAzCWg3BHwV58FMapvWW46OFe8npvzCcfaWB3hoF8Ii+w3B4aypP7NWGVWJpmJTYAt8VaqD+bj0aPQ/EOZZHeZWJGZ+cJwBWtrfwo6AEPDD5wB6f32LrSxUMGX+PalgImnMryf5dIY8/+Y3Cf0bTv4/isCn3Mz7tj2O30AE0lq5HFjdgo+FxHBHUSy6Z0fjQ+BCtNbWAN9KH0W5CE+1TPIo1K9ShN2sanY9Uxxn3Z7LV0wEOyrzNi+aMh7dye0Bnwgbw2bWXvynk0+JRrrxG/Arse23D8f5zYPOODDw8DmHFlRE8/64fZBTv5+koiUZCBTDjdiiorGkA2dI/LDvjPwhyUIXO8BwythOHoG+htFstDRVcp/JHHwdSK1XBvZbjob4iHwW7dcD51jmceiGW5kAg1/UPR91vliR/6Q8KCf3ATNHDOPDblwZypMDVQpdgoQSNt5fA0Zb3aUPubtp1eQPptqwDi8TDpPXmDYY/FQSrm0f4aMUBNjySTdbCL1nFNIJqT77jRI870PxEDjcELhniDVNQNK5iR9MSvqK0FfSdh9jY1w2KJ6TwG/lXVHb7N9Tbv0I5GXFYl52FJffMeeWC7aiCtSg2s5McDowDTnpGF5SaoazWn95tUgHVsnWEQZNpYlIU7LEIh09yhWRn/pmn2qeyNX6lO8ZC1JQpAq9WKvD82tswXWMuK0l9oy6dKvh0dSEZvx0D6x0b+Msdc3SoVYPNPZvYdeV6lI6S47TvBjw+YhkezSokOBvAnp6LaGbfVtguawX3H39FCc9aFLB7S6tD8sj0xzK+HClGBRtCSW/sdzj5aw8drBOA6HMdUFm4jfYEvoNHXWfQ97MWuE11p3zBudxeHwDq/x1Br0EdkB//D0VHzuN19878j7jzfAjpf/v4NUp7aWspLS1pK3u0JKFEKbthJKuFSFGShhDKXg0UUSqioYEQoqX6ohKyRSluv7/ifnqenc/1Pu/r9ToPzuGpL4phj5Ih6/w+A1bhi6BAqJYC9qXgtSYr8Pk6iDsVT9LyIk/sza9Fq4dS3DjSgu0z26E514smeivi95WSUHpiL1YpncOSoTC8YiuIXodL8U5yMDtUOHERDsPNq2x4VZgqwNIWdljogQMjzDAn+g9JX0/GgSurSGi2DTgozIDOPxHQn2gNOrr7MW1nHTs3XceT52fBeytf6Pn4HD4NjOElfYrQsWo/0wWEjV/eUovTfoArfnSytQG+praxS6UnRuUPwRt6gtLxonhA0w4WXahhZU0PnNpaC1dnpSHmL+PQ3t0w/6EX1Yc10uHoz7DzgwoItY8hkc5m9sq14GzRrfz2G1PV3n4Q1K9hk8ybjKWW8LPcBhrKK0D552G8t0YCz65Xwc5DOfT0pyVKhK/Gq2sLwOh/325qQfCR14SSrCBqXbiQT756S6Yz63CtfyVG7/vGKk9zsGCiI+ws++d639PR7EkSfr4SBNoOFXh8uhtIHnhJsZ6bUH/RFpi6rhZkP+tBdddVXuQVjHZvE7lohwkeTHvLKzYdwLVjl/BJz11QYWqCfxbpw0N1WQoIlobuqBOk8+gYfREpgYGmCPrPyo/a5qjSyO/y3CttDnZlcTA+9Rc5m56gIv1pFND1z31aCjksaQ8UZ0pgSNtd9JVShaSvVzFlbhRvvfMXvOt30lrHu3je4RXq78/mBR8asP9pBW+rHAYGvjUU9yqGPYxT4V7nAToztpE+rJBH+UPfqcNlG7b8deLzRaJw4XY0S16pgnPCbVB5cxNUby3klZpJ/G7LB7xS8wpqelToSssEGGyTJNP7qbBB8RGunVdBqnt9aHbMUX7nUQfts/6woIcxvpa0hI5xD3i/eiU/Mt4M86fW0VnXM+S8ewb3pr3jNc9jacIhQ+oysATV32WcOysDzp22Af7nYcL2H8HwbzvcebkOz//rvFOJwaT2whhau0rpWGYy2m6PgOs4D89W74CogeGYcFiORbvS6bFbP0xsEoPMZBVI0vmI24u/sM+iAtb8GkiW6/7C4oUzoMx8Jb/2kuWLV7Uh8PcfjAYvENVhuDTZBv1CYrhXIplfrFTmBese873xfTjReCz8Z1QP1fbR5H5Pne8+/wW7a96CF53DVpUK+i5cSHcU0jmkWhjmHQtB3UVnOXj3Unyu3MWHY0/RtJbN8Nelk98berK1z3842U4VVnw+zXaBV3lY30p0TB3LE/AWz6xsZmu9cmgd18X+R51ge481zLc2ojNPwsH0cTDFhMrCtb0V7Hkllr9rjMT/Vp2F6OAJ/xxzBNzcYAq3g8QwdsiQTiz4DwPn5mLyZRMYGl2CzwX+UFapMt8XGQ6rN0igucRl3KAxB9b+J07JFi8wO1ALFqTlwPWaSjywZxbVhEuCPXvClwWJFLtakpZWi8HrFTVo2jYM1cv38BGzxfjxqw8IB6jBT7lQHkpogyd+xqAsv4ZM3/6m5let9LVIFtT23eac86JQr6gJk7YEc1ZzOH48b0LuuI6PLniMNctduM/YEZW60zA2Vw2DhxRh4eLjoD4zktQxH6VDt1KPrR39Ku7i/Bx7mD6hCqe9u4Znu/45Ysgb+vTdmDfslsar/T1Qe/IavJmzne3zt1K26Soq3xBNsFURAl/OhDWZP3DzvstoXdgN+t6/eZ5xCJ762UrvLx2mfb2f+IasEqyekY9ZM9qoc8idDja68uHI5yBPZuia6cbwRge1C3vwYoQclBhuxMqA9Tw8k8HCLAIP2NhA5Yz5EHzSEQJlYmiJxL/77JKB/meBYKP5C8anf6P4pcfws9FcPjfyDz2VnEIucYGY26kFP++Lw8u9x0Hj41v2tN8NDvsroDToF3+dLwzj5/TC4yw/cHuylb/9lQKhTwPkKrEYFtvPxiV1+rR8yiOWj3uGC/fuB/uIUezz2ZCnvBoDDXG6MLrAme9a7edpSnXo1f6M3qaOpa9vDKlYuYcV5QQw/5sixBz7QWPDYnF/zCCdte3He8U5lF5mgC7f7oGc5wu6+vATnDxuA38CtUmydilGqV7m1Ssus8TyBdCopcnGnm+pVlefb5/4xMu8FOFUwQOImHQVsws3cOPvKzw+4hQHrfLAY4b9OPmQEpgMfGJHW1VwSVxM6p/3cqSpKktHz+Zdxs9o1Slx/CT9hZYUT8dNjTr4+6sAFKqrkVapO1ea/0TN2BkYMiOJrulHcw33osi0e2wy/A9cNVeCnEpLaivdhAurHuC62HRqS3XFxoQJaDIpD3WWfOL8k7ko2jYWWFgDCuctp8H5hnRrTQ1JBcbCw5gauKthzY9DwjDI0Yg12wCGj3lCVQdu8UZ1pImTnHFbyCLSPbOI095ognyPCoT8ANScYAKSzSPhzsVwDL0uwO/3/3Oloik4SvoTKyW9xg9bJuDkp8PgkKoc6FfPotKiRfzcvBOyqt+z2LbntO5lLaQeHs/fJxmybY4ktY+fADdlesFAWJvD96dT1opt8GVPCD6/UAZW4p/588pUKplrRvc19UH+sSz13ZAHCz8gpcFm7DxeyBEV32nWuBuQ+dIRUx5/x/1ZAC+XdOJ840QaY6TB7+64Q3deMRqmFaHiv2ffb3kA+rlOxwe6ZvAx8V82hf1pw3k5Tt3xiDYfaCajqF6+9O0obyuU4mlq0qSwXgnm5kVwnpo4veyohdZ191n1RhA8jtBH83fjUEXoOc1LkaP/Do6E6vfOOPpwHs3zySUdi9FQH9rN38ZJwQ4jfZSMModNQ1Mh4ZQszM5tx/tRH0jkxnXWeXwDDm7ai/YmqihcGI8V8X50xvMR3xVgcOR3VKq3DqMKZODRn0qe4VoF77cM0qT5D9gofwXrXluOSnp6sL3OGHQqjCj+tx3Z7NPn3+InYfPbaEo9XQ5udi3Y+sOfDx6VhNaGLlSbsIBvz3pEfK8Z1pcp8tvteyjyaRu9fhDCrWY/QE0RINjDDuWG66CjgQhFyU/BcKudPF7VjI+0nOLB+ZK0pFYHC6u1wUVoA+tJNOOgyWMU8yjF+qxgVrpcxSvu5kFz8BSOfKQG2xf/2x+1OfRz9SYubB/EeZutMWLrb7I9eRGnCYdDlXwIJ413pSW6djD5sizPrj3M2kWyZL1FFuIH03CKbAiNijaFpbdOQsAlXWh/qwiPzBxo0Y1fNE9/Bv+nngC/JyXz2swJVGR+m0s1NHjf6pc0FGoCOxX6WDEhE8xE7SnL9Tm7tYRhR8ZuLDD246ub2qHi0xHMXqcGRTPNKaTjGKtLmYFZ915euFIU9tqNwNlXhTExugEPLN0Ax+4Ig/JrMTAQC8OdTz+S13h/Ft0ohXpVfWjd7sGnjVooXJ9w6zNjOGbcxY/PjsVGx7tw50M1HFZuodCUFPh83YHsd0Tgnvc3sEBmGKwOSacZAVJwedEwOCZ4Bz4/bqWl39+S+Jhh8LJ5Nq375Y0J0TZgc/knHBu6BeXPfHB/SAwU3Qzmpvst+Hv4Qb72+gEP6RfykKoe3LubzceKd+G+F5EUdhzAKfAihtQUcUBVDdiNF2eT5Q1oOwBQE/4Vnhq3g+SKOHAwyYaoW5n0MTMTIUYM1/51JemseNjySRPmOX+nHaMC4Ln+FVAzFuYRLo9w1jJJ0P4gRAp2ETwDo7l0mTXMexFC3/JnkrbJBdxXNgIdc9vQNusD331xGe4JvOGzit/5m4QyKJSK4LWrP/nImGh8kCRPZTq2/FvAiuL2HoAZM5N5WN06UkwZA3PuXYGug9d5hdMdOD9XFt4aCsFio+m42BsoankBF+y5w2/NBaBhWDskVDuzmVYHbZA3x19J+2DH5ENcLDafs8NiYVOgAgtuUoTdyhdYYFsqbVl0hmKWjMGGbl+UOfWO45YehHHOd3BnQh/cXoUQtV+I1uxLAKVzfynscx1VV47B1UWXOelSFVRN+I/K7rqDcIgWFFpNg87v33Dw7HOyOykAryw3Qbvqe7ZdvpBcbNZy6bR3DGFS8CVuAI51fuO9KVa0uPAg+T1I5hMTbEB42EkQefaRBF0e4C0XA1BbRfyh/gK8aO6FkxFTqbr7NX9ZIcVfHumiRKYKOzqvAPG+UeDdspiVDAIg/4Y/f5gsQNM/zaTSlgzMUjbH0PiZ5LbNnzeljoWFuZ6kvvIn/mwPwIzinfTCNIjvxgiR7chpSGvj+fWLcJp9wQKc1xljzkOg52JjMSZiEVpe3oVLbwZBr305tZvP5DcOUfww2AyUxdeCVb4Lfp8Rh5vdlGHyhSWo7nSSfs1Ix23Ci/jYht306awU3Hb0heS5ARhmOQbaunv4neh7CFW/h2Pe17L56F3Y/aaO5nsoQ0dRFE9VVqfROYtZ8v49TnmRh2mZjhx8qYaeHT8Ob70rEGrsYK1uIaucqQb1ou0w6vAeCAurBH/5kezmUIpddud424bFVHpfHWQ150D4YXNQdh4LMldHQb9xC0RoxNFE4/fsv18ZLw6eRhl9BagOu0wXrKZAXIcDfCwNI5Uvl9nOtAvP/DGC9lOiUKqyD2Z804KSyh3kKpSPy28KU6JGAUyxWoapr29T4rKjZKbsAAoK26hrnzqYlBBL2hTBPgdRVG1WAM3MQ6zZ/Jdez0TW+LKP9LISIM5aElZk1MGdqgK4WfeW9fLyaFL9a3hqLsMON4rBvUeUBf1mQ9M4Q8jsdSdXrzRwv631z893UOrSpxDj8AQPtJ2HvT8qIDvnPutmy0L9vT/sI7YefsuooNjzdI4VlMT6sBRYplyIky8+BVsdD6o2Efh/+//vXNt6fjc2nu9Nf8DOT5A3ZS2ET/9Y5tDieTjm9RO0yTkHk6LkoarpIf04vgsEFXzYeKQ/K6qY0+EdV/FFRiIe26BEC5Kd6X6HNewZ0MPFbyN53MB8OP73JptMfIihAZE0z14FQdkTz7us5Dm3tYDO1OAWbxPKKJ5MK7YWwzin0di/UBbjH7zhiDgrGpQWZG0TVfhgxDRqmDvHOeqDk+Ritj7/H56dMItXicXDgqASfvzIj1bfEIa5D09TT3QfV9bF4IPdc0H5YyP1ntvPG3wewsl1v8DzeRVIrDMD4RHFcKRzIeVHRkLV+RgyfjEcbpnNoplrP3FHXiM/1zxMualW4Hu3mv+rbwdpdxV6ZVhBnjoqtHzqAGa2xHHA7zsY8SgVV8WoQsFeWRyX9IsGc4rp3q0icl5eDTWHlNkpNpS1d9TyxEIpWlgJcPHyQ/xyoA3fNRtilN8mEF9fh4I2j3j4jgKwLJvJ248b8lsNG+i1ZYhfJwOdM19gZcMa3CX+hYQubueX+x5C/+VDsPzNAvT/MgJMdb/A4jfT8ZuDDY4+FIKJsfvYydEARk18ArlFt/nQzCJqemUJok5ulBt4gvZ7Mb+y1gaFd2Nwf4MJTp5xFiBsIe62/E4WyzShxX41m2wOg8gz0ixybg2VdLlTwcpMnPxwM/kmdEOb5Dy2MtCAzHFG2LjlJ/089g6P5hiC1I6pvOfTBzY7+IUmvfuLmYqTIdJMEY6+OgW7nlRC5uc0lpQI46spuznfxojko0J4vWwO+X9Rhd9iBJfEa3m4SjH/fTid1y96BMq3ZLinpBx+KYrA83i9f7s6H2JHKILenA783hwDXyQi6Y+SDgc+WkDRKVX8gKeBoY8nhH7WpOkwFnbL61DliQ3QfdEQymz86KX6XFRrS0cRt9//eNkF/lPfgmOmyULaMF06bNrLQie1If90O22tmwBLVvnwrH+sbbd9NxpPriTLH0bwofAoBysbU/SJuXRy702wkTaBn4qL4ILvH2p2dyG52BXYrqwJcRo9vFR5CZ+STUMrxyKyOfEI/Y+I8rsxN3DArI9Dnx2hsWIWEJT8G9ccX4rng5eAZdRSiB+qx5sTAiBu5FsuSrGnMwYrOfuuOsxXn4GXhs5hUFkdBFuI0u6nvuy2Q4HVXE/AE58F3BAbhC7OynB73HuU6JgFa5zyYFeHJYVl/TsrjeE8LeM9Lpt3F2TWG3CtsSyMy5hLglpS2DbdhvYqWdOPziF+uWYmeqZt590qinz1ZCpXGqvD1tFjMK8gjsl1JDx7/5OOe7mxtXs+Hdu9hKYGCaJy/yG6dlcQsoaewqw4DbhYYEWNK3bTsYJ1qK+SjzpRjbyz8zYJWg3RLmM1YPOtIBcYjXOFf8OGxBH0LDCJP+WvwR8lgyjzdRquPxqO7fekAKSGcdPPIkronUZ61R9x+aVSsq4OQeGzDTjeL4jm1VXAEYHhsHxDMR8I2M4RB6+yQmkwPBHRAclpHiD9z4OW/B6JI9ZH0LIWGTiyO5wnvXIAk5FVfNtzgG5PmMY7pM9wkddxqDGppFD3PoJPkjDe2RNVCj2pJOsjJMz8SPei3KjI5C9PKZfB6aO3Y6bdOTqSMhZirPzBJ+w19zf8h2dCFrDumqmQYjWddUJe0iGLVXzfuxgqxqpD3BuAB2u0OGqYEK5Vm8W5CXOoPG0UehyxIbZ7gG9W2vK9azLQWDUHi/a+ZAMpRqftHnzxdxCtkMulsc8O4F/XQE7YZAgTpQVg5NaRFGB0lJaHNkKtqCKtiFiJi/ZI8O/L8pg3u4SX+41DfTVzeHZfBaxWHaL+3Oks0jOFBDqLqGtxHthXjQRLy1hwO5hBoTwa1vz4C/eXHaGhyzpk5DibrrTE8/iBeSQ/0EUR9I3CNGPxmYMcxOZ/wYd5I3BXRg4a7V2NF+4b0d17ytBk/wUaDWZAo/EZbnypAvviwqDw3VNQnmjOkh88UTdSFl2O/DsXLy+y+68Sr4tW4uGDCrBzwSkIutX8L3f7WSwzBW+89qVunzFYeOkVaEZoU+vVFWBQZAaXtbaydm8whbivhuT4JvahueQ4eILXHVNmT6Fc0DcqpNMWYmDq74PCV4+h5PZiDEmdT67G9eweeRx8OqSpJF+PbLRXQP1ac2jvc+RQ4XEgY/gGy/29yeJlOk28EYlTHD/ilStuHPbgHP6Qmgjuo59RgtE8SpZ5g0mmB9l91RrKfq7F1mrduM8tkoWjD1CjszUYrK3kjCBpXv7gIqvVG2Dbkn6WVS2Ga/K20Pdcm45K30Xvv8ag+vIWNJX+YZUAD263esNHwi9B1MvpXKT1EO31ZMkUrsFShVEg4hhOHkmRtLvPBga0bFlkXTI21v9AYTtXWDtCH3TzJbFvjTjE5S7mI4oN6Pz9Lkj5jKDhNsZ4fpQlDXP/AJlbffnTnp/wYbEIeA/fD9eCLSj/9yY+lwz4yGAGHciQxaREZ1jk2sb+O5TI8xrAWgFx/HmiD2FWI+s3mbKHXBPb3xDDLf5T6UaIGDy6NRteHlEHVVt1roH5fOOhIIyNPMv6ty+w+EWGD3tuweibTXw1MJvqKixhd3QmLTsYD2Buhv4tQTzefQG88ejmTScjWaf6KO64MYABfnZQH7GLl9i2wuGbtzj/xU64+/c2Pzo0AXaulOGk0wdx4+A7nHRRBhL/JpCTaQFlet5g/fJatLQpoMUzz+CS+d10VasFb6xsBJNegtYsQZb6/AfySxpolD1yQWMHFVdcwiCRTNgSOpUahfMZqyaCXF4Mz9o6lR9+TeUzo3KppPwofRsei173X0L+0iDSrDpIbs52oPR4Gh2x9udb1t/RYcE5TF+7k9sdL5Pgj61svbgWQ/IXc3uTJKzMv4kXL1RBcOlPOpZjDx4+XTj+BjI+L8KsxXEks7GWPu+QAhmLJ7zqrw65dpegz8UVcNFYAcfFXoUsiVkoqKjAS6oEIdXWGK6vWMF9y7pwzaaLrHIykR3NTnGj6idqOnGNbu6wI7UyWeizt4YEKQeYHBAKzQWpOGDkQFqGtngr6xxGqOtAnGona9oyu4IlvAvsZSUZdbyXOZYOFO2FY3EyUDnrK305dxvTk3zR8ZETLgo0g615WvBi0m309UqiVrtpcKh5F3ku+wZm6WfAbHgjl1toYkO9OlyIvQg9ysIsOniTEzKu8QKv7ZR9bh6V2flBRek5fKf7gy2ejwHHjX58qc2DL8nKU8zDaTipUh4Du7LRd0sar9FbDx4HE2mPJMKTiecxf74bHNXu5JlO7Xz46W1A6+O8Ri6DO5LH885IcZyeIgfaHtV8X90Nxfr7+dYxO8otcqMDLqOQrEL4Tqc6BM9Jg+UvxaE1zJN05l3hD4SU6FGKA43ZcPi/vVCtbsy3up/h7qxmMHD659P6Tdx78SgppI2kh4/y2KtXGMxv6VDeXlFYviIJA6ZNotntViCv7kG2DevItj6RTgxcArVnOtwXG4uD23pIyuoYtE3To97Fw+DeHWteVlHKZ6wS6enYmdgy+gTJPzQlU8npdOm0G5utM+GhjyrgFnCAVdsKQEojBoxDQiFHazXnVUnhJj9RuLBBiCYUMe1Qt4bLEiFwamkPyg39pWEfLnOKZBYoFPfzd719MGF1PttrW1GWkBY809uM5gq7eKfVYjabeImPtywje/Ljsh0BfPBqGGwvdoOmOEOw/qSGviuG/fPPbNTqeEOTDpnTzfoUdDpbiWJBYRhp1k9Ke43A39wJ8nd8whuJm1ngqhblhnVT0ZMn6PzUG3zzlHlgpQa5HZYF+b97eIvoXkzbKMDSblr04yJRhcYW2NaUypu81/P20G1c/VkSMq7fYxsdb46d0kcHY624xHUrGEVm0aiMx3RgwyZanXyKwiVHQvGPfXS6+D7dHX+K79/tQN2nO8DbSw0e+UlTi8sA6qpp8JzESfBKIwfaQsT4sRzB5cCFXDPZFdz2C8MhJRcM+jEFP5mYkKGHAgh13qT0vC38K/8S6y43hQ7PG/if1Qgodv+Py9tsUa8xiuROK8Gj0EmwJsaO0kZvgHAJMZw0/Toqpn8m7eADYPFrBmeNXQ0cZASzVpvAxmsvqPtnP/7VXk3+lZ9h2XpNOOkzn1vVvUlquRFMGTUJVBeVk6vfJbhrUw7xHUfpWbQGPdbbTWvwJPf8WIuip9L5VIUyjAkDPFB1BUXea+FRkXhsNTKDBQ2zST/CAc7O1sGrsxXhqYwU/H6sxKtankF//xNyD5eiApkKSNnqRMcnD5HIiG5YppMLe8JHQd779by45C9GdBTBl2h7UBFtIIcBA57dKkJR7g08LWsEPMsQhwmJIzC0aytf/GlIV6MbqFFwFX0d9wKeRU3jPBkxlrMMhROjJIHcjoG3WCyIfPuAm9f9JP29kbjqn1eo+kTQTPdnvLZ5ES2XnQDvxiOHNbjy5/d6MHuGL/1OyIUr76VY7agKSE6QonUf9sFWloRv/lv5zdxZqGk2hnrtV+Kf7AFMv/eShg/uhWCbKF69IB1txDRBdrsnFZy1oKc9l6DokS09tb/DFW7RMPk/PdJ+pY2jj82nZyn/eDPFA47/nkdvjuhR9kQhvFebytLUjEuTw7HjsAO+Dm1jr6yRYGL/iBsE9qPEumUYLmUJMs66nPPyGeck1LD3mPuo3aRAjweHg7ndfb55Lx47h68Hk6I0NtrszgfOq6LClS84PkOIFO41c43UGLhxspIqjU+CwZx8EL8QRvpuDbSn1o5DmoRoinMJjjEcw5ktGqCW9Z4m7nwCIdtloaj8DQ18UYRDrx6jGnbwpTmNcPv1Y5LpEYRb+hrsOLIRim+mw/1rvrBzYj3ku2WDwBsXqngrQKaNjtxiIQeGh11JCa143afJbK++iW9blEAzZKJXXTF17J+Nozvj8H/vvQ1LQsFmvz9aLPOmWOV2dpp9if7rleFf0Td5nNQgjDrzFxaHjoCwgRyO2KlEH9Y4Ueo1wkjBQezPmQ3GZ2spddFkGF00h7zsxkPmQAxJlXym5MlEX4oA8IktFy9T5uH646Dz4RcITPlGu8uM4Mf1kbDpzABEHSFaIv+STji74bD0PVCcFQX9t6S4bE4mtSSLwBKznVzWLomPk5zwbM4PHhFwjvc5Hmfbh+U4+O4XD3mNZ40OKQj/Fkvbur7wgZ6HPLjuHfRW/IEYuzKQ9A2kvoBToHxjJiodFQNJHQEcmD+W6jYugwknDPFUQRpM9e5hqjBgRdt2Gq71GRa8Bhjm95uMKqbSBTtBqHPNACexbPRq1qUlD6di5a9/rOEjzJ5lo8Gvciquu/yRFbY7cLaZAKRV/kHnTnMY+eooHS/4Qk0pKqxtLww7t7WTRfNxXu+6E3XyXoFwrDL53jyKkffyqP5ZNmwPfc6KIWow4pQWTR0cxVMlXuCcM168cIUaJDkl428XQwoMTGGr/1pBPs0WXrx1xvlnZvKutPGocFAbXMaYwbjbZ/H3viaKEd0DEpfXYbuhEdRvOY/Xpjbgle4dLLFgEit4d4Cm3wnQDGihWaFBsLRgMo8UUIXUiU40bv84zlFQItmY89R1czbc/B6Av/5sp4iqIXgf7oXBd9VgSI7x6AwjxLeLcc+1KEpUK8M7D7vRx9ISkwzD6VWmEbZIyIHY+d3sL6sLN7ZugA0WYWDrc4u0HnyhbrU8EPt7nr9cNoPAMHPY+3kreuwJ59qYS/w2+QfP2eiGP/sK+dIoMXg8upWCRgryiQCEeBE56hRLp3qtLtCpZdZqTUKnvYmkr1KPiZFiZHlZgbT+GwmHFn3BTXkGGOYXzXNK27hGsBVTzXbSl6gWrvkuw8mn68ijWgOStW1wz3IzjlWvwlkt38m1oBhavy/D9ctreG2tF07KG45ecgCKbp4ccaIQ5FNNwSpoGZz+T4+1xnjDzZ2ruCnPiDOsJpK9yRj4WW0Bvk8yuHqLOh4TegzPPCtZS3Q4/ZFLB79Fjyg12QXGVkvDIvkz/3LezZe278b9E+7wLkEX2ig2AQSmXaR4kRE0568rdkvpwjHlISqon4kl8Tqc4NSOxbYrAAOWweLpfpAouIauyquQqZU1lFWq8tCpubjB4ze3WC8Hk0vdUF+9mzbvmk8K563hzmZ7MvA1ByWVGDbbLI4id4ehz9XjXKvCJCH9nB0HxkCZtDW+kKrjAhuG6x3uuO11BTzVc0ahFHWO8PXllIHlOOpXHcf9u5Z7KRfPnBgFJp8OoLlmPK23GAuq27Ph3NE6WLJbgt1eZkHPe3X0FlDi5omCcD13L1TWDYOiTiV68OITaaToYF3WHCiQlALjdGm81auDPmQAMud7WUKmhj4bOtHNmbOx+4wmR398TmdzJWB2AOPB9z541ZUhzXslTeoe5MM2+VR2UJQ6yv4DjQeHMS5dEi7rWNNEl2W8KMcIxh8xoksFWzh16Vxy03oJSlOmwbDoCEq/X0wbU3Ug9kgz+2iIwWD9BAxWn03fCh5D6+GVNCs2E2ZtuMz1m3KhqHgGjtkdCM7aEyHO350d6t7Ags/feb1BAe+995oeZNnio9sfyOw9cVCZLkwxVQPr0A3gefEMH3pnQT1ZEXDM7Q3vWv+ML3d30FwBVVJsuIsbV8nBxJWOUFQfRdyxHM82dIOqVAd3fJIA6YV9sCg9F6SmfoUydxuwiXLhxHk3uK0rlNbtuAYilwLB6MosvDh3G4e5q/IUR3Ne+YvBv6mXp4jqs++BKZh8cQ4IjRvFYj7qrD7GEMqfT4PFs19j18xx8EN6kOrMc+hO5zLiI68wY5gb/f4SA4cK42BUiCTLHv2PzqWrQ7zsR5DbIgGqhuFYrteDja/tOTwylqKUY1FSdzkes8xHRyMN+GL+BSavtMGZiunsuziSF8x3wJzuWbxmZB+9W1FOsfOdaMNsCZjhspQLxwuRpkMcfPMuQf5oBuNvOmJr0hEuOu5FZb2RHCquCA+Fn4POKxt4rvOahfUCSJDfwsDZCVA6YxaOeN8Pk1tWwIsdphC16RsOWQVB07ZYCnl3giRu2fG2LT34eXsMTxEwoBEjfsEZERG4GyZMQcHSoKewglL1J9Lr7S548d1mWL51JXxs30fumnYs+NAIhs17xB0Fv7FCMwCl/D6DVdNxDtk+Ffdbjcev5rtgr8oD+HxoFIRlNOA6PA4/OzbAxURZmIV5GHajD9K2zKeUe6tg0doGDjMeCYIW0jRDYwmHSb8kl5c29ClbEPD8Snq46hyXf7DhJFMv+JQtASn5hZDeE42dc9tpRcIbbHzfjjNTFXlPZhLYRQ/Q7b3nWGKPJAiUFWHvc1/UjBCG4ounyXFxPKxSjiYLAzEM2jIPM27c4LmJZnBJphBjbFOh1EWDtjvcxGFx+7Hsyw2ctewdSPZpk/G2bhStN4PblUEotbeXk5MTUOfWBrJLvMy6m4+zx/RZYLBKgh7OFUACA2hXXIVGE6egq7kDd31V4cvJM8jb3ZNPv0nFkS29dD3qHhweqwVpHfNwxpAXhE0JQsUlX/C8jDZrXN9DP2u3wcVaFby7PprOBShAt9AUzp1/BgUkg+FzjyDK912myroKfOSkw5eT5HlfijeIXtUG2+/qWJ4hxXOeS9GotRn0eZgaLlk0nOrGPeHqD7WsFjwXqoptQHHSRug5XgcTfihx0UIRmtz0nIdkDHn2i3H0vNEBvlbqwtTHWtC7zAS0DR3hmE8hq+zUpFgNDwxSXUKTZfTBZF07jrcYpKPDNOFt30ve3eHBJ67685aWBv5PeT+VSm5l4dIiyGgXwNNFw8lL2hZEnvaCrrwHtU99B3bzY4FM59Hy8038qngMSW5QgWDduXD/qRWIFdaCi/5CSMM1eG2uN7XHmoBDziJKWpqO4Q9zIVvFlS+ftga3VgVwvp0CMU9sQfCdA1+4/w1/P21EjZE34FRfAkic2IHz3axBSH8HPEl7hEeVQnFwQj1tWPCQLYW8IT/mOE/3kGbvj7s48p/PTBcZjYvniNMjaR20XhiMem3f+fi9OeB6RRSGjp7ir85JdMHbDjYtVeQt70/i8d0+tKJgE8z+FYm1ugdh5KkCMNiTSmrTE2j8KgHIyg3m3Z0Led/BKogfLYOqMJEXvCng2inRqCwZj5vbDTFjqx0Y1KizqIIAdmb/h9+cj6Ib34PQm+NYZ0kpLcjzh/m70pneDYdf5t+pyD0Vdm9ayrcT/LhSVhKPrO+jSVp11L5wDGz53U/DwtThQMJtSCsNg1jVXgx/lkjjRGroel8Bjup5Ad8/RPFhlXl08bIlJPmI47ugdny2ej/0y8/FA03L6ETVVYzbkw5lO+dS86wEGPnVEsJqxal9VQevjjzP7yz+0OWZX6m/0BhijbZy2Clb3NHkBnv3jIc1edagmfgIHcNHkPSbJTjLaw4oWCSwUWAMVyf94FE6c8j6mjGofD5MW2dsRMEkDWzLWQbF72+xYtdlfroyEgwe2oN90Tf+LaQH6sqS2BchxZ3JiqD05SBd7/bHXQNB9FAnFi8WtvMxhz205JM0rPPch9snp9HelR6YaBhG2nFVICXfAYEOQObzz2LXtIk4eiRC/fZ4Hl0zm+PO78DzHaZwctUARU/aSGKmh/F38Wz6L7mMZxlYQqLZb9i6KBl+Fidz2mElenpUDn+sW8hlkTWU9TabbLb3UUvwJNgTe5PFnadC2lI19EyKg+Ebh9HeU5No7tNqdg6JpeFXLnL1CgkoMQmlbcBU5L8AI6KEafU5F1B+9xTfZ2nBM7koNsrPA+fR8nDTL4QrOJ5qTpmh86RFlKjRA8JLc6E82ol2FYzhpO6NPPJfz/8RXEcqb6fQVz1LFNq5GZozCY5P0uFYyuf6XnHsqJZC/dvj4OISLb5jFsHbW6dCy7af5Fi4B5bEDYOun59o9eteGG9mzSUnVECswg87fTfz6R2jYbLcSDpX2A0vf/bRzekCDNYncJ/cADYfs4KBpQz3R/pysxTzRTFFLs2YyneFXrLqyh1UHaNDwjkr0VRKAPY4PqRZOW5YclWI+vscwXjlOTq3qIRsrK/Qs3h/WEF/SPy1MpwJEKGinY/YbUMAi0hrc7XIeb4iWEoRfn9IqSOYOh3PgeDOf4win4c9PyP5Q2ISJCcqYVx9Or4+sZNrqh1gV8Z+aE+v5IBEVaiMXoDDtq7gZ6tUOOWjOc/b7Q6ZSQL8a3ALf1lcz3Ma+kDOliDoQiMNv9nN1sNdQc73J4iXGLN440dC743sOD2Loi+NAtUwcShq8aZVk0Zj67NL1OK4hXN+9uGvMaYg35/LlRPm4OBEGbgVKw8NK0UgKuslpubMxMX/2CwzdCtazNmGzq9fsvzqN3DdUZE/J9nBfIt3OBR8DWbeesjLA4fg0Z0mXDCQzT+8vrKu1jYqVzkEQ9vGw32tQe648I3NRXQ5dl8wL5G5DzUVQrxxZw5LrE3hT4t20a63iiA0NJZijI6in44yTBrTxf6bn3LHQBip1J6BkvsF4OEbTmVaitA1FMIWjido6Vkp/nHBh5VFbHDfxgL880qY28K6+dXIFBKtHwnDj56n+18Ro9b+Jp0YZei7uQ2c5o7BhT5LoMKnH6eULSHbHnHwWdXGa1racI6aGL4XEOVDpxLxjuRFurXHm/7c8weDU24YWm4J215twKuLA6GrxhU0Th3AisF5qJ48GQq8smnlYn9IqRwNdeOUYaN0F90PH4RfIslEaf8YxrOX2i+FUdWwkeD9RhDU3uuxwb/cx8U28AeJSH75VAfQ+w/ojvyAy4S98Fj8abiVK0CvCmvRLF8RzhipoYXDZw6IeA/PhObioUOpUOukDe7icyj+bRau/ymNG21lIbEmA11Dr7Kv2R7MH0qh7bESILFOAZP+rqOyJ/N4pl4FGonaQKp5G87VP8V5ZmZwpykbLx3Xg+6gVJIZsQj39tzAphO7cLKlMQxz0cLqsN3kYME0WzGVVwVugW8rf8J0mxN0N7EB5XUr2bxCA0wHitiwV4keFvdR6Z5FbGa2HebuL6b64ghQrR9NT97/oF9sBR8e/8XWvbfwVFEoVLZvBMfVWhDqkoAep9xYf+4mbm3ajB/GyED0ptscLqFJN068Y6G8EyheOJx/nnhEOkcMISXNFXaWVVNx0ATInvGWxErU8XppDG5ZbwX+J/thMEWCF45xQ7v513HZuG6ymqwOKzPW48Q3GjxDdQSr9+3COaod5GcmB7syb+BG/UgQlTIk2ypNuJD6h2s+3qCvjdJctk0N1yv6oXexIp+r3USixgrUc/I07NupCsseF8OZCzvwwD5VDL32j0lml4P0wDR4Gv6LJeRSUXbUZpoZPhKKsy5zru4S+LzzAM41rIQXJ4FnRB8CL8+PdKJJHhyK8yjmsRTkuirSr0OLSMfuPci8fEk3DhWSff9frJo7G3tcmWfazcSgVwqgdHQ+qKl9xLcJxixWvo4yimWpS/Q2bbUIw/wZwvCr7y+NUhoBs2AeBuhIwuYR6SgwVobcXY1JYe5+KtRPgojmpZRweymaHxMEcccOFM3eg8J1Z+H0hNM8NXc2F1j48YabRtwvnMct0r00c7gYxKq00sOuuWilCji65RUPHPoElTX9aCHrxqLjbKHUZibISIn8m/kvDqLnNKktEGYVzkCj/GYam5eCn1V7OEv+JZebWsEzd13wazTAP2rmUOR+CgYC8uC5pyU3nF7CDvvuwPtfzlye7cQe/zHElNxjF6epYLxrPaQpi/O+o+ootL4SRtjPxoErFtBfKkiKpAexsVcZ5iqA/LYFmDv7P4oUjIXs2Rr0bcs3lOi+xjKiR/iYuSDM8M7A6aKNPJe7KE3uIm89+4PTq+Zh2Tp1fqK5EletqqNNpyeBankhVtu50h7PGqxamY+HRxazk/pohLuSYCnXSqnDxeH8fXNoW3eWGp9ok+ZgCwfsngjwJwEl7HcTLj8DGx1lKGCaKGQ/EoPl/l/IYMcenDcgDTH5DlD3wBfWJT7i8MxutHUtp2pLO/i+Qg+Ufg2Da6/9qfBgLcfNXM9vfh5k2dP2rLNtP9a4zMdO+S34ulQbRObLYNjiz7THYRj8yBHF/OB3sG3eEn6aJkERTfPob04wCc1Wgyq1qeC+PhOtcjfyjTN6lEdB4O9czCtdzvPTwAhcWiKNjzchnHEdhfoTxUG79z64GqdDpMhzHDZGHt2Gt8POp/d5Zoo2ThHS+bdrnkPGuC8cI7OV7+opAHlWoJ2oCsHiEzi4fA1d0BAC8bHqcL8vDjI+K1Jr8AhKKJ4DxvoXaMmyxbQ55ho8i5HjlNYeCjQWgkvq5tCauZjKBU8z13lw+dRTrJi2g8vmB1JFSRCNXfwD6iS0oG2U+j/33gLCXZacme3Of5LLSWB6DgdNbMDz/eUgoyIPb0/agbl5Ex/6pYnjw9wwt1cN1D+voqHHR0lNez7ef+CDakeaIcRLAQquf+JZYZGo930PbtnsAKXzx/Iuq6W4MMKVLuv+oRNTZ+NSITuYeaIVXn8qRK83CznRZTuC9xjsknZmSpeAyd1rMNjAjoYd0QT/fhOYp1tGcssSeP6Gt6hU5gVagUr0efUBSE64g7aLfnF2uA7ormAQUKiEkd3D0SNfhOOon1VPpaBv3XXO0SqB+VU76VK3MKwZXMNz0+az1LZl/OvZFhJ1b6dpCjcpfvR47r+uT7VXFsALs3GQfvcBvLb6Bmpa/eT9fCysUnKFA+/EcEBXBX3Lb0Ox/Hme+E0BrL1i8Wb3DhwpPwUV9gviIc1fYI/JnDFoSsFDG8jy1T2CIoBI80pylrDC53fESK2pmByfpUB4wijEhAa8viUBpwrcQLMGaRhneQhWmgRyovMtUglv4NxD59gy5z5/0DrNq487orn6V5waogJJwv2sVz7A8T3/5lIwB3wDp0FVVxv1n/sLG3uNITg8gRpWGEK6fQdO2jCVt/+VApX2MBhNutR5OAQat4aw3koLSD5XwkW3rGGdWTVdF9XHQ6aryC3DhgsFVXhZXz94XlzBf3a0kIVvO19oMIPDT71o5YSbIHLdFC2Ft7D5tO+sEjOKFmbfogtPcmh5zS8yHm8Dpb/jyCddET5VlrNagjtcmKrFVcrrWSY2D9qEt1Ob7G5SWTMcrksLwfzOCzxNyI3XpxygDckv0VniA5ROD4GB8mw0rI3j953msH3GYzpefg1GfLLDUPYHq6vDaPeLqRC75RRIT/8Ih+JbOP0Iw5XmKeh4bS7rDthBme9RNBI7iY01bzm+9TnNNXnMKUkT+W3eMPj+wxjc9pzn3aO2crfNRrYcaQd+9ftBZvwn2Ntay8ObtqCRvw4Y8DDQHTsVmiPKKSignyvbnVHo3SjMzh5DGhYl+Ga357+eHg4iu79iibokZHkM0Zuem/wtNxLPvrSA/Q1h1FDVggtW1mDlBGvYeOAb3BP4g33ZL8BmnQ5LDA3BzV0ZvO+XFR3wf4dKwUfw3AJ9SJdZz/Q0HcJaZ8M8g/UoUz0Tks4lsfSOfRieEgVucors+nwS7FAwQEddWbz7j/HGLd+B6c6OFJ/0GC/8F8e3b0lCUZ4c9CYbgknEQp5q4sq1+wZowdIJjPv2oX+IDwWNHmStFcF8oTqPZSX1oC3uPS1kU9L/VUoeK3Nxm9RG+HT9KDdr6eD00G7Sj+7mG+tHQ7loP0iffcqjQnxB+Pgl9k1MYdNpn2GPuRKs0UhjmxctsFqQ4U+TFsZnOKPIySfY6yVDaRWH+aBJO/8Y8mXPKUgLS2Q5VlQbGr7mcuOmcagetQSfy/lC9xxfOq82m4YijsMb9RGs9NCAevL04GLfUjIdfoi8JcR4nFgBjXhnBjfsN9L8/suQUReJ75qO0UEvS1A+mgQW4bsxuPEpjtnwmbbky7KQXDxedDWBqSm2tOiOHwU+UoVDPmv5y4VRULRMHPqt86h1ch6bLtyBCxueobjucG4eaU/6ayfCc419vGLVZnZXteSr68v59ZZs1Poxhw8IjOIEu8U07sAw1DDThx9yzbR79gYoKWumK9sugOepWTCpfBdreh7m0p0yHL5HgZuWSUNToSgbqvpAQskTPJ2whiZZD+cv4jngtXg9a8SdxdGJwBu+ioDgnA30JbsCE34f5Ni+E+i9dhD7Lw3js8dSeJ6gL6sdWoG3elTgcbMDCy08hSHif/nqGSM6sDqMzaSOQ2iFBO+EsfzkkhoO15wEZ/d0Q+ERHb5f1An6Sul0k+qwol0Eyq7MwiF9J0re9pr2PNeAD71X6cETG2yMm8Qqa4u4RmUWnyjZwYPX78Pj+2b8/Uo72m03hy/n/sAKQXfafSaHzz/2pcc2a3G++nd2W2uNHsK9YHA1H029zGDf1sucvVqefRobecqrQ5j68zCEzNGlH5sb4dHzRaiYeJ2veI+CPKvPFCDjQRuTG+F3ezO+/HCbEq73gndDIK659Q5nnHPFn6O14Wi7EwmYveZ6k1f08m0Y3e92hJqn7Xy++Tz0DysDzU/uKHtkDMTJL4EIezHobxuLAkmTuVFoPE199hovitXRLtFTEK7ZQXLGysB9Sjw9qQsnHV0IgsIxXOwXSl7oT9YL5vBayIfotZ586I4oNPlPoeDaQj5u+wN+SuWxa1cbvycRfjPQC6VrRfBu9Rp8a2EDyZ2qfNeSYFFVABqU/fMv86s8v/c3vMuKouqAPlCMt8W7ssYQFKyDX12cKGPleTqWrI/bnp0ka0imv8l/qObqYX4QoE0iA7oQZNXHNZkIldnHQLI/Ds6NZdCcuRINYl0pulwF8mVfwDVjc/AzaOZdVWqwqXUu6h5YCM8bYrE5Jo2UPhG7rH+PPy20qOuNCIgUZ6BHrw2VekzCXANDvnnlNV71rWCn3Xr/2O8t25cfgE+tknBWOpNcwuU4arkY9ioWk+1wLY4eMkYtq6NwTbIIh1um89AKXfAXmsdtgibsrDOJTF6fh86dhylCcAQ/OH0Uji/8zDHff/Dl9aLwx6WH60Y8xJTmMGx9kkhdksq4/KUjF9xxgJ9CQ+hXX0DaqRMhUrkSAkUv0kPt2Tj9sQs02YuCt/oHnBxRgpGWEZwieBPGGJvAMu3PsEbqFLuX+uIf6TV0pn4f/lxVjuPm3sI8/92wUeQNhJroQturMhaduBF0f9ygvMvH8Q7N43kVh3CNz2oWn9EIEx/IglicKIxNSEezvb40XSGIVEVCwadkCr1Y/YneLp0O2tfHwo7izZwTZQj1yyfTtqlTUXJzJXaOnQXul+NATMaBks6pwPG1n/C7qiNc8BGHh3d0uF1dCKw2bacC0+OUcT0GBx4cI5OEFeCtIIw9jZZ8X45AY/Y2OpqVDE72tdz+7Bh8hnhySQUe6Knh9Fw9ePJXm2JHEKxzU8YFE3+yR7Uaz7wxkR5eC2cz13F07042Bya24keXeNqoZw3fxr4BBd2v8KH8KEvLzqPH5ABlx935m70mWedegu0X63hutzV4LduPvmJ5VCHbi30pPrx96zs2jjflmHxTjExYQj5u0ZDWbwimxwphQU4J2K/SoRbNZJja6UNH7wXA2hhL2vl6NTX7MatWjIYtVWMgOXQLftt0BFf4BcLpwtV8ZNJi+mFsgUMi2nzPqgTDrpnDiJMzaE6sPxb5VNOvtCiQsDyGC5psUVz5PK/9vJbf3G+CO1MngVjyAp5nOZp6TgvgmwkHadGoDhC/uBmKvhdS+CtxdvB0gYWWpiDf+I8DD0/j707bqMZVnoyin0HpJAPUvjuMQfoVfFg6C4R7xSFywjk+JpZFu/TduG3CBFhhr0sn15azfMxmnH1QBVu2DpLTNjXwev2a4zsfsEpgLVirpuH2hmCM8dBG3U+/cHrzFdy48S9OsrKGvUpteP5SOaW5/3OXsHJwmjIHJL9Ox+oQSSgp2Y9PTkXzMns5uFb/r2+oCr42NfLdH1e5ZEMbjd+8C21Pu0PueG/6GJ4MwTLKsOpELzjUaqLuFifc2zQRPnwJJrnwVrJet4YK9eah7g81+oEjYPyFOHpj7Qy/3b7jmrLTOK75GOTVTyNLz2YWFxrJdWET8fsVc3j09y6+lKylG0d64GKdBb0dlMC1wo9B0VgCrfZFUaB2HbQ1akD07UIeNzMDlKWWoMe1SrzU+ZEDn32EMfMdqPirAD6u8aJXqWNhw3QTXHQT2E+kDkdpZ9K15FX40FQKFUPW0KDaXch4l4+vjgMUOFTDqNcmPMo+Fc8t7CSxV+IkoStFql2r+WuSCTgt6eL78rJwz0MWns/1xr7IFtx0ZATJTWnE/aP9+NfLUtaaxtgdJsjxKWpQ432at6jrgEPn5v+j4LyjQnr/OP4ZGtoa0pBKQzuV0pbMzJSEBokKiVKh7UuopEFFRpSRUUhZSYiKBiUkKZQkK6NC+PX79/7x3Hue53Pf79frnHsuSjiU4/tPvaB2xAeL7y7g7THzYNmzTLpfLw2nUqLw7PI3NF3wCdgOXdv2JIx3SE6ltFmv+GaSKH3xGkmlMeYwIm0WRQc1cfXAQvql+xlkqvOwZaM4mY/aDv8+ddAR90VYO8MIYgxfUkOCPx5aIQEfPf7RDLct6PFeE0pWFaKyZAdOUxFjf0Uz8N7zC6yOqbPEchVqn7MC/3xeyNseVeN+gwE6EvSC1ytqQaaTKBwu6ATrv8fx7QRVdjfQo4AP0rTebxQ+3JqCU7xXkZ6jA78eJwx9fxdCs0oBnMw7i9P1E0BIs5aq5KQ54+5ILK4Lpi2zK0HpkC1sUUnFtWo3+IjDP4yddwjnDvW0yJb7cGjMH9SecojMNKdj5lwtCNygRtej3Sl/vRz4SwTA9MeHcU7RcSjXPchf/s6nTVNMYZ+1DRzsu0D9oStw0bZzsHKJPTrPSSD5vp8o4bwdL3kewEuxttibMxKirL7j7OhzdKj7CHmeGcSX+/s4IGYlPvMUJisnZdqxdhW6fx0DfZKBPFiQDW9VM/DGsEZuPjeAS1V/8FR9d/z2QRr3uVXT4X9mYC2gy+PzRNDbsJbeWAnjha0P6eTJbPiXKIk36kbx9+5X9MhnOGyCEogtm8uNlzPxYmkhHMwPIatD/uD7TJ5u/zYHRYgAHwERWOPbDYkr/4MKcRWw+jofx1bswgIBMf604BEpbcpmpVvL6XaVNTg0dnGnzFhI6/Ul78sj2CF8FfZmn+KaH0W0QOkiTfieidJDTEsqbhA0bRnvFpZjd1lR6NieR6Gb/mB/ggrmhvZyjPlXMD9qA5cWb2ezq8683GUzndRo4pgpI8Fs5XVQd7rEd9rns+qYK6AWoAOTNguiqNNrmOSxjx9V1MItLRH8VuTAYSPUSLj+Hq5fE0TgowR+kYJU1edH2Tta8XBHAJrL9mK/8U2WPmMC4bkXydw4Al86ikBaSSKvN1CnYocgXh59BkctTx3yxSMQOf4YD1t/GQz9W+GuhhJM07rPVw+ZQGWWL+bvH5rf6EwMtCwnj1u/uKf+Kx886YM264dBiPER/myShW1OAnBwjQOnGb+njsQ2MMk+hXu26vLw2mXUtlIGHh2J40MPX/Nrm0LeMekxBcwwoAs7EuHT02kw5/A0enykADpr7OG0DPHJKjN4f3g9xwow7trvBWNle3lQy4njb1bgjWkFmFVgDIu0FVistgT6inRRbOtxxhEP8PV1f+w4Jwm+KyQ4Ynogxn2VgyV/tKB762++98wT6l+vplr/vfRMUxy+b7yJyy4/R+tvspxVLQEZ2+fSX5MC3DGe2WpoH6Ml9/FEk0xWfJsPiyel0bu8jVCZLAMRv71AaGozBsieH+r6UHR+MpUVw+bDW/bDn8od1DesEt6am4JV1mfaZRPLZSsdmOq7yXRCGyncqqO1yU1cFeNNWzx7oOqkKrQeHw/Sia/J2qWZtv2owEWBQnDmhhF/1/GD2Q65cObWdcgaZgEHDt+ANyn5AMt9OPvNVnCxAlZ/4EXL3gqxwJdugA8ZLJ1vAvItS0kyPYH06TsmPzuI4f2XwXXSTxh2OAiKs57xQc2xXKmG8FklHsrPjeJ6Y01c2r8Nl08fyYXa3vhwQQlGVYlDbdM4nKSnDAJvG2m26U44khPKp45Xkm+ONWcNc8ez/pLktUAYjz9QoAppEdCWN4Uw+1A6mb0DxMwysKbuFtw89IHtkqxY2DeH5SeZsvpwYzAUOA2BHRvYLqSbzN+lw2TXKpjSNw1XtYZAmUwtlhjrc+k9cdBbHcX/EseCWG8Q9H66DRcH7Tj1+A4yqK5ggcb1nHfRnbfMAAh75wPiMy9R+jEdfnHwPkqOv0YHvkniL6sw8l48lW8lTaat62Wh61UE3I18QGIWleQ/ezxYPP3HTQERsPliG0qPiGGZodz/vnU4iEdsJ1Hll/QixxDhRCWte9BMuS9f09Ses+gTPZU17wrRbVeGj9sJ3oxv5nXpm7F/1QhojJ8Ex2rvwesjztz08gRJSrvCR4exMEOTSXF4J56BR/ynbBB/0AoQ+G8E75BaSFWrk1BwwyvWcLEAcx4NE6ZGgmEdELvH0lQppuCf87B1qj3PytwMTse3woCXKryxuAR7VgeAS8FOmnOvBy6114CzQSBYhy6F7XdP4IW1SehiZgzOa2/AtuZRKHq8gsKtRdBQ7DUZRp3EhsBSzt+7Hdykh3OTuCLY1VVj7BIzPmIoSMv2JfK4J2oopLQTu5SMObjXAVuSd/FDIyn45vACZLpfgW7YuyGH3YsbJu5h80tpsGT8PvqyLpQ2she+O2sJwZlZGHbXDp8c0uYCOXNMnH2BBeItYbrLSHj1UZL9sqehdrkOPHLaRue3RoD0UNdmhSewl/gTUl1ahIop6mCR7gKidgVsrC8Ph9c2048ceVisfgN7U9N54W4RPCu2gJbnnMH5jcfY+F4BJhmOgZchw3FmtR/e1ZCmUYEnsTnchZ4/q+EO38O8T+Ugv20SpO5oTQitEmaV3iz8FvAURu/RooC/myBfdwaMdl2D016447nYGihaZQO/bWU5V/8hnrRx4p03hDhDIwnfpQzDmsxxXBugBgm6I0j98wQY7dvDS5dcA6mrKWz8ImbojPZTVslpTqmtpuFf/qF4bSRJNQpAotpXNBy4TqvmGOHY1ao4u1kLBpYEUG5qOhYcOE/PRb5SzjBVCL/4B7fqBGFR+2tQLdbkgmtn6MFlM1qWJwnVwWKUJu9Ihb8AdPJKYEtxAD5sL4GmgVDal1xNZ5fMp+i72TR75C66tcmNTidLQYVzInjJfkQV4V3Q/OgeJN2V5vlb+rFZfBO47nyLuK+WVRchHDXZQAX9H1Bo4A16ZH+B7P23qVNDDF+MIL7ZUUBj686xTq8k6F9pguf1k7h+43P8ktUKsbVRLHn5E+9pz+B/awTgbNBvsJhkBv+lviI5173oqXqfv1pH4r3bE/mV0TL6pd8A3uyLaUv7YV+SODhtqKAqy3estUaQrE3jwKfVAjtD2zjA/i5kGjXQpaPbQLlWC4K7P9PJkmZ4ExgAJnOUKWleEvbvm4Tv1nuwu2IqnvWbgIJnDOFY+Euc4ZzM/QdtqPnBJl52TJi+TzsNlf9VgUjvZkx6sJo6m8XBYEcmUHQONGfH4J5JszBzfyMX7ejFi6Ma4Hz5fXz6yo+31OkB9wwCevYO9UkR9Ey4jgeDOqkuYxQFze8C2W1mNEwqkNoaFMHsWyiMvVpPYw+40SrTKH5R2s0heVmUtWIX18rrw/S/USRVoQ/lmx/gkpjnWNo/mdsKvuKp9f7MUclgGPEd5qTnc1PzaTjuPgH2bHRh/6obVFxqRFrqS3HhDycsPhQABg4rYMGXs3jVYRrtqhABN0dTnKscDF+DpCn/0AeQ3hIAC/a1Uoj6d1o1agc8nvcLr5aNgFWFcVQtpwE3yjI4J/QBGimHU/CNDq7cKkims3ai0vMmiAhVhN+zA7l+zC926VtKgmlNOF9FHFss38DwtXPwosFc+uX4jO40TIRLdf+obNwl4vM2uEH4FYt3FfD7P9vgq5skfBTaCD86HDCx3ARm7DSiCeYioBG1kVfIlPO/6/WQs6SE9b7K85zJ2Ryo1AHHDgiCqHAXf5L6y0VbhLElcSa/ff8GpswdAQoG11laMQdWN9rQ1SIzOD7KgwM/NnPSxkp4/y2dC7t1KNPDHwOehVLYHVWKT7gPY/4NBz61kgPtrrOenhaUxZ3mmM/raNzLr9hw8yK9L3sDH5MtWGytOTy7mIW7F4bwoR+j6NmVqdByL4OSa+6TUF0fX/pvBTSYhKJXtBTIHvMAm8BLUHx/JfdJ7gTXE5ZcdG4Yy4SOZT+DTix7PoAWMUP3Ur3IX+Z6sHl2JgQWdtKOtkR4/0GJU538WCjEE/5eeoi2ltow1leD98XGw6kQG/jmNB2ynm6kKT6vKP6FKR1S1mWXYGdU+yIM9wUXoIdVHyTf+IDLLgJ76gWjvvdL+nj1DjxPdMGouN94bKYOjD9uSFK3jVl7aSUdqLGj768WUNsVaTA7s5Scu0dw88f9XKGuCor3XDFHsYwyQrdhd0sq/HZSxm5pxLudyN9VTCDfwBrcY41gID0EHedcAOOSCjr+0BS/RS8mg4lKeFInn9dG29Ffs1ia3SYNNU4RoHBDgiYlHERd51Zskh+GF97NpKXD/7Ld8gZaUZVJM5wkwer4BjAZMKOSnz0cecMLep2u4AP1dKjz+E2BZk705Pc77ptsDsGrlcmhUZt99euoaFcYrDdy4JvTDfhLTjZ/7UiHvwf/wuWVSrBxlRemQC9a3LHhbh8fFgqwQUODWbA8JZRfS33mloIsnqRrBbWzNTirYx9U7bvGe64sY5ODEZy6M5MD7GaCRclBfFYwg/TKGRYIviOzh+1U80sOvwUnQr6pCI2+/wf/zW1HDfkLvMy/n048swJ7g1SM+tdBf/SVKUg+AJvvjGNLg250s2qGw4k9OOXUPay8rwOy8xNhzJhKGPkqlPU94+B8XBx3SGTTek9laq5ewk2X7CFcRxf8Lvegw7/fLPSxk1OvnqJqxyXohrtQ16dpiFPnU1xiK/aLmsOwtWqY2W0Bm6VMOGCDANRlvGe/TkeYl14Cl8+dI9tjRzgs2x5i3mrAYMZTDDGbxQudL/HoQ83wK203iBkvwAt3+knScgn3yttC90x5jjcfwAsms/FemRgGOEWTTFAK37aoo0uZa7D/+xUUeK0OF8psOOLnEbA9K8SHVW/zq10BfE3ZEjutTODY1m74/liSi72lQNvyFJy8IQ2BS07Bj/oo8IqzwJ/l2XjBvJC1Ldu51vscCVywgp/JRmT8VhrrV6qQkZYn3jkxBVbsGmK7U824rl2FknxTSPiNFCz0PYQlwaEYdj0cF6fegi51H7g1wwPlZQrwj2oxOn7J50+elmA0dT/OeVJMcwsqAaY48YrShzz+nQb9PXOcpju38aTKTtzwZAw8rJsLNnf06ZzRJ6xb7cnXfF9w5J5krswtRlHx3ST4tYgqHCZCZV8vrU8+AC8CA+nsmwf4VMEJvD9vIpX76vS3fC8nNY8gI1VDGD45Gad9FqKjSS2w9MB/sFHyDyyQsSP8NZoeCqVR3kZb0vw9Et6dFKHYK5r8c8ww9GwG2hmdCFNfmuCxFwW0YZM5v7ovh5V/FKBIWHSIQSdh2I8Y+t34kL9pucFT5yusL53GbtuGMbT+IRMHIyicfR4nj9xC5kLWZKYvhvTzEWh6eeBs0T/8ZXQinEhfQJG9CEFzE2Fhez2KexmD/95UePguFh16Hw3x5SIK9dDF4Kl/uS/VADS0mnmqbgfOmiiLKSPMUatPgZrjVEnm/RyaJyTA0sX+PHCKwGnVLV60wYkM/uwl77wkdntXRzKNA/jp4zlsdHgOc1wk8GqFDmhWd+FKpdFwRS+MQ+rPU4i3MJZsLubNo+UooTyR3p/14pJiHQh6FIKL91+kARE11r/+nRPUHXiLRRT3nbOiBwElONV9KuNzYbj7NA9/uQSDye45uKNYgl/ekAVXCwnoENxK58/OJh/ZkaCaPwEc1RP5edpp/GcUiFl7p2F2VTKPmjiKE/f38N+aSHq/XJaVXNRh1RUF0P86BjNqVaDnz05o2rgPnpjG0Id6TRwfdp2bjxhzdq0RSG33xNv3PDmo/wmJTdcGxx35cHfTa1qWUQbq+t/pZoMTDO4wgPSe5+R8eyEs/eLEecapsO7kGxJXfw4ST5FF6/zo09inOCVJB66Nb+IJi3qotu0xHi0f5A7nXrQbP5w8dgjDMaUwCH6eBj7RE+F+pCx+yJKlkf8c2MX1BiVoCmCUQxfUyAlRXO5rjlt5G0X6TeDqqnn0+EIB+Kz5Tg/Ol9DeGYbYdC0RRoSdRaGolaCgqE6jdwnAwlkyYDOwn+Lff2EjJ1dQ+W2P7XN0QSxbmGd5G6LsFjHuSwDYdWcXDLT84KupeWA85QRs2PqP943/D3Wc9uORpUYYMv0HXVltB8lffGAw6zmUSEwjFws1SlyuwwtXzqapapqw/mk65U+3wnFmNnBd4g4bfBejXer+eOBaAL2umMGl49OxP2M/20UrUfVbQIF2RRiomkMHbwxCh68t9V98hs4d0+nobRl+3G6BAU+WobapDK/wMIbGT2fIIWAjSE5yoHsT7/DWy5cwfuY3XvvhARWd7eNh4pKU+kwTagqT8ZTCFhhV3kzGP6P5QOMkPNV4H71Uqvnw3y1gM8S+ew4KQ6xvGlX7W+PIjhXk9a+Z3YI9eMGw0XjZ8SMa5/SClNB9fjlZC6ZcbgD5cFvc5K8OPboDKPA3gv48nENtzpcp7VQOhBulwvpkZVhYGsH2I9N57+VhbJP3DY/fikenlyN4hPNKWgINPG/TJtq2xhLExFPh82IpGlaRQGUrNLDU1Jpmnh1FzTfL4FC3PXReNYVRLSqg83Iqk987TlRxIoGpzbhqykeeqXMRDAa8EbU2UNorL5yRZw8/dXzp5stA3v85lao3GuLGrqkofDCBfCT/sua6SP57egHdtROCZbUT+HT4d3Tt/wCHx+dCYLEarCr5zYfHC+AW4VSWu1OO0+wEwOvBOJI72kqPDxThvMYkmPmhkSrb/qNIly80UzsPI28GoIHucDh56RuhazIeudiLyaIJ8OxaCaySbwZraQ8+XxhNJ6JTaa3/GHg9bzIaGPrC78AvMF7+DLsfDyDxdfd4/NxaODHClObOf4Aj1RUhWzcYVgwWwdS+Xvzgugd2zGihlcm1qHNZjosbMkjcsR1dFijAwq586vz6Bx89N8Fkh1Vwvuc37S5fw9ZCCnCr7RKZZ17k96+Gww0hWVybKsQCt9LZN8EVVtu8gL5XNrhw2ANSCTxIa6z0YY6KPHh22+E1u6dsuG8/Fcuug4my6uD4SAt0QyqBqk7y0oOncftHTRCbN55mBGsQdL+jA4EpODrMkd4NneyP9S20Yc8Rys59CibeMmD2WRRPT1iIq1P/Yd47U0qRWc2LgpfS9ksx6OBTy0I9jdRcZQd5GmPRoToQRi3WxMXqXyFqQhDsujIcX7QT3pvhTkW1xhBlrQ2rgz6y2oYxPM/pDbs1RKJA1gs0rlXHner7aPHhiyy3Zh7FsT1kWWyDp0cngOzFBSwrMoCP1xXBP+cPcPHqZny1PREfNyVQ0bexcNnUDLZJrQC1//8nFrbTlyc/UE3LFWcp/caZ60YQqQyibZQqPLhWz9fF/+Iv/QK+/KkF8vb6cJKhOXudKyB3y6Gc9VLBYaHycLVLAhW9k+F27B4yf/uF/s3aRz+mfWShT12gv1QH073P0pqphmD8XQzj3H0p1HoGjGmTInnPO9Q7ypPPaRdROZ1lyfrRtCRRBxQnNMLonR7kZX8ecgckedKCH6SwbR8ZT+1C9xWROH3UX/AcVADFhs9k7VwMCZc24clbZWTf0ItfPQzwgUE932r15y/jB/CaykgYbS8PywNVsCbXkHUN1uBmtSbQExXCxu3/0VovS9JPbiCDM2NAt2gaP3mdQG/sszEt7zAqjfFC0CAsyFHnmYPbuLarFfAcwJzkPD495EXz8gmXOa3B5ydesU/0UUp5MouTfxL71diC0bSJsD5MHls850LW+RxYKv0aHO/bUbb6UZRdWAodk+vBYPAvPmkUg845AvzI7wcdTfPHc7sTqW9jG4VulsfPCwvhQeMVsrNtpwdrDGDBj0vQ3dmNuen5KLhrGHd9LkC3DfJk+G81CX87yjGLO8H0ti54Co/j4/47Man3BzzpE8aw9Kk8btYf9Eg+TxLJ2WQ8fDervRaDmReXQnu6CH6fnEVvfL0g96YXeWrI0J/HR+my9gYQtBDG+S1GsPyUGGSsYwr9hrTH5SXNDHcHoXe+KNkZxvLHbuH+racwMVwOdsocYftXojTScja7yXaC0hZm343nqeJQB67cocV9611wxESA1L597N8wlba//khKNhp0x7uJlU46Y9gxY1bpa0YRsWmwyXcCHG+bSnVTV/EE3VBaItNFPoYLUDZdkM3/TiKbiwpcPlyE/kvUg5m6e7ld0o6sBUThxtZt9HjrSh5hkMmrRBR5mJsbLL9/j6bqaoNs2FQcsdIVkk+bo2Z4Cz17u59U4vNJzSue7m5w402plyBriE8/JHrhiF/ROLq8j1K/ruLW/O3kErOdjRpzSDVtFTp4u2DyrjFgqjqDrU5rUq7JeTqRep4Xf92HwaeMyXTrTdyaXQ9mm4fe9aMwxF6T4fzJYyS1czOs8ZhPG8NucfGlRFTKHiSj1BCqWHGTN7zSAbH6a6T48yvNN3Sj7cs+kHXpZxr9dA84Xh1As+4W+FsbCcrf7OHd7k90WFSdlrZXwsqVvqx8oJnKjL0wPv0sLJmwnI0D8/FP+ATYtLQclg1IsdzYWpSbNouCDtWh8q5IrFzyHb5VDMDbntH0OsN2aEY6UMmyhDYqFdGg3WlOq9ACjZFW0K2qDDFzz9BJjeEoNW4CjHvSDvWv7fiB1hmo7T4DpsYb+FZFOoVev4rXpnzBuOJi+Pl6AphINnDI1kvYWiYJ3WmyPNCiytPumWCS/1y6YbIC5/Uu5sGyYdDavp/mfH8MSz0ukdjOcDRt3AQRDUGY8GIhvlK7Bz8en+AlC4RgfV8QmnQeYNujN+nplHc01jYEI+PWcskPR3jw6RAWedmwnqkF9JfZQ0L/Yz7psx5GnIvCkprxbAIt+NEhk1QNnsMOQU8+sn046C/wpF6DS9DcuoNV1oWSlPYSHNyjg7cHluGMbYdJfYkAh4wbmvvEdlye8A/E3vnjdW0dyjEw5o83LPnWvWbOPxwJv4V0YXLmWDA+GIY/NlWQnqk4p30QId+wJ9TpmUh6n3bDeGsr8j34HBKbRODtwSY4hA94UncZtW82IYlt74fc4j94/1wRhlCX/N8E8mITSzjq0UPJPsLQq9FCCR/+kU/zTHb/aQuuuVuxdcJCeFtayl8VtGHTpRbw8vyDFQcqQN7kALSXrqZNayt5T+fQYu0KNNrtHolckYB3PzWxeK0cKB5m7h0VgluDM7Et0YNCR5hRbWw9PpgZCv0zNKH2gxgJHZfAiYfL4F3dW85qXY/Ri0NQwS6cf6aU4fwN8xCXiYCn0H2qXJ4Kmgkd7HEumnUeKYGG2S7K24voq8VYXX8S5LzGwr+pudBR+Zh7fZtoza5JMGbeW7h1uINn6MZiWJwuHYm8ydU7xkKAnDYeePIa4jtOkGnyHnDO/IRrR2ZyyzFXOP/BBR6nXeetbjog/X42XPy8AEJO7+dj3VMppXY1PnR+walnbtCN5bZw2v0ObRklDCYvf5NDpw/2vs7gGSqreXCxJKhODuLpChk87qAM7euwpCBRKXAckcZmCapYOy0enMeK8YlpB9nGZhD+Fp+h/Nho3PP5GgpsUwWZ6XkUZOFHpoprsHRaEvhdD6W+VxrYtOEaO28OIIutC3HwzlhI+pBPdUWNdDfBAMeVDGfzZ9tg05ZQUFRfAoPOuXhe5y18GT8SKu0jOaIqn8XvW8HenQrcP+4ZvwrvxRnOs8GI5sP7C8M4Ipthh/NdKFiTwrWNYfzr9G2O6h3F9jaPYF34TFJ12I+5Ri64NZogZpY952rd4WTazov9xvDVYF2e0e+C4jLTeMbAcv7V6sxpYxg0lpygKaVCFGX9FMTTH4Ot8nFoKR7KmJr3pBhrRmPjHmNVrAWUTVHA8IVpMMxnHnaGrMYVFMmrL3hz7J8PtHfES5qx3m2orRneJ04Ey13hIHs0iY8X+OMCzwX0BwbwkVgQBvwYg+lF5XBnhggUBIdzh54FivxqRSfzGna0NoGFq+u43VuSa59Mw7rPXyCwUxE25Hvh3ncFFFqXC8K6NjBnTQYfffIHz4bKsM87gB/XJ+BxG10QcN3NJyUv4ah7grCp4CI92hGLbrIKvPVFJ9PJrZC4+A18nqQEPZ/nY0hjAR3JMKTdWVo0pCzw5ttkfrRxFLyvk6CnzpM5MkoQDqVMo70m3pQ1rg52DdjQFhsnCnPdATO/1cPjISccXDQZF/uPBcVWfRr4L52XCOygzvVWtNDrNLraXycZ+fd4YlYOKUp9Js87wiCviXDoykl0Xe3PB+3K0MJbm6ue7AGRHTX8KGQyWgefpdivQuCqnIZK99bDVZ5I52L+4l6ZSmzU24t5xoE8RZP4XWwdzGgyhUTvBPw0ciuXqr7nH9W/aaKXGy+3ymfH4ETo6/XApfUhrCOrA2/eqlPTp1ZuSFjEWvtEaFSzHPkFxtBLj0e0a2YZOL2zw3FDbrFisiB555qwU/96ssz9iltX/wdRoeFYZrQQp627Dh99PKCIBeGkzzg08kbe2NDCOdJmkOAVAMu/PYaN0x3YT68EL848DtOu6sKa/3QpVvcJKw+F2EURH/pu685vLk0mvWOH4a11KVudreCtQz2YuKcdeiaeximFjfj6miTNywxH41FLKfSdJTd1jqJ1Sf+RYqsNvBL2Rl8jdVrYs5Nlzrfgy+AaCpgrhwEvc/DJWBGIG7wPbgt1Ycprf3weMYUjvo6G0LAWjlOLx3UNyzBpnC69F5alEQ3PcTDdDm7PSeLubU9JK2XvkMO/B0NW5Blvn/MHlVVsbK7AjuVeoO02EVp9teCG6zka1ASsCBKEWpVsnBX8kja7m7DfJ2nwrIiC08NMIVt7J5jHEtaM8sRTlhV8aMJjvJE5irY9LEPHcUp0a8s80pI3Bm3XMA7ydqf8O47QHr6As+d249m593jTBS3oPuTO8x3H8esUURC8aESVMn6c5rybBfd+hLe2J0nhiTTWhPzGX3//4wb363x+zASoiIgGuSRFeNbVRTeXTYHN5yr5U+1fzJ1UCzcsv3JytSiNWjcRfku+RfPDz1A1x5kdZj+Ap89l4dmwPFT7gVipvobellfjUmkpkOi5gQFfR/CJ6st8pj6OYlzPYqDNft4xP4EuHrzJzmNd2W6HFXyeowuzd0zB3Q8vkM6sCyxgboj9b87gg+0+fHOlLKg9mEltgUaQWHmH80MVcX50F2+YfxNF5XIx5sZT/rMvhbyqg3nH0m1oWyULLvY5pPSvkb/9SaexIkkopprDCgeDSSrVDSYNd+eN5+vxgL0tCC45Dw0xdrzAzYPuKVzkrV92DrmHBfs+3kXzXh6nfecjaWynEWSqy0JxVBCeLj1KSS5SWO9YykeO76HQWlE47BiIIRHCtNdIBUYeeUoRepE0LP4hVlMmfBuxBw3SkrDT/yuIG/6he5l76ayTFbRbL8RFkbJg+fcTXdArpKKUY3xS3ZTni1TBXzbAWUdzYYmlIUgUWrCm4CC1B7tR3R7gK7ck4UHJS0jY8ZQma2XCv89OpJ9vC9+KI6BpcBPejniFbdJyWJLURVl57rg7WYyu7xlGihZ7UAuNweHTOejo9KR/d0so/fN2Svv2Hc9G36WfgW9JcV0pz0kM4rxuE+i3Xkz/3Z0Gugc1WCVyNQdUr8Iv7TPx42HiD//sKGypJc32t4JwoXDQ8Jflm68X8HVnVVD/lwdrTZmlZ3uCwMlfsP5uC66xHQ99X3IhbW0kXFEMQPXnlykXslj6WyYlbx9PTwyreFLSRyrOMIPuyx9huJ8Ctsi+B4tT2TCh9Dt89J5Ohlab8M4uQfhvhQPcfyoP6yw+kLxyM58hPZxgeosubDyF0TYa+Ml2K/0efoH2GfSzlpoQxBUeAvmO21y1ZyZ/G/+QB2tXwvPZ0dzvv5vjajNhcfoEMDYaAcrNH3DH1Bx+azIflW3OQURCEo36bcXlpcBi4cJYqzyb/fLF4JWqIlTl/aRVuS/5ipohjtf4QucScsBk1whSfDXIY4ZvpoflAqAqXgOmaoDzRRRprKc0GzYn07c1s0Frpzso6R3FB9aKcDVHDnbbJtB3qzOUFj80/7Kb6diTCD7rb8JxMUdpfu8TnBy0EuYGiUHP9pXc/X099wkPeVX2Ub5x7RvMa7BEq41ymF95C/zMU7i/RR4mGajD1MOJGFpihbdG3qRn63touiNQzxgRejf3NvO9TkIHbZhg9AuvrlyDK+8VAIZfIDHFQNar+kf7ppbjk9oeDFaJR4k/ihAXNQhJi1roTrcLmN+bO8Tn/jBz8mV4Nuc5t0h1kdTtStpQKAu/foZAUJcwl2S4wcX04ThZkVnczADTjtpjYaUZFv1Jo+5ac3BBZVYd18cNsxQgJr8dkrcgbZZQw+WWTtiZO5MFp++AmkWjQdizgdTfV3K8uwSrPKrD1dGDcK9pJ5SsiQBXRyO+NPUYjqowhu7iSLb4gDTRTwg2x1+FCY8X8dOs7dTc2sJee4RAJMaQVoECPLrZxVZr7fGymjlb3R7DyonneOqWGXDk7Ufa4VIHEcHSHBulCzM2/gb3r8tQ+FMQdd66BnelTsLHmny4JzeMtt5rJAFPC1w9RRVil93EwzWrIMBWh/OVP0GkqizZSUfxTPELlBM3QOtNh0N95EQomu+B6r7n8L9h/1CoxYxLRSX4g/4aMqRh3HjOgR3ULoNJjw60mthicM4CTjQKgguXNPmpfwUmN83ja49UwPmSN1taHeGNZgZQ2FQC0xOq4JCyIeyct4SljYZTcLAY67w/Sbu7XOlfqDdc8VaDGDsX1p9SzfEvvLD85y7K/rYRwrwc6fGUR3CuZxnO1wB6+AYg3uYL6zTV87Qv9hQU8oPi4r/iu7Pi/N7rCDs89CTDOgXyHG0II+cspuxTEqy2RgGSSlTo2stonFz9iMb6R3O7yhQyfJMCDgoEj9/GoO6lLuwxUKTlqsHoJb6O1H82Ycu5clZXCkClPE/YedsaakyuwaoAe7AZvYx7NG/QeelvlCVug5ozi+jJrNMk0B7Mq81s4Pe147zkxik2lfPGD1eZlhp3oa3wObxns5PG2NmRgeMi+FmoAmsvn4X+74148f1NqJG5ggJHRXDM3P34cI0RK4r85A+WAjRYJwF1St3csCGYPqaKc8d8S/7bKgkjM6Ro+mQdoPif3BdWSZ6VarDYtB+XFs+HTskzqMoPqUC9B93umrOSvCYdWe9Kj0sl+YLkcJDduRLjOy/x+K5I2tY0l0pyOsj3/Eq2j3zIoion6eLfXfTjtTH49m+j9NISclMoA1P5RfBQbyYscLLBzebzoUTUAIRyG+Gkly7s5Et8Alezx5En2P4ygXWuXqAfXx7Cx20S/MnLEdK4DGVTJKE9fg0q3tmDJYtWgdrFLtqsVcE//3zgfetHU8nFjXBBcyp6fFCH/xIlcPPR25C/KBJnnm3A6vxnoHO1GtuPxlF66FM4O/ERPA0l+GGjgv4v7oH9RDeu79PAcXkfhxxoHV8vbcB3q0xoiuVualkpDyNjxTE2XYB2K0vS7YHVPGXCFnpsWsTOAU08MbAHHy39RgU58lDCl8lh5yQqLFwCsj47wEm3AuhMOfKDx2CeJku+bTdw9isBGPHkOh5IvIKebZ9BdoE6xQ9xcWTYd+KzyFJzrtLrzKNwLk4bLny15YDz1qQsV41/JmhjR2E36/kzhBk+ARXnJ2gg1MmhZAtdWZ3wPvAQ7i9ToAUpxbCoYSwdjI/EtxZ3KbZiGJ7+sIcnxWrB84h4alBqY1ef5/hLqAwe6N4Fl3I/LqrSYK+REkMZbIqeRTpgpCBKhxaf5gs71Ojo5pHY3d2GsnN1waNiBbeFrcF3Z8K4aZYErLQugOZ5WaTZo0mj0mehRk0EXiwn/hlwCNpEL2GXXQTvz5WAAO9vVEfurN/fQ+qPvTk3ax57RAWCc7gohcpnIazt4nYvNbg2/xIP84wj5RX/cdSOC2wlXsVNFMKVhSHs23ML79n3wyJBKSidvAqrq+u5R3Y/h0ybwm+/dMBXn2LaH7SBtRLV4PVpVxhuMgEexBXA9Q8vSDq5lQw8vOHnl3zeLOpLtV7TScxLBi7Yz8J5t/XA/sdquDnEwzGhGWC6Ro7LZvyg4ihtyHb8zE/dHGnxu7m0SEYNHPUXg25BNH6QOEuFs0ZCY4cnSQYznfOTp4xYJ2yb1MWK+pYwsPAIB25YwL8tV0NtQxe82UA8Y91tmKBghHeysuix4H+sO8YI4tNSIWDeEXyGiXx2vBpbzjpH/mciYZN3I3uFrsEIh50Yfs8abttfoLeLN/PKTj/uMHajpWEfWD2+lTLL3fHMi638yPkgJBlJwRNHISqvkyODy9NJ/aM4zIodxzmZpdzh+ZKj/rlR1I8DaOkC0LjPAL8OPKCvc8zYekMt253pIdFAYQxJvk3GK+5DyifkM5NUYFbDdr779B/oPtnP1x/dhMmCNbht4kjOG7kM5W+ksMBKZXRbJA+zfYVwm7o0GE24R5+KYvlY8H+Q+SIdDtnVYmrkSn6gO5EvjDAGkW93uU1WG49LFFP8wkH0OVvOEcP72UUqlBZpZoNAUz1+rx8N46vODa0Rj5NfXIW7SzbyBPF9FKl7mSeluEGnkzELxoTAy/DRMFr3B8g+nk6Po+ayyYZ/dPyHPJzNSIM9QcvRIVKelvd00NFghLSeekxucASnujiIC18ErwP1ufZ+I+1yccL2+pOoVL0Zcg9ZQ7X+dLh47jE/XXEA5oRXc/O8U+hn8gjC8tTBO3YcheqspMIhhhloKIRL69Rp3+evtDekDP/YC+FH16WkbmmO158OcOuFw1hdawlib5eC5HI9kmv5je6ymrDN4R5rFzjApIpgLIk4j1HzrvPFSbZwUNaRHi0r53r/Oj4ZOBGq/6TDr7eCaPOmHnW37gU/+VQ29NCDNyKz8Lz+BYDT57ElwwD2mUwHkRRHkL8+gX8f7+PkD6JsaqcALr4RQ3tjBzBMlK6ejCPpczfAbngqVa29jhc3X4Y0dKCds4Vg7hM9/v6fEEhICfMbtTNsd0INY+b1kuS6zaybJU155VmYetsSrrRY08ZLlpAX5QbPIkTxYOFM0pizC2fBebKbUot31jbyT00hEL9xAyOCpqCRiRIGHU7D7qpmPGURwkru6RS85BBs9n7Hdh6isKYrFv2mXCHbh3ZDz3YFXzRs5T+bc+jqCaSdkQI8P9MDdj/WBIO5mfh34ijc2H+Q07zlWSasB09/PsOj1ObwrLvBWNqxl1W7hEEz1xwUNo6gl2oLOTV0Ac5rKwU1eTnM+3UX/Ne+pY+uVrS7SAEuFCMvtCiB1qotbKU5hh8bfaS7KfVwpn4G5iwPwaYpmvyzyggeCQhy1yRjLBjM4Zgzm3DtpR785WRMGoo3WC3VA0os9WCevRkUPDegjxRIWv67WOrUFnwxzJWumERz8Es9WjDeFKKLHtHJlJHgoCGFgj69IJU0HQu3RJDweS+e7LYBQwwrsDB3I+f4iWPGlYmgquXDAg98eOwGE5Z/ZMpWEnas0i1KDQv0QEQ9DmusHUj/tBRcj7kPI5UOoHTVbXq78wDJWSSgwLAIvqDQBJsGI+D37iVQfMASFu2U55HbNVHMRZAWbjWmOy4euDRZEyONDvPasj5oXpnPoGkHq09OxyTTx4Br4uihkjd5lyvjoWdy/KvvEm1pGw4BOIknFwpBgfJybLw3G/KH/EWrbQBt3UXhS9kVntWgAjePWWOG3hu6fGEcjK17A8qPGuj3SxGeVJ7DtiGd0MmrUXt9Jt7ON6JBz9NQeNsebqgexonFAqxcV0T71FNJwn0xqDXPh+klp3hjzjHavGIVCY0gCD7RgffehdLf7u0QmT0WzHE1VR1M4VnCpzBz3R5MSNbkompx2H0lFd+PNmLP2z9p6bcrMExQCAN+roHxs86Q2UE3yv15hwMODgdDa0Fu9tCnV5sjIG/vFIqs0ofDLTd5eU4nfdnfBo87FSGwUwKqfx1lM6c7sNb1GF1pakR7pxr63VtPt63+cfaw6/ArKhQX2Q6Hwq4D3J3URoXZHRBZNEBnsm6hLe+gXHxBFfbXydy/Bu+dEoB5npP40u7vpPPpFOa+mUOF4XdYriAV/X3zsXnbHZ5fdZ/f7TaCE1UpIPCJYPPdXor/D7jUbhFNz/JmRZer1HD/FC7MI/6v1wa2tX3ga3mRoBp+EmJb1dByiwtsh3BO8AiE+X6x9LsqGg6rC8AM0RoSWu/KUjLaOCjaRJMnz4Cdd0YgP60As2pnSA/ayNd+mMKtdVfol8ZDsN1cCT9z/9E8g33gu7mYUHclBoq/gJ+GbXB1vxysW7GGPvcXkdzIz+gc/QqtW06hzOfhQzzUyjPsxuEsVUcqEbCBcZb/KPuONzw2WYJmjpPB8JkgbEqZRVlhq3nD1G6QlrPHQBULuPlLGYPil2DJobFc5DsIdiMXwJFRX1hwRiqi6xW43rCM9U4ogdDNan4kmkOPcuIo8/MzTAsf6kizLbg3URpdV17EdrMMNBsrB3/1drPG1HSuFz5Ag6W7QGZXLE/I+AWVtQ3gtjyLrGKzMXWjNXjubqfXWW/Q981HuvooDtyXLkK/JT64LEWbrokEkcPuPPa6OBZ0PijwguhrtNcrGQ9EyZGr03daU2vOWUJ6vLuulSaNz4PWiZbwNfYHrX5jQzMvmw850nnQmJjJoV9Toe3MT1hQYI35j0bC6ThjqNCzpKaY4djzWxL8h1h0ocMBeHrCHoXaPGGKzWXUXbEBPJsVQSXqCr6t+s7r7m9DsQcZ9MZxLz0/dBle7x7K2G5jKP3GoDTHAK4pOvLOcm2USDalW0Yl8DLnDkyunAJx15PRzcCJbZ194PJeAdh31posFjznY7tsOEjYmppmJ5Nl6QtM/rUZRL7n4sr8AMh5Zwnz5ulixdrhbPxiAW7Y2QAu0SJU4zcBVpgHkqAQQ0TYGuherw/fIqpY3XsaLlyRyTlt3lxcugTzpw5iLizCeSsHUcJoHv0uMITi5mHcrTUHA9eeowf5Huy3WwWWq0bQA8+59GfXeK58Px+ePbSE3+ZDjnBZnz5c2Y4DnIvH97mj+jcB6ElbRaYhldCx7DU69oyHcNcU9qhYT14JT6jWZwXeyNxCIjr/sFR9JNVLGIGS7EzsmTYO8ttccdqtpXC1rxb9hSvBI34a6mtehRS56Tw4xQS3/LmKevE2sPmlNc77XMbCDUas7JnLffuUeLdTHy5/+RmOBRwHg21WTJ9V4PauQGhYgCB52pyWC/pxdFMBN0hZYfbmvdhw7CBV6awBn2XWEB93izIKJeD0sCBaXxlNiQNbsUR8Lnvf68Je9y62xGAsC5CGjDuiaKN+GfzVPUnXYQQJb98Loka1EOEwiEdlTVDPYzS6HpoAM7dOZz+Bw1Rq6IZ7HUfzfxcIlR6rU5JKM9w1vUPK2mtQfaEwFNyxx8FTRij3qoDqdqtj6Q4hWh11mxU19TAFd6NMzTToXK4AjeFXuXXsS1742pbHbqwg1x9jaM7iJdxfPBukDZeB06vnrL1vImyKXQ2xvR/5ZO85FO9KoATF8SRnPo3f2wTBesV+Lkoyp8FtumD3oAbm5EnTMY8gUg2ogrcizVy6Kwp1B9bDnDNxUPX1Go/S1AfdlBmgPDoHquYlcFdNMib4r4BFR/L5WMcRKo8R5tl/fXlviD4otUZwi5UMHN80n/wXn4TrO9/CllHfyOWrPRRaINR5FtK4hUawaP0YnndsB8skW1HZ3s980tsOnsqm8lhzZZJ0X8YWpzYizrUCoXHaZB8xnBS9K0lcYgVMzP6Kb2/HQFd3Kf1MjqJW5UDadNQWdo5+xX7qbzDzQRlUfv/Nq2oOc9Hgd8ycv5mFjawhx3o7xqYZw9m82TyQ4YCtcWvhWuNCND+RxPf3+iH05aBXzCfo0D1Bw//aQtKceXy9o4/HkDlEbfSh+IutZBdtilEWbbTqlhiZHntA9SMUYP/9STzQ9BR3r53F2oOF9K0M6Uu2IdREpWCO2iuamL2CP5cS/FPthmVaEXTirChJyK3niZpGIFYnxVt0w3FX02h+sloV4qeYwRrFmZSyLoTFsB9f3tbDppsnYML4Vrg+XgEenSvnU4MKtOaKBXjs7yW3/YP0qVkLzXoP4K6va2BJbQEfG/GB/1RNR6P88RT30BrKfqpilc3/v0UUpiuPvDmsdBqdbbpAs/5zRQ9XZxzpt40n6o2Fpqx8clb+SS9CWjjs5W2qX3gdN+24gAo6Y+iFlgvPDm3jviJLcD60CW5qlNKFj/osEX2S0l/k8cOYCLQIWomJMp8o8MAtDD1lDpLpX2HLAwPIOGgBo8ZYQ7nJT1o/2pW/K1nz6YSn/GLYUzw5Ugkm66nQ38RmHHazA+JWWXNo5huWCtoC6yq2oZWHBbomTKTJNBo0LN+ATuFScJYqhi0panw9/g6kHfzLP1pO4xyv4yA9qE/i6dawvaSAc0e+pJwkETy6CUBlxlmuvzUBntSMhHe/W3jWrNE8tlwbjv3QgHCDTMorXIUZniPpTmgqXo7K5SLDGyiw7grcnniFDIYzDOrH4/2YXAz1D6KcQ7VYf2QCHdCOoPE2URRjtZYHWzbgUTUpGKt3BDskxKB2zAD2blkP6ju0+YCDBk4vTsMLOWMxZp8UhNhowsuDzrCyeA4IndvGUX4KLDvGE/PFjvH32LGYfvEwWPhux3af8UAKL7jvyDOU+nGWr1VfwNBOZ9qlNo0zXMU56OEqCnI9i6wtAb8ja3GnUyetE50Es5vk6XDYXZa0Vge1dnN0z1iKM5a18ocDWtC9diItm3uGDws/pTZHRRCWnsn6CrNBd9k4KNOMhg3Ks5DLR8LMOUY4KkGDy0JXkH58Ir2pzsfTR8LxuFINeUt+w68Lt2CdnhLcCXnIUz1uwOTg5WySVQ6a4nNh58SrmK08H3Ri2yC9LgiTdPShStsZ5Oe/463FU3lX7ypcOjUCfR3PQ5XZGBK/NYJUbi3FrFOG8MWmmffou9KDw5PpRZ4pF5Yl8rHQJCoMKCTRxNngvG4PLDAaDfrVinR1/0449FUJIlZOhdSvzTTyYBPvSWqH2RtkqexmAoSP0oHe+GBYrOdAf34E8HiX//Dp9l8oYH2BFWPs4XW1KjRFEXqVKoPojCPQn2FHI4dvxxXPF6P26dVYfkAUowNWUBweptZ7+8lm9AjI5EFqEpOhFJ/jeP+pOmUnxaDLRWFq0+8A10cyeKfUhZp6reD3rl+kvsQKJJxTyVPDiJxyOwFDRCCyOwf39gzSMfqEQi9E4e4VU7p76CFdy2jGxScseI/LU/J3X8SocRoizP5RqXs57/ZVhYzFabxyADH5bQt1+mxnX8vdMKMQYPsWW7B1GYDjN2vY7bE9JPc/R4GLI9BiewcZLa/h8BRZHCPyHkTnb8b11hq08/hxSrmjCgvGiMCbgFaQn5jPIf5jMC3uO9x8OcheVgu5Y5ULjF8rA14BotC1UBsTvb356Y4B8tBKgZmfXEla+xa1Lc2h1z0P6f38w7TllBRkBhpTjIcc6+bHgAqUUu2nRSgBmrhh0kzKc5/G6ZEDvMFMFebrt5OiaCZ6Xekit7cZFPqugO1TblDxTxVI+HIbs2USwTZ+FJxed47fO+zDp/fucupgLRSFueEjsRFsF72F749zodN/f+LCYSLwKT8Ky19YUX+pKH8flQxl5RY0svsFmsJj7ufhcKt/GTbpS4PcI3X+b10RKO3pQ71pvnA5KBNvvrtFi6NW8hzDfbhI8Tt2xAEILFfCFP+tYJjWDwKnBjHa7zH2dnjwn2XO1Nv1h9O2XkGfK0rQvnE0XvbN4x8ZcdSy6zU71Ami4nZHOnv7Lf49oEJh0z6SZ68KFNnnofv98bju0giafWMHLrb1g1vL6ljmRRWZOLdi0vRGnqg4DJpEtNiS1VFWUB02UglXfUhD428hqBz1EiZF1vCcNT18IFwQSnffZ5Vvgnx4Sw4ckCSoSs4HvedpcEfdBsa4LIC0Ba95UaEIHLQ8QqkzX8Kr5Gv4c2cw3mWmyiJbKlGuJpPhwqBV9RBNvSfCpOx9UGL4kLuKBLDUbTcvdR7E0ZEaPFUwhirTnsDfIX+rOT4aHs1fixZX9sFcG8aeMHGQkW4EYTIi6cEqWhpxkE6oGaJJgxUIy+/DQIlj2LP6F1WcEcPb+hshQ8sKipNv4u2EFOi2uv8/4s70HYj3bePXgiREyprKLhQhochSKimhqGhFVFq1EFKhklJKhBapkJJKWVMSFaWVElEpW/SNEIo8fn/F835ezNzXfZ/n53Mcc8yQj9tMuPEtH92OKvKiHyNh/oXh6LSpBgYn7SOB+VN5vZoyn9ych1s2y4Cw4l12d03ApllhtOmGKw+XM4ZvPIjTM1VBR8WEvxc6w0NHgLt1b2hX4iZcrbGckxbu4YKmEry+tonuD/FFn1sqWpg4gUGnMLQ8XA0+T+7TuIlVGCclwKfNfGF+6GJcunwir5VuohVqBbRx+UwwGH4Fg6zKKKA3hnqvN7Dm7UhonnYK1RZUwpWgQmwu8wKr6eLg/GMTXhY3w20DToSb6ilmigZ3/ZbGU5PMaZ2oDhnK52NJqCLsWjafRBvzeKSZNWktLOND+8p5Td4wWuepxmMOisCi8EHcO2I6HHjZTd4nZ6HkqQ0UmDMGBReo4WzjDvBLXkbnttrw52GjKSibYQXewEdh9zm0fRZlWp2mwIVRUPzKl3qy9GFO8yRMnejH4ZkiUHPSGW6KauAOqcXYtmQzpxTsRR3LFhTVyAP/ubvJftg2CNYwhAPjvmCFqyS1vEvkKQojyVBrPlyWFgOt4CNUed6D843qMElQHI4qOZBVsgceonfsbHseZtba499T7qiluAfkb3axx6svvOnsBLhxNRH3lhdyz9l2kJvqADMe5kNu8w7+rCXH990GWVVFgVT3TYL65DxeoWSOeWO0uVe3Aq+JtGLkL0MaO3TmRhwuhz9GJlAfbQZW8wxByMOT0i+3wuLsr4QdzXjDWQksbdzpn9lbdH2WjOe+jYT42gY8n7sJn5yfBCl/BtjSJAEs3pkxZCTwr7PveNicp7wuWAY6G2bCxthqSjvYj4c8YtnhxCqcEXGNqjt+UYPyUCd+UYTOYA343WLC/V8HgS4+BbsIMbBwz8OzkZV4ceZxst36jGy5FjdKGgDSOziyxBS3zzjMvuv+0pycDj4/bBHJfRtPo7+7gPakDNYrMIY9qfHY7F6Nhi5h6CN1gLOvzYUKaWmYduQYLjrkA462/9B931gQeTmNtz0VhLX9d2D2x3vUPfiY3/4JxeqhtZGzWMoqudG4XnEo15YE42fXEaS9oIacdo1B71lDvfTrAavp5/KUX0nw690AXrMxgxFJOejT1It/tVMhbtMUbl2yGXqeFXNa+kFyzNTGNaa1POOCGOyqt8YjdzK5XvIS/hzvg633flF3/Cp4HmLIT5f789GoYZyopAF567ooc/N8aEtbC4ZvRVE6gNhNYzp/ddGgGXuWw4J2Bdz/WASkBfNgZOxldlHWQvdPMRS68zzNP1MGIRbP8e1tI54T8pDG2YvCtB8WZNfmCkofCzB7YSDsWLgTuhK1abFPEpjdaoYA/0zY82AyzDl5A7qXNHCd8Tie1tlPYzZU84y016jtMwt2jRfGvLd7MX6MKchOuIBHg4IouvINPN5UxsveW2KG4WJcJWXBR0yXgOHuAVgCmrDhoDw5Gc0GufIcOpfuDXf1S3CneQHX3hrPOXnXyOrEaSys14Gl5Uv5UmA0+90diR/ebUf3HFOq8euFUGVZfNSqCjP32vJoIUW49uwc7rF/zOmXynlytCLb7hVE059R/P1FHLZNsoJlFYbwU1IPbpwVpTPW52H/qnwojF7CewTzcZV7KnvUJJGf1EVQ+G2LDT3S8GyZOF8RKsKBI49ofMcdHJP6Fb2VDFBhwQm6KlpP8y0lYUSrOiy7uo7WnFnDd4dYfbFHCuklWuFMU0kueKQFsUfasP+xEQvdHAMxM54wn0ae0C2G8nqaKLFwBZ7QbYGG4vO4ZSinl/ioY9PS8TA52oRHR+thy41UmPjtBWtfcKeHsXWUIv6avlRL4oN1X2ixgiT06ZWSZN4/tM1PQtEiBzL3kEfZnyPp8ZNMKOoO4m1+8uApPu3/7f+/1hOK2aJyDdx8m0FjlynA9o3tvPXCQbTrFYKBpW9Ju1qSfR+rQ9hTeXyj/Q0iBBup3Xot9QavxZdv0mFsSSZbXfaF3sh+UnsiAlsFR7Bf4i/8fjyDWoM3wX31ZaD11ol6FNv4bnoQhoy5DpHuQhAceRzsVy7iZvtu7I0qxq9XYiDMlPDO6mE43GoCals+ZFs9AbD26KV8RV8aW4jQdM2OFulLQV5BJRTGzEWfxEG83bIFGr+YgUL4XPq9fQbpJ/fD6ygz/P52P308cQivqB/ieWV+RLL6IPJiONgXZeCuti6oi5pMS4O/8yThrZQzZj3+y22DOW+Qfzjs5wwtQ8gsbsFj50eRasMhuDzxBmeNfMjWEWtxz5V2vHczjm409kJMoTY0ea7D8rwIPPVjHoxb6A475jtS6qgwVnzxBSfc+0grOxVg42lj6HW2RblXn3nz3SDouNWIp+YZkWjGaNAKeIZHWxaS5r0OFpOQh3ltLZz/3yf2b5biF80p4Ml15HGmmxrz9/Ftx/s0Y8tYjH4zDt4Wa4FFhg8q/lgIl1LXYdjiYFze6YDziw9CX8Bk9IuaikpzFaF0jAnfchqN1THLcKZPFNjod8Gegfu446YBLdIJYTEbc/SvFALhV/dpoYcFNK6ug4rqfWCq/Zmm7PQAq83RNMLbH271CpOLijD8UhCCxA8d9P12FM6/VsvZEcmsFfsA3sqU8ecDR2CZ9DJ49cMQrlRrUbX8UfJ+Jor3g334c0Y82Ato45dlCXBlTA2s393Pnw0Ium9mg5X4e0gZF8DeESvgpoMRB6zeje+TtuCKDdeIUk/DB2NJmBscQhnj6ujXTVN+efQgNTobs/vsszDYm0jRoE8VaxbwZxgLks1P+Kd0B00cuYO/5QiBipMe509Q4f5sZTq1o5w0I1bBwXejQG1rLL5e546XW/toZo8u2pVs5y35PeyuNrTXkpM552Yp5Zmrw1zPUljZ6c6+CZFcsTeBKmpHslvDNxDtLcc3uvf5n/pWGp2jBW65jTyztANDx5WDjXUJlhr/ZbtT//Ct+UXaaR6Dvski9NgE4cMJBzazVeU4VS3UX1JCO6Jnsdb8Iqr1F6SrJyzg7s7f6FRiCmZZbijt/45eLxkNjvZFeMp9OJtaqFK5zmxynBTFTh+zwTHOEA6+XgRWs5pZ+5E7mYcfYdmKi5So95jzrV7RL+Wr4OWWT84aGjDz4Fg2H2dJZX3T4POH+aB6ShIm7HiBJ3+lQIXvXLhjNQb/jpEAGf11MOxSG0+/cR+7P0TANxJFk4dpMFAqj7NGvKSTJ8w5+6QZnDpdTfsjXYllS7jhixu9SP5GO922QImCMQvVKrBXmhAmj5wKSm4rsOxrP4RlBrB+iD2cnfIODJ8awdKkC9w6XAErNk5EuwxtWGMgQSmbs0lZvwm+aAzNriQG4/IF+O75bpQttwG3g6oUGE8weuRjKnkYiBYy8qC3IZFj0/1gQ+5DMro7GbdKemF4YTDXbFeDuXbz2G2TD9wOqALvfWrkvKuaL+YswclqD/iTWxBJXYsGo15TuDXmLH0TiuQ7F+/SXHUr9tA2pcqjL8Co7jEH5Y6A7tgGKpg3DeZvvc7ix7Jwo/FyfnojBJV/pOCKgz955LrdeOLcS/jS5M8jKoVBJ3KAnkjcxdetOviqcxv5fZYho4VS9Creh14+0uV/ge789ZQ5VKn8pvUiNZjxaBbfejOGZHeYck3wYyx58od2n22n0oIWWlIhDjnOJaDfPEhHL/rAlacSPE/lF23b+4DcftxFr+xIOt31lG+OFQW70oekmqABMpah1PdUmv58jYNnucpwUqqR6JkBaSzbB26VCrAhcSH8816GrdHDYW/vIKySNcXLZvlYK1yFmnoT0Uz4MMq3DocXLEZqAnmULnEHZl4PoWSHdC4aXkpyg5/py08ZHjuUiT90xUHXdjTMUbIgv/YLvD71ARoLG+HEgGv02zyDE1vy6cGGR1TcbwjRd3+TeKkbPV0kwhZ24fBnkysvPRIChkcBXxY/g5GjEnH4zCmgUu4CYTGvIFY6nk1nl4C26mPIEykFKQM/HGszEpbrzmTNHTLgXr4PXT3Pwo36erZ6tQD8reVoo5UOPJ9xkO96ZWNG9V4c7SMKb5rdKUV/GGeYvaSx/WPQxSebBReJ4BozFbK+dRvXnHqHA6lTwdsf2Tz/K9uM0eCncybB+fQXdDz9N7vP8IJ+KYCbankweos5jPoRAx3/3aLytxU0pl8P4eZBSnKWp9kjJsLcPetZul0HdkarQd/2DNro9IRnSyjR0kNvsKlSEvLDxang+AmwWbgVo3dvJTWUha3HS6Cxvpmv+hF8cXUCOUNB7l01iml3GhRE/aT1VsVYCYIgWlSLfotPkttQXjVWXYaGt5osdN6EfcbX4B7rQc4Pr0aZZaNgvLE89PFEmHBKZMh3HUjG8yNabHUCLb+3uLItCZ8c+4jW2QIwtcCbp6nsJpvjEdgQ+YRXClbg33EOnCWiypMmnSHHoZ6akmEAf8++QyfpHpyz5xnEKS/jEzUHuV54HZz8NRccTzwiyWZx/LRSF3QFR9GsoEN4WWkdzX8XQ9lRY9jhVykoWq6C5iVPyO31cB5ZqQ/XA+Jo7aLxKGDiDDOMPuDlh7dhT7sIyuQN52v7WvDE0hYa90cW3qdL8yTFWyQpvRtEjFXIp9aYtlyYDHEJd2hkQwZXzhChiI0Mi9ymwcuVtWgQEUjtxcNpjcdrnPpyEsqIiPDT3Sm4V/UFiqhOhRrdM6AQPUDuCxxALT0H12XkwabDh/npo+HwaZIV9UkJ8qfKUTDFP5+Lxxag1oqtbDXmD2sJ7sGoFUrgfOwlpWuPJffmHO59PQG+x/7BiFHbySd3HetuawDF+DuctPk224xcgAc+K/Pm+r009ZI62C80R4eq5XzWfx3K3pImm79PaU3fSyzUuca+rs4Q2PmXvP9NA8erFqy/OwwNhk+Bf62ZuO3yGFx44BZ9KrTFG/bBnPDpIBVrApTMr0O5XE0KHzeZqFaF5tpbcsKBhaQo70GjF0wF/xk3qcrNHO6+7OPCCQakvHI1HQw4RlWe3az4xJbCnWpoc95zyDN4SvlPNSDt/F+qUB1y16MO3Fhzg0avdIIr835CosV0DB02CT9O/sQnjg1dl5dGMn07eeBXPZbnpqDypH9wgZqB9daR6OhwyuwpwVViZhCiuh0zl9+nkqnXIOzqN7gX9IWjm9NA/3IhfN0nxbVxKvjFieHrtmb2FZkByUOsdSBskF6Y6EC/5Dve5nkRtz4NZw/lS2BpbQpTLBLY9c9V6Jk4GjY4fwCPKzNZes4gWFbo0JyTYZhn0Yf/DR8NQrWdIDDahY7fGQ8g94eCDmmTnZsie+Vb8vjBWo6TOIqnN06E1DvXKCh0Dceu34eLk+zpyWF1cni0CaO67rDYPHtQk3Qg42RBOFH0ln+vWY/yjyUwr24ReMuO49lOmvAsKZ+97h/iAM1TcPLkCDAK/wM7XohTfFoZiCaUE005DQZdFXBiXB55n3Pg/lxFSto7Hg76f6XVBl/A6Oc7NH/cies6LVFQIJkrhPZxxe8XXJ/qQblu4+DJ2uf8Kj8dxCy+w3DrH2Q9LAtum3SCVZgiWK22Ic9oYXbq04e7ntn4cf0bCFpUQlaXi9ne2hMHR8jSc8dZ9L6mmkcfOQMHhk2CAbN5nH4wmgaCEinbvYvfCt2kn3eboDL4JNyoycZDoeHcmykJY4MrqXX9XpA8E8oOEQPQ8nE7fAt7Tmuzv9DHkwb8OdKSwlWnwPVzWlCx9zdIxhmxl70iuYup8K78U9ARIIbxB9ogz9QW2nwkIajZhRqaWrBI6Cxf8ZQn0WfjINB1NdtMOENjfrrQSIU/0EG68L3Ig/co1HNqZRXGfQ6lv45HaNzhH7yhbxeNjFqLz1YNh4t3BcGxZwtpLzeGHuV4qrN4xxlPZoD8Szvgna/59UJd8Km2IIk9I2HO7tf0QGUWLQIn7ti2mQU+/gOTEjmYF7AU8mfmsL3mFfjiIwwbC4JJIn+IF9Yug5W2lyh7nxp+2xb1v3f7IHFhNeREXyR+oQ86TVZEFbm4OmgiWoYtBPmI47B1Rzje2TYHJu+exrJ6O+j07FFQWhCMazWu0+8Z0/BjxgDvHfmF1nbZw0oTcf4dasO6MldhZbc8fBaIwh5ciBuTZdBSbgUv+HkaxooOMk3dz2H/TqGwqi19lZeE1iNncVpEAoRrVZLI8Wto1XQP1rWexvdiUTx98inc37WJL0xXg/szamDs5wKMu/kD6xOIPmX/o8+5tegwMIwCw+/hqzdv4UHfCHCMtIfJ9+Io6NpBSCrNYdcPfrzsfgAfm7MFU8MtYMe0u6RfOxP2Lwmi562vYGb7N3CcFEhSQv74xew6jF9UBJHLRahd5C3v1jSGh1DMxYf6wUB0JB38YoAWYfYsfSUOXqwV41vPkkGu3pWrtYVA5kkoT7fUpLzELsyMUqR33UlkL1LLb95EY8iZjVh57RAn2QyDosgCNNY8ThlPu2ncp1M028WHfo1fhEqkApGBjjRZNJsE7IUh9sdWnqh4G6atcafnYyXYYnA7du69CH3ZVeRo0E7ehQvIeoQurM+/DX+/Ds1ssyW+SojDxeec0NwoHn2c/1KfVhZPE/qEc60lYWD3cpA48QwzVGazjXYdTDs6jLr/uGL183M0+4szzdxby05rRSFFRAkUru6AibOZtEOl+ZKfO11w9OM51xuguEkRTQsN0SHHCHJdEslG8wbM0faixZMeU/A6Dw68uB8WGQrh7pTDbD1tBKXHaMB/h3Rpl7MaaZpepdIiXTy8fAmc/W8WjnO6ia75rjRSSxd2ThgBbn7WNP9NGu3bYoau52/CHo1a/uXwitaeuQVtbsEsV5jNQmZ6kOswCCrJAfxrpzCEzT2M3Wf1uLFgLE1dfRAnpB9AA/H3+FZGGU4MtsDyy9dwkh9x3w9zMgy4wgOJDlS04x2GLQpGrZOvUfGyDPAqF/oy8zs8XL8Ar34SB5+iZRSVX06+bcak0JKNM67F8d5MHZjtVEGnv6Viz3hzmugYx/9JB6H96SgKOuaP88xCeZTfAoiWQXi86jVbK8/DgRNBOCVQCxbzBojKfwbWSmZs5llIu6T8uMdMFur/fsa7pcV4W8EBr2l6kO6SaexgG0nxeleh6uF+ELi/hfiiDCwVJAravpP+ODph85fx9NHZGd1H/+TqtCwO26yKEd8MIaNRGnbE5MEsjdskKupBMfVP8LpWO0h4DrHy0hLuFu9AMQdXuGBMsHKrJGiF/MHGkabsMi8Wg8Z8pZTfjhBmJcIfJHz590dP2h6lC7JXwuC/V+Ecr22Gx2528Oyzb8jkwmqY/zR5aK8q4zpBcawwk4actCN4KUGIrX+lcrLQeKwPFoZDysGg8D0UPpU1QHj7E5yXqQJ9+mIQHhdB27550gaPQHqpYoDFTq+o/dAZHmU6CeTmNdOy32awfGEme+xq5nUvQnkwWZ9EhLJYNEqNq3/so+UXYqDiRizIaxiD3O9XEO5kRYvq+ll9Uyf7Rh6l32XPSHhgJscKreU5pX9521p5sPJxZKHuTH71KYf1twiwIx/Ax5+n0pE98vgxfz7Pun+B1lYBxDZd5cWOc9HA+xsa3i0G09vV5BTxgf7tMQS9xalwNMURb9ebgoytNuo5T4Ny10psH9/PgZ6TaUJOCRzBFby75DeevD3AO7VFQP7+Myz+Z0X/0hp4WOgDuL3rPn3N1ILrduZw31gFxM3rqWKqONQkZYIqHOCWwwd4vL4Nqjn30PT9p1hNu5cG47/R5t8Tob9cFsKNHWCDrwrOLCqB+WVt8LPBgDfticcxt0WhTlILv8iU4OocOdj3yxLCEn+yQMBeelV4ixbXtsDBw8V0+q4Baw8fQca6fbisAmDichNaYrWIP/VJc6v9BZwk+YHK/zPDE7430PRfFyY1FtHbqgmwssSU8jedYoklS8Ai+BuHvNzElwfOor6GEfuuvkzztQ+BwFgVaOhcxV/tYihorShfyPXE1tKZXLEjjsb39KDc0ZEsvyIfBWaIQn/UX/7uqYRL66fBruFnIfT6YdBftwRv/fcG3q8ypvefalHPbRKkz3YjWfE6DHEI50hlLW6IugKZ76JZYlIPW60NBr/fWaB+aSJoqFbAzngpmn7jND2xz0eLxGF8d5UkSVpfhi2Z3bA/SgtnNTJ8EDfjRafu8tEzPnzD6DvNqD+AjcMOo+rDCVBd2sbWV/7jkncTwHSwCcXsM+jIkn8w96EPzrwkw3G1/7BD+xQLbvHmiA2p5GEyFtJr1mPuk13cnHoYSiI+wde44SS5dzsdNdqCW52jMETSAQ3tRWFryi/eMg4gPdsadmvO47e1WzDJcBMn9K3lwJqLqK+VxpHSRiB/fRcO9t3FVFVtnjYil5ufZ0DtrQEIc2nm24cO80Y/PTSPV4WO3oW8VegoJR8aRcuOFPKku92oPeYYhx+TRbshXzk2MwGXHFcGdbvXdDSohfx/3IS7733hhl0auI8OpoeLXrPU9xwUPb8czENkYP/Os2iV/QDXPnyNkooZ+NROk+t1Lbnrehfi9if4xT8WpiXowLyXaljp7Avu9et56yMBNHUtwqj9Yzl8uxp/2f2DD9s9gWsHtKHj+2Eee7yBNhel4t7qTm7mKNh37CfkyOZgWswZLskzJQVhMfDesJBN7ZT5i8KQa0Sq8XiHKF7f+YJXrJai4B3i6CfexA+0RGCWxxUwf3Cd9ctm0tG1dfhOLRAPXOmiBo8alh6hSAlPczFhlTQMPAui80qeeC95Cx8ZXYdmrv58fGM0FH/p5P+s15LwrpM48o8ylLdks0ybJcVUzIKWc4+x+NkmTFG9hJ/W/6K4PHF+/voUj/mmAI/XO8EGBry0YD9KJtVgnKMvxcqVQtY+ZTqp/QS7wk7S509TYLiNIsZPUaH9Qefwg9Mq/LEjFxQWGFCN5Be2NfDFkqWRvHmsHLx53wVwrhZKx4RSXH0U+msmkqe3DYasqMW9J8Mh6qAKRRsOB+M/TqjzYhY7yyej3XsLTvshwXP/U6dsUVWMdbkPL69U4WcjOfB/dwNrVW9BVfoJSMn9SBsTV6JUtSqkVbtyjepdSrScwyNkpKDtWjQlqHVS05IARJ0h1OuuhbN9f9hgNEJd7QMU2vqR0swk4KNjI2fl1WNwmBA6vJCBmx4vSXmCLguEboD03AweHVKP0kn68OXRCahK8YHrVt78rnM+lZ17ilJL5vIJkXBcHfKKK73KqEfNEB4GL8Th+xJY70QhHwjSxsSPYviz6fgQ7wrSib58EOlqYKfD06HZ0wlDbieQxakk0FxRjwff5NCZY/tQx8Ic/rOvg6fqs+HEdnVYtkuHzqfa0RSblfQRduCpcab8qjuf9VtNYO+dTZS914JVD4rB5twQejpUxAp3WrCqXRVSZRm9quK5cM0ceP3zGS1Q2sDbT8yAkO/PqSD+CKRbH6NX89owwkyGUw/PYUy8QmZZf2D8GVn23z4B1l79RY2P3uKI+jVkGHKEeu8c4cjDFfjVxYhWzyrFf/WnKeOAGBxSOoEj3Wvo4JgiPJvhDoKNq9jKejH/dH5LNXPcuVwliEe/VYZCqWtU/FyRNM4thP0HjnOltDE0Tx8JHcGbMWlhJ5y5psarx8vD6Sl69PN4FehluuDK9P844o8fz/o35BRPJ1CDtCAkbPTAypvTwapNByX7ROH8fDV+nlEPKt0PwNDmIknPHU8nNFzBfFYBvpWQhy6pa5iSNhoLInsxu6eA1tMgP5jYzRHxYtQZ0gJpPfm0s0IeVKSr4Hz9MsrFcbxwtj1JnFwGSo1T2C1yE2r7HICvsgDBuiPhrdBG8utdg1ed9UAoPYxrX+yga7Ny4HWKO3369QycUqMp5PcQ26knk/usrXha1hmLTOIx2fEQ92sWEm0PoANNfRBu2QcyflLw8lk1W6TYgNTqh9Sh0E5Www/DySHfnjnXHc+0R2Pja3d2HXrucQJRfG7pR9KyqIa8oo9wI20RryqxxtbG+RQgGMVXL3zGpaIjYcZwd/DdLQzHjP5yqcBk9lpVQYZqWXheooDmZHrwMMnZsHSFCcRvk+XSEeXcaKtH4w+N49Sxz2lU8h4ymT0IY3d6U+VUE7gQIAb/zT5DAkXPwVRpGpRIiMH8O6Pw4a8KHhPohYnr3qHLLiO+vlcb3qm0ws3iOPx6eCSVdGTiC8X7eP/iKgwtPsvPaqqx4Por3DRVENQ7P2GS6wW0VfyJOQoH+IBxPj4Ylo75j1Nwq4YdrVK5huFWI6A1IBCE9yeg16UAOBWfyxE56eS10JFrlS+Ra3YhBCk8JC3n0fCxzghkZF4gPH1Mt2A+/tq9gr6ffkMr3aXIJNYYN3e8odNnjcB8MAJlL06jxBYxaDZ8jA/CEjC1dCGtF9zLdxKSIDtIGCbbqEB1syMn2zhwl4YuKQk6w+eQ1Rxzc4hNdtjxk7F5uDp4DtT9NoGmiU8h568VZdp9pTNWC7gttw307sfhvYZLGFl6nqZfVCD5c0pgN1+HLKMc0Le2n1RjLbBkngGsrO/kz9PH8R9rR/QJeU5t8xgWrc7BnYs1WC4EkAMLQOZPB+/tHwY6kzfxNLqA2xSdId96GGwO3YrhNdaw8VovVrx0oIO/5FhaLJ8C/kuimw63ye2nFNzunw4il5RRvPkY51UcAYWLpVgvqgvXlW/R0rR7OCqiDr8nFgx1uyAIjGun5UtT4b+q6Vjjshgajh8EeQMHXrP3OS5xboApURYsOWkCLNrdRdghSNV/HsL74qMg/CUIX30eBn+XnALLzYGYtv0FhxZOhwtly+HlN2ve8l2VFYUvkfPzHE4u1sPaVHmUMpCh7AFnGmMnAcvX7WfVTYF07lgsvBw6Vxav1dHWfzN/LVxO+QW11LNLgT0KJ0Kvzn0+qTydVfYdwi53X+of7Q2Fo/Pgnuw07ju8grS+b6a7jrqwymcePQ9djV3FtnALJ+O0tevh/BItMjpdADd7q3D2mhpM9R0Hb2cJ8em8w2xss5bfZzXDHVKmXc8f8I9vY7Gn/Ta/PCTPZ8rlQLDJDRdnZ+L0H754bWY9CbXWQV5tGOSqI30en0LiJokg+VcVwpI9yH99CT7AEryuK8v6PcM4t9ACY8e/pX7RXt666j57PxCA3RfH8/IZ88BGSQw2nHsFF7Qfk21MMMo97YDBI2tBJy8LsgpmAgTZ0vKaWej1Lhd0c3Xwqag/5n2/DN3Sc8Bgy1G+PhCLjyZJwSjjBLjWrEcNJg5wyGATzCyPYJVKHWwdng13ch5hiN4o4FdTwFDPEjl9H3Q8mMdvhs0gTZWLaLoln07OfE8rBtJ5nk4whShowebVHvBU9yUnBgXw38Uv2GzRTnpaPjSL9ruQPDMEfa9UwwcHMfBVn8Ff4pyZdB6hQmQaeKmKsur8PFDpd+Mxux/iXAkbEOg0hVe/juEOy9/871UWuv3vOxP7IyD+mhl/Wt+GMoePQU/6bYp4PgNaVuZz0FtjGlOUj6GVRiC0LRkdlDLp7UZNOEOd+KH5A7h9NQdv0cf8ZOcDSBSsIYufcvQmFuCPxx6MvneAghyHU53BPdBdLgD+L9bT3S/FtOdmGl9Nk0DJCRfowhUtcFGby1JO/2Hs6v3sVykKZqOaQcdTCL63Z5H/DhWQ/3WQTRZtxdf5H6E/lzm3aS36a6vBsS/zKFB0FK/SFefygzU8+6oKz/paCosPT2bfCT+4vD6TUodPB3WXfeCSbEhWArLYeOQ3pMQaU/ILHeRBojPrb5NuRT16TB0Ln5PW8MbjGliSeReD7xuAQmsUiT7sZY9AY9Lc9hpHjKpkSZExsFFnD1t721GyeRKe01/Agc6VtMtqD+tOkqAFgx0QExMKjrMEIDnaAz87jgQH+ohGxROhLWEF+51Q4tw5HyA9chVJtE8Ck1gdaN5TzAq746F+6Q8+oL6f0802os36LeDRlsge1wshU1qFE9uHQcEEdyqpWEHOMcvZfqERRr0+DFuW/mRf4b2osX83J7jf5/WVpvDVuoffqYbw4R5bbtiiCWY9w6HFlXif6HluWZTOX4ODYM0XVWjQLOPslp9g5z8LnigEoMc/Qb4gv5cFA4bR+tVa8O5RJN4enARxG99hulcopA2Y8P3iFOzat5Pl/ubi6wkx2DV6OFZkNlFLrAHoGr8m22UhJLHEChdE+rGA1TsQVniEN/ZdJNXLW+m0TgHdeToKfCxq+cyIPhoVNp275RYPMeo9XrReEo4Ou8cDHRdh4Ng13Nk6HCK63/Pqa2n4VKAAm242IeXtx6rkFbRyfBEJ6weRxv6VsFTEEK677kWx1qNUvnsqay9JghqbUyS7RJGnpBRiQxSi1c6XNDWEwEH2Il6qnwjpp4RQN9EZloZu5rGnj+CsLw7oKnaNikrHk8656ZBcqIvqLldp9fhY9JbV5ODDc+iUcTN0jjOBil5FLOs4jg/+ScGMKHWOlx4Nl6gewjKEsPfPAErdUgE/g8mgeasI7uu1wm8dAtuQcPIStCRLm2Egpr8KG0IK+Nzl45h7s46KdknR8gtlsMFdDl5sYjx2uIyXSNtQeEYlZly/CgnJVhjkuBHXzNvGa5JP4qGTRvAtdzjH+c4DM82PoFvahXv6zPncjnh+fscGLSpPsebmxThVUwcM3kth+MFmbonrJ/tnKizxrhembkhksfNyfGbWZ16zbQM4dahBxDVNLMuSgn0d+9Ay6C7oa5zFgEA9qmh8QLoBVyBi1iMQTheCgp0xmJNcRVmNI7Bs8ihQ/V4JkmrpVOj2ic7p/CYzlQdQepXh6T5/ung5CwvLZqHbECf+iCnG0kd+oKydSBum5dL7X1qsHjgJdtsWcFelEKwXPwp+TTdprdg0evLqA+y46cddO7N422k3fGurAi6Fway5zQh3132lPcZibP3XCx63xECb6yaY/cyOA5+egMUWxnDbIxki5Z1ZNWMqP4p7iVE/iFYYqcKayAUQOKMRUCIFzTVUQepPPdZtPgVnvAw44rk+Pv+ziNrNxHHDYgvEf7LwYfpiFArWAo+5rtiTcIpsbwzw1Qlr+KJvBO4NXw3v+3x5+6LZkOA9Cgd1TGH0+E1s5Yr8zkYe0+PrmL7rweyrqhTkfJeM7Z/RjuI1OOitCav8p6N5iw5EfjwAp29sg4iv22nToV08MPkHhnY04PFbVjylUwcyXnrxYpmfoPjEGL7ZTsJtJwDVlguhWXw3HQnqRackHdL9PQKKO20wUyEHN8k+Q4EZTrD4TwhfuHOKhVKkcE2CFEZU5MAbFoKXU2Ow8Z06KRc5UPT0NXA5tZnVZGvhyesGKBtiqEOd/VCxWwM+DoF05NxqPPrCD8ozVpPtlKvkfGI8fJydjyqO/7H31iJqzJgObQMfuC7kJemeMsHU/hWw8KUMqxkYY+ObVxhro0RBMb7UISwAkjsVqelUDwfsiMF/B+Px6pVYSLb4BPMcn1Cl43P80C0JZ18iREW208bDC3lElROZyrTAZ59g3Ff5mLDtD/q834he/q0o/cIQ/v1Lw7at0virNYH/6gRzV6oH5F1bC/7VXdRkHsgGFyoo/bACFByUwFfS6/iUpS7HlEZhkWIUNCV74TRpZRIayoLdTiNhVtkY8HKYQOfejaJxlUXUO7aGd6o74MrCPTD22D/o1L5KN2ffA3V9WWhqPkWKky7xwkkduMvuOF9zXkpCpuvx39suai4XB/X5N0h810R4vn89nR/K19MuZ6DMJYzi7NzpiIMOZbve4XWaleixQp2EFJVg4/UOen1yNBq3VLDgu/2Q8FSEs1erQsehGVgSXk4dQnHQNEoOpHc4EAUY0KQNl2lqZzJ5mCni+r1aOEpyDm5w24gNz0/C3+vjIPWeNvi4WGJalh8usXfgCs+r+EvNHRzFH5FsXDm3Vp/E4mgp6C6M5W97f9GW+Rq4UngNH02UoI/v3rPlmI+gXqtKM/EApcmZQKzTGlIZn4Sj/7bg0/Nzce39KWRy1Yd7HuzFyW73cW2jFJi8mw5lh4Ycde0o+tLvz5N866D6/iUYPtkcStcZwYZZm6B9+XPcgLqgzNMpdPMAFumEQJH5U/I9V4sGm4M5IGAD/auIxy01vSi+yhDs3yry2tu2rPfNEOv9Z+N/Y7PwJt3CkrI6su06huNvTKNdkwEGwyJAZns16/7dT/86XDhwTDhLnXJjxT4/XhDcSqvE0vHXIkkoq6rmbX++837PMJKUvIJ3DZ+BUOwo7MvNgVmmXpDyQAdqnWaAk1wJfo6OphNJs3jjmCQ82tFG3kEnyaZ6B63qrKPi1dYcoy0BW+TfgGHKZJw/fTe/nn+LJugOzXBaLYWL2EJs5h5IKjjCy78awMwyP6q28aOoC6NgyssSWm5SRumNVVx+5TXOibGA5uYSmN5tAsbaBng8fzg39vaQq8c3uCXnTDU8AvWGB2DwnsU4hfVwylglEJ6Tw64Bc+iaQzuPf2cOwSrH0cV5HPwt0MBZsa3cUmpJNfuGwSi5D6j+WGkon5OJ/P+izU4F8v3lix5GYZT1+AEkGI2EQ9LmcCn8IIi42EOF3gd8W7YNXUuKOK35Et3NvwhBnVLYpLl2iBVVIM3GnSoOtsCS9/vwx7ORdO+mMIyRe47L+0+DqmU5NC5UYWdlQfjir0lmskq0TnU76HbswvINZZBR2Qo60Wp8McKFJa0O4LSmSfDeOx9lu86hfOAb2nNYCp6YIug9OgPHLuTj3sYtaF7VzgrLzWF6TCcs2r6b+nEdc7oJvypeho2Clvja7xTaNkyiuT4r0M5AHL7Zd0L3+wmk/PoH5LSk8X5NW/bkzSSwcg/lxwNMlVDDbav1oWaFJJ9z+UIHbMJw2S1B+hF9EMQ99uLw450M8/ZzSdJVTJmiAP+uH6f+/Crw1MiBXdau8HPAjS4ucKA992Jhz0gjbhZfS8I7tcC/NAbUjitzV3snv1Kbgi6rfLDJ7iT2mrhy89NAblk6hjOG8uBb3G5q8o5lseNRmLh0K/4JWM1pE21Quz8IhM+ehbT22SDgLQGG9iMprnArZjocBDOjLrZ4Z8dXTuuzlfUA/ty+HJsmLuYTHsaw13Iy5c3yxcnO6bTtbhZmu7+nj8XLQOxkH72e8wKr1pqwZTWAjd9NjLWUoq5wS5BvzmDPHZO5+WQEHx/tBW+Pl2LNT0dITRGHIwKV9E7QmGxyXmNBUh7k/i2EyIQPQNcmoURBFL/eUQf1aRow7dsUVtD5BmEHCnnaywC8NSYJlJo+w0Gtg1RqGAtVw7ei/k4TuCg1gKPUTkF3mxkEt/wZcoVqcNCsgmXH66h5wjP++9KbPGyHQ0qwBSkq3QEv3Sv0YIMTbV79Aa4sOwzzR82go0aL0TDuMRb9GA8Leq15cNEm/LBgBOiUevHIE6msaHiGpoW3o2BDOdnklfHsYDFo3q+BdgGi+MIlAC6JDFLJzyy+03YW/L8eIOGv96D0Sj59PaoPtzLv84d5ibzPwg1dK1bzs+yjuOjsCnrheJjvz8ji+JIeDP2mBpI1PtST4oHWE8wgKHUiZWer0o8kORjyPbBszqXinKvYlSUK82z76LHNRZxT50dKwwbga8hZCvLz5c02DWg28gWWOn8DrpwKU/uOsJ9mFta/EaAT6ZNx4zEZeGMdhVo73FCkIpuDP9uBKinBmxONbDtcgxSL12FShy3vcpLH41WXcI6tHeyUGsr33B+geVQZQp+vYb1jJSQ+OEAPZ6cyCwAn+2rRgczF3CU0iVS/+2K0HcKpjX1w2no0bD3hguN2bOJznW1gNaKXFc7WwKGfH6n18UP2naoJU2+0QunWwCGGms32V36Ds8QFuN9dxc91Hej22WvgUeaAp56LQcVyZyxb0IGClVso9WsR7l5RSHrHdtEwtSy0DU3iWy+mcfsRMzikfI1CtFxIaXktLtHvYslpuhz76Shay2tzxbAGcjXXJ8vRUyDgkyHuNTsPG+aJgMQCT74jrkWdqrcBHURgpn8XrosLJJmfgrD4xWW6UnYbB+3SMCTNmYdV/aD9e2zYzP0SJ6ee5tTlnnjFVQHWdtxiwz0XeZS7OG7fUcUaZudgUe1VuPB6EnoqKmHJjMeQsVIa1to8hXRoR6XnD8lB5hfVZ//gqM/+fDbZjbJ03fmO4n4yGFAHv+PzOG6uNmffnkplsid4xlwbmiFSQ1X7DoF2oy9b020OkRKFn5bRXHVtHpbWT4PfswS4QFCfhbwVaaKXL+yZYsKzpmpAhcgMSFwYjtqRcnCi3ZDXTnHngKx8wIg4ODOxiv60haPpk/sYPEwaPL1zaenjMo5fbobH++TpQc8GPjzkslZj1GHT83J4+Zv4rYQyWFQrcdOLcejUe4KDLm+gOK06rI9OYh32xu1XdNHynD/l79OG/F3nOar4NLx6ro6ap+dQcLY5H7pjTy0OGTy1bCHFvl5P4bs1YcKZSHq+VpTrNu+EF4s8oX2WHf/onolZIsdI+tZrlFqajM4m4rAgWxo1H1tgk4kLMHqwXXcLRk/N54O2trhnpjgbLi+k4zMEQOL6EOMqv4DLkV9Rye8Iysmc5QSJddx1oBkl5HZj3+zr0Ow2FTybr+NTXzW6OFgG3VVV0D6/gf9DtaG1i8dz1wU4aUQ3SioIgYmrBZT2DWNdA1Oa3Z4J++J/ovC8RlqaJcGHXgqg1P48nj1LAYY3e8O3nya06cBUPPQwEA6W9/DMXEkc6z0bpldFY6FlE77xVILLc0J5pOFIknnRDqa52tyknk4Xu3p46/q7OH7cMHZXGMEfFEThvogsbr8Rgy8nH0EFWoPj27J51YWhsyhaBv5xA3DDVgqwyRQaymIg/lAVXbb1ou4UfTDMcsLAmRlsHlwG/9UHQmdyG6UcmQROSQP8c64pdRoH0bOcSgh11MPXMScoTzILfYR/sM7GJbA3URR6RTNx5djLdCz4I6XrHORRNU1Q8fglHkgqx23ewjB+2xHMuDQe3mbth13Xx+PjZVdgyYQb9C8tFh78dcQsAQ2KEB3GGvN08FK7NmyIN+PtI8Q5JiWRjN71Yk7nC3Swa8RpS7bw1Yc9YLi1kcODhUG2ZiTaqV0AJ4EH6Gy8AJQvBbLvZU1aJTuc7E8fRsMgcahL1IZda57Tou21KDqulXQfvMTjH6T4VVcgajUwat0lKF8ehmIHp8CyydL83uEyLju2D5PvXYfEw5M5zOYKztyph/GqtrBlxzf6k6QDwqM2smB4PX2abEJXHYBbby1DFfWTVClpBWeOIuTOXkBJP8eCjtkyDrDax1ObSviBeygoX4jn31G9cNw0Bd/vKYbQf7s4sg1ghATy9cmafPvSWfAOT+cpzgtBMtSV172egLVtfRy5YxyvqNOHS+mM58OWU+xKAw5fvoTl8gchaX0Sj/M+yuLz3NBuexZeEFSFZdCGR9wrYdmECH4zaSp8fhsJ09wWUlR0In3fnModJ93412IhCJhYhD6PPsIiGGSrNTuxfk09FP2tpH4bB9CcKovOaQmsMH4cvBm6bxVrAZDbshUenZOGjAP+sLTwA3c83IQP5odx1qoMnq4+FlaNJzqvGkRpYbGcveMTJ/YZwnCla2y3VRSmGEnBnCmxfLRfERy7b+OxF7s5Ue8Kh+z8w3EzfSAkyxRafGfAyaXjwMvsL3ZulgTFwYX0dm42rBO9TQ+iLNFn4zlcPW4Uef17ga0HZ+BFvW3YttkAvGK86FG0DC+o2QHs+pBe1wnjqYB4jhhbBp9aL/KytXUUpaUKAxt6aOWauaA+2I2Jgn60+40DS/aFQtrGKTRqwyiy/RYGw3skYPNKD1LdsIONhu3CZU8KSMOyAeTursQB6Vb4FzkWYiYHcmPSDFhfso15nAdYRTSgdt0uDIs/Q1O7vWhBhgQphCvSv1cViEpi4AN13DHwho7FnKLDXU9waXkKu91txFEJgbhmRyNP1Crg1SFqMMauH8Vtuoe8V4QwtpxujnjGGlLLYKC/HqbbvubpSjf5Yro6zBQ7Ae8zmlkzsY7uGc7FW+Xn+U/EMjzqfRb9cyzZY9Fi9C8RB7+hGVgInqGL2Q08LuweHf/dA+FLp9DzzCos7pkDg0V1/CPbCLZOlaHs8qnY+amZDVK6UfvcFFK81gVCSf54ZLcVnZzgzpeXKEBZuBoo286GS9n91POibcj9tnFRex3GhC0j2FTN0subeVbhaDC50IIhf0/w+9ceGGK2irPnxVNX6RyS0OqGVWci8GGLF756RxBsnUiR77XxuO8Cep0hxSt7guh2dzenKlyHk/2ZnPRqLi6bMgleT7xJqpe6scnoMJhHbaF/80Op/ctHWpqyFYxlxWCilwq/sDeFNYKNVJWxC2r/LeB7Tol4wNCFw+UukNrYemwu/0oDHSlwQGocvHL4iRvrTOnJjtu88dFRtLT6Q9d3RQGlNcCWda4QdxSpLVIZzB/YUEq8BYrfS8XLVz6T/zcvyDtmDZ5hEqz8PAQdxt0CEbGJIPqkDEtzQskhPHooa27StD87eMzqd9zi9RRCZ/yC4+JG1HZSBv5bn0W1Gg/pxeJgfl64lOY3OmJxrxV5rJXCq+/dQF1TbqiXRMDNXBg8277TyinB6Kljwv7yPfijdgE9OH8SDnVJQMW6HbhgoghAoyl41bvR9tMGvLOomiTv+KDCAWlecWUTl+c9A3vFNWBnpAi2F9XYd9Ed3DNmA8esugN7Fd9QoNEcsJiZAH7ti8B07gl6Eq8A5m0iaHNGAflRCAisLUK1/ZW4sX8ey3ZXoYOmP808f41i4hC6ohKhaOwVztIk8vAM4mlLgnl6excOeAXQj+IG2K7gRV9KDSHUyZTenb7JR98P8uGLe9hb6AtIeXtxZr8Rzw1bic79LhQXqAZ/Cg3o8HpxupvZhbfyV9Ccnnye/uYPFE0vghkxt8hltSAIvdKEk8qjKEtBAERs7ElFsJPEa7bzGfV+eHpaC1uXjod1v5oxc4o0SMqIcdew8zhGjEDDMAeWXvDh6j8eNFcpBRffkoOHjcUo4T8Czp/2RONVPvQk4Skcqv+Ivf32sF8/hJLjdPjR90O46cwrVMxSAGsxG/i7z45uvr3K230nwjIZS3RYLMhZYnJwyfwpPu+ZRLtOKoDqyHtUaKBHUzXb+VtiI325UAhbe69S2PBCsA8ZRR39cjD4Zwz8Ot/JHtvHoonAXTa+6YJQswRvNzrzttFFOMtdkkUKZuH5D0rwWfMC3vY8jyXb/DAn9TTVbRSnx0IZIKrcBi/rI+EOuMJxyWnwUd6dpul68sKKfFLuV8WYOQNk17sC9K6rwwXzI3BxgzoeWi8Orev00bh3JgeuU+Zu7Xs47sUCPv5wDW9f00apn93h3ElHzvTWhq9Nd0FJbzTfWJKHwhd+ouOHBdSxw4t2qSylB13/+E6KC/2NFwdHmxnccUeFP80DFPX8gI4RI/HGPW9e9C+eJ92U4op992C9oTAU1JphwuYE1BFXgpPRAWA7X49Ea07jfw8O4Hvdh9BhdpwhxxCmKxZgX/kEKuT73BXuitHTk0lT2JqzdZ+RW0UwzwmL4m2SCvDuVgFZND7muY4V/Nl3L+e1EjU+2cmL99egyvlb6DE1AdTVx4Hv46nc//MHdoXa02YZbYr3t6Fhu49hp0sGHb20ArUCJvCRRZpQ6WmLA+Hz6E/UZZJYYQLaI1vx5nwDivQcgRfG2HHY7SPcf1sc7vxbiDbS6eD8Q5jsVyxB8ztGFNH/EZpa5XHe0ylccKSMN1YYg8EuP+g+L4DqGp9wRd040ip9zF2K26hz7CYs++8Srlx5g2uey8JP61fYALroKb8Sdl7K4yXK66HqlgfHzevBuu9SUHTBmN+m6EKbzhmemTkDR70Lpa0GjugVn09Zvwf5S6E6q2Ztp4vwHFYvN4FgLVFaccENtLOq6OVmM/bN7eDujbXk9cySvr8zgjUuS0jstCY0zK6Bno0TuVTGFmMr9sJUu5dU/UuAH70Mg391l7m07yMn2InAuT3HcOScWhBurYU6rYucabAT2r/kcfGnTbBH3Bt0InNI6K8YOLtOhq4la/CqvzHqTk1ir77LINr5BAMC6phcXLArTYvlXUTAxLMPdAdv89i70Rw44SRneBHP+GmKw0YshO+yR/nrehf4ulQDmm4oYn+RB2knPqGCxW9pZnACd/z+93/Enec/kO/fxj/DKqOMkB3ZhYYtSUlDqLS0pDKiJQ0jDRJKAxWVPSopbRWiaCiREWkoSUT4Jqmo3H5/xf30enC9rs95vM7jeB/Xg/PkinuL2GBFHNhum8B8axJc//cE8Ph5PmW2Dg7EnsLs4GCo+3KGrM2AhsVK47Y1+RQ2ZQK4j/LEiHmx9HlqMlSW2oHqxMnwOdKR6+ecJMVDC3lMiDMoFhqDTtF4EFKLxH9qcXAxfxg1xQyHItERdHbHRDrdYkZCX8ZxlocRnI6ZzOmyuvDDIQg07e/SxriNcONPJJUuWwdmaa8x+pgOLV2rDHvsszD65DhouTuXe3c24cb27+gxbi9dTo/GWR4beIeME9qWS4N2ywFOfX4NDw87zbNedHFi03bOnhHJ6T0t+LTjB7us7kELGQlIDLkID72W8rGEWB5cJU9OR47D3PH7wWF0B9besyXNw69IZZwlnJizD497pdAZOxsuUlpIn06LQoNBHK4PrKCP9/w5NKoM6kpGwTnfEEgWHkPnJ6oRXPsG37T3UEv8QjyqlMLJue/4TIowlQsA2LV64zB/Dfi4so/7P7yBR5TOToc14ddaYbL5uoMd74oT+plDVv16WrfdiBZFMgRfvslxR2eyfmM0hYVnQ+LrcNB43IlXDCRBbVM3PNzUA8O+96H8bQ8s2bMOZsJ7jkmtGGLUXM5IvgqS54eDOHTTf8OfY06kASzaLYKBJcr0rmoi/eeaRX7DZpO9rAiP+SoPHuo+5NDQC+F/VpKDiCpYXfCifs0+eGpZQO8H+jgj7TqHjDCG95kl0G6QjHeyNmJnrBtX5CnybZdKtGkbRpd87VH1+R/aG64DSyX+clbCb8xf5A47ZRx5yVFr/Fslg+MwAZUf91Lup3V0sxkhoncpDy/3Yq3ACJKc7sok9h3ejS+jJxvHYdHuTBQTmsUZEjrQnQfg7yxE/ss1wO7HA1Z/a4+XN9/guhXHqD4piqK2dcHdHyJQ07Efog8asqXlXB64KEqGR0eBW7gx51kQn3+hRFdWr6cnK9Th2d4k/tgrg1bpL2jVqDv8YfNOMpr2kn8ejKPSBHUqC1tMwgGTQD81Fz8F11GDWDTFhxjA8e2qvHOuNi1ZnUQGu+txzPQU6BmlBJd3AocpeUOPymvwbuznBVNj0a/YBH6evosH5AJoupELjtlhCbPHLMNzr+aAfqAORJW+xyCJp1Tx2Bbqmr6A876rsDz0HOx2UoHpIl1o5qyGLms7Ubz1M8y4shV6fxuxYl4RTy22h/Uz63B0hjikXWtCtywXqN0tw9HOW/HWn2zau/4Upz2W4vRxzjzjqiO4bzCATCcZWBP/Cporh9apYBKEue3lH6ssUK17A11wykOPqslYrqsN69ous0XUJv6S4wJej3TwedFafqc1B16vzCQXp6lkIFyIn7JGwfdMUbCPk8MwRRdUDhzGyhEncL30fzjqnAcEBvtQeKk21lyyhiMb38PDvzp0+/EWHj4YiFtH7eKq1KMY6h5Eb95W81nvqXB9qE9fPpsDSrKItYPLaPFyb7ry0pjconaz57ZWGB1SzTW+k9moCkC1yYeljRfAlYkx1DInEA6tWoRFHZvxxs5RIPRdkv9lFnLZGV1YKpBEj/IS+XZxDv+R+Euuu2byr41zufaYAgT8/M2T7txHlx0iUHouGtf1/qH+BdsgwFcHLaskSbfKmDe56PCZs3lcttmSi1bpwzEJf/z4gOii2mIMSv7G9asT6aOtG6x6FoMT1CqgvPQg7ujVgHiJN3DZ0ZlzEpbhhCNCJBBaR7ePGrDoMh+2nviAfJqnkU2lLFTJrIFzuz/Bdc99eOrcQUr5ZQ6dD6/zjfwWUPj4jVz117B1kADszDvHsc5J7B00EbfvzcLS9gC89kIf3V6sxT0tobD2aCTLq2jD3S1aZKQxA95v84TayYfYoEqYbP9uwE8nEtBfzI4aqx4iZikDXp6HDTqe0Ji/mUZH5GLnqDra+kCPtK4ks4e5OMYYjuBNQz6UZpACuZfMccXOY7RRPZjvnZDiuNWr6f4BKRymv4KGH/BlFxUR2N3+nd7t2Ie10YYQvf0J39j6mQN0CznONRmcI/og8awTpTVNghGrWrnKNBGfbD1Jk4KjUFFYn9ptP8DZPzvwdfNRrr6IuGCUNmQU2qPrkVQezE3H3lZZvvBvHrqJvKGxNkl8peAvPUhNxd458vCyuJrz+tbz0fQrKJJ9l/bva8aT76fAiO13qK2PwSk/hOrjBcHDdgUkaKeS5VNLWDtlGV/pjeXAxZ0wXHaAfp39g++3L8SIajGYNc+Kjjc2gUtcKus+/ohaIzJwU/x4tlBMJuZm+OXegQLC+vA6PxcnV6mA9UKGb6MkKXH6aq457YILFBbB4xofzD16i/c5WsPPtNHc6L2JPil3QMjibGKRJ7xdxh7e5t/Dpd7W5J8zFhX2SsHIIz40ZdN7GAgZYuDHQaRudBHMSmTxXt8VHExphuR1vuB/ywg2rWmBfPPPcLuqld/8mIEfta+DpbELddr+hOCnc/nS7VbwFNSG44nz4YCxGMpWCXFqZx7GLttNMx7MYM0iITJVruNLqSp4LMgY3LqCKeyVGbQE/6Pl1opYbNqB30ZV46G+I/Bnuzdu752Nyev0IXjfH0j53sUj526BwSRZOqx/nWsculHIWgUcRbeSkP09eBqiBrnBTvhcSJjXnvPCSpGPNOzMFQpQsMMz+33YSqmMR2bq03htIdgtkAGXajLo0w9hlMl4CXMnPOQtXcPoW/JKoE43yvEETFYRhTlJg5z+SAuyJhqC5rHFsNHzHrhIi0Ip7ECnBa84Y24MSy4GKE/LYYG4fTh8pwS9U5DlQpsH2HX6CF369IfeBbXjlxd2uM5ea4iPt/PPyEIQHzEHF0hdhBOzP3FXQALUrh2OTmVGHJRqyJo1JlBV6gzzsQjOWKnx76nbMepmACSY96Hnowj+t6QSYz1n8tIkayj6R9TU0k2rbLfwe1UH3j/EZSf0pmLbsNUUeySQzupo88XVmhC3fhoFZbuxiUM4RNZ8grWvhSguaS/q256F3hMnKGnnSxgnPQrm/R4GJ6/2QGTeQXD9EQcDR3JptYYX3b12jL9rGNKthEPc26UEosOPckbIeGzrWwLBpw5AqoQC7BhrTfYDFng54Tvd7/kIEjWCMC9SDUa4F9GJkAj6FiZCnYEpZCv9AbKuPuSdD05AXGkUJYEcKCo3Y7jITZ5f/QwUSp0xO7QUqsJ60VOkh1Y9CYJ3HuVwxZ3h4P77nFfUiH+KVuDY6q/4X8Q/OnnhO/qvMKd3U1/ht6kjeV2bIUyfKwfeNW8hancoRF325B7n2zjbeStJnRuAET47qfxdFJpHisOES344Nn8QUXsHFJ+T4D0ONijea8USzYFYM0meWicrcv01Swj4kcreO8RB7hujdWMYrg7PAhunE5h3zgsaM8PhcX0FWeuNAPH4DJp59QUaHxzA0X7JpGw7AWX2feH9diI4UasFJ65MhwpSg9vDxoO623340aWJ2w+dRAHtZ7z89XZcr6qN0fm/YGBTAQnYyMOdyMNgq1fOG4sMMF6xkddO8gLz+AWYddOL53dv5d8Jb/j4dYQ9UlE861gUFmfo4Q2NJEo4Wsmyyia8f8oNeFtzgDHWGxp8lUFW4TSNVtpLAmHX4WRPO8y/OhFM3BupJ7yUJQtzaFr3XZy5XAT8vRxI2F8DI6sR7aykYf1yffgyzAWW5/qiz+55JNJkyA1TRsJesiWR3Qsoec0DqP68hk+MOQwCixZAz7+ZdOhDMAesFaOTpxD8D/jh/PNlsPbOF5y/IgWGWYlyYdd4XjF5DGaNt4eHVroQ8l4PnlTYoZVzKvWk34Fly7N4nN5dWL/Ln0+vaqIzP8JRT6mPK4oE4FJtM+vujKINt16hi4wyvz64AdZop1OBjSGE2A3gb4cJNOWjGhi9HACftkncnGmEC67nknZoDEdXSFLT3MV0rlCGpN2fgKubNGjqfyfpnxNos5QXh41w4tQ9Xqim+hsVZljT7gc/QHjpEZT+awrt35dTxEJJPhq1j1XM3rOdTT00K03HBdIHUHbHCRKszYeXtVpwfU4Dtka34pHsQQxJHEGx7a1cWz6Gm70OUFe7CvyRX0mFpiqwZO4kNMkRRJimNdSRTLnGbT4e1DsCY4IDSNpTFN5FWWGimyhsGlwNb4WXwLOqBgoJdMJN3QNgELGN+MkgH9rrAW19xK+ui0DYBj1y9p0L7aqJmFkgxo0Hq9BizQEsMLSggoq1pDg1nfSUJ4Fq3SbKNG7HLoc4tNA+Qwo6ftRz9x/kHhrazyoOfNwingIfmIHzmySoaLGBsrDTsPywF0/sE4YNm015c6wBR02Zh/flmiH1mToMfupD0dl5XPdpKjdltOGvE6WcZ3ABr7cXwE+Pj5zu/JQny0+EY3n9qKFfh/Nyj/P+8kcUsuY7PMzXR8M8oth/D3nfah9eaToeojsWcrjMaI6d8p4+9+Xjh1FTudj1MNwb1kQfHWWh+HI9B7wxgrSVuuB3/CMIpraTay3R2oY4EPs45FlBqhCzQgP8lQ7goXQd+HflNRokhMAvxb3o4fqELeS+0+R+P0oJN0UbV31cMz8ckqcrQPdcB9qzrAls4SpnnH1LJeO8oPXHN/K2TKOb7k/oqK0rrQtXhGIrR5J9fh2+Ro7Ce/3EfzWTadLdPhx3DXB53zwyWrmcflWLQknVErQRD2VNIUf8ErYEitfchGVfNoD0XB1QMdoOAaK/eLycJIS8cmOZN43Y6llHFpo36HDcPc6zDuTKBdU49WAxDLPX4d3PCEInnWABlzGcNdIPz74y51931bCoyReDVNuhf2EjTVQrpYMPRoKFZD5s7jBGu+VzOXBZKhgM7+QpZnu4+HA/n97eCDqrJ0HRQjVo+WJJpYp3OVVKikPyq/jQzxJ6fOon32+ow/2aQrD9uhy1LB8NK9ek8bhdc4b691C+6D6n5Nvr2FE/grb8zuHRr6+xmfcPVBG2ACm3CmifIYSnHII4obOTHAqVOE1UGe5EZGDwtLPgmV4IX0MVIKRxHzYI/KXsj9m4VWE5BDUWoMSdC2gAstCk9I2affxgtq01iHhf55WyYZCmZcD3Fm/FXStH8Jigq3BUbiuGSsVA9ox9OPd/5yzeUgYJT00W3X8IMva10PyQT6z8wQKXHS8Cp6WV9GTqAfBXF4CN8YO0s2sWd1SsRudJy0EzajlZ+zfS4gpTvLCXAR+bslrZCJDeHwSdXe2smdFFX1Yd4oK9rlxQgJyd7Mbel+V4+ZpYauxShPvqE4d084Vi85M4O2ImJ6ed4rdOx2nZiRqmX2VQnV6B06IM4XzmQjLPMOHb+1Rp2s8nMOaGIaUFlXB/mzL9mT6ar6l00LZN4mDxvJZyY9/jPhDkee3qZPhVGzY8rQPhRQU0w3c+PhUdBnICY6F3NOO7ZAs4tSCD191RprqyRnD0FYKm+o2Qr/uWqhyfUfsmadBLT+MzfchFn5B/6zVwWHwNbJz0EEoM+ujEnbUcJvAOTA5JQ2l2IO3aFMaX2jLpvxAN7gzZB2IRfpS5JRYfjXAn+4w58GVAAoqmTaK0CaXoCiEUef4ql8trU4u/Lfzn0M9H9hWT1MtA3P3ZGNQKZuD4LMAnBjHY9OMYNjxZge73vVjJ5wsemPmb/9bUwrftqqAw04zP7OoCh8EyktvvwCnLvfBjji9MyF8FUcY/8HbFEq52HAsDjwFe78jj8euNyC8yCGWnKqB9z3Yc1ToZulLa+LH5WwifMxJu3S2H0689wGdpDTuHnoIpKzto/tnHbKYgBVHF2mDskYOwdyQMuj/C1I2h1GWlhsEHjeiHiCAFmdbyhN1z8EvBLTiRG4vT80ZCfpwgrzDbRHNP54Hv1wAUcB8HbabJmHx2ED0rCC8451GnmRLkBr3h6UW+YOB2AVudK9HfsBH+M/kDo+rn4a9ACT5bYkWJhaJwYG4f7R7O4HhJGSPGBNKgaQFL+rTz2GtfUVj2G8a7e+C9XBPI2hoGC36/wZBzJWD624msra5w5V8J7rZ9RrPvtENw6SLmnUPzfJ+ILxa1ku2o/VA3LIUvDRNn9xtR2DPuEYhvsOXq2S0QtlkYNhUbseT5qbj1gh2LvRaDfUcm03Z8TAsj3cDm4mNqmPQBQjonw5YTXyhqzBu++X0JvgA3LNv0BVN/L4OyaFU+/CEWNaMPYk+VNaR6jCTpHj+KffkI92Yk44a4WdRhVwm7xBTxoWMCF8/PoaZWfXiXG0S147LgeM8pvilXBWUThmbXLMbM+h6aVzCTVs09jTd2G0HTiTbcFrcODDJWUr0z45RRn0FU9QNcWudNo7e5gWlbKEZ4a8PzkwtwIPAvZgifxCU2K+Dcjr14oLONJxW50TCpuaw+QZ6jDjM06mdi4tIUcPE6zlqVMhg6yRqXBT0Fkk1Ct2vJ5BSrAfZl+nDjWAV3/GeP6UFEGYvX03mbID589B6PDhLDROku1jX8hh8SRkKp6TG+k7GU5pdFcrRWBz6fXwALxerJbrktDdshzbaStVx9kEC9X4MbR3/kf+W7een5nTh9WywoJufzwOfn1LtiAbyc0Q25l+VBU6eeTcOD4egVC3o0xHb/FnRxrXoj391yB73NZvCGI7vooNw4eHHIAbpD+zgmtwST41ewh2o5N/vtpTG6QnD82Byur96AOaFygEay+HBJDvJBO4jNa8DKJeWUWT8f90y/BdqL71DTOTu4NMS7ltHeeLCwk+er32KPyt+wSqmFBzaPQOnk/2CJ5kTuES0C2VxRuHxmFP6d7EFjbK/xxvXlcK35Kaw4cAcNP6yko38j4OCIv1A2ThrqL4RC0Xl1VM4Xo4tXrkHtzH/QEz6ZdnlPo/VDul2o1IPgaWrw5KYuuYqshs6317F46WF+FzcPs0Tt6aFFLawSDscG/SRUa5sAA20eMHr/J34e+oun+eVC9vb5oHV/LjhGFOB/TrmY2yYBvzZMgOL7pqBpF4S3/rShJ6Rz0qnl/HvaKFIfHIDGyV9oc508jD00Hq6vn0qbBf7Q9xx5bHSTxZJrCGGXjPGCVQl8dYnHUskfsH+EAQg8f8R/GuKhQ0yFdru9wsBrw3jMrZd4tnMPnNOazlbz59PTS6rwghPhu0oc1k7+hcF2EVAz7wsa+qyiCsGbnNgvCLpz+kn17XDIX/8AFe/Nh+Ff7KlxlCxkxi6mqX/FSCrrCUpcewB71Z0gJ0IA6qcFk2fREpSMfU2dmz+RMT+in47iBHsiePhbTXx4JhCKJgN4tTix7clpKKaqykmfZ/GyXRU8IseKAjOdcbBGE5cNBFDZrzHwNr0ax796w9t8Ikgj/DSsrxKHw/2KENY9F7TFXXnDzW7uidCGWafdWCxNBNZ7dtJl3d8QYD40x7p01NpgBXrZ3dhfeID1ZfUg4qsRt8fMpH8TnsPKkZrY23uahovL0XZBfdwwMYJnFdVh5Xxz+Nd6n83fTYc0Mse3uachdTNDkvJa/r0xFh4PvOXEy+ko+XgiGIVOoICD4TxyFoAR7UL5xBBKT32Ccrsc4O7FEphU/glcQmRg8HAHDX5uwVvnyni+XRC0RI/HU9sHuDDqOhXWRfNZky3w5pkRDM6/wsvknXmpZxIals2HG5ZqaL9sGxarpdFBnTcsLxVEoiPHgJZ/KGj+yaRVaMseurMoXk2A7ywPhvr4Nl75RRy2zdjCN56bwu8qP6TftynFaQ99vxvMoY6EPR3i9LheD1PcCYTnSuL507Lgp38DXLSWU+iwo1gy8gHXFligt/FjcA//yu5//ajELIsz26fAucWWvK5JCyN9FaBDKx/DexLI+uV5GFWSxjderSZHuEXa19Xg9OdO3DkrkEcrbsCQ5AyMc19Hy0vFucujES5Pj4E2q6kwYpM6KK8cBYLxLbC2yoai563H/zb7YMuKdJJYew2kvEVpWvokUpKxhpCV13jG5T+829uUde594EN55vjFth+uHh6DwwVMsVbvDe++IAxjWhpxunEy7cnwgpopwRR1oBeeXdICyfk1ZGWdRZqGT1A52wLiZtwGrQmXYcnZ/XQ84yTZjW/mN9nOEKcgAB4XJWHlBgfukTcHUY1THNj/FwviM+Ht5THsv2AdiOYxqRRNpQUCd9ldV4IP/NKCq8k7abXLAojK+0iVQTvp2PstQOs0MV3xE+nOD8J1FuU484wOWLaNwJ0XroHiwnfgeksTbVzmY0r0J/oz7xJlzzVhj/2t2Nc8GqpiwmB20Va6nlOBT+7m0tIld3HNhiR0XSdDFfZttCDkAqYsGAtRN+dB8Kt8vJg8Hea+UaO8JnVKuDEP6fUZCBjmRAW3xXl9qSVszb0Auiu8Kex9HT1V20SXy0Zx9S4J/Jiaj8qKmVgS0sjzSqxgh80DbPG6wdN2CZHEbXMUSpvPY6cM4yun/7Jx01suO1/DcU2SECjtRK9X6PH0bcvowPTtYKJfDk47Z7LFwosQXbgefuV4w4COFEjeBTiqEgS1EyahyMpwrnrYiFfEEuhwawg9UcjDByfOoruZJlREXx7K/ec8t7iFb7j0U/lGQ042NODAMypU93EFV9TrsuE4Vdj1fAJnD/RCx+B7erVrKc+67TbkX68hpuI+/rdJkMZ+T6HLByZAV3girtnYwr8mdeDFe4dZ8mIhXnJZDSGzJyBWCUO4byf8cxeCE/0/uNunjYIftcDXLE1aMm4sy+u+oCkv53Phw1rcU70LBRunwGsrHcIphZh1vB0yXT7xK/UblFjwHBILN/MFue+cbXebz1pYgt1vPWqfOxZnFmdwrNFj+rxkOIqc2wzBnQ8gMhNhVoI/Tv6mAfuN9lPXY0ve4l+OGzeN4TmBRTTfxo+UTwRS2ZZmONW0HgbldED4dCFHKljx2/nyFJ7QirXCc6BF/RA4bBLArtRQ2D9wjwy1TUFB4TXM3vGKuuI3wluV2VznHgSv3J/wJo1LsN9gJi0IXcebHxmDddIGWK/liJK9PVA1QY5D5HrI4U4k1f7UYFX9r9Qbu4GSo3RgvUYBTnl5HBbYb8P9Rw5z5ZzJeMP/FN0YloOytX54Q0qclneOAIUPV6l9ixHNfnSN+p78Q2+tfzgWW8HRJwmq057jLwMbUnsEkLXpKcvZmUDM5sP45OhVnG5oRyIyY3HH53puyB4Og+qV+E1ZE57bq1JXugxeO7oK/pkH0IO+Q3RpKOvMK62wcZUrNuANPrTCGuR22dI8vwxe6J7GB5WW0BnZ8ZAzag0JbzqOyb9qaeSW93wsUgbuu1biiTXj8IvVbfDOy4GorKNDHViW1OoVaUesIXUURNOzzElgpGSC+072gJ35ezh4uIaUhvqy3tQytpw1mfK+urBKhQiUnkdoDVrNJjUy2CNhT6KvLsGpoj7q1vkG99Uugs1odzD7E4kt48aCXsc22C72DVfcdsdWnQuQZfmZXiS5YOw8D+pY1EOu/tJQKK8AZsev8FPBUyiXYMv1FQJ4TOkK2zTP5gse5fi2x5Du2hdT/3cxMC++Cu3qlpS1qhzVW/7wwtQduHy1FK57LAczFn6nQJ2VLGasCy6/0+iLyQqc1+uGLTlqnBi0CNKCVLnyXgW+G2lJTe+94GqMEShF3kLZImsYl6ZMPiob4LqlFy0/VsWLP55h279TaV2TCKZslYYfVrr8yzsZ9H1yId/JjxZMTGWTniKce8ee13Yt5FDNHlpVJg2f6heDdksjjcpTwJVdP6D4YzW3G7dCmdQ6uBaiBQsHgqBRazioO+1DoQ1rwbm7Hf1GbAH5AxZkPV8CondOhBVfg+jHnzF0c6MgHPr7BFwSBWl0zSh+Y3aZQ53Csab5CBqVerHNDzl23qLFW24jLFR3oBuPRCBGcSnP2/QXT2yrJ6G8fyR2+CyfmzWIewQFYc4aFSjLOYsnJFJAweA1FR0NJGF/ExT64IhCvJwOz5bmSZIn8G2fKkwuzGHN4wnw+fliKBx6v3OKNq09dB2e2WWS4B41nBm/lTZsFAeTLkWe76tJuXre7FLZOuTJTbx8+WRe29pKWeN2c4llBLiSBtQd0kO5Q2U8Xr2HEieIgdO3NXxhhw39d+k1ip6VRsWrWdRcLAc35WJ4v8lnvLI5ACRrYrks35jv9Ypj8qht/EbRgqfrZtJzJR0Ii1lOJy7pk0qdFcV/18MHBpWQKnwEEr8KcI/mJZo4mM6jL4uDuPE27P8WgPdWN4O0czuNDycMCw+C5Old5OXVy7LZAbhlgQIIZFqj19ZnbPpvA7+5/JAU3c3g16dC8o1dSu0rh3hhRhi2TUJwq99HY7MHMEYnFVcFylNedyleeNVMDjpfUMvcHkb1LCJBZUVYHOeM02NjuHxInBjhm2Touh42L5uITa0mVIAfuNz7JzXUacHGAzYAJYM4SdkQv7Y8w9n1caCU+ZZHa0qy5sSN+PdIK3XIKEP15K8wzLET2LEALrzfAwE71lBtpg/snHMbo86dx1CxajbdaAEOFsH810iaoLMfPPeLwvdbabikUxB6Rfbz7otKWDVhD3bPNoXTeqeg1/0ULvumxeZnMrApNxqj7/nj4yuVsGhyDgfNW0mnDmvBnZcDHO3oinPsrXlAN4mkJOpY8XgBN/j1oePmHWAcnwVR1bpwYL4nyresoth7Nzh42Ddc7huF1pEW+Fl3ALK3fgF2LQLP7wiB26px1dtX9GeVAVf16GNMXCfYRpyiH/GCpL3ZhQ3MmljlpDAotVez0CV/zDn1HDsSJcHWbQTs1i7FYYm/eUbwFTogr00ZeYrg5qOBImpfwKlNCu557+GMthd01FMQn2x0h/63skhPIiB1SLc3979y+pZ9+GwfQITsK65p3YqBS5Zgy9C6PRznzmMPNNO/f2bwxdiYi3bZwT+JFJK8NhqbNzVA7NN/dOrDNXqZ5oUlqcKsUaAJx5zc8F+eM0ltaAXNQx9gyqWdpP8wnGv37GAfbyfKK+pBR3sLqItx5VG5AugtNpr/js2FgguHoHS7I32lbPomb0y14vqw+5oa9M1rR8FUM3ITnkNy3MdVH4Voy5ZEymwOxRViJnz1mAqsTWVYlnMOPF6dAZHxf1iwYisbjPXFPSGhuHlaKsduauY1HSfRvVMPkveY87ifPZwJtynTjOiukif5Np7ntfsXQ8sZX5w96ABZy+Qh/MsL7ju1HnKisvBnZhhlieuij9E09h2Ih3z7tyRZqQINU8aCmd1Tcuj6BS+DzDDcbjW8FJfgYdu282qri+T93hf2dZTzw0YTcBvirxey22lK3Dnc32mI1b+essgJARit4khpsR1QE+JP62+rgYjVXU7y9gDHmbp4dWhmL83xKGDqQ9L/+ZCA20W8IjOD1O6rwozzN+n+0jdwxU2S39XEQVjBZhQOjkHX2mZq2+9Cre0fcWzKZAi4LcsHbpsP6awAatk34Y68EVotWg4VyScxzMAa/mgNksJlTVhxsxSaql+wy6z7PPt8Afnu2gFPZU/TQuvt6Ow+nQudXvNhD2vY1rOQntX6YkCoDfwon86bx4ijxrluHqOlzFols0h9pz/LTTGHeEcptmrLhfY/C8HojBx0R9zA7LeCYObugPeFnaHQfhFdGK4H6wTP4q13WtyfdR3vN1fCfxXS9GPOBfa5FcelTTp8XfgsepcagoGiIDicXsgiWatw5dTh1DA6Bt8kbcW3XAzC3l2w9l4ifJQwgZHHIml2cS4ssmojh0cfccXzg1BV7Y3730yCkJwS8FbMod6GifDX5Tpuu5lKfb80cExIAYl2TSd0+oTantmcUhIHy6yy6W7bODC2+0Bjru0CT5OnfO1HBCyts8OymQrcp7AGf05yw+6rL+DShlGw89cDDkzdg5tTlPFA8QrU2FtEp8xD4M6aEswJk4Y6pWk0cq4ofNl3nj5cTYE9LkgCFalYtHk/brR3obwdt+ATKnJnUwk4ndeBpffi0fxdFnfcWUO5KrtQ1jKJlfMjyfqBNUSuycEWyCO/IV5aLFKBoQf24g0xGeyVj8P0nkhQVArDFRanIf6UIo58V40PzmpB611dHBjYzQ27Qmi98hf6stuBpSovwKLXEWRiH8TVIZ+oa6sZRNj7sueCPq4ftZL+9CAferwMzcWewbLxG/niFyd4E5+NS0YKQ/PwPbh/cRxOft4GPW57INxWEDKU7qC930w423sDZGur+JnT//6zriAjhR2c9N9Bupf3mI/L62BS7znsFUrCtbp/+Xh/Hjskm8D8dzbsNTGMA58q4cGvcvTlXyF3zSvChhmW1Hh3CQ8eTIH1T41BaEATtsosYGWtd1hY2cZ22vVkKKCMCR0CfOu9LfunVHF6owWs/x4PGpX5kClmCvfnj4JPa25x/ot+SHIp4VNHyqkx5hC3HVeG3JNZVLf1JH5JyeCs/jbcWHyYNhc3oObbQgj9o40lm15guLM5dIv7Q3WIBAmOyCBzEy1a8uIatqwtJ4OPOXTFaSEfDw0F1UJ1ODyjhHUGD+Ay/wiow6NwaIY6Z304j0tbl9KknxqkvcULxfKHOCfdAR1LV9GEzbcxrG8BzTC3xbwLeiTpps/vZyEcH6Lkqc+l4MFEWUiyW4xKMmvx+VAWir5K5u/t2bDuTQi1Fhzg3R2CsPG2wlDuq+PwHyJgNDKT5/cP4+GWVfD3fBw8qC0nYdMHuFXnPp+xY/imsQBkPl8kLfkADlByZ3HVcxB2y4exOoY9TuiT/8IKOClpCc8smlFxWg+KJb1k57wtWH9yGqv0dcGBoQ4Fc+yhNloYryQwaHxBXl97nx6dUKJJ9ndhwPIsZogL4ofn3+DchWCerxrAws9N4a3uJZ41uxRzzr9B58lPqaFvD34MnEJbH0vzselryDduJf8c8vLPR13RqPwDvb73F6wMtNHt+TWuOuxM5yeK8d8/T9DKT42ufDCDZWYx9CzcER6cW4AVZQ1sdP0kLFCRhuEef7jmriMkvr0AqRMB7vybAkZT61D3UhpV2jvzJRtZLPLQJBW9Fdhxbh+ecD+LV+1EIHGqHDoUarCzdBL9NyuC5mjmsMC0NTT1/gQ+ElzOvyW3wWITQWiZ8RebtSV4bcBt8v7vIdd1mXJc4l4++WUTL4/SAL9fB7HkuQL87QngcYM+MMZiJGam3EGfy4ZokNANkzY+o7wRqRB4q4Ec/gqCeeEF/HT0Mj+ZvIkklR+Cnqop0OYZsHmXK4bYyuOhS5q8IkYUbjmms9/NS6Ai6kofUvvx6QQr/vQ6HW7e2Mlr/f5C3ahoUt06Fn6duAZFW4Mh9PpI3PEsDnyXz+O5DffomPdcequsDzvFftOyD9JQ5TwRRuVL4JviT7xLZh/WLlgAbQmSUHzcmbumnqN2aV0eE24Anw+LYe2lflrabs1Tu1wx9ekGZJEMCvwqjoMR7/j4o5f01lMJ7rrJwMkJ60ndfTHMvprEm0pucaV3Deys38y1RbPQ4UwCvlSSh8yOWyjluRjE+n3R5w7AP+dM/iV6m96lGMIt8Ru8oNKM7l8SB/3jayFIuRAUfr2jCY82IoqrgtORLFDaPYZW3LXEGDcbeCcqA927m7hX3gxSfzzAmkMj4TMswu7tirTh/iII+rCXcEwvC12UgFap8aS99CIsatJlZRN1rM18Sb3vQnDYlNc0L+oaGu4aDadkRKGKjDHgvT4FTVuPkgGF3PvrKexVqIZbki/g3a4wOtZwkIRdVGDNlP/IK/IhrPknTCpnJlHZjiZ44/iBp2xMh8NmlVxWOR/GX1WDYCExXGnfj/6LG1n5Syf/iL+EfWmHsONyNc+bpYwrV4dAFiIMS/fFyVWnOStpJMwT/8qPvuRS8txbjIGAexTUUCSgHZbtVQfNsEOU6bmFZzcs5BrNQbSVHeCldRrsO2scTLNdTBpURdZnRsJLvTuw4LQ1TQht4K+XrkPKm3B4VPWBPKN6+OO8AtxtdYfjx2vCJ23lIb9Qx5xea/bcFgr7RUL52GtTNPk8QIVJ90DDXINnggG4eJ2Ey8FhVDzJiaa6ZjI4O1Ni7ELaKnwXf7QcwAg/Y9r6QRNmWvvTCocPEBjxjdNue7BNUAatu/QERJaIQn/DNTZ5dJwDNirBqmR/Dq0/youGclMLVkJQsjaeXebLhi2qGO3azGdTzUkjwATsb47nvMCZ7B4XisE3TaDqyCAsmm2L9+XuY9jpFhYSikXdTSaQfTgMAiCPhfZNIyiIxrgQT0yMdiblN4MQs9eG+gQ+gq2fPGTF6aBKqCfke/UBz/Nk8Sv1VKaVCE2NrZi8xQIs/n4keS1F2LC4myoUl3Hm+ht4arcP9e/OwSf0kP5O/wx2r3eRzrP1+OSFIlS5nyG5/kJQWylP9PwkLApT4xVLz5H5l3Te7TqbYj785tfvx8NFHy+c7nUWzBaFw2fJXD7qEU0P/9iToP88jLv2EeuKBOG95xQQ/htFubecoDZgIrzfcZIGVEz4yLHh2HRZAbS2i0O3zydqPDYFFpvFwMXVSRynnobYcRrcK3dz5AcV3r1nLx5aEQ9Rv3eBwVDdCZ7awRFamfxvtjvJuZpAwMxeKHIbg6+9c/GZ1gpu2jwTPpsrwupDC0k6ZDea2b8gc6swDBrbwkkzjtPfK+kc9p8xb0gNQhnBIc/QmYYzwzrhj8lMyBBxIxljXf7sPBKOZleChdk7fmalh2lRE0D3xgN0GbMaD+68SRNnL8RjCWd45J5Cssz4DgLDUzG8ZxX9XioIfUUp+ODzXnQfdhdUU37wJfPTIOr8kevvx1K/iDVGarvAtHnCUFWzA0ZqFPOOu1PhQaYL+02KxKD0CHTr/gqqUt9wtnoPBoupgvS58ey0wQeXa33CPdNesXP7U66MOYIBUz/DIc9F4HyqmhevGgZxGstI/O0tHpNUw7tT7nDHjttk9Os5Zp6L4H/i7rzAQYp3rtKA8TrtUDL2FDlHG1DstixeJzoZRY3H0FezCvrUYIwyjioscFwCPO/uJV3HbOh8n4150an8vOwQKo2/hhbWz/GWThFk6EjDvoMT4I+uF5oKzOHIYT5oU6aCbzws4MNAPyz1lcPfr6Px5eF62iYmCqELZ+DtyWV04OIGmLT/BzSkvMRRT4v4Zn093C+Pp+x9O7mTlWCGpBCfa7Ub4tUPVOYtQAt+/wD1JC2y61SiCadS8HP6RRIGKRjx5ig5uYizuestaplQCgWC3pTgLwUFjobYPqjGChens/wGaWh54YkWPt9RO82d2MkPPxR4cPiWbggqzuEzaZ9gSlctSccaQdSpeXB42SAszdLn6z/C8Z65GQ326kN+qBJ8sBqks8tswGm7KnydfRXFL+xE3+46NCyzZRevOG6kGnJL1mG9fYEgumoJrvg2AY6oOXKX5GP+2TOR750QY3NjBzzw7QI+3NVPGT2dGDv1PV0SU4Z+oWYcC5r0+PkV7B5xgRenf6CU5e5odKUZVFa9hz49QoUhvzrhLkSLfmyB3As3OeaCAUwdPxnCDOtZdkYuHe9T4utLCxkUEOYtbaDUXU957Ddbfv2sGM7fqOe1VufBOHgry9z6Ddf25fHPVlk4bOGO5TveUfetzXR83iOKTdwGRrePoG/2d1689ypojBcF9BOGeIGlYLz/CV0uC8JlRhPZ0SYF1fMCYHLGfMrWeAVP5y6nxkhDGK6QggrThvblgC2XzxkBU3g27n3cBHVy/9HnnWbg898qdH1kCvPVFkHJ2hM4T6gWL8/oBoN9RrBlrgQcfF/JYk02WL74OngEKIJ1niRc3lsGO0StWMZMmMs+JpLNDkX+pJeOqyzfcJr1KUzDMbBR35mPS0ji3IqZFBAwAJ8UmN+0jKLHu6Lwre0h/v76KBxZYQrp/6ppa3gppMdYcZu0DvlLvYDVR5sh03YaSZTf4cP+CZg5TgxWGz7jyU1L+fJUccxy/crDfd5AUacLR82Ro2NfY2nbglo4+nUqpK/dzPWTSmD4kwOYYu9ElrlmEN5cgmO+fKCE7dehVK+LovYyyIzcyldT92HElLnkumUKmFwSYvf+b3BR/g1Evj1H11/k45WyYTDVrwpHnm+hvSE98O2kCM9USWXoU4JhZ8/w2Mw8Xui3Ag6us4K65Y/BK+oMHXxYh8NPZLPG+VraGh3ND/T1yePEZPSwsAI3RYAnB2/wRN/XrKeUBa/YmED/GAqMruCiNZvQ86ge6Kncoq5FMtDzXpgjTi/Bv+3uLDSmAven/8BZt1/SnxQXCnLeTp7H8/jkDy0wV75N5WVy7NhaT2syZNDM/AUkq4/hmZuALjxehzP2dNEX5eHQnVaNq/5kY8/V+UwlJ8i5dRq+14tGP2MNTih4R6P618JqmbFgs9wR4PBKXlO2Gse29NFKa3daeGUtbQyLwsgGH1wplA+P3Czg0rwYOjXiKatd3AQzH4ny5q9zWejaHXxbaU6HbxhgZ2gxTa8whx2b+8CiXAzE/d+xj2stiSaX8PTH30l63wdQtXAAmYATVN46EYoaMylATpDFNl2H9Jk3Sf5xD70N+Y/uv/qOBlE+HBK1Hqf+GA/dqYcouOI/ehplCrseBUNU2xdaV7IIzjkGI29JYIErNuhvrQWBxcpQfT2Np8FwPJb9kjbGRNHevHRsfrmHHipnUPwOXRDuFATd7lKcESlFLZ5SLFc/Gxd3V7D4Dg+M7wulBZVXscfBi4x8AZZYnoS1AzkU4nIWa1sfgsR4dyp+upGvmLaT1I5t9K1qGQc9nwBFIUMZckOYzz1zwaQj+mDxcgktOhtPVQ/2ouXUkfBubCu+GhSFkKcj0aTGgQrel6N2dCBlj74A+fIq6BXcxfWrWrk1r5zsRkwFqYRONBJ+A82/PWj/ORsSY1WYu9qId8zRgpnTREjpXw7q7rWEBxLjOVjVknsfnuZZgZE0oiaBH+uextgDYXThbCwXGvjz2VmjoH6yIE+8GsPyd+woZds1vOjugD9qXPC+vgZdPK5ODnvXs2K5EBisvEFlVsLwbWA8u/i9gb65+iRYKMTTZl3n0y5v8PJ1BwoSJYi4p0IdBb4kKtkKBXf+8sytwLGfFdFp8T/a2WiDExr2cc+VsXBg4BR/9NoCyoZn2NuQWfHhFJ46XAQOmC7l7ChXnv3JCwUaDMHeRIp0HTZTk/0k+KssQcJKivwixRWMHwthpGYLx8z1x+TtglA0ei99rU6Ems+aKHnpEheNnUJ1jiNgrHECJswWQa30c1xcSjDu8FKoMLlOwapIPXYS5P9yJGntKUS3bII7rSos5TsZR8TpgeroEvK/OgL8R4ax6vcMzEyYA1KHX1Du2jzqD/Vg05mT8WGaKRS88wNF+4fc8Oo4dZpJw8eEWqxKDabiRBE2lXrAr1aNJeEjOvAzeTcZaH6iSRoVkKO9i+7LCPLx9U3gHlEGy19s5Z/t2nxssiosHTWDt0aFwrWJt/CRViFLnbhN448e4vNfNdnOJQs8Tuwmt/RxIHLTGQKuTsTI8Uvh+/bVKPNuLi/xyoHfff5sVbGUqufJUFTOCDidfI9PifTxrv5OtjuURHMnZ/KOwb002iydiioR9ni1kYypLpTlP4L7XSoQdjuRVceV05kpfynnQDQtGPyBRhdu895gWTz13gDk647gzAYiwetHKGd1PLbOFKaErB1w5+crfltrDGGfpGBnvjFc0j9MLsZf4eG/M/zlRTt2TwcONtcglZN/KVneFh+sSUHp0fLwcncvzBUbiUEmN0Hwdx67KfeydP45/l0sBueuvAeXT1F0/D8xsLtTTad0NlNikye2BO6EhrwgyPYshuzZw3Gh1TFekiBBOFsZpuTH87wkQ4yyU2YOOMzxtw+Db68Hnlouzl+7rdBXX4ryEqdC9VILiDeJIaG1pSh6dwytMpsFU6qa4GZSD7yU28VfVv6mt3cmQ27bDb5TN4B4U4N0t80l5+Jv1GKzlt68qoP2aVOorSKLtlZag/OZFmx61YaFlgv4SPMWzN1mAU0T56JF92vcsKqHtlR3U1qUAswM/8dmY4/B6qBRkBXjBFVyv8AqxoUS267CnfeEt8c509sOfRDyKmBJ0Wegl9EN/05HwrfmH3ztlRy+K7Fg+bllOPOuEOrUTYL+svX8tsKG9wiIQ6PgMwzecIjsV+5Fs3WimFH0g5p/HWXvJDmozPLC/fMP8HT5k8Sa3njqsz7eFrGkjgRtvuoeCS8q3OlYs8j/7qDEA9FTYJJNHypsHkE2jj3c7GmO23kKevgd4bG678BxlhqMSS0n17XZ1DTLnZ/WXuGuvuMU5j2HT2yxhPeObTzdYBvyVBOw+5FJkvs6IdNxB7ecOUqxI8byUuHDbBh2kSa/iufItOkoETgMen02o2TiC1batYJmgixGy0fRMachC7+qxYu2KMOb6vH4Y60ANCXqwrnxNTTw1h2Hq9wB3egIWh2ygUQEjOiupRkaNMTSecexMLVNC9e9GcD15bH89c557jYZpJEKy2CEsCfmrMqAh1JPedUsC/B4WQ6RQ73/tpYxyLkF86Is4jzRZPKqUKZMl37+nTqA23V0wTLWlqZqyrO8+EWwXmHKVyf8g4StarAk1hdTxpWCjP069Lk7CgTX17LEvQ4+Ta9ZdUUnHjFZBCu3i3IAWNCVkiXoYWrKTmAOH/NLuXzpSnh4Rwxa1u+lqPddqC3lQaJTkiH++na2Xu4HX9kSXr4L40U5znh8kSNOGJVDck9c0FN2LVQqjkORJ2vA5nIqPDtIEC/sTKX3l0FeoTS0p5pgiWYb9Pyt5rPD9qD5Hw9+8TWEZXcTLDtuBtIbSvBkuQkmiD3AiRlrOVXpMg1sUIdJYx/hJNNrJL19ONxsSiOldCt82oFQq3AUnvfrgkKmKZnEVMG2gtvwXzRQ+X8j4O/TfTCjKhZ8b2XTHFUp7hIfCVsvanONYT6JFjRC9pZ7UHtQBaxMu6Dm3Fl0nj6VJP8xXpGpo4X6KiAW7AmHlteSzM80VvUfC3c/WfLBZ/cx5txIOuN8jwZ+jiff70cwenExX/0xiqQ/67HWgDT0jK/CLPXF5BN9Hj3ufoc+qRnYeOkRpa7Mg0Z4RCI221AjzuD/7f5fV7iKKpGFtOTke5ZZ2EQTqs7CjeAd0ESdON78PF/uSuSFqTLw4H0y9p+TIeG2RdywSgJFckbD5RWxfN/IE1+/z0eVCQqcLTAcHMvV4c76/Txs6JlEaDLaO0yEQ2dr2GT2A8zouMRSCctwn6sOZOWZsfh84v3fSvl910KUmN3KjrXpqLNhPwQ/vcrF+bPA7cI4mLN0Aun+UmX7veO5aGkV+FyL5tFp+RCn1wlJ38XR6vlv2jBNDzT84vnd620w+Ys7RoyI5IDSDpx1/ia+/PSO3F6NBo9ni8jqhCycylxNznrymLQrgK98TCKB9mZad+UzDYZH4/rsQm6IfAd6wUqw+Kg6rh/chteqykCwzQNya+xYd0oz7o76jfJeyrS44RzFzxsGpYOXQSdMFgSUBXCgoQO3L8nna0vb+b7CCVoYjCBdFcMbhxpX2UYgkx2GZOqSSnf+VFLOMBdyDJLkTePk0FlYCFKsNuFwVTE4LVyBkeIEd9MvwycLebCwqIMRzx6ygcM9ri45w/Ms0sBN1BxW13lTyH43sO/SgV3ZtTAx2hakDjiw3akm7pS3hJ3SgyxaJQPHPnbCkdUOuEptBC6oKqUcjUVse2UAim8SHCqShwTPSK6TVYFFvjG4IBXh+qEDQ9/WierzVOBxryuImYmRUYsNzzq5gLP9dMBsnztq/nTgK/8+YFqJGFUQY6/wVtzsNgDuDWextXkbkp8CTDPI52+3pPlpdTvN2TjUOzcJsYfOJ+y+tx09Zn7iKY1aVBogDEZLn1FadwvE9f2jjSt+cnniUCee2cSGtzPxpOE0TFJezN9vEDz82YSemULgkf4OS+61Q8O9e/jK5zh6/7WFNzmupNw0HGYkGIP0zxaoMgviG7m/yajUCp78uoOWezLhelYOxeyfCbmnRLHoliU47d6K1iVx8O1GGmRdD4erph70eN57UrXyR0G3AP6v4yKIBsqD9Dg//Bizi4KW1/JRp+HwS9iSqdCYD0ZOID2zCHS+fxxPiqnDqq9+4BNeiaPrz6KF0HUYPNRGc1q60P3pWFwU9RgNZJ7AiHt6ABtXwvf3/0exeUcD9f9h/D1UsvmSUPYImQ2zUoRKS5SWRDsqKdGSNFFJkygl2aGhElJmtoooDVtTEQ3Fz+//+znnc9/jeZ7Xuefa49F0Nd6+YhjhPBf0/52AJ5vHsEGDJbhcH83jgkwh6N4YUkMzdApuBpHer5h4ZT2fmjOHcx484cQz4yCx9iHmX9OAtpCTNGBYQVI6KfRoijq7fzdGnUYjKkh2JIsx6+ibmyKr55iAUcZcClpciyW9vrCoYDe/3RQJK9bXsPLtXaR2KQRcdw7tWY8cfHpcjTtnx7OO3nKKvtXEMrMrMKevhaImVPG62OP0Jug2TNwkBGceuqN69Wq2yZqF1w+K4ozfhhy/sBQDVkfwssYkMqrzINFuGZA2KcXBxxv59ARhjgxupxWXE3nNbh0+E2kHzTE55LpoHcZlDYPkhTfw7eu3cP7efLq94hU3GZyHwcluUCYhCLMn51OTtSVU3bWA2GevaLugC73tzAK1Bgf+O2o578rbREfb1qJjwglYlFdJn8yMQXWHAr2YMQgxU07wjhYh8DlmDJ3CB+hutT6u3SlPL3xDmIcZD+3ZR1ZUmwOuaIMzko/ilMPzoNhVFt7sfg/P14fDCu+D+Gj/NLA+pgedQnnU6rKEL+mvoWoRF3CU70ff2AFQ3SxBJ0dfpLYXpnAn4AMHfMyGPYskYPxvHYy0tsBIkTvooXACE8O3cbNDMiaVq8PZ9gCqsZ9BUxv96OlAO/hcHoF7rD+zRIIEj1mhRXeiovncBTXQDz2J2lXPWPWQOU2IugXBe3vg69I3bKa8Gkc9a+fiNRcpIdoE9POKQM01kvY5/OWMxbpodXYcbStuYfc3VnA4oZaKS0/xwCFxuL/ZhHqPTeP6gsng36hMKxsm4zej73z2bSHbiM5gLdctJDx7FNQfOgvH7a35aU4g3c6MRh9nBTbOD+XD9z9xTFQXVbyOxZ53evBk0h8cTB7g5Z1OdOVbJuSOUmSrKdsosmEvSpYc4m0KK8kwWhzO2HjT+Kqkodpfp9+XEIQzVTA+1gwWhLaSnNRUlD0yADffysJoU30K7nxGOyzCebhqNTioHIfwXDvQ2mfJw9bvgbiBf5DkPaTjv8Mg6NF6znl+Ew6MWEOi87+iy9kMrnKzgO9GAfDLxRIMX4tDV/UX7NFfgNGf/sKL2jZWqSoEpZJivpXsCXuF0nBEuweFhY2G7IXvMXqlGmxwnMNLr+zg0t1GsHRcORhX6+JSrZ8wPjeYdf+MgfdFV7E76RU/1DHDru/quH/zbBjfKI8TnhSS13orcg71oPfHVGCm83yONdLng/699ChgH9brvcTkHCuyux4Hb/PaybFUiZyWSoFvcQ1GHn8O2PgQNC0d6Ui0NSxe6YI9qleg4vI2PpgUxLmThEDzRDZphmtxS78HXH/djmMnylDSBle0vbmCv5TrYdUWbXibORl6MzSQC9biBHFFonNG6Pb3Nbv/kqCKRVrUMZBIM8Yep+G71WDBPyMOuheFc9c2glbkJRxbBRhat45i609CougBjN3byl9cRGEWRsC7iWchMG0i3dG0gLXOG+Fw22h+/y8Lle6qDZ3pgS8+qvBQvpBidF5hu58WZix4BTYBKnRv2lfe+PUnmtxvgzGbP4Oc92hwqeynlnmIOvJZ3CEnyYtfPCfV/Jfo5neeQ7e5YuK12Wxybxr4vBrKGxlv8dDJLCrJT+V/AolofjUZfVKmwvc4NwjODuKw02PBVkSbvGTTWOCqI/4QOE6yI1eg39xvsKfQmR6EiJFe82h4kTsZqs69J3WNl5wYMh+HeV6Cc8OFsLxsF8yuOgd2pkr0UsqEoHIMxEm2YH9UCy/KUQcrDTtMboyCQ2fWQ92teqiavxeqqs1Y+YE0HHh+kV8KGkPYwFIcVNnAJjfOQ3SlBaW0Z+HD4z/4gehp/vBkInjvEoD4qF+cMUGeoooq8E/aLB6x4CKcXfIe552oxDf2PwneTgCrcauxZncyh4h0g7RSLd2aONTH6kJ4IieF0RMO0SFBTz6VpQLjovdyq2I89/z/H6K7JmBeKciiiy/hF1dgab9oiiucBmtcVaF3oTnu0DnI1UtsYGLxXXzZ/JJWLbsONjk36f6KGna7XIVXFCZCd1U8CNjbYYVANf/NzwTVJTlYf8WZhOen49KwGDCV3s/xZ4dBjagIen67TQ4O92lgjhwdS4pChQxfLJjxB2a65vImsQu45xiDxF5NxAg5fimWgwpXiilaZxnY+33lFO+xMPf8d3o75ElFg0O8NXE2TJ5qie5hyXQwbgZNdzCglu3aUJFaRiJB+8B6uhvvfysERYv3s/DnS3xGYzkq7lFBwxWG/Kxk1hADWXL9vA+w+XM0XrUzBh2BEVwdM57rzI5R42YPWCCnSTdffmJL6zEcpZHLZa1GNKrPEoTt9GnOOA/YPNKLPLOcaOr0RJRzaKBnyo44KGDM1+sz+PA/Q/Ds24n2Um/xheIZDsl7x3/HRtIOeQYV9RM04tNFDPOXx/pBA6iSd6ZZH2QxuyiLnmo/gFT5baR2P5M05TazSnc6n/dKJCl9c4h9ZwGPBmzAd/1baqlejLeSAlh/iR9czmhGW0nGzu3e9PfpfyAxeisY3q7jpbuK4WttH35p2gqXvTah2EInqGyYzKoz4vl8swo8WRgI9y8exG1fqkm2KpATsq5TUfUuHKwX5rkTUuCATTlliptD+sorlLdjHcxbibw+sQR6znRSgmUwT20XI9Gkq1A3oEa3OzTBuceN6J4jiccdxgcOzvj0ZhQnuLxF/dxdrKh8iz8vO4x/2xkCFjiQ7/BZMP1uDdwYNZnD+1WgYdpGkksYC6Mzy8j693Ectk0YPDydYPWFTCw+rYKOdr/42uBUWuYVwEnFXcgCwvxnKD9cMZCEOwX3+cvnAzBjwBckxsRyzSh7Vtf4D7fKNUPF70VgUd7GPfaT4NtMaTw4eRkWjw6idXG56Ou+kv67nkppH+NxzHQtMBF5R5WfJsEvZUtUztiPr47PQAXjHCzxOo3Gs1UoY6wWbLgsCm6WaTTq2Fjofp1MSQsrYeHoxXy07wxHLHLFX6++0/ZaV4pxaySVb5XsvdIA7l56QBvOKtOUwQzSVUzCudt1sGz1Ou7eVUpfDjuT2ZskKNihBhtvxACrF6K2fTYPnyKC+j3LUWVYN698bQJxj+/Qx4uO3OKuCCV64dRVcZa9dqyBKWZ1VOO0jR4tKwYToy3Y0vMHncUfcvNQPlXvsUKZ7Za821UBLxiK4kCkLtTUefGvs4WoINoBic/V+VW3JaQNtoH14jR0nbkbxu3IxnW311PqGAHMeBRFw8fcoJUOMTB1iyB8EnCGdef8SDpTBur3OpO+vCC89Q5Dvwl6aOtfia4CYvxmjgK8VFvKkP+NpWMXkbjRaxQSPMQFdoIc5CsOGx72UeiwULoUPwq616WReYEjC+ovgf90JXlTegzePvAQxltuxb44AwhOPI7C14ZB1sv9NN9wM+ysm8ZeVyrA28eXdiVIUuEPTQ4MBXp15zWvtjeGzWpdfPjyNdqx9Qsu43Oo4fkYD6U9x531s0lwURBGTumEEz5j4ecxcW4QeogCT/J5RpM6T9vXj5XtQnQbXEnZOhDazqTAkwVy4DSqG+Rbn2FshztfaMqmmT/sODCgH78/HU56407j+zsruKxmInzejXzr7id+vtcWb1ce5wD9hTz83EUU1FaE0qIC/hsxirlRFtR3WvH6sg/caTEXerZ4UPvN+5DbtIxENaZjdrssdDfd4ZzpynD7ZiCeeKHNfwXG4f0kX5wi/AcbN0tSdlIheZ8VB+8FRnglTxUOSaznyRmd7CrZDM4fjuBvkxRueutH9WaqkHNOnnOUBbjESh60B3swbdp9elighhVf5Cg27jfa6s/mXeOyIKf+DN58bYRetfLQGgU021SapLqPctWwg2w5U4pWLkhAh9l+4NO6Gx56bqALr1XgzyPEhncL0XzwIUtCGWz4nclxad+hMa2XL+xZjecONnDpXHV4/30NLgt8RBOKf/KysmsYee8ifdE4Q8/qG2lb5CZSeHqX6vMnQNJ8eVKdhpS125qS26Zx0Z9PcFqwA5TrfdngkwsUdlfggUeC8C14NsTbJJNalBnU/ZBGT8upePvTO1Q4nwCf19TRwWnBVKkjCF7aU+iunwB/P/8IZr85hzW63ZilMYD7xuyGcjc7GG+jBQM2o8EpOhirHR/B+PGKMEL+N2vp9FDAnSJa+2k+1U0IRXunEzDOTgRqfRrpXo4fP7+WgnYDS2jTjhZ06hQAfe95bFvsA8s/t+LTdAK1kVr05uda/rPsEV2fsxVnOTtgRbchL8j3xacusVzffptOu4lDasUTuvpXDtKtBWiifBCPlQnE/ve/aILCT36hNJTVN+tBav5UkK1Yjsdu1eK5+RM5YVMZTLFEvHnvKV95dgPl0vr4Wu19fpUsDLOUXNH5804I2zGMvJeY80xlIZj/cR9lLZwI8/wOcM2HA3SqWwGGvRnq34Apbyi8il092jCm+hrNqO4l93WzsN+wF0UfGrNm5hRwdddn1bLDNFvpGWR9W8gteTn0OrieBTMyaM25FO6omI/rnRgetx0mneE+kBcQS2MqUrgcHPnYVn085WiJl7xrMV6QULh1DGxoLSP/7d5QPsIAex9nk5OjC98SNIfDGwfQZP5jenQsn/DcWMjadQQeKm2hXxqRVL/EnbfrteHI9u0gfWMudzmKwOXtefgkleG69yCGPjs9dL+xnDbyNQkpDGB5zw6S2pPL6mM2YYP2AzRWMgaFfE30XePFh+x24J7AHRhj9QJvNt5nuyx9ohHz6P0/pKY+Nch0e8JnBPRRwnsyvFBrgGihpTTraTrbJt/E8K3PUeb7PJ47IAugo4QR75U5xIpAvtaBf//Twdzm3WjzTgflbw7VfVQpOcQwNFi/5HlpP/jUl/ecFOdLx5adh5L5ISgS9oLv+45ns+uWNP4VAZc+RSWVzzB1hhs832yIji1+HPUrCX9sNWI5re9Q7XyBM0I1wD7Ug/VXVgCm9VLYO30OSnoNnsPkOeJSJw4+ieEvjl3wNUgBeiIFcP+jGJwkzpwqdotuFl3CLc09NCxuE3w55AgtI3JxCxvC6qs7yTz2Ib6bmwRpXT84o6sLfx5ZBF6Rh+jZifdY+D4MFB6bQc3c5TRRyITTJqlQXQDyCwVXyOXLbLHVkvJvneSquUH0HSRBWvcfs4YnzNathtWXRuLSUDteVR6O8cHDQPt6NQf338aqKpGhHZXGz5vS2bD1LHV9GYug/ocbylRQ8N1hqGr8TL7O2axXoAYfEwNB5Nsc1PPTop2pa2hu8Ai8/WwLV69ypLmnEvDrNGnOdVaD6Yry4DypiJ4u2wInBNaRTcIpCtL+jc+OBEHE3J/UsrUNZQX04Jl6LHiPn4lprzeTxI5qcBvnxTNljCG1kuDV8F4YlraG+s8pQmSZFMxtM4Wy6Itg/0MM6keqYti64ZhxMQamwz+o3mfBKulCcG3fQ8jJ3grij8ezyeBxHrUqGPWbfGHOuW+g4zVA4fePgso4DRjZLMsarX509loMqU7fzUHu9+FzzE6uyhhGq9xahrzpNRU2KUDZ/p8cceEkSy5SgYWq3XDKU4snRhXCPEumAJcNFKSuB7lPJ8ESKUVYdDEfN6y7xNU9SRgglczKqbkYIejIE7t/04T003xkijHc1C2iTeUtONpVERq33Oa5Dm/hySUFtszJQSHJlbhmw2Ec/k0edo78Awu23mOjcUvw2eeJcDp+PWHGYxY+kgN/f8xFu6VxtEtTETbGB7BH+y5yjHvPZBEP5TKh9MwvlnWPFoO+7Qyeo2CMCprisM/PEJp9DSCl4B3jtELuOzERvS8W8fTgGj7ZMkgqHyspXUcHVh1ezh9tK1DGsIwOqhjB6SdKtGBOKjip7eHJnntQW/syFtpJwTjnqTCgfx9nX2uD7wJBmNKWw61Ds1oOynDRVYW1r9tS7GhBCLTNptGmvhCidRHiZCRQLOYWHBBZC99L54PErJ+46nEX3nDXhb/Xd9P+/ud4Y/5STE0T5o5n1fQscR5/OS3NSd/TOa43hmLqEPb0rcH3Zyvok0EGLbhVgD9IBH6P/EFCZcL4KrEIV9YSzzeQgBilmTSrrQEqJ0xjP+l8XpTxloRrjw/x6BsSSBiPNvevQ2aCLnxuqcVW3zUwvXQBtU824jOdNtgnWIi0shqut0lhpm82RB81h9HX/1C/wvYhDu2EiM0zWcFoaFbGL8U9DRaQeqIWNefv4jWDUiAv6Qd9PSswJNKCxw8X4H9JH0FcOZyrxy8m+cV2tNH4J57bOAGCeoZYKX4+x3u+GPJmPx5dPQZH5jRxv4sqbrrugulvNTGEtCC1YRZJOBZAnlsMfb+RTw1N3mg/dD7FuJSTJhXw75BGNvcwA0v3XK6JKOGQvW3oqhvEn87uQzN7YfKO3wp7th5lp+w1bB5rAptf9lHOCklKnFEHgTX23CWlhP6iP+nH2XwqlgiDLXNfcbacLrjejcIULRvIPrmUI8O+oXnIacxvU6NaNVUepxCK2kcuo0eTLji3nATZjMugJhTCCnlt7IV/6YXtcSqYqcCzjgrxarU4km6aBmb2yrwzLpRmi3vg529Z1HR/FtcGlNJ5u6vUvi8Le5IE+cdKCTg7bT3sifkNAukyvDY+nJbo/sKja7qhrucJB8d4kKrGCR4rogvbD+jy2lV2fD7GAkdpbIAaT1le2lfFqQq+dK2qhOYN/GLjNkPIGz4NUzysoNBclnoPeQKsmwEbS+7RiznZJCkeA2u8zPHXozEw4dUUyucqnq9eCW7GFSw9op0XgSbKR1+iS6mZwD83wP1IM1AprIT0R3rsJRgKRXJLqaJYi/8JncGdRXXYOiaSJrla4mCwAWg9kQSK8iQVnUxaHb8Bfb7loUW9JM/aJY4uXZJc9f4HlLdoQe03ez7yoIHTGjW4J/s95879TArORqyqeAijLuzmfxcL8XnwCLB7mQNSyybwU/878OmoOlyXzgDf2qX4PlQF1PwFUdU1G4WumkHniUfsOXgI6v0ccd+Ow9j6Np52yWZjvOtjWjLSF3KPSaFc2RSwOTobRkbJ4rc9abBpoid5RhihfLE1iSnkws7Qfhy/qB7eeelB3u/bGDPggTtTVoLwEKfe/u2Ku4J/8eUbLuh/ohl2/veKP6aPhobB5VQS74p1gatgzAhl6N0Rz54CL2hzylHOiNKld6l7MVRKAzquqEO04lZofTwIH/bW0J0pe/Ha8kC+HPEdnZ89g7uhCXRFWgtsL0zg91/3kMD5ev5hdIqedgDJpMqwub8KTzPuwyVm/9HxtvHws9sfJ11Ww4Hrd/h8SySfXm/HDZsr2XPeBJ466jRknlYAzQZtsOm+S6Mtz1L7iEGYWzuaBjYW8Bvrpdh41BoS5tfz8XvatMNHArRfX0KZbB9IE/NFs+4KmCCbwmsHH6G9fR94aOfwXHlFOqIvBGMnveOKUfno8/UyqHf8Y7f4VnJ8+IVG3s4kf5ftZKMnAqMtx8LeJytx3xZd/lFfituE7/LCXZ68PWwBuRyairyyAebaFoDk6QkgZeKEiq+GwbxnF6jofA1HeIfQ6nX38fB5Lw6JW45ffyxHh92qMH9TBcSVH4MfczdyrY41fI0/ggkyInyiVpVHDDvMnyyzqcjKDE68ec1H7CfziZPlGJD/FFZoP0bXVX6cmTUbD36fBHXyV2EgRQgqVd/wsx9SAEUd+POXDjpu6qRL5l7YXBbPaavqMZzEYewYS/DpPUhBU/ajkowqp6825OAicVjmwjjHYwk6bFPjry1ZVKmiD79P59PX4nkoM3czDQ91xWH4gm1/CnN65hb49Nqad2suQwlRU7h5zg3dA53Ipf0rjJIc0t26EJ7zYT3s1jnCPpW7QHMBUlmKJXi90qNv3+5D+theWCgogW/XH6DEvHrQGnWSpezHskVJK2QsGgY7l8lSe743GEl/oAgze77U1c+r2YUy5uXBxZnKvFJOltWDJoPW3skUsV2M/904x47iemA+rZ429mqx+nEvdKmMoUd6Czl13ySonP0PUq8EwqYcJXY7/I9/WdjwRYNkFl7fzZmL83FjxzmMXzsabh/Ugj9XhlHWb3N2P7YD/yvXo4vH5bnEB9jsnhDH12mRziZBULEyJ/d8PZ5w0oq3cQCPGFuA1/qWgJlRA8y68Rouf7DEfws14HnJG/TIPwP5sQPUHHeJczfuIazVBcEWU3oQYg1xKfNZ8uwY6OzQ4+cDXaw4axSb9GyHq2JnsS8T+VjYdIak2winU3G1kjS0bdYEseWBOKgizFEKH7HV0AGGvR8A0/QP+CvoDiT/8OTuuZbQmTCGbu4zR9f+Kzgp4xQdFPjHE9+dRxOpN6h18zVox8/BqsSp8O+QJS179YJmPqihMdrj4CqcoPH55XRqrCj4L/mEX7cYw3QfQRDf6sHCY5r46rup2CpymU4cqsCPB3shK2oCJ9qex6gsAVCP1gGz6V5kPecjnZ0YgxeuNdKk8R0c33sFs+9PYROnX9R2bDb1nzAAV31TGlP8i+XN3rFW5V6gl8thd70SjEhPgx77QZQpFGPPzqF82JsEM9YkUtl/MTAvexRVf3LGlC/msGaHFqbXXYT2Yllw7BcFQ2tHyjkSSZfOjAO7PSdJ0bGb261P8e3hr8jcMhnGuTrAthx58PpyA5/7mXKniQlYTHwN60394dO6H9g33ZcW+zKIm+dwoos83Ji5BG8oj6NXf6pZpmsj/Lv+l0bWvEHh+mpS1QrlNcW+rNOoAr0qC/BI0ko0rlclhZ01aF5ugRXh7XR/uAf7mGyAG0cccCDCDATenoEfyuu4NHksrggJQ99WG5owbA+bqr4hlRl/CP0t+K6ZBOi1XsHO9E1ss3gTb418hpsmJKNL+1W89eAXO2bU4PP+i/CmQRA2qL4j8zQ3XpVaCC0nb7JArD2mHjeF/RfjqGzFR+o7WMQFIzSh3CQfun4UoJjJJk5fPIV+XN8OF6Y9wtcj36Dg4Sps1LblhrHjQOfYcP5X00pKi5qwXSYCxmQhKUQ9427lcfzI2g1cNIgFVljAz5+GqFF+Eny6frGMwCpSm2bF8s0VZNqZzBPnqkG+xF3IniUOXx6WglbqbzJ/YkvjA2dQ2iIV0vK8QerzkuGCtSqt2mIG6ycawLazo0Fg3yEsix0Bv+w0KCJoDgRW74ZL+cz6hT7kERXOm4omgskOU7LcYIz/rlfCVqFcVtzSxdJ6DlhXmYo3/3lDdpo7uQmZwD1JK86W+UIeksps9CaUa2Rkqdh1J3TeECKrjQt5kZs7jvSRhzKpRfRT9xB9/+XJBovUQHDrBnYNVcKMndlsaupC2+ZqgNrsadC+TROW92jQ611mEPczh10C3lLiEwD1UeIYVHUAEmcL02pVXYhJzkXbzaKgWNhN7UKaeE2pAc5rZLCY4xdOfR3J7wWy0a1WDdbbLOFDJ6pYd+I69LgkiRLOY8EZtlKg/iisPt7OMaJFbBSBsPVNObRMjYOa4+84VKAZ3wanwKs3++DOpwEwvybOKyN/k+C98fAo7DrsbmgG18Gx/KFFGmeOToetXiNZUH4XvfSdDod+VsPCId1NS4qApg1V0BXgBtqXtOndxQT03vKJ6i+8osu7b3H5RoDf7yyhsl6d4eAvLPwSCYL7FKnLboAtft+G1sbDdGhYK93raaS2ihFwzCAEZzjNxiU1E+HOeS1uunsdp293xMUXQsnsSwX+FT7ADS5icCLdBStuDfKYJ4Z4nkZA8KAPXLO/AxuvDwOheb+pd6IgXV+iDsGuTWDdXgpuTVrcYXyAttNGiDNJI1PLS3xewYlkvM5SzXpFuCjQjktuW9LPYhlKrpvGMrcfY7joCTynEgTrqJpMDx9jz0gT0LB5zw9EUjDp8DrovXWXBGUF8byaJdwcDOQbqeX0TkwHOwYAVq5MwrF/JdnIxZnPR7ti+toG8CvOBY11UWhwWR2UNW6yc/00WPz2BXt0SrDJjAxYpdtBdcG3+Vt8NEevvshP7IY87OgaGsuKEJ93mtyXr2ZhiyiYPHMdzXGfj31XmKxOxkH841jsyHHHd6vHQb++JiqkFmFL+HjKjq2ijbL+nGKsAAsL7OlufStM9j3CYdIK8HhkLL9kLzgzaQ28VWBYpKDOk57K8tlcPTrcv5WsVtXz313a0O4IkNLgRl63WrDqhjw6Z24GU51yctIXp9eXT5CVSQR8eqMFuw3TQLPyFpaayIFUcQ3ffXSen+z+htFP/CnA9RXn/oxl8etmkJ4Uj5trEth66h4W6z9PJnpGfIpE6N36Hjir2wc/F9pQUxyCkp8iP1f9wpeyQrjYejef0LKDGRqFwBlA8yc2cuvBJCyzmAomvmfRzX8VGG/rhMzSdFi8O5GKNmRA1/w7vG2TAezJtAIFERHYiLVYf24OL5zWwzkWvjTF4gdrmDj9/1su5aSKU9ep+SDtrQ4/tcKo6k4sz+4QY/XySNKVEIDrV6UobZY4xs/WApWmH/C4aAyolDajIqTBPdMuuvd0DN8ddRtP+z6i3rCTdN9pLmYE5nPXWx04GvkdosNLSW68LWt0nYE3Y5u45kABTf2exy/M3SEuuhQdD46E+NItGOniz0276nhagz0ckTYhRa0q9NqlQG6vP/L2wPuwdUAfbt58y6+XKdDkCE02DO+kopVm8OTFSrLcEYC7sp3w77hqtImVhuyWI/Ql5iY/McgkHXMTcg62per43zhPVhITqhN46kA95twzhfczx6CjSAONNfpDPTPiOF2xm6yCZTn0aSIl6nRzzR0rPmglCslOwvz06D2u+edD/bNHcvvOdfBLIAjGG0nzhtGP4ZVsGmuby4GVyS1avjWfjyYGY83JYDY/+ABkHswi6S8PCFetBbN1bvTaQhXmeN4D4X59PPtBhRrYh2KvXuPm8zGssF0J+4flQEnRSNw38T94834Dr9o2FvQH11HYsif4bL4Nio5/QC+tPMh58UloG7ePSUcKJGWiwbdvOAn/W0cCwzrI9aIdjDIdgT0ft/GpiTp81mQUj8o0hwO1+bB6yneUmfgNnmRYo2jVDTz8uhp2/tmEtqKLcHPEevYtGAN92w0hVO8TWbRo8PTVJSzlqcf1OZFQONkMfSwGuNsumtX/jIIunsatX8rpipw4RoYbwG6jHjjdNB+OfFkJATWz2EjKHUQ6VeDeizNUu/A5ic+7QG2RYSQ5JQzqP/dhSH8EqpuMxlnvfDD6kBI4vLoJiq5V8OLqIH9om4oDa1IprfY9/LGwx5Vfi3mnwQfeoGMJx0P385tQJ7r7iEGj/jVJFm7G8c9/4oGMdyyS0sAhVqdg09XhEGV0kg1Hf8OLc08McVsd/LaaA/OmhlK/jTEe032DF88pwINiQ4jz+U2vpl3Ds8v/cqn8V7Cdbgck/hXi598hgfJ4Oudbwjtt/oNCqyj0Gl2Pc7xewOGkdXDOrwDdnmvR978DtP96FxiVl3H0kA8ueeiOzp6/uHPKZthatI86ZK8ANkxjg5nq+KE2iANPTMIx2VLw+eNythFYBXUnm2DZTzMcXhlIi2WQ7q4pAb+zyzBZpRCmLTKCpzG1oO0mxIYPd9C+8JMUFPCENM0dwdP3GLQ2LCe974Nwx9ASyuZ68S8JKe4XGYOJNiWwfLUVWzb74d+vP8lwji+Gha/DomQ1aBa9gP77bah2Ui/cHL6VZMrmsbbAICiYZIBYgiYtlzODzE2T4Xj4I9jtOBb2T5zA1vfSoKFRgmp2Ee5a04ci7tk8d+FulC1VgK7Y9ey09A8ETe+jkOiZuO2xI53tC6a9A/Iw4bov1b9dD7Ey0+DSiwR6qPeUbPoFuElAk50Uy0A5I40bJW/wcK1VZKOZiRlXRGDRlxqY+9yAxgZE4pf6NfT5WjhNqNzLIW3+YCH6lec/NKJBGXFotQ1m40dbMX7EO8geEQs10bYYvUwQtv824O1eX3D1Fn1qyFWDjqspZNKmybI2mniu6Sqb5b0kwYXZsGycMJZ7pfIMq7tYM6S7ogkHUFAwlHe76OOwoDC8Rq6833MW6/n8ggHDmfw7tgPl4xlipdeht4QYOJn8AqeIWbzx8VRaq4F0/F0E9rQVQKNZNc+0VIejjcXw64M72Sr1UP9zJ26V24ujjkSTlPNmHvsrkJb+ieC94cZwNCGL3f7Egt5+C9oz4jBPmLsA+2eupo9OrSRy5hm7LTxCEwyUQVxZH+4PsXHXSsL3yVpwaM1Isv/gQIu8n6GdyxCDpC1kBakpwI4PSOrAdPQu8Yd7TlPhdr0j5h6Moq+nXHGbwWfoglpWfDMKQn2C+WCAOciOq4Ptxh6wWG0ok8iNhuAl8fzQ7CU9TKuHc8FDnBe7iGQ++nGegjiXnbrKzrOuwrFbQvzGzB49pvjD0qQGsJwhARuEe1guxoMOFjzFvqT9XKMuD2tyX/LAxduk572L1rYcxuVPtcDtYzd9zLLmpvn74bzDSBR9nY+B4epYFfCKmn804rpN+7FkywQoPSpHeL8CRqbuQXLewgHz5oDyMXEQOX6QRGA+zjj0hGzztaDboYBzpZuoVuIcRuYr8Owl5/mC4hG0t6ljfVkJvJxzg5QfW4JtzXb41KzLTusOwe3HaZT88jxc3DCkaX7eVFqwiXPCe9E2Tx5e7lAED9GjrGy0nW2fA5yc4w1BNtswYHkCVY8UgorFsqxZbwo2857T++rP/Nb/A71cHccrTraD1S0DfiPVS21ui+mgZwtX75eC9oMX4GX1eNiy8QvJjjoARQ8+0KSrShgffZgslqjgtSO1eG28KuSHaqHZtRMwR30c/tsYgi0Z3Wgm6s0eCw9j8fQ6svveDJZHpSF5oy4kq1wkU90mnq0sTYeKT3LKfy2s3BTDTZqy5BCjSP+E9EB7/Ba4FCiLTnolvKsoBL/axLHPuB/0atlbUJ58Fz/mGBM4KoK400N+vmEkRLWuwYoYMbya+x/7zJXHC517ePuZqWCw7iEIZ+nCyyqdobyrSnUpO/jjsqVgYp5DGRqq4CjzC+ePjuCw4o9srGIOlj6+EFJ+DbruHIGW436wb/df3lrzGn1D+0Fl13hyfxeC6z+owNLMlZxzshj/uzyewpRm05I99lz1vJtErrZhoJUvS7w7yKElYhBzopPk/LSpwk0bVMNLYP2UNdSx2RMepR3BFrFJ+Cisk5STNCDwpQ/1RgbD+W37IEh0OXyY+grXJ86H9bld3PwsADObzClnJ4PWqirunCZDRaWj2XBFDWae+8MHLl+jmq5g/uLkBcILArFxuxIcvBnEDl2TcW33GZ6wqQqkP0zm5atb+VZBIv4+mE4hj77gtw0GsP31fIouOYR7u83RdIYfnBPKpSohIT5+q46khOphf/B3Wv7MDFoPv+R1JSXgbtuGWWEZ/CkunbrUemlY43P8dzAArAbscVKENigEenGGrDXOaFfk1L5sGrbUjqUDhdCm5i9fTvZn6+/VpOI4Clrvm9KqjMVgk9NLM9U9IaU8gjsKt+HjLWLwLc4USmk5WGpagudDDXY3fobbZY9xreEDchCbzv2G9pBwXp1eJZTj4JOTfOCeJcRO8sClrssx6Nka+jdGkJOcAxD2zkG97dLcHKDHGtsf052BYRBRfJymjFuLbduKwEAng7aKZMO8K5ZsXdyAkZq74YngJ3DWMoZVDwbJPhbpe3Q6XHdaASufW+KK5Cr0uOzHlYoL2eXpGWh8ZwSjOv6ja0N+4umvCaMy9XBS81PW+JGJq1P8wRiXY5htNvt+/A+8HRN5ZGM2fNq3n8uPZKNS/l++f3gedTRF0zLR1ZA2wQH3lY6GqmcjQPxhFo7+MRc6m9o57ZoFxN4rwTDrjXRtUIPr3Rt4lIIwCK3IROVcF/yePRN7/kzD+tNWICVSB9JyVjjucDOdve9CV5yN4VF3MhbWn4fwhUEskZ+JoVnnIaZJFnhlBC922cLJb4xh+bqRILhFD3XNT1HA8jns9uAQCbunk9QjVz5sUojlT8Nxmqkqton8B/jAAhVDVrCO0HkomrqYtksUsZfkFL7huosUG0OhzqcGJw7lutjnu7jtjiFYHjqH6lrMU4bfZ+s9x6lh2AqeP14e3l0MguiFpmClnU+XWozgyNyPPFt1Fl0WnUMpdU4MDVMopEOAF3R4URGYgWbTf+ThOZOW1tdghd84SBvnhtEh98i7+xIMv1mOYkL5NPkswrAZH6jIRo3Tr1VD5QMT0tuTxhvH5kJi7nGaew+gs3MAu9ZKgo5NCQlsXMqK7jGoPX853Un4CUnJviBAc3hGJYHz3yoK+SsA34Kl4I7RSuofFY8bxolRhaoZVqxuhVMxBvhM1QZftGXzJwUJUJj1H4o+lYBh6UMa8V8Jl094hDO0lKn8WjeZlN8EtbzFZPpOEq6e8IeBA6ehctCK976to6NSb/HcLzsudh/O5W++o9fGs7DIVB/sl5fh+5nXuLLwIGUXncXIuiLQr2/jstMN3Pn6L48408sPVphB9+sZbLS6j44/u0XyYh/5kK01rpL/StpLPLHS4RRtLLgDl50sAEMW06SSTt7luR0Stpyk1MeXaHX8dF7bl0u/3Buo468HjT8vA8Yuchij/ZPNpMNx6tbh8HBwgLtStrDOwmc49eczqopegnnNRrClpoNnT06EwpXTKXHFD84aN5I6v2wgmRwfnLxlOk//akC7JUyhXPAcNHqHwr0tn1jKdhqnWB8kp2l3WUeQcIPEA3SJPA7Kqjowfp4NuhmK04cz2nTNwpxzZp/G/kxN7pZ9BFceCrGV6QH6eM4Czq6sBdcb4rSp0QHdNtdSQ9R6KhN25Rj5/XA2SwSqm9dx0IgRMHLeUTpSHc7Jmv94wxo9WrG2Fu/eRhZNNWRRoTJySn9KrmkjQM6uHV0vmrPRjttgXheAZ9fdwY8CfRA9ZTKL/QrG+g3ufDjOHETV9WmyfzRfV4/A6fGn+T+9cxCVfID3bYuno84MM/2uwLifclASaUSeHnJobbqMytzn8R/VxdTvNJmPtvTTgvsL8Gb+bTzYIAlxAx/x+pFN8BV8eFWXHkhVf8PSmwZwInAAM4saaJylLosUiQD6RcOM2UEY5/keFEUY/I7sYUWHfjZr2A25VpLcMk0SM3WEoCVyK9ysD8KpDn9JNPYpG3bepBdj38PiE4r8alCJtvemYbGWARgsm4Mnax+T/M9VJFrtj8swFhYZn4eA5MtYJXERez+JUkboBNifXA/PMsWgMKiE/WusuaX8O6htk4KB+p/QsWE1JP/9huW2KnAwMJOalH5RarcCPq22YPVfc2HgkhsPWxrNmrstQLZlyNvuq0Nu30ryqz6Fp/Zm4oWPf+ho4VWa/XsmvruSgndf2FDrDGN+VmsGtu6XuOtZH04/FUqvvfogIt+dv9gdhedLQmij5UHQ+j6eNq+UhOMdbVz3+Ai6nH2DvsMngMlWKf4j+Zc/7nLh58lZYKP7kUceUYOb/9ThzcM/IFtvwMr3/FjG6ikbJavzmu/1fKCtBzqC8jCtwhJOHVDBapNJtP9xI9cVWKGoRBqktTtTrVE7DSjug4aiaxi1WxwijijBzFNe/Kr+FrUVHsCeyg/0pTKG5BbVYN6LcC7Nj8H9U8RAP8CMPI3E+OGUrRi+YRUeilAki6IpcFhsOXKDLTYeW0nlo1Xh0NEGMpe9ROE9XSRj2ggbJO15S9gQE4UJwDb95ySidZP+vZkAzcMtaXehJrQIHcbw04b89FQ0XH3Ugk49C/m+hRhN+ZWFGs8Z5GKRlT2ruXBuEmdIR4Ftxlwwv7uCLEQlofbgRi5Zp8o7nfXhhM8qbO64CTVPGVdKe3KavTLwjfM4770HrBiZR7PvjaeoChGoSjdHb8sw3n34G9/2HwCnvnpylz/LvRmKdARGg3zzA551fThIyOxHxR12Q+/wEu3Cx0KqRSYvHFgCpvtGQuv8jyhcdxlHd40HvX9xPOP5VVpQ+pBfhc5g73fNtMnyF60LXMHHgjNwZLMS9O4aBY7TNWjP6AAKeCMGUm/UhvKTMipmZbLMvzH4UG0UbTt8g/7PPVm2ozhqeh/XNASSpnYURR5dxVkKiynsXj2b7YiAqKbx+GWeIeTsaWPJtRfp8JcGNpgXjYPfDkLsDAPKij4NQSWbOf+XNum3jYejImNxlm4M3JT7Bj/T0+DoDmOQNfsGd0IKOUtjGo3eFcsNQ8+9HfEVzefsps9rlHjY2l6EEEn+dHwm3/HvghNCa8ni/HG+c90EanNPovmZNXT6RSl87w6DuNBL0Bz/A2PiA/mH7GTIdP0FndXmcP6mIz50m8jbfktivVUayWTJ0qV5DpAXsQs2FXlyg9YbDFwkAa+GvYUCioUmSQsMDzsHqSNT+PqleTD+jTSLd5yjkLLFOGPhFLBZcJ03L5yNexyCebWfK38Ya03VZ7rx2c9Ocj+pgXUXbHFEhgx88P/IDxcGkveVTNjXWE+LVcPJI0QENr98Az55xzjjdjC/lpwGbOfAeyyCwEH9D+icnI2pGZJYkjeNAyJ02bbOBUbNugtUPOQzk2ZCc+BG2jZTBJ7+9OSc2jEQ0X8Rv+jshoNltpCtq0G1TUYwQS+S8vqFOCRXDEaG/WKl5cq0Wvwt5TwW5b1XX+OTUeGc6CQAuos/kUfrRfA3tuAr27L4UXEeN+/QwuumU/GjcDxarfyLQTcFIcxmPUOwEmd+OcBHu95D9XI9ejRvDJYmLwRL39kA8nL495MwvPWpZu3RA7TN3QielDaw2L79IABCJHKyD1cZx5HNegG480cOur8q8vSlEhR5KYUsVpZC1697IKtfQhErDmL7h2Ogrx9BXtuHQZiMB59V/Q8OFLpz88N8SpgRBaHeJ3BHuyheO+OGjuHuFHfCErQep8GNY5t455PbUH7MD5z3qOCZwrmYN6Rjso6zuNBtF7t6joWXWv0wrOUznR66Y01DHpln76cF415jp/MKnDWhH9UibtD0LBWoWqCOnaGJYKt2ZchTHPBY+g+Ok7dnsbSn1Hb+EB18l0+rJWSgU+sJyBvVgM+4Izi7fz7Yjv0AW+MNoKn8NdUeXsoBhzPpjvdk2LGohDPDCsnjhh7/vGAJVXKa5LjUnxtHnsQexUy+aZpHDaUC8M7lCiirT6WBb8WYPFKHwrdYwXaVLxjrtB57YxTA5bMduUcIQvYWE9JsGQPmZ+aSf9ZumpesCydSu0jX3INmL34EtaITKKJYBy42/kDpkSFc4aCEZfeuk3ByB9xrRoiOscRjFt8pbHAtDh4xgcqjMhhRPIuK409QguIFalmwmiSv2ePLawX4u3EHWQt5QECbBuSs/MTqr/bQN5k+VJ5sCxuerYWyBBESODSVohsaeZ/vD/Ds1QfbYk9IXTEV91004K97i+nlqDwan5hE/q4eIK1bzJqeOWRxUQMObXeiY05R2PXRk741fYdx0ntIfpsax2/txa2v/qHv1AWsMUkBwtmG4eN/1Dutl8tkLkJeQTsrnfDEEU+3kmzwEwoV1SCf1ilgLC0Bxz+85F3pxjS1NW3Ie56DuYsk4sIoeuWpC8OTzvDxOGEQf7GIDKx3goynFVa4N+PhhCo6uXgsyl1fRCmPP4DFyznorKkKOhABG5t2cozFRlqys46Tp48jkxeEF8IdSXzaAQ7wieXYEfrgXaKFtzr+cWDZIJ1ao8wxgQmoqZyA+lEG4JdykP6WrILn02Vh4tfLfPWHEorrP2GxT6d5c+oNLO2Rwkz1mfzw6ANeti8IK8Yow8JnJmwQ1EF1Te6w+E4ZvapLRKX/wjBlmSe/EU6nzB8zGa9Ogkdmuixb5Ue/H4qgde5HSEl8x49TP9C2cdshZv1xXPT4HdrI64OGSiGIL93LfoXxVDljO7usekhq2k/IrW8B/tm3hu/NLgHFT6YwccNL7vP+yP/NC2XpJcMofeFtWruWqe31JIqP28SJTy35yhNVcKrsQOdSV7pjLoXKoxTJbp0D1Y5v4/3xTXC74BvuFw6B6Y9l4esSazpTuxgfdi5DB6/hRDklPE5Blldk9fJCl3s0r32o/+1mcLT8JonvD6F1JzxQsyMdT2vG8Aupx+iU/xnXd3rw91OKJCUmBNm9xmCms5L/pG5jvf35+ORuL6yf2M/L/p7jY9wKqlIrYOJ+DXivlUh/ZhznUx0L6EbKN7pZ/RhezLoEC+4MZaXh+2nyBBlOHfLOrqIJdG8ys0zoRp4XMpwvt/4E+1ZFSAodC8L6d2jS1yDMe0uQ0nMU1Ua5oGFoLXj5SXL9tmJ02GwwpGnBVOnfCCLPD5LtSRE4LBCPTzNvwdrNe+nwGqCXNQjW8/fijbZA2lFwAHdMnMT7TxtBiX8CJaldoM6rSlj8UAiULdeQnsxevBC9Hn30RpPGqcO0fLE6bBx0J0GJp3zs41V8MPY0jrsghit3S1HUoDN47iig3MUmnGIxCRI1VoGxgQbX5EnDwLA1fGqRP886b8un/c15Z4IKBg7MoFU/hMH89H2+GjeDexsMISQ1ADQrTWFhgAZJTvWnmc8kwPvlSJTXEoXk35l0K2A/Hn4YQCe3biPVUkbLbbbYcq6Dz4lchMIqN96wQQxETGfSKoVarqpWR4udI9msJInP38olw2kRLHJ9Oyl+OY3tWwkSgsphmK4iSKg2wVeHR7S+IxH3FMti2sSJuM98OY7T/o4H3TQh480HUn3TxlemK7DuHWsuNIwhh2ZNjA72xo9+s/HdolHsd0MHzkwIZudDghjvW8HffM7TpCk9kDfHHnXqE7ilcRNVrA2GnRf0IbRvGccX+pOm31yInTiToP8SZ66bxHsv2sOns1F4YvRYNNfXAQ9NJZRQtCeT45/oZPk6LOq7h1Fji6hUL5mvdxXDSdkttEhEAGxP+4Hqos/4TXwXZ3ZmcZhcAd28ooK2/JSmL//JpxvN0LBKDbK7/vFSSTU8V+ADVb2z0ce5nr/9t5F/qijR1fuDOLMkCf8zUIRVOndYqvIvHB9+D0qnB8G04k9U9LELqtd+5d9xeTDaQRNlNk4G2zUmWJ0TRb+3D7DXhcscbTiR7O/Z8h8td3q34BQcyhAbYgR9mF7qjY9Vw/Gq83PuK91L+s6u8Hq4KL7JLKdS+zIOqYiCDDMj+PxuCoSYfuP7pqX4H6jjcokfJNZ3mXU/dlDZnfn4acM1OtRpAf8kt9Epu3YQnbGGJsnZoYzKHPjoIk1Ll4wFuW8NfOd0GE46KgXzbO6z3bkh3pdzxUPObmCuFMDaRx6hpoYRv1TMo/l3ftKcpePA9vF7eH1MGHcdz8MzeqnYsGcPTU54StfHxODlXiXY+f40uNzVBPeJD3nwZCCPavYGsyXT2bpyM6+7+5jvSWng+5Rmik45gaellGGK22/aOSIfg17mAfzdhEtTW+Hvi8ek1P2KUzcEkFnYKdgZLQMjz6hSdp0L17uW89ULB/lB+DpO6l9Fvd+nUEGNDqWvrGbRuRPgyScrtm1ax/F/yznE7gzlnxiB6uc7Od94Mf9wLiXdTU0oXKsASiFL4cP09zTikQO9Op2LzibpdNUiDV5elsH6VOQ9a77TxlG6kHJoC3r61WFS6z4OgUO4WXc1HZr3nQ/kDs3YeRO4Mv0J3ZgxBkQnjYTRVx1hZrg1GRkrkGLnEG9ly0Pb5D3wu62cHR5oUJ6oGiQFX6REx2rorHxC2kHfeOnQDu709R/KqP2U+30X/LaXI/WbZqA4JRGHmYpB2MIddHL1BVZ+bEheCaYgEh1Nf0Zs44JV96Ey2Qz8U0P4jbsC9799R1MvXmUb74ewduZzTriyhuQb7+GP5Wq4U8IS1v7NgaWz12K/WCVsGNzLBcm5PP7bGjqhtIoyK2NBriGFRmdMhdVVW6nk+AxaXbGd7rdFQfbWlVDe8Ae/ftTF3FX7uTK1EZNrCXYfuwbfckrodJkEnZnygS+MYXieLsLiXhmwPTcU/5QeIFNXPdgqHsnFJxdBfF0Bu5VFov/unZzU/ZPzBFLw+Asx8C4IYrFYTRgvdQYyPYuoQXokrlNK46CToWgvPhdMU7w4paMPCuolyPKHBBjqjIFjnS/51r1d5Hn1KGvF5XCs7S0YPLYZHpUrIenZUaa4HBjO+fs/4s77LaTHfePPaEhbtEvRHtpDpaKBhnoLRUVFlMwUJUU0rCREhRJZlYgoI1KSNElkSzYpicj69vkrvr+fc67nnOd57vt1X9c514GGPzvhRcocmt5py4Z7UtEqXwLVH63GU0llEDKYBhJsAeordsNycWPKO/cDQjM0GG5H0JReIUwoXE2JDSF4/u1/EBYlCilfFsJg9iwsghh8d/o8tcTVw5SkANw31H9Bb+TJh3vR64E5LFe7ikaR+njKKwpPK06DZ89k8Ol0SXj3toLWtp0h0S5FvNYoC5vRgFxCLlKMxXwa+aqFM6Z0kZy1CM1X/oKt8sexr3YbfV2mDOPfX+J4PSNYnigHX2p92P2EPC72bIKKY+Hc9zoKHVQSWL12PKgJWZO7ZjkNav0AzdiheS4Kh3H1LvjBO4R2NU/g/MlBaDRTE56kToN5TuL0Y0YB7jFXpqID4Vx37SOlnlgKY2NugUxZPeXlqsALtWrufmzPZx8WgFhHGUloVMD6/W7A/BIDhzxax7OMGw0kILfImb7fu0fNT+8OsbkSHvB7Q58sDnDpzSA+/MsSGqeEgNjocXCvYCG6XlmEFekGtMPeAzxjHNk67CQu05Al+yHNNP+dzDlkD2a33TnZ4S/JuqixZrIy3Wj+CNdmmNCJZatIO7cI9bVH09/dyvBPzJkkv6mxSuMyEn25iK58W81vbL2o7IcFWxsFkX2sLIaE24HuNkscU+YG712/4sLFfhDxIp2CVjngKJU8Wuc9gR1OXEGhcbpwrPkG+Y3cCXEbW/jTz2x6fEOD6+YyHF4thAc6YulrzmL+7GUPo73mw5mkndgguh+vSglhUq473znoBtp7bsMuKxGM7N8A2iVi4CVygGU3q1Dqqm46NCuIwPwVLA3zJrEuM2rZaIqPVXrwQbk4JOh9p6qnY8FgKAO8KhakLMM11Pa9mwS70lDW3ZiMdtbQ5P0a0Lv7OshvcsTfU4JQz2gEjnx7jfMsuqkt/CuFPLDEh9lSLO0H8DxqFmolPMCgB/f5EUlj95gWnhMzgn7cU6Z3Ub1883g+lBoowEsHPZ4c5k/BSw/yMHVRbjboYP3D9nzgqjw4ytjguF2+rFojDJpBN6H7bzx62GzFwY5HdDo/mtBlOkdpvcPBhZs4YvR07lkkDl42snTT8BzS0nPY3XUJOkaI41uHMtwvKIYnOZW3bGmkmz7CIDhtKc7au4El5tvzwgX+uOp3JV/Ui4DfURNgVXU0HT3YSmb7GD5HfqYP9Wa8UjIBd0S3U88YWV4p3Mj+0xZQj3g7LPn+E7J2GMNHs7n4e9ozPP/mJq3SaQOVz0k88uY1thMXIuNP68l740pWmy8LE++YQWZ4LFkEXwdZrRY0f9CEe2810SgVOVIsmMvy5YvovpkWfDs4hZ6oifPJTW3g1Lie/90S5FWrwvC7lBcIWO3HWr2Z0DleDhIPjkDPi80Y8UwQN5nVc9Y7fx5o+wPj79rBsQc6pCs4DHKH5mpLmQHum72BT1ruJ0V+jLbPl4L5EJO/1T/Lumfn4gqHGMJ/Y2D0s2iYUV/BzfOOcmXfVg4zGsAvCf+h35qLJHmgETS8DejXghEA2l0gGp6OjRLfyZTPwrZXJ1jQuRBFndZTfJY9KPFisteyhWm/PpGeYjlqtg2Az5/7kK0tjNuXyMF8/T3sYtsGQWkP+KqkBKxWn8zSpQb4Q/knXC4Ipo7KCtLO2sVJRqqk0yxK/G4lZW+Qhbr7S6kmQY0eGfqzoxqgvnQhncysRdOlW8m0fAVc73iG2q80YbJFIXfH+KDKcQ1WtLvKH5YrUfhHK54XaweHvplQ5/f/aJqxMGQcCsGbZ8to4GMFfuttgG9WjTDSfj3c31VJd+WWgPu0GWyw1xD8B/up64waRhy3gHtVTrAptp5Ft4bxUpci9PuWyXuvNPMYeQmImqCK5Yvi4MxcM6r4Gojbzct45NSlUJnsQd41B6DGP4MUi5XhbKADr9n4HV4unsDGQmUctaYTF71cxPOlHHiU9AT288qlgO+iYP0MKSAmhQT/S4bTa7so+ao0Sbj5M7ytZTvL//ja3Bo+WzwKhNcVUvVl5PC1Jhz+JpDWqXnBcpGtqKStSM25CliTupM1/5jC9LIaHiH1AvclX8MXM2eD4LJvtPW7Gdpnq0JwHEBk9xb8ajocqqYUgvn4HWj5NBNzMy7RB8+lMK1YjUvuZ4FRwyduWC0IOxqUwPzuTNpPn+Bxwy88J6dII1VcsKjVDl3mzcTLM5RIWf8+bElUh/SPq6HJ/Rg2tHqQsf0HFBM5xdZxuaxoH8TTuqSx5LczbckfDytPMQrxG969y5YmnSri6yOSqbksHyaGBFDhSBEo77kCMiaCUPZzDQxDY8jbEExfLVMp7UsZKa4bBm8n1uOKUR+gML0dlPeogUbcDPZIr8eHmj18eG4a7Xy4Gp+3OnH1cG2ISu7iBS0RoLtOEfwtXnBngDUsU5FD2x0NnPT4PrSOl+fP1+2p9XUGDUI3fxqlARlqfVBz0gIepPjilZVP8JTuOezJnYdFCf4w7MRYOtI4Dfd9VwEljZW4LiWeb7WPhVc6R0n91FaepuhOY/bdgqhVTrz7hzAfayao7NOglDWy5PDdFjtMjpDXlh2Yq3+Zrx0zoJgYaVrpeBqDKkVgnVkiXRLMY5c5pWBalclrTyjCv57jWHgsBeYfPsNZE1IoXkkEYizL6LlkBHz5mo63Wq9iRvMmjrG4zcdPrSbxWbfRQP0RZcQaQb2RLW7IKOCg8lb43SIJx6/dhLmHiCSzvg/poD5tcdLndhSA13+M6eMiQ9i9+yKIK0rgsILHYJQQR1PoOghmuXPYgyg2qh06boQgiboJ0+KAfvgsoE07wso4V3gtWrq7YkqmOaY/HI05M+Sg9rA7utql40Ispo4bwhCTXwF7zE7wel8DllQ5yRUr8jC+WAESFqyl9y19UGF6jSo7Hbj9eit3WrZy2cUJaPb5O3Q/2cDrmobWYNgHNJ05EWIdfsOsyQ/AectD/N+nlgr9KdSd9AIXOs6B9mhhcC0pAAObJEp8sBkGxDzwt/h52uljCG8eX6Ue14XQGCcAy4Z2wGzRDlw2dxIPhGThts5GoLIYFr7kSa/c1uEfQRvs8xKmhZMR/roVgvYJQ7pdlsGqCWOg+us+mnu+khZ+smLJ7KuwuTsD/PdIQ8DCZfzu4B4Y+ZVQPPQgn0pIhg1Jl+DCNBVc4/ccHoysp6jCsXDr0TEqv2fHW6seQlimIzsabaIrWv9IN24pn2gb4CDDnyiRrQyOV2uh6HsKBRTq8+5FnVSq4Aon/onA5uPp3P22jdU8muHYXgIf1eOkMa+LazPa8LWBM/2o+Aznwjag5WQ/3vjuHR452ISOOvYwPt8VrvnmgewnVbrXaInBantBwKKZvD8G0g0zF+6oWYpaFwhuaMznka7KHLPrJ94pn8EiORuJrgnynb5VcKJFA9X/EO12F4XnXs8oIHkYyrjlkIbDOTa9lUQRf/aAiHsgftRppVnHp6NngiSsl39DY93ugM4wV3i09A9rBc6Ex5JpsHr6Qx6xx4yFZmTimvXy8L0rayiLnSGpUhWIfBhJ2annQGLJC3o9yRpfPv4PNouMI53HNkNaFU77tT/ykZNl+ONgH3RuPUzGEiV0276F/L/fQ/Fb9TRZWgOqW27Dxi+3+E/nJJrQfAYK7oTj6J69nJ4XTjnjtfDrhKu0cJYorPhej3e2OlLNr424W3EFSMYTw7X3rDF5McRuD+FGk2C28NeG7YZHeNUpVRq8WMttw4/DlEXeHBEWQ3Wdv0B29U+Mj94PkQvEoUTiEEWMeYPhbu5QlbEa/4begX0rnWhmaxxHdXdhgnQwGEYJwvbTb/DPU02Kptn49MgjXv/Zj2VHN8A559Nce+UDPt//HLOnOkDbVlVSfToMn5MhkFQz5AT+pn+rDODfbSfWq2njAZGLuF9PG9paVflk3Bva2toCRk+/4tH3QbAsKBn8ljyBqYVe3H7WAQPshvyodx6ZjPCFhGMXsaquAIqlHuHFY02sbPCMP60s5aOHR7DMZlGI3puIs7tMOUBuP18c+IrPfM7jv7DH4HBgEfSZn4OvhQ857qM5mP+1hyc+z2ns/RQqWCvIayQf4eXUDjaap4a13uZkKPII00cqgsKcLHpqlUTR70Uw98BWNjinTtYrbHnf52FYOUsW1bftoulGqnDx6ki4ZlDL+y73cvaUuxi/YR+LBcRhuYgdfoTH4HJ5Nf3cZAWbOpjvHPsKj3/cw5dmyyn2RijMf9SA493EiNMS+PvNWvLuMQVhu1c4MX2QBZpTKFRvEQZ9aoe1ERm0Ym0HqHaOIaVGY6wxkwEtwS2Um7MTPexXDuljJlgnmePmwHhumVlN7kELUSFTHoYXDIOL0tm457YETvdeBLN/BbCgYzvo/l0C2VLyNEt8DZmJuMAWQ3Pwm6qHEatW4pTiJ+i79yFqBwuwpJUvtQ82cXz1LfhwTxenb7OAOTv20tbD+ZQrUY3VJTWEG1So2uMXsdgpCPKO4sYXA3Rk3wh4MVyYLqi/5s0v3Mgk1JDTqgZIxO0RZhUyHs5OwnlfZ1F3nwwMTLODw7rlcOysLk0ONwLFX8bYsNUE3n1/g/umP4UJWXbQf0Ae1piu4dmlGaAknIwrLdVgkZc8LXG14Y3tDTj/WRCz01hwKzKFRvezVGWazhurMsjvwEu6cuIGhwyd45boyP5PDOHJxwNwvGksTDYMYL82A9R+oYQx/90An5s5IKSVhguvzqYsCQ/qOXyVz4tbgkvBI1hr9gUNL16EL8vVh/KLP24IdYH7w9+R+LQdHLBvG5ULGcDaF6fAMOkK3gzOxtoNfjx1VCJtOedPXudKYNZgF1Mc8o3eYRC4qoB8H/3lnHW34FLUX37h2oPXp2rBnLRP/G7ccIxZn80hn2TgiPVhqEnehMFW1yFW6SsvdHSCpoEItkoow9rV8vgrsA00Fo2G+2/cedb8b+Tmcod7DvqC1P5WTBS4imFBUrDb9iIIz4ge0khVSI8iPni5GY+dGcZbL2bT3WuX0CR+Lb9Kegvbpu/g1qpo3J06Bt4JX4CWx0rwJkgTg0fupc4NDnBxbQ7figmGsTlN8Cu0h7SShoP3psOgP/ExaB0MYe8ZK3jRomZa3ref74wLw4s3UvDRJWGonKcPaR/us+4SxKMjDPlrgCoHTL1OGqsEYfWiibCjbiyWeKjBbUdxGP5YlJ7PSMPzDjcgNuUT3LMTYvnHH8B2+FRQFrfkla13+E69GrgnReOJ+CmkYTAJBFcjDdfYiJ8EPaHq2jrq5wmw4p4MDzbYgoi9I7oLCOP799FoH/YdQspN0TArincl1LO7hSDy6hPsUTEBvIsC4OfZ6ah1vwEHHr7hQ2MdwMtXELyfz4IRdz5hY9Z5VDXQhinmR/FkkAtsr8uFgrAugPQX1Nf0Emd1vOVzX+bjwfEP2QsEoTBtIX36ms27jr+j5cGj8G6+OMjcK0Ol0QcpdbML0q2x1CFjCRZdKzkwRIeezE6jhrEtdGvHZIgdlotpJlOpz+wJmb3ug6aFUvDrrz+IPdemujH7oMLsJWjvq8TQW42sGT2b+sbU0bQ1rmyZNB6uvJ1JO+xmUkblRCitEsauBXfg2EpdygjTBD2jHC6WzaAYbWGQBwN+WLmSvnuU4geblzR9zUyUubQO3v2LwmsqtrhYNII2fJEF3RXroMU3EeetvcfO2do4uTmACh4/on0by1Ft117stYlnhW9ScMTGFORkjei2YhFGNVfBvSH/3LRRhKK33uArUudRtywP9vgKwfmSVJoaLEqK22IxMlIGVsV+x1APARiYtIcueR7GZRrdED7OAD6dq6CLz2M561M25s00oqxXIjC3VpW+1V9ltQk5sLo4GS6+NoLaRxUwVbmfpyaqUOFKff6wPY9L3ulB5PULVJ4vy1KG4pid6ADP6zbyb6nt8Pzgdp536RLeWPYK3PbfR/PYWjDeXYz77+rB1A96cH000G0y4IrKKhJ/IYqVbUH8N2kY6b05i+WzmnFKyh86LKkHz8P/Azs5BfLWqIad87fAyJ/raY2QEmQWzwPL2184P0QRqpWEQXtwF00e/gqcF//m+YNVvHtyJ8fXm5N+YS5NLd8MI2oNOK5bBmTam7hROADHhz6CpRI6KNp9kbc93chin2UoKWYV/1U3wr5eUfATFae8rYrc7Eu460sNzJq6Hf+4NtBX5xyUXlNMr35KQL6KDnRtKGWLuM2w1GouTPlTzfomEhjReA/3XRABhalNsG61LSqqCMGTyL/0dckXdjk2Go+stCPvsd50fW0lKHkug/C/+/CSSR1arVCHRONaWNF3D/Tfi0K+2DluEDoI46PzeI3hbGi/1Y5JJjackKsJN8UMKGFYM72VTUPVkCLGbYsA3w/Hvr072FXGlf3rXnMSDNXXf47KVmwj7aFnMBa86U6zLBx79ZCEg6aSX60M1i8I59Ixo8Erbyokf5kER5qXQ+7iGnIrrcPu2J0w+dBP7t/3mo5sH0CB0yNAj5fzu8GpQzXLok5TCX+a4oCBFXXg9rYe1LuZgzRyMXifKaQsnE77V5jx5KP/Qdo9R/y2ZxX+XL2NAncpcZGdI08KfYjFslawUmQlx1a5kVxaHzzYq8WTplzHSWKSJKocSYuLlXBn1X/09KkiHH6xCtIWfId33lpcbHCZ/F/GYndtCk8UCETxSA9+NviD4gTVYVimEEy6eoLHSSwjNouDPwPfqcrnCgpG+8PjOHsqv1LIO4/rgNuhSPb/mwHTfgSwYYw87Ky9S5HmefC2ZBWcVsvg5JbNnO6gDpvb5sB3h0q6G/kORJvX0bI7Z/hLXTX0PB/ObcrKqCefT3l37MFhZiLtlriO011Oobe8FD4wuol7bZr4mx9RyDQHKpUPpPa5urB6XzaLTLwIP5rMydi/i4pUS8GgYTZOK0/Hz0f+0O0LTbAwywY+vbjBSc2LafZNSzodtQUMrg2gj/QpusrD6di9/3i2QQBdsZGECkF9qrv8lgc338I3GhGof7CVpwdVgoCfAoqhLh3OyaFZEWLgfskJj7Wex68/7/PYuk6aHOWMyhdWgHefIpy1zubXafe4+vkI+NwgRHt1J6GGQh6YeHzkiKQ79Kx5AxWuU+JKs/1QVOoFUSUIa0oSeFe1B/dsf8vqeltIOzMGOP877fo6mn2rJOnqqEzoemwI8+p+8gw+R/Eb34LblVgsmZYPW0f85roxb8F+twBeSKsHmiIHmgrb6OHBagxVP8Xe+jvpnLs5Zuo20R/T96ytsoheD7dArdEasKP6B468iOS+35pN3k6DfksJKtbMx/YpHbgvYC3717yk9aWa4ND8hFOOdIJr0wX2KBLl465hpF9TRh+ubWWT+xl8uE4c9bYRVKyx433JkRz24S6mvl9KYf6FeKnRgjp8z9KfImf+sHgNDvYZw6OeT7jeowA7xG1YYJISbVDWpqadrfD1ehi0+Ivz2zMWvDBRHCamWNCok6IcsWkoP8x/RK//XoJZe7NZ8M04aogX5F0OFbAyZRRYyBlRf/VOuNJdCE9uxLLhTTO+sLcXAteP5UC7qTxlymJunCgCjVJmlLrqK9S3fOHt97Jg5OIQtNzvTK2N7Xg6P4K/LXKF6bOtYMfCQo5d5cuZZsf5tk4LZ735CFeDZ9M+yUR8/MOTbLtFKUpTEBrWJ/D05xeh99p0+vKznd/tXAYZI9xo9oyDbHntAEmke3P6ZIZiHR3Y+9mZll2Xg7b4Sr69xZNV1vhSeZsdnj+rSdt0vMAj0gKiy0yhUOcZ1F6Txzw7Ye56OYOu5d3GrAlemLboBr9fl02j07XB1bOK5k2IxBOlgQDTw2lfB9JUiSiQqBej2Mui1OC2FYzN9eC00DZY53aBxkWlcfvMSnx5yBcyqm6zwrEu+LVNlLOn3aK+BGvw+pQJ9j3m5F3YQi11A9QzkMC+Q7zx2vs06OekUGu7KzzIk4DgBcd5rmUvuDSMw+1+lRj+Q4Wne7Ris2wWfdpSiw12L2G7vRqYn9yCh+b1oZv8YZ5pJ0Encjbye91vUPFVlENOraQH01Lo8GZTUNf+hWtWBvCVo2M5VKyX5NNkeOlBL5gXvopXWO0B25frcdKqEdCzMB/q6yfy6y3JMGJlDk2ZpoFp7ln0pEWHDj76SzMqhTD3+kg4WjoWO+zyYFveOP7Bwax0qg32nNiK1XMOgN65hyR7ez/n6FvB3nQZOvahjDznL6DlJT9of64COXoooFDzXLqpcZ72z4iApd5KUHjsB8uq1oDktFyOvv0JHy6UwRlBkpjV7oE5f2pJZstN/s5ycCzBHeKvh9HqiPFYcL6LptqfxTsGfWx4KoHH1/rCtg2aPMlAHbpvR9HAFEWc7CNFLss/4FTB0XxcDUk+KQ0V2jxpSs96eLBKCbC2hEy0MlEoA2lz+x/sbx9LqglnccIvU9Sx+wD2ylZ8vt8SJpWG0DrvbXSxTJV8as3YL/QLPFP1gci7eTA4LpgxOh/619nCBGNBWBjrhMtvEBQMVKPbGQNsm/SFHcfLo8RWJRp3M5dHq5mBqk4JG29yR7mdR8FXfCE/2Z6FM1/dRo+ySyDqHYMSdwtReuME+FKczxPnN2H19Ug4s+EfXi9tI+Up+Xjh21IWu7IRbx1XoPsehnAi4jV1LXDFi8OtacXJPjq0ZyaKHFCmG8GX+dzNRsIHlzjfQwTURk4HW0sR9Ly6mY57uHLPvBCI2/KcKqvt+e0THao/vRNH944BTY0qePjdiW8O60RzDy0qsQrHqqfNuGFpFmtfEOTsubIsF28O6StC+LKPMCR12GF2qT+M0buBK1Q0ebm8A2lVF+GZvGV0bL8W6Bn6oVTVL/wbNBz3Dfle4LkA4uefweH8TmadV5xcHgIZFwyh+UksZaY4g1h6MTaaTQLckYCzF99kAanjkHxgEgcfDCPBNEMYOKoIo5bpY/CORrxt/gckfofzGbmR3D9PgKIeuELI6GQI8FeA79dDcYHCXibZpZz8citYdFZAhJ02ZCZbw2ETJc4z1wBFm2HQlFADUp+fwZXGStSO3k6hdf70S0KZ3rv4whutaPBc9Q/lcgRhcI0LZd3cxCM/bkW7zlBouPsYTSetQtGnb2HEo6VgnXmBLwuIQtGxSK54shBLNjrBupYddODOBjx0qpVu1qTj3LLtZKRmw6NireHf4F+cHJlLFW8k4LCjBOZ+7YPTeT7wY0cQBR6+hDmSj6BtuTSoV2tz1EVjlN62B7a+cMS4ccQxZi7UWH8ASkoWQsRrLzgvJQI9d66j9Z59mHpsJkX3lEJ8ZRHYdS+AyjP3IdQmDn4X9PPk/FFgamXFZkOsNiltHIwNT6EKVQ9wvSTL4RtNuUHGms3hMAnGAZTJeYHDuPU8/Y0nK3sO8IdyQzgL+3Df435OPCWIyXWS4OxuBL13D7GM0VDm9rHlXykmeGJdLo5bpwpCjoZ07ps93Tt1gwanSgIdLeG3cQ6Qurad+u6pce85DZjVHA/+9fYolf+HOrOGcZu5MlQq/6FlPzqh1H8j20XO5KPqkqwQG4OPNOvAXnwY5vtEkmvIOLji/B+aJABZHLrAVqcXwrileui3s5glu2ygTmM2rLhcQH/kAVoPjcLrnndpmskQ89sews8620HVaxxzqhm8zguGvddXo5mTELyYdxRu5r6C1U53MXzjM9g+JoC/PGki7dBAKPLtxoGz5ahUMAFeLhGEzjAbfHvlB4ydnYTg6MLu6sMxPHUMDmofJ5VrY3jpcdOh+1Ji3/osTHYKhFHRV3nbvnnw6fIRPlPXCc0jXODAkTZ+Za8K071mYeCq6/A0z4f9F5jwgTc/+dusx+QZ1ormi+6w8ggRNPyrBN/kzfnep+1YMhAOy2b24IgkAYAJOvgt02KoY4TPpv3i3CI7SI5/wD7/vuDsE8a8dZ0Zm/9XzR8FAmHarp8YYpTC9e7rqcbXAgQlT9CJ2YwTVZVg0bZc8hMlWCC6AjxF47HAdcjvqo9hzyhRWNuGYBVdBSeyhkNMZyGMSTiCW38cAdkPA9Ax+hi/+2FPXok2sDQwkX4Y+2GEaB88TZGg3XfOUE+gLJv1f+SfUv+BN1Siy21RUFcKwrAHjdB15CSPSt0K0+VOg/IIWx449xiiRolTyL5DMLJRERbscAGJtpF4KC4KfMdmw5PbK2HMPDN4pGKFWvk5MCdmDjVaqEPAv256+uAl/9k6mb9fuDvEnh/BbNd9etS2gSODzWiegjofvykPmqfb6Nz1jTxa8DeV6pWwReEenJOqAzffr+XxAr8hQ1+RQotUYMVhFxQsWQPrLG3pyatXeMt4NgTlGrKDxiy6I61GKcFXybZQDFJjP9Gm/StZeuopVOzrp+IbgbjDfTiN7LFhA+ls0Hl5c6gn8jD5/hda8VIHVXYiW+gIwp4Me5RvXo2/da/y+71KuGBVKtdNUIL43O3gVGXP37vnY8SVJxw9kEO/c3/hjiPVKJI6DM0jBGmP0lj4/P05Nu22IqmjpXQvyRSObZemtol+5H9alEWzClH8XxQlekvDodzh/GdZNJkk/6PdG8eQbYYJ3Hh5E1zbk7Bg1xxyP5FBvcfHgrXzFV4wajzWbz/DP7Rmsp36FZ5dKgDr3dfSDI0oKG7RpustkqBvfZq93G5hZ/8/GjP3H6uCIR0aXQCzZdR4hF8DGN98TffyzeBHWgXtFUhmXGLNXlu3ksr4O1x48xmEb6gj8YJCbLj+Etq77aDKxxm+hfvAGVTDwAux+HP5ZdRq/Y9P3Z5BWQUVYN/7AoeNNYOB3G58ObuVH7l4csruD7SxrYzMP0awa8BbVHJ7T77Gq2GvrRkkzNmLPy0m8yHZh3Bd7ARqjg7lgps+VGUnhvXxI6mmto/XlqhA945lsM3pDKL8O9DpjqE5tgcoOdESXzZPwUXestRb24YWM3WhaPgBvKF7ixZ/eAIbBaehVf97dn+nDgtGB1OI/A8AlR/ooGUDqW/jSQP66K3hMsA/MhTvchIUOZcWL7CkmONZ1IlIrY7j4MvOS7D7zAj00yiGvlVZfEe0mjKbIjHhwXZanalAcw6Zsv1VAwgZt4aWX3iC39uMSH9uALlsj0bdeZGQdv4dFm7/jz16RaDpLMG/uHIw8fbF+8eecJ/PTCo18KeXZc/ogEIGn9CaB8Pd62HtRiVYXl7P/QLL0eTmLtTU1eJRfS9x+Ohwnie9i545ZvO6LyFUY0pw/2892PRVY8uag5jpWgjKPhPw0ZRu2idxHXqNPSG9YwlrGUhCsc0/7hUagUK4j5cbXCHTaHUS3KrG4jMC2T71F+TGetN/sYrg/tMfhjWO4dLphXjw5mXYYjqPe4fd4qjUaIgR3UIWxfZIkZLwTSoInYoL6EaDLLifZrgh1EJZyQd5xZF3aNDhDWOXBdCE1Wowsn4BZQWfhgIzEXi1WRHNncypwgToQ2EGjdafRldGT+CfIqPg8tNUkPwRTOcCN+GXtIWY6vITnYcuLN95ijuSH8HHhxsIrXUhf50WuvjWgtNiWW6c7EDb7uwmiXmumGfygWdZRkHOGFvYft8Axv7Ko543bXz0+GcsVD8MiVkeOPHeafq5WRrh0iL0Gd1M6ctVIE3QmlfollHm2UG+Ld8EdWND+dK5s2zYsJN9PS25/l4YLHotAWcHtFDOMATl960Cj9OmKK/0jHNy8vHYhRX0d2AEblSbybsOiUD+pBTY0DcCi1ZX8IX6aI4IiIeCC1noH5pK6XN6OeV7Nx19oQ5LdtnRt7y7eMt+FQaoWaOnpy2NPD4L7GvdQd3MA81yVED8vjjcdYqlqv6RtO13KbZ2t7DzXUusl9GDNx42sHaWH0ddqma9kYrgGekJgUXzSD/xFPU5vyLjJ8GQp34Clz0kNIhOpOBgQVgrIACCqTtY9XsipCcHQo9JLRpf7mVpkUpwk0uGGtwIB2RrwDnbEpyjnXnLmErS3pRMs/t86XzxbV5zxJsmiopAUcxFLMoOwxEZE8Bvki6kGJzjjS29nHEsjEXTM+GNlThqhMqhs8B7eBvxglaHj4Ctcwn3DytBmSFPmaYQzmXtCfzj7kuIEhBkmb8r2WhiIJ4wnQAxo4zBbIsujLP9jVdex9MVq2m8v9cMtpwkyAoe0i3f4xBmpQvxmTlg6fECWm/sQc/WSLa7cJneFUni1L1idMbzCDZpXkIzRTPQvTtIyuGCyF0EOgab0OrwQzj1WQDGVE9BQwcBkhv/hmQWqsGkFYJcavUT11SYkkfxDji07QoWPE+AXUKZ3H46lLYIWKLoRlVYWRxBm3+tgdNtBqTMKqQ8pg/WZZiSqdM9Dp75CONsh5iwQx7uoz3Eq/6kpLwGbn5HqHX3M6dNHOJL6b/wx+oO6ivtheIHBjCy04IsNp7ByeJ1QGKB8J7zsDI/jKtudqGE2C14fccWxfbYw/JZ/1Fe3iv4LLGEKyNVof3KGr5vpQo+a0xxzMJa7lMbhgPReuCm5MiPzCPYn6TZUnoaa444DpIjl2Pu1V6SO6NHJiiKFaYWkGEUCnmpu3iSynkuzlZEeY9cDPvuRZmXJdiptQ4vHFfFnCNmoB39Hr5XZKL1wyb+Je/OuYfeg9aPzWA+5iMufNxDwwPPktoBB4jtkuFnafp0S7CHnoaWY/q6+dgiYEPJVwJZu2AMrh4/nbP6CQb/E+b+VkkuunWe0jdn8x5YCAUTumGmxygUf+oPT0scack+S2h/7sa6O0x4vv1vOjc1ky9k6PPkvvG83XI/THXXh8OCJaAZMx6annVR/SQ1eDCrAUfO+oi9NvPBQng26qps5L64tRw/ZwQN3mW4rOTEb//NAhWvaZh7uZinZYSjms1W/Jb2gFrvWWL3WTHuniEDrxW+4fiEi5jlE05vMpoAYtbD+Ip+SOrMoWCVWM7N3sedfprwwbaGZUrU8F77LrIwdgSZrxFg//gE7/8wgK8O3oI7VmL8e7g0aB7yAd/xS/HmxC3w6lMGyRWvhb9arfhg21z8qXUZV34shBHP1ICzLcA66w7P85nPlb+cQcOqniILH7GG7TEWMmlGj2/zaMM1hAqVOpC6NQeM0xeCeto/Wi7yGZuaJPDF7Un0uGw/fRsTyK8LzUDUqBdiB6L4h6gC/9A4CTGn5uGlsy0sVmdCglu+QM7oh7Tgnx1slJvLKiqZeD/tChie7cWoUdb4qXg8lhjuYuExBM6aBzFMQh0mhl6B83fXgOkIJRYLaUBbvUL6PSDKdxbMYWPx97zx41sMrJKFZT8doG2qBdSqSmDr437caFYJqyf2IigcB8saKRTxsoelPTpwXeIn1jpe4fOmzSzmb4Fn5Y1B48V5dNsQBXdKE9i6R5I3jVEBnfPaHB13HFatfkZ31qrD01nr0KJMF/2GJdOnz178WyaMsgOk4U7wGzQuPAlTIjuGeMgODx/4CjN+GZDcoXy8//YvKRxj1K/Qh1ebbCHIsRVf93cwGRtTw4kkOuXsjInu6nhPp44/X93FMy4JwralmZT8fDE5fFVE/KlAg/Pa4Yr7elbJeM52Izsgr8eRmtYrwIGhDKRU9hBj51dDifJzCEvtx99CKpSStgQfz1gPeyPNwcBIAKrE98J9zS6IEXuMgTmuaKIhhOUxo/HEvnL6MzwILi80ocP3hCF+yRsUdM2HmRPN6eyFRFB//BTODfmx7OB9+LCyEwq9akDsixHcnKiNB5M/gpFALnyQLSKn2ZdgcdUoNB78CxW39/K75GX0pEsT0mf+xe68M/hU5ymcPraD5Wv9eVyHKl52yMOJosiBqELP+keBy7rdrHF4BKmqzKK+04Fk/FQa7+eNZn3hLDb+ogY2yr/gb6gceM8Ppt6li6j99xhYULyennn+pVOj+6DQcABmTCmG3Q/DWPiqJPhPCyKXfwe583ED5AYM0tVJD6kt6S15Gsly5PgWcr1YjweFxCBxihGYi7XQdTlFznMSAfINBMVj3VTiEMl/KkxwfVUJZeoKwr6gZixWLcK9pgKYmTGTVi9qwrEzM0EysYSmHuugpt/z+fcHbYhPjsYds8pxl3gbl+68wJre+eQwzBqh5SpC7DTsNtsFTjwaqgxVCN6eojUfftAbydsY2GnKqo7xcPTDU2pXUwKRe17gfHoc7JGJ533PKqn7fhS2PfNmZfev+Od7Bx+//JvXv3AERc2VsDZVCvoXCtP8Vmve+/Y4ZVSokFLIEZw7MQ0dd1jiRcl83trcwPzQCHz6Lw7lEC9+/zmURD2raf+tQEoSdSU7vU6Q4S4oXeTFrd9V4ZPCZYgMMcbHi/thzItRaHZPCM7s+4zjtQIxZso5aDw5FiR2qYPYxBUs5anKH/5MJw8fVc7/lc/uk3fCs+58eOF4CFaUlPGDgJFgsskadpnoofXoNtquD5RwaBfE6Y/lFD1DLIROfGOmgE5WstB0xYjeGBvgweq3MLpoM+WFjONJS5zRpjkOpZ27ODFLGdYfU4ae1QKQ/Oc+1cvfoPp1irBGdRSpn9SAaSWW6Pp1OnVxDbbVycFXz4eQ6P4NJy2zgS0zwzDOaSUor5WAz28TeEBgIggKjAWjXBnQvx5PT49foQVrJeH4tIO4QOoaibqIY1mtDp8uOIErxh4lvZujwBI08NbHSmjVOUQp755R+9sl0F9syYLTz9O4td+w7vomuLZbENIPLccjsp0oEe4Po/9084m790jm3x1SnHUVLpyQ5uUPNHjR0qH6DBygv64J0oPTqd/gJjxNTOegtn58+TAYksUmwi5VHex9ZwCa8dG8e+kByL29GcvrZOD+qljqiTnNzD1oP1wTFdsfQa6wGfhvVWHPyZ2ENT3gNFcWE/oc+HCOOea2DNDmrZ/xjdp8DlW2hlP2lni57Dxc2vcOelvSKNfUip+FPYMA6TUYt6YSHc1fQ5K+DIzHYVC92IuM04Vgok8j14U9INX4Oqq6rM2asgF8dtV9vPheBp4ml1LHe2NKXfCG02fXs7XhBv6QvprnNc+ETV7XqHixAm5q04OupDj6dcUb9vcfwQcvPfF3pjnMeCUDc3xi0DXjIPyY70X3dzK45u5n1YBofD1Us/M3a5p9nrilWACW/fUFk7TXuGnSeFr9UR/qF4pi/4e3cPnGLzbbOB1uNh2gpB8z0FlzFvrGLuOkohYco2QNCk730TUmFVyTpsOGZSq4SFgZGtX0eLDRk9LPK3NvyQI6Ps8IRBQu03qhOZSWoQM5RSdBd48ttU68hJfsa1F1tjXHiyH6DprCuE9HcLz0O9x0egtuz67Hk7M/4g2LXah6uIbGiJ+FvRfTwbWc4d63I3DMMxIyHwzgg/AT+NtIkN9pWZDf9W/8aZkSfK6u5L4dVgCzV4C8z13khnecd/QY8Yh++tX7C1wSz9Pc8jNUKiyEKy9KgekydZq2fgkLzf0PnV3kqNPXgfMudrLZC2/aIP6ZU4Y8ylFZG4Y5FOP8+r1w9MZZTG0wZDnbJiwJqOJWixBOEH9OF1Vuwe7twyDlxVOsXf8GTllsxe9DkGwe7goPkoTp2zpPTPodwKkPu9i/zgQOPlkGRk4OLLr/Kd7fsg6mDtrQKon1eHb4IhL5Xk0RaZ4Q0zMOBg9kkcLtJdiz8RsZBWdybGMBhgn2QvGHqfRSbwGcOydFvo5G4HnqLR62luP5g/6QdFAPS8ZJsmHmZnrw0o/uHz7OklrWUHdNEwILP7Cm82Z0KvGH2XGlcOPKZxy38DSuz5gM18zk6eKnc6gTOh7Whu7i642LOS8hEof5XYZPuwPJRHMUpt/Vxs8OCuwUsR6nFEnAayFN9H11F9YEVYPivdEQs/cdHIkN5hnffoLwzYc4Pno06q0bC1mlS0Bp8Vq8HZAIFu0ToL3wDo7ZcxhP6/ewgdhnVvBtpui56rDFORTjdonQiOoseh8/xNc/zjLb14JJyGbecFkYf26v4D3JdpDVfQCvR4XxhvpOXJpdirXnfDim/DCv61LDyC4/WisXRdO69cDPbD6cqNiCWc01fPbmGO7a6UOnRxmg1o+XOHOhG6Z1r0D/GFFoKLIgw8O1/DwuhkWf5mHCch2aKPWJ9pash5VZr0F+ZAuV+on+v/3/94HQIbi9Xpx/2syEDeuW4OaALvq3eB+uUgygsXXDeNZ2eYzUtYWWwRr8nFwEZdOeYUHkF9D1kmazjlZcvrKblCu7aI6KL3wcBzDcVY1UDsyAnpPuMFj8j4477Ga3mTGcHZSHYVN/wAepGOjSFwep3/sp730/9v4ph4s3tHHel/+9IjWJJgyMpJZn5nAtYi2sD3cY4pdSXnLQiaLvfCSLlBXsWGBHqR0eTI/KoFo4Ct5puFOOlSXMzBzkqU1DLHd/Ca8btwqF3xzhoDNfcDXWk9RADsqI5fMt9VGQr9VKBUkSnDZdEvp3/GS5TQ8pq3whrtfNgLuuglzecQ/F/BTh1dhttNrPGw5tP4IinYOwxe8A6tvZwJTsFHq4fCHfMz3J8yrGw2/d33Sp8iFvVz2EL55fJp11+pR9tgbtozTxxoYcChJ6hVWrDGBu9S3aLN1CVapZmKYyAKt/TeRV28+zqlUzX5mthxlCHzH6xkho3/mDM/TtYY7cZoxZkoyfLD2Yb6zEJpHHnGUtT6alj7De2AHS3kVQaZklxt7fA6J/FWD5aiFOD73FU9p08FLCeqzYOpYLpBXgxbIPODn4DKUGmpKd6VnSfdeJSkXHaUtpKMYqZcH5kzYsBGrwaEEob9wrALveFdHEeQthbaAPnhF+xh8Tv8LcC3vB3yqMdHqEoePSCJjUcIba6oJQ760zF+7dDs+a74C8TgQ8LBLG7VklPMdUFp6yKSSNzqQ7b7tg1d9OvmIZR8ulU+jUkVj8cScVVROXgmmIJHzdo0cdOt/pyEs3mGRgTXf15WG6dCEVbxCAlmVL8Mnxsag0YRgcLJ8MSa9vYLa+FQ4c6QXFwBSq3P+LpqscA6EHLiRzUplLNg2DzPYOaNUU4+wZPnACdqBf11Qw/LkR1xyexONr8kD06h4Y99gWRl1/hm4FpiQZ8JGWzL6O7X1j4aSqOD2/LAcdf+dj7A8hWtBsAG1WxDLG5uC02YT/rA0Fo3Ed2C5hBX6GciQUooZdHe5wZI4o1P0nxaP3HyQRwZdc6ixAsReKQcrQGp0OS/CXv9n0o8+WVj4VhXNL3/Pv4EaUiNhK81VP45i+kXy1/SIJbvJileZaUsoeRmcnjIfmfURoWYBffN7QMoORoFrvxU+sBHjnRw+MOf0drGZOpcUnEMb2yNOv58GctLSNWNgWLNtcwDfXHWVfT4Hl1dVwVWM93RyUBvhaxHcXXcY7EcmQtM8Qev8ux1SDTJRPMR3aS1muGp/PmqXK8HytHl0ymAlf/fbDubbfRAl7YUNsKc09G4OJSrN5zdNy9H9qAe/npiC6uKNbQx+dEb3BCbmDdGxyMiUe7aKypijImuuNf1uMITl+EUX8nodnG8/C2b5Eru3YiTvu1FCn1QQU9vxN03sFcPEiC+h0deHAW/epcfAzyQ0xlKmfDy3ZuZvdP+yA6ILzZOZqRdPqEUQ7tvK9tdFcHXyAx+uaYMmMRK6/Egb8+jts61tEs8urKHHPOKibcRgejFFjd7MMkkzfzOXbfg5xmhsUbhfirLxgLsxL4l3dtmC73AaNfdSwxD4D7Z7V8fLtfvRE6zF7Z6mz6u9bbDsoT9c/j4e/TR74K+csOS3aS7NnisLa/wJxRkErFbs8pd8/P2JkZQeeMxYA7VlWaCIWRv2DM6hacTU99FGDozpGILq8C9PPdeMvestpKmIgP+MgB+sup82pnpT18SoK7rWF+JhQuv7rD8pny9Jy2WNwm5Uh58JtfOpyhOauSEOZFxfo+Y1TeHv2ajjVv5BHbnlFg+fu0a6l2rA5vgTFr0iR844CXn7yACY6ikLQNTs40xDMoZpOsDcnlh61KMLnr4UkWqiL9HMNrqBS7N0+g+dW5cPu83V0ekEOh/53AaV1zWBt1TsUWhNNsf0TOOP1LdywfS4FrZ4C9kkzyc1xLFWHBeONoajUFKUNlcMjIFOpj5zjXtEp9Ye84tsr/mW6EkZbnMPt74243A8gYs8AUkw8Pkmax0fVP+PGngrsL8lF79gTaNVxgdyULEGpURfMG0eScp83eb9WggMjr2C4wiOY/K6FHif5whsNpodOx6ijTBGyjk9i1XsheEIgiAqXhpBWzCJccCAO8sd4s85Ja3rZvgGf+SnDh5SdFLTJlzRybkHSczOK6P4GSlHHuNzSjcetnEuremayV7IA+G54iPMEBvH57J8Q1y6FlX0JtODeHNzw9ijGFRylBKdNsPCDMByJrKCtuXtQc40G62Sqsd7KBjLMeAHPU4eze6YJr5vjiGMfS0N4yHn8FHUZpUUKacCtgjf0n4alsuIoZpMIwjO06IY30OgoMZjau4xjZ+4nh0e/wLpmPAz2N1CgkQna/PWH5Jct/Fglnm2k1eDG9COc+GMSWlyQQ1WVizSsWoomyr8mv5799MXZhXRuN5O+myx4XLDHqzYuEP81jL5MfY4umrtxp7QBRjaMpfIcX66tOM3S1mbQOXkE/F1bSXMPtMOp/aNJsryI1py+RivLM6mjbxz6tsZCid8EeFwux+/81Ohy0A1+l/yHBL4QbWpWRi3vUaxTHQAhmmNQvlMBcjcV01hnf+w2OY1Lc75RjW0hyfoLQuzE73Dw0Fd+PjCOgn/agY57PFhUDYf35TVoI1kMo/f/42U5VaDwPRyqD6njdY1QuFczDLJXjOeBXXuxzx/x892PwJsV8ItQCaktuogqTdmU0tlOElN1wNHfgLQ9XcH40Gq4kvgUn4adhH/7beioTChqe4ljYN02pG1yMMdJgWrqIjGpbjcfSvxLisNjKTQ2n6QSIuFLkTjHe+vyzWAp8L2gAQ//WdKhh8J8Z84tCh1/ie23Dwe18BlUFzmKTDcYQ+kDUQg0TmGUeoJtT5P4j/tpyLnnQ4JnPei8nyZNLQeeuK8QQneZA3QH4JRxoiwuZYrxHidhQsQMnPF3E5a728PGuqfcF1THtzSUoXDgDW6bvh/mqy4EH6nLlLPOkZfeGsQHaanM1k94f7gCWiyQhArnDeBSdI37N+pTmJEyPFghA72XDKDc6wMvl5zFf5+No/bPyhCYMgYv1vSRa6Q/zRyZA7nvl0CH0Cq4VnCXfOIuokCXOFbHCYPb5SoWm9TNum0xPH7mY5SKlCHby5I0UziGxtokMF+dRqtyJKB/ZB3W62piH2ehykMZyFtUSykZs2GTz32u/vKKf6zfQ6/+2MGI2FBq+PkZskOnYcgbczyn6gT+MySh6kUEDI5TonnviTPlhsP0lA6qym6FKXmaoF7nCdceJWNXywV4JWJKH24Dy6nu4aL9FlCkKEIRS+fTlvd+2DNFhVInBeHeOCnYGr0S18S0wRqPfGjKM4FVHSkcYrCJt24oALmsQ6g39QYf+rkIOuybMKDvCcV43Oa1NrbweqIcnNgsDb/KkkivPQzobh7ddFlLDa/3w+YDf9ntLaDn+jEAY27xz+wIPC3DmFH/FA7H9GFEKbHOk5dYn/qMi+SWgZb9aIjOl6KOutXQf2o71zg2Q/OTAhCaaIXxw2Mxf1gr6x3sxbcNNhBT2s8XLFp5dUg8tqVXw9xv7wFSpfDhg3AIWPILvJ1fc+IQ1zmlvICMOcbcdvo9mMWU8sBHZcr4Z0cPhg3lPqEqPuT5Hi2XK8CfuIWkv27IZ2/UoHfFZJZ134mLXhaQ0dT1rBguzf7zlmJINEPrxPdQusCN/04zYPMfsrRs+Tgef0ucR3SpoEmhLndNtqXD+gaw07CWzUq20bljdhz2oAV0R9pTa0sHXa06xf+cTPnGwlS0iROAnd6NvPVAPU2MO8mOx234boIzim84z3t35lLAljrwcbbg7JnScGdfOM9V6WWcVkG/+0bBO3cFuNpYR6+P6uPa4XV48ckwUHU0gA95rsj8BsQ3nsAT3oJ45sViEDvnzWneoTjnnxO+dpPF44PCoNQwB/YMaeYxu8/guriM3A+Mg0c/f5HWjg14x9maeivtkBUVoGKuI27xcgeVZ3p0uuYXHjEOpzPR4uAbXIE1/0fReYaF9L5x/B4N7VJpoKJBaZfSlpJU9shIRKIiPyINJBIiQmRWKkpFw4gkSVMioowkozIi0hT6939xXpw3z3mec9/f7/39XNe5rnPpP7RLVaALFlbQ8zWG+8++h+/8jH4JZ8PfCwboLXiazrwURGOhSsoZ8MZLJ8fBy4FGmCwihXazonDjr6dc9D4ZwUwYx389zEWe9vQ5s5QPVg+dV8KFL20X4NWKE+nw7Fs454km2qAD+z50o8keTlDr2ErX7IThS242GAx5gJpgGF9hSd5WK8nO6q3wWu4Ww0ZJHGe0jaUEBCE84wx8/tzOU+dX8uifZvjbaCMfu/ARRkwboBmGunzDO4M6rEbCq63b4FgckYy0E5l4pIP1lWDU9c/nB3GNMCu+F61TqrHrzkSY41CCtcFqwEOeNbozFWY4bScx6oF/5uths0wB7BFNhvcfxoC2fSXbFx3gG0UqOK0kh1aLPqMryevQrX8aBt6YTjLzrOG33zBwOiJGRuMbQO5nAp822QHmCVvon85rznZowZCjD7CsUQlm5oyHgBo7hP4RsPfXA0y8fAeXCFTSmUnf8KmrLIeJeeM3ESf+XKwML2dexX7ZJdQk0gC2G/Kg+d4jOjNWhVcPRpKz/XkU971P+36JQqrGKu5brQSbdK/RTbMKHAgqwKNycpCq2cl7igsoWtsDkmUV4PrcYfhBLJvjbCTw8FIvEF6zkR4W1tOSoo9QVeyJ4tmqtFxCFxo0PalYzR+bF6jSfPNaWnzMix64iqH7zgwao58IzYoSrHzPFn5ucYMJMeH4QG4MRgqf4L6LtrhoZwXFv0vAssJa3vGti+a6akD0IkPeV3eCP8kpktmSKXRCTAuzhQ+RwsoV+PDCaxwW7kr7NwuDNLXA96F7iTvdpDDtCKm4GtHVGXfpyPFoOHIznZ567weXYEGY3zsdltzypQ93/nLm/AAqOLwdVc08aOrx+SRJglR6UYhzWkeDnnYmRxZmgaSLMZTLhoCdgB5kae9ECy8J9L8dQ/cnXeEnG6WgqPolre5I45uSk/HbzFw+FKDBEVOi8IGxNWVGvuZhDtIwJtsEelffx65123DzpA8gbX2bVGpVge5uhpLKQDbfNhrEh57z8KgNLEs9ybVpUyjD4hk5Or4j2+y9fHOECxdWixM4qcHqKj0SXyQP/kvGwI/pvnBeeBOr1I2F5Y17odLrN938vgifXgnmk9/1SaPKGrJ1k2BKzX9IsuaUICqKbYYnIDxpJPekG/IBpXpKNleHKwEysNqlgrcorGSVS1m0xLmMeg94ksCmOBRrOsJ3St1xyvIEtHceBUldpaR45SU+uyrK4+5K4xebTzz47R3npGvjkj1bcY3zZNaOMwUbr2TunLqU72+2xwEBY34l3M5+h1dw0oJgMFf+hJpzw6io1g5+RpTix9a5HHZiBObjGu4ZVcgJsBNoG9NZ/3y8eaMKBTaOgIo/DrgzbTafGPzMc0Mi0WudJMm8GaBJCl38W6IE5F/mk/BaURjU+w2pwmUYGusDw9CchEbro6v+D46PdwW1iEV8+lgDxJQJw3/fW3l83Vfq23aIXmkbQYCqLlULjaT6hokY+2oJio1Zxv81acIxhTkY+NeXLspcgSyThzCp+xFOvxoOJ2aKg2iOCZsnJcAUIXPIPahCP84MYtzG06jQfJvuZPfCwyebKDtzKaidGQcb9UU5vwZAV6iepMXyMUlhKS4sOk6nlgeyYvtCPNMyhu6xJ/9e7Ycxo81B+cp/tPaHAjtv1+LY/a4851Q1r7S6g9M7DbhKcSWXZR2GamVlkPNLgljPxeQocIF23vXA1JMx9PCTFgc56DK1GsL0gLOw84IupA/7DjY/NtKOg0o4Iisb1jUns9bEoeyySYr0TNRpw3RLTg/VgrPKSzlCeRd6v/ami/vGDHGNO/vtvkUOmW9wn+dvDDinyqLihqBnwhzsHALJu4IpcZ8jWtIZyM16Q6WLV/BUmSHWHlFPvFEXyiOecLbJPDpwsI2NAnxQYMEM9rTOhlXv7FEqpROq1B2psFIJ1uU84Gv77ckrIBm6d1XzyetleP9uDhn97adM3sMXxa+Ds5k1RNUqcuxNCZyoNY8ubXhHTx5EUfQdb76zxZjW6KihSO4nPK8/HuY5t+NW+Qd0xECCs7ub8GrUFIw8+Q1HnF3PzRKDfK/Gl33dh4FD73ueLLgUW6S92Ov+BTRyS8BzM7/jgQ0r6PWiNEy6v5mKixFs1X5A/oZSVt+uyk7HJuB/Vbaw510dys4roSvB9dAoNgJXtMjBss9IbhHXoTlEm5/5p0O3bD7Ya1wHx+07OSamn3+7zkI1WTEAqee01205KfrO46vRU7j0pimNS/PH88F7YfD3LjQzX49KMUP1bQ3Bp20/eEOdMev7fYEJXwS5skYaYz0KUexVM5ytnUg+E8aDeFwba279Dfc0poPnOAH45KVH6dP+0LH5Cjw3zxeSDt0jk3IlcNsoh/+5f2bT4RJ0XnEGi0tfp6zRU3HL3EZed3MFFQ07BfmSshDyupHL5wWCyejjLJMkT20XK1nhyCWUvS1Kcys0UWlGK4VfH9Jbx2uWDAyH7i2zqHO9BB/Va+FDq8Jhi3geiradxdaO17A+wBTOPjzL/+4/J7kJ01HkZB6cWpMBdjKa2L09ljzt1tEu8sLcBaIwWvEglrxoJIHd9rBXoJ52Pham6PhWKP/mDhF13nTXupZ6a43g3ucpHHZwKQXbviIzszgySKyhsgFn+CoSD1qxM3HwSR8sfqYOGg6CdHftMezfZgfnEqegjsxYXNVXi39bG/lT1D1cMWYpyQeNg+3TX+HdD8Op8eoFMjAXwKLns4d4bwZ6PjnCqap7ObCxgx4IaMCXMD8qfaJI3U4pKBiwln79ug8/qr7jZFEF9HyTwO5HpkD6DoT3NsZ8008Quy+tY+HOIS/VNqSuRDP+KnceBN7vwXtTrsKkrwyhE5wgRK2Qzv2zwvghnTs9yUBTt2H4emY8r9fNZfMtCtDcIQ07fhWCU7IgbbrwEw1VR3PQsaukP2EpbVg1ltbem4NKpyLRT1ceNIOOcvsOoqMrTGGZ6xc4sloLt0m784nmLizaq4LPhnp03ghRKFxbzAk9HezocRFmGs0GH90/0H+tgo+aFdPrRjmM3bcLzwmpQcLgCcpwccPFixfwk92R1NEkjzHnm3i24i0SlPcbqoMTDdsPYPo0g5STJ4D2x8PoLRZHn1e20/H8j3DMeReV/8rhS9qaILbPFM7cv0cXTO0wIvY3P6r8j3XHq6LQJiE6fXQARz1RIUfrcHJ/qwQ2op+oUywc71/3BemUwxBVqo9nzUbDYQVhqpQLpnEiQuTdMQ7GRxijBXZT4N9z7HRGBBrkz1C/0l4+ZZtL52x3UGOkHQa3C4BjqBN3JXwYcpJPeENpB/d1i2GekhKtrrgPX+cbgNCMDaD3fhJcFO1knXXPqfi0A+4JvUbjPudA7tdtEAi34Mi3VO6b/hG7tWVhm6gbOCf0UVnrMhot/w5upDYwqR+hxlBVfF++jaymtMKpe+pw+fseuPJ2Lf6WCOGbSSUssnsnyVi5YffGfbjrQRk/e+kMP+LHwgn9Wr6rMZbu20+nFS0adFuoit7HH6UX/tEY7Lka6wMe8sFwQ/jd20Nvf62D/4oD8AAOgMLxw2h06BBsvVmA9XZq+OHOL5x1QxN6Fr2klT8z8cknMxDamc7rKkp4+ve3PPd5Jf8e70LLtv9jEwMp2DnPldaf6edtn29A0Ld1uGq7PV7VTMKAzedo6rWDfKHTDbqXGECcohyUO+yg5Y8+0+rFs8Bquh9LzUinN7v/YsZAOVo13AbR3TpwVvMm5/+aTUHOL9iGprGg8G04XXGR8g8fRmfshk9t0TDTG+Hm0wR6UDUdvS4gzL/oA1UTTvC9GHuUuB6LFxZ9552PIuhT6GgoMjaAQ9LFfPnWIN8RNEOv0+4cZ5SFmp8JOzb20mPnK3RwwXj46q4B2ecmQ8x7M7I7XskyDzRwmUo2Xjt0jutDvXlRTTEqbx4FIyrO4nv1HbR0eRX8mFPA3YenQq5DHI8JiKMN87N5r/d+slpsAHdXyGDDrZu0eZ45uGu2Y29HNnyOWsXHvO/jwVwlTl35FPbdmAB9Podx9eJ8dHtbSY423zAzZw2/V0uCS8fEoPTARFwhFgqT/PXh88ltMMAzyL8iGFsq/sGpoHj8o3UAj7z7BtcfWuC14l4+ryQBGzfkw5OVcqBhYA2rzaUxbeYHiuyxoTXJl2jc7anYq+aMyhNsYbNYCdRPm8iDjY9hbKYkndI/BJdV7uDmo1GwYFECits9w19KBFceL8QBEWX4CFPIZMECbG78w1fV4zkrrYOWPNtNCr8uo8cCTXAf4cS+bT30/JMxpOoBuWd44tZju0Fx6jGSUkxn80m78dwhfYjcfISPjY0Cm9ZTPL4qlh72V+Jr72V82nEmnVwdz+FdZ6DmriS4BWqy0d894BdSyNb2EyAvsw/2X7KlRw/MOMbEAXeNzsUGlIb5JRasNbWBZyg9ggOCh/H7pFxQv/UP9mTWkdzAXBqvGk8Tg1Ug3EUe9xkeZpMCNw4YvwSXqSuQ12RxuPhHHLuU5/FrMVfAJl2IdG6GnxPj8BTa0/BDV0kt/S8VztmL+dvbYGfxJtDeWkSOwyZBKeZyyYeFdOe+Gvd/vk1v16aBqkUG2cxSZkURYVxpWQqN8Tw0P3qoovAw5C7SxpTFQtA8dhi0D1+LBT/d+Pem95T1URaTftqAXJk6R9+0g4RDI8HYogAX/nEEX6k0/rrKkS093mB03w7SXoWwXfQcT7T4SHHNcyhUpAvn9VRR9ZKv2KQhSbvrLtNVwXq2WKUCC611UHLcbHCha2Q0ph2/fevn1686h/Rbw0WHIsFDrgwnH5ACiRWjuPzxNZ6d8BX7TO7SrlHLOcLgPrhuPAdapwPJL2k65962geJH3RyfUoEX2vrBJuYV3BN8i0c3jcbX11fQV4lI3HQ/jVLLh7Qmag2iS5xQpe0Ue5w5BR3pvuyRcg02Lyiihe8CKSvZh0KCrEHjUj0ePfkHTPNfYM8XJPPnU7haoRmsf10CnxERZCsvzyGjdOCMYDgavz4Dx1oOcPTiLWwcmgNnZNtwYU8h/d6RSrcWTIMtN2TBu86dX8iJsEaCOkWVf6U1jxVJM+wxlRT38fzTS2AwfC9+shcFm629TDcngNz+F5ATWMxutk749ttxjrY4B3feL8Fp1Ue4eS+AbcIfUpQNRZEsB/BdJspyq0qx4sM/evliHi5+PEiq+4gH2mxA5N98rpAqg0MuXZS9fSekbq1Bm7IvKCE0k594lsJwxTtYc0UeEoatADjkRcFVp2FviTd8Oryb3vSchSax/XjSMgjO40b+OEUHss6p46ulY2D2mgUwxaITMy6qgrnKcZrheIHOWx/h1xL1UKhpBNO3lUKnzGwe6P4Ot1RXoLxeM04eeQ7/fZxNtXrrwOjZNf68QhZk4n9DxMkYjggTQCtfRzScug9Vi4rgxBIhmj7OHWykS3ngrzjUzdMiyerd+O62D3fHSuCkUbfw8flA9nSaC88UZfmydgKt1hsLYyy3o9iFFFi28z0n7B5EKbkvMHPEXspNDKDbgUQ5Sr4wOUoTio++pnGTjuLRIKK1P4XwqE4MKC+zIe3FlnQosopdx8TR1qjxcDfMDgKbHoFrVh/fSE8jmVcrAY8Mx4L1X9k95iL4bglHnUdyMHPUHR5nX4XZ/abYcUAYSuzj4X6AHmUO96S4rwdY8eZx8k8QhH61+zhX8Bro3Jcj4VQdVr26HC8d18Iek0b2XVxIaiF5/KFGG7yi1uBvu724eWIwGoTlcdPDECh6FQ0a5/L5belR7r31j+RnWkJHF8PTlOU0NuMD1k0tprfnS1C9vwLlrjXD/ucnMF+sAZsdpeDKp/2cfsEWZ7Tn0bor18jthiMtcDoGbwNzeYSoHGJsCgueEofm1lpem9pOPya+Zc+cctYcfETX555lscQsKio5B7Pc7Vl67ATwkKmDwC0J4LlXG6VxL1tdDwTFybVYbH4KB4zP0P6JCqgpNAw+VdqAlZsfPTMZxiv8C/ipsh5LP8jnQ1qDXPZACP702cORMjOI1bYh6RdPqfV2Of6SSgbsXYvFSpNo/uImNujXpLD7VzDvlTRcirUEscguvK5mx9NSdrFoaQONW6pIsgEBKHagES/VdvNwSwOAUdtombkUTa1zpeUOKuRd18S31nlgkUYHrugVoqjXm7DymRQYT7DGHftzcJySEcs3RMIl1wXs42aLxfvSoSE3ii5qRNCO41Iwb/xwOhuXC4VDa5VV9LDp28Vc/Vcebh2Mo+BeV6gdGYixguPAJGInr9j/Cl28dfDfbXVOfuOMBvO9eJrDMD7dnkNJZe/ozOSJsOiFC69nP4y+ogFetSM4pmYZF+0PpTX2duieU4uLt6bBwaGz5qSoQkZfI9ssdUNMeUTJR8yodOoNTPJ6zlpH70GEkjrvk7aAb6NMceew63z5wioYK7qcrOoGWS/pPjRM+gxS+jG0pS0Z4qUBVCIX0fM5/XClBnnUbmRJKTXyzv7JL8vmkcD49eDXMw6eektBfdFj1Mw+jXKfL2POvAZa+baY9CzWws8l+hDy9ig2ab2Are8V4WpgL+l+rIDWqEp4pBqGj5ZOotGX/pDwuz+4osqAEvgmzh+wgzC5JuqIH9L+9jD+sTeQXfd0wY2FVXBmbBgGn6ilv0tjocpOCYpbtLhwRz6uk/bElDpjlFZ3gx+2b7llzg/+U+RG8n6JULLZFE60z8FcQSc0EG1D/falmL0kki+kh0OyxW048G4ESZSXYJ+w0f//S4zpnj4gu8IMWh3PgN2kJHT1kOLsvU6kvOgg3XgYCq7honAsUJkcM8dAb3UcXHjXylfbvWji+n5W9l5I0pcTIe/iV8yXYZhezSS6z4mWlz8Ae7n1bHWklcpXGdL1ICMWfOyGDlmn4VzeODCd94i6Bi+SSFE+u6yqo6fXxdjvxVxubQlj519FKKPzC854EGirXmGJtlDun14MyxzyUC2sgFfMnE8SZhmcV6JHq1Rk6OZyJWhPlGCRnq9subeRRgt0g23uGji+KQl/rd9E377+IPOGSr67RAkcM36D8FF/HJ/zlnMMkqDMbwGNcXJgI/tf8FZKEqYcKyWBlkkgXHAWLn/I4F97n7BULHHjpYk8+updPFtoCNG+LVyqNpu9RppB2O0zbBywCl2mzuLzacUcWSMM65dL4TOF8+yxoxUrklrY9tVIOOUrwWPcF8CM8za4+Lgu8J/rvHHJ8yFPfAONBrmc7/QFGqzVoPadJYx/MZu2eqzm+cvVYF73fLYeMYwPii5jt+8f+dHaJLpZIQrSuX9AsT0DRHvs6YrnIBQevUGty81o+GmJIV+PRB21PAw7YAMPn88Aw8dvAHddBi2HajBauBaOaWzlUYOv8NbcFqgUCuC1O2Tgdn45J0e2kYL2A9xZMYuaOj9iZ3QLpfu2YNUOMbS30kS9kZbwW6OEp6oIQ47YKKrPLQTXiRv4WmQS6z6dBAXJ7aTWFAp3i8dAU3UuPrtrAT7eBfxvYSDMLJaGslop3mR9nSrMY1jqQhmLN8vCONdHwNvfQsU3KXZZmUzZ/+rweYUeXZ+lg2EdZ0Ff9wY0fDGD2xsUSOu3Hac5vgKfW+Yw81UG5N5HKkiQh2neZ8hYcyWbPTEEpdV1kK8cDPfW5HDjwXAWvDGZpmZMpwnrTTFkyk+WrB7B20+NBZdZReTStpKvvRFA400LqAgOQ+Lmdn40cJg2J9aBhvlRnFk9CZ4e76JNS3ywzPEbKoUEgla7FDcsqSCfm2sx49EDmjBlJq85YAUtLyeRbFIBFM9Mw0UvL3LdxC7UN/6L8aGS9G+BA69VEWPVbgtIehaOetNXQ/sUEXqubQXjX5nRG9XzZDG2GbovllLirmrq0JCHNz3J/HHlCvSweop/Gxo5Vs+ODv6qoie7mjDiwTQQicojz35FmP5jKrjiNjBwq0G/25Z0SiIdY2OEqEKhkX61LCLnO0owz1gZrFe3UuNAJm8rHc59d7ZzxZT1pPo1iEa/M+fbU+qo0msntX+ThnEGz+DfsTNw1OQp254D1Dvqh65PQ+D+zY20WUibt661oE/Hx8CaHGtqXjWNO8ciSIoGYZR/Ni1ar0WLJjMr6PjxvrJwNLIygw9zQjDKpZkGz+7jwvUCnFkvQyNv70DthO24sGE6jVy2bYgRtMBodBbf+bWRvsmpcVvAEn4x8i6njJyM6eRELV8e84gR8vS7TwTSJljyPec4fMVnueeBNRy6LAqXtkjjxtGz+cqgKL4avQD/TtSG510J8GI44b8rCTiv6BiLXzmNtn5RJDW1hdP3jsL2RQbs+08borxl+bvPTVbL2sgdcSM5e5ENnH58nm0/zKdkYxX0XGuDa4X14GH9HE4zryFv9Uq456ZDP5bPJWnzel588gUcV4qm9LTpcNRZC2Smr0ATfzscVydMHYVtrGf0Cb/OBh7cpsFX5pvx4VsG0BhoBg1Tkxire7ns5isqk+iiOQ9u0IJza6jGrhuOyXpy5NaN3LR/OAxLyYJqxcvkr7caK9sm4KWnYXh6giMWvnmMNvFW4FxnxOschGDuXnny/jSdc1wn03mLcppUkgGT46fCsQWW1Hv8E9yQm8WSpqNAQGEo924vwLleBXyvJZNKLc+xRpsk5kx8w52XNlDp9nwOOawCK66UY5cP0b3La3mUlTUdHlhJtd0TWGZCOg52leG61bdx5yxZeOj1hJIKYmH5pS+wOaCc31l2c5zfcC47Pw6P3RfnAoV2rKeRkKkYwutFPUjvym74+v0OC7cJ0exEN9r10R4O1Ivggx3naKStGQzIP4By2SI8ufwvr7GL4Mtq86Aw7R5IR96iPbIvQel6Kgse0oa2udJUpTcAw0zn88mCJ7B+6ybslqlii9SDIK4xAT3FJ6KJ80S4u0sC1m8ZRY+ippDe7QCaUt4KZ6928rU7Vej05yJoevxlX6lJcPz5OFDpGY0nZ7XxibPWFDOulPuCtsD1PdPJ/L8PfKAzFiJWi0DC76Xsdyaez85fSP0u1ahcPBbW+ZtT9C05qLYZAMleV6ydOwwG84KoaPtlSBG8QOUa0Zy6fQm83b+HvLX6YHnlQey7bE6pyoog/dmBP1cjhRgXoujBUF4ncxmSOZxkG8TBa95TeGP4AMpGTwIFQRG6mxqDAykaqPI8hnNiwlFtaE4rVL5CKcEaHHmgkRQCjKCi/TuHK7jQ2tR+zBhzhzX2tXDuEWkc9W/oDIf34dcZf+GCkRlkXfoJEYWh+FJyaA7NsEKJtaNR+Y8+vOj9g7/E3qAWS7OboBi0Xi9CjUvKKH/rP5brHYnVfxewk6Ikm4SY8pFJahhw4yLPthraa1YXRW2r4DK9u7C91B3S0t/w09rxlLFlSMfrdvA+52v0vUAXljaNArtXBpRULE9uWQnwofU8zXedQY+cbvGPbX/w0dmFcDdAB1yGJ5PIawWc4SsAdns38/5ZG2CB7TsIU9rK22vMUAsO8rNmKQgKtaFzKAhxBcFw5sIb9s1dzC4lMpjcEkBS1bvo44vp7LdSCz6ar6LwHiP4tmIb3olYhZOV/EjX/SQvuwTk65cBNbc7cX62HZRM+U4nhxhGe64LrF1agYdeCdPEyb5US7E0enYcKF9YgynnRMHHzAEObWjBgoWmGG2STr4Dz8FWwYi84v/i0o0FNNHNGgZKleBgcyi3WAXTvb/TYKpOH/oOXMMyqZe4LgHxmucCangQzg2zRsK9+ttomTcLNpfFwosFR+jhxxrITEmG6eKXYdrv5bB1Rygb5xmCbcccfmsfg33Sv9BjzGHoy/IAmHMOrT8Eckl9MtdfEeWZMoLwy3QYvmlaxaE6ltQS5MV+Umd4Q1kyjj21BGe3HaLEi668zAng8ZapqBo3EuVOvae14wL4ioY7+sx+Rv2xX/GjXQ66PwoGvV1mIH6jFf+DuaS34hEeOPcMRk1vQ0e7HzCyQAH1T+jyh5N1ICVsB0tOKcGtt1doXq4cxe7cjxah2rz2phdeMyxAh1O18O7fXZIVtgIn8RMwXiGLUsdFQtQFTzrYQxBfvAWzXMahiOtkqMrdws92i0HVDns+8nUPOUlHg1DCH569aTguNnxH/nHXuGHaeDSKe0fJ1yVh6XcdnHhvPllZzoLTBb+4PWU+rZ83le9cEKaIa6n0xsqdWvuFYMB+AyadEOLNN/VpTbYl7nBfS2HHr9DAnkK+fvkSBDzRhJ8ao6E6Csj/2Vsc1G2gayu2kUjYTR6YWo1tDen4z+s3CKQdJsdgFfgU+AOb2s7R0r6PGDlbgVtyb4GdYgVsf1QBB30f4fm8Gl522RxMzygCnAuDO88tqPdEOUpbzECpm7+xYmo1z29qwJcDGRTiMQZGznpGnvPuYrbeOHw4ow1SZmwGPe8aShyYAof/juBX0sVweLEwtN1XYo349bBIvxWTJ9zlwtBNJHfqAQSXHeIml7Uw+E8URWsEwBpaYNGrJmxVz+L0g5MgoSQdjIYX4f3OfbD04Bl6d78Tl28Qhn1xTajTr4pfjhNdndrAm/2M4YTLHbicJstKc1dTdPAQt5SawL6N3fRuoQWM+ylCTmOHQVXjbLoXbgdPg3ZznvsH/GaoSbfsxWCOqy/cVviDSgdHQWm3Ke3VaYF5Fxow5cR+NvQfxTK7p+GFOjvo03xIcYXlkLLvFoZFO8KW8dYYUbWNlirdhEGDfvD94oz+j81A04hY1WMZPlgsA4vEn+DkZeKwU0yXQ5I7IVNQlJoX+5NomhmM29KF5r3utG1aDx4Ung5aJr8pQGgol82ph2lhqmykcwR+JarAwV1ZJDVHAi/nluJHS1d+GuhDzZHDcN7vB+gyfwPlf2imC40S0KJfTGkll7huijF5iq6HKp1jfEdeCpsOzKU71oGs/9cCIpfrQ9wlfcyrTCeZtpXYE6TMo1ZcoU9aOnRTew0cqYinudXmeGOfCYR0+rLJyT4O2eKG9y+EUo/nXOpfMaQb2VW0RLQbdmePwhJFBM+tWTArMgzEzoRSS9kv+Hl3HZp8vsia4r64Kj0F/e57UdEnXSj6KkBPHtnAMrlwrtGzRen4PHbanACPahsoZ2wKO/67CRFPGNI875PO4W2AseJ0eqUqVua5YNChK3DsXBNMElwCXdf+41WOelC9dz4uqQzn7xf3UO3WGzCrKwQXiLuRR7YP/fw8CUZ2mLOsozIkyjIYW8XARomL5DD1OZ22yeaXrdPwX0gGP5jUh82bdkCBkxDYmi7FRzm72c+1H5t0M0nf5DFNhHYISsoEnxmBWKCTzu89Rg2tNQE0JxnyJ8mN+DRHjyvPrqBA0zN0uFGWb4mcRLU9qrgvWw8SJDfAKGNPjA44jfFzJ6Bq03boTPjB//bm4PaABDpheIHqtI3B60o2bNt4HEwybFljzgYwK1TmhicJ8Pzxbq5P0KFhUZakf9McmpxTcHaYG7vNnIKjLruDzaExbHTuOYw7as3W2euh/8Aj+rp3HJyYmsWGAhdo08qvrHNjPc9Z+4uqfTTgUkEMBM63BghYBYorZGGWxGWIk9mDoSGqaHW7Gs8fZBCse8GvV7+HFI89cCflGGyMV4Z3BwvwkOJXfFIhiKHJs6jraguE5rYO6bMe2hIO87XVl0F/yCdNgh5yyvbFEGRzETzvKcJVTVd6JJ/OZxtvoU7NTygs6YVzyrqw/OknCvH+TnWrdmB6jBp/7Iqj9Jgmssp6R9vV5cDOWIAVn0qDbNA4vNFVwO8qz9Dv/mdg5Z7IUjH72M/iHS5p1QMx0QVwpkUMlEtn0aIjaXzcaN9QXfTJyKOU375TQcttebAz7iTYny3hz18N4cJ8YrMfTOX1H2DXcUUqkGPoKHDD6TyIi898oPiw6TyhxBIOXbtL5Rkn2Wj3cs7KXkBRQ+86r8MbVk8N5pvdBGe6xMDY3Ah8x7SAoVsaSX/opKlS58ly1Vg6pdTHzZnX0etDAby1+49dIgRA/6Q0nNgVwTtdttN3+UL63bIQq+4F04OmGfxp6wD8TEimI4WS4Ppag78lraQoVQ9MT/HjEa/yMLvnIe22G+plEYKDi7/ioIgYrP75gQu8fFAu/htH722ltAZZTq1zpsztvRTx4TNFPWvkQF1ZmGtfQeZbXFh9iL8v6ZZR/Ut7fuajQPNc01C7XQM9llyHheMFYEuFNzTopLK87kN8NjsM7bsOwBsxGdTeJEO5YnakaJUO4bcUIXL4Onyh2UQC70txfEsDp9WG4+SjBzBypxeMLe9A8W0O+DBKCaROH2Sdrh3wd0wiCfi7c0ayG1fu1yCtxGY48OsGdYRmkPvFYTBt5FFqWFDJdmG/SMpzJ7NZChbMeE4rsi/zm9Z9uDpamOye2MKkEAFw71RFFcuDWNyZAL8MxUntww7YbhGPm71TIGBwLDQNWIOB3ga+vtGCl+7ZSY9jpWF30VjYQLvh7vX5FFlvT/ekDvJyH9EhBhVn9+9mkPvsPGuJeNLprSOw+Eg/qb4R539LtSHcvwVSTxO8WbAC9lQshy0OpewYOx5vPf4JHnHTIK3oCC+bvors3X1oZK4NLL2yFE6s3ogzGq9jIWykhqHEZz6URRYLVrJjXh6fTL2KyffEwSM9kIO2adGyO+H86Vo83/4oBpd9uvH06/3Qdmsm3otSpRvLNcB/iQOMWNFAg+HZNFP7LWwNj6c/dZ1c05DImxJ/UIG6GHaJSUI+G7Cceiw9zXoJ8dNv0N2Cf6j+yA3K6jthTTtwRqYjvF1pDU8Wi1Hf29lsVB8EKv3K8EG8H7uumSPvtebxnWepNDYBjPvGQsDBlRxafYzI8Qx8S0/ncGsHNFk6DV8Gy3LN9xB2z7PCsc7a0HfUGzWG5mJBSQDH1wyHQe86TAx/RhVX78MrG38sDKqBVdUS4NWSwWbBB8Gkcy8XmH2Ag0k+dKN5CtQfUMYJ13bw29l3+WG+PIQ+k0Z5zS8oMMafbk4swbrURJKNsuOe35FUermCpmSe5JmP9eBGQTOGTQMWPbQZND96YcJeHdSrriPTp6lMIw9CuagcyJRqgNUnC5gkOQIejR4JH8XOEV9OYuc/JZSxp5fvGehCwoAm+3ojSFx/j4OWO7nGYQdq+llCwdde/CDvD+q7dtJ4o6dsq7+dC711YOTmdkqvqMCUhGcQ0X8OvaVuQOWj/6BZaCTnnxTn4MLx9E9sJHzv2AM+F03x9YJn3ByqQTNjIuHV+o2suX8CCeVdYO2/i/CNrAKc8TkEj/kQHPAW4cDUZLxZ/ocbXmXhLQ7FO4LZ+OlqAem/loSMvGbS220FPXqGKDesHMvfjcU/G2rwttpP8rPcw4nefbw0TQ4KDNQwSP8XhO73oODLJWziFUv9cq4cEx8HqYnvsfj3QqpUUIDedz5cM30Tm618R3MTx9OlNT247O1w2jFsAeY4tdLmdefBb5gIHH92locHfKerVR85JyOTpC9/5bBnmXzRLxX2H82gnq1z0X4xgtbaWRyeYk+31aUg/slfEjvqy6XBu1lG5zNPWDefx9SKgcdPC5Cr3IqRv/ppoPcfDz5w4dq/sbBtjAw7jTJmTf9cnteTzSvD5EFhsQg6r9tEejbL6U8L8yXxMJg/1Ktz6nVhf3oyv3F4TcFd6jBV7jFM3KcC/s0zSdhZG1elrMVw9430omQ+KMZUANs8hPA+OzDqaIGU5zY8b3oB04YciBnS1uXT+0Fn1Q1UlxoLdWGdzOdVwO67FYw+a8rRMSspe2I5yu7bidEK8dBe9Aen+a6iUvFifpc6BtZd+wBr3g7gLK/loGt6jqflz8F35z9yhP4dxncW4HNzJL02N4SoJUvZ1+Iq/acfwpsdj+F/O06T2H+3wEVmK0aFjQXlzFzcf0gcQDeCpPeM4VUmdhSiJog4vA6yTM04d9gG2vZxAL9rLyIVfxHYO+8bruzZTAY6s+DKUA7mO+Xk3TQIy5658R77VrpVKEmLZZRgg2UH8Lw41n+4niJ7m/nVlmlD8/0lPf96ALyu/6TlL7wp47gpONx4Se5jK7AlcSpZZk7g7oJ9JPlZghWajclG4hF/VPOGDfrGsFwqCa7ecMURenZ4ynYiVR8/jf2uvfSy3A7eTC0iC9cwjP8rDHIayzD16A/wuH2B3krsoZz6cu6fNhn2rBvLi8pbQdY6E3uXqsGRRSUY2mUDxdWf8Pn9r9jnaw2vwrZBd4suhUwOI9MlXfSgeRyEHlXjKo23pGv8iAz3nWBNndNkE7EBF9wrwfJTLRgu70iRSePgx8bj5Bz4nq5bNKF8dwurp23BRO94VmkTQe34z7T51kT6MqgGSb7hVNA2naUIUb0/AopqyqlCXw5VDxVCRtdcdL7vjvvX6EGwRAGNWH4InpjF4t0vgrRugi4+99kA5k35XLHWEleWVJBPkiqc0xPCeN0VqFefBc6xO3D2+iPw1/kQyXYqwJwtA2AWchRlTMfDyrfPqb5jiDet6iip6DfsaszGEHVvStmoBGqcSnYpZnRZQwTEyzSoKv8Gb3j4B7eciOdrb7zpzMuPvEniBpxdXg9BXe95/xhBWCchTDP5Ib/cKsTjZXei+89/gHqbsL15Oa49vY38Pt4nmV1qUCb+B9+mDa3ZmAm1i/7D/3/LPKznM0QJGvIicXnaWepD59V0IPZOIEeI/yPv+QnoFloLn22KuT1xkPcIW0NyJvNPnTX40t0cgjZH4Pw8fwi6tA0WNUbTf3tnY9RxdWhb8Zp29/pAf+lXTMgwBMNHP6nY4zorbrpNBc4e3DbWDOYdbaGHmedpa5wxafTNZEF5FYg28oaAaftQ6WIEfLepZjWpI2RiagIqmE9Wmy05QdYOVisqwZilari1rpajpyhhplTwkN+vheZjdmhkE4ZZV7txw2VX2BqiA8J/DfiPbxVqFCfwS5chL9DyoqnFtXC3bzqM+G5MFg96WHWXJAw3XctPTiSgy/fjKPVzFNqqVaF+TTzptghj37P9dNBXBF5pWsOmsCusNVwDX5Z4sW6mKxQ9bGW9VBtc8F6XyvWUQc9uNXb4KkNu9C6QDGygzF4VdCidj28llHjfqd2cfu0RvxdqwI2nBdD0vTZ8fzUfVKuO8urmkTRz/3c0sqzi/jpznrRwHVpW72EDTdUhbrKDDRcMCJ5kwocDC1n3sDZtr3gLmBIDZ3O2kv+cR9SpnQDRubJwnnr49l0DKqg/ALsfToJMVxsKizZhc58CdnltSeel3dGnygymO/rimaYL6NXYzok+SuTb+gl3D/Mg8yNAp33mwfNhqny3xwKmqqbQwMl2elP/gW2NolhBeQyaNq7H+RBPDgeqQDx2F5SmC8COfQJ4+qQP/F1jSHZ3f0Ow3CzaqZUJCm43Ie/QMw7/68qVR6QhyCmdlRVOUfw9f/bZ2oybVk2AWcGB7N2XwqELkCpfB+Oa0ebQnNSEWb2H2SN7Ispv/gkTGs9wOL/AwcTpcOzEGq4OGg6sYwtBCUL8QHsv6X1w4OppdqTx5T3vgyYO3D2CLCIyKfa5MEV9HqpHszAK/juOh958gpOXnlL17RZ6N20Gqw6ugbezn3I3HaMqe2komxfDn97r8V2dODjSnwgzfv6gaNN87oirIfN+W2x/3cKvE0fDNPMx9GZ5Mgyr9aTFNzWoVK2XFDbGkorcWvo2wwiKw57RGFF1CNM9j7LtHXj88Tq490aEN+xfjapb1mB/hA3ayrnDrpCbeBKUYHjtPRIXMiRDxwBcvewfaJ1dg/JzTlOBwW0QubgXyiTW46M2VSjrfQ7PXP25SSmYa7o8cYKoNv20LYMSqbvUNEOBczd/ZvO1E8H9qQNdmPoEKm5PhpkhL2HZZlGcMzDEzdFDV892MI4fD54LhOF4zWuaMncZ3MsWxqXj9qFvnhS2FQHEWRSiw8m/cGlwAUUMA9CenUqfGvrg5IHD+KRbgq/7j8Q7LlsgT2UuC0+V40+yj0AsXwgOW0fR8JajnBXihGKfNeHBcYS31qN55yRd7A2Q4tK8S5CpZwfpW5V49b8vPHOeOs/QvoUHGpRArOMJKYZqsYGBG9BWC1plIQbPAxrYvViWFTybKEbmNYpOceTLfuH8ZKM5fhtUoFhtB+7aqQxBPh9At86SzP7akv+JrSj/ZwxuyBGj/heqXJl2GotTZsEHHAUnx5TB+m3JMLlKB0cJmOB0F1PyV3Gm8DsraM3M9yTrqg0zg4RBWUKPlSkZPLEHPd2OsJTFc9CQCuapq9R439K7ONHVBFf80YX3QV64U+s5hida4Xyr13gr0pXaXHOoMHAGW9Fu3uv5BXY1ScHt4lBImL8d3neYsqnxX/pm74d/TmtRe3wj1RSPRDGJHDYJF4A5Mj/4R/8jur9fjnRTCvFI1kL2v+JLioa/aG2iJtrLSHCOkhXM6nVCiTsCMPKYO71ffZvVPqjQ6dAAFtd3otlbtLDDYjOMvzYKbD+sowQ1cXpZZoifeyZiWscWPGHhwkESw2BgSRyuGBkK458pQEqVIWKAG5nIbAXj/SaYIS1PZq+B724ppOt9zjzyiCB+8JeAO0LiNCz6AERZi+LYpQVUeXcWbF95lc99H8D972voqGgZXn6tBCvmdvPvQ5Mh73sG9fos4IlWVZRKppz1Kp2lImKhp9EAlMcpgsHxRazTt5XVLesgUecNRwRt5Bq9buxN7+CQxaa8dfx9nj/DFqIWrYcXj8NpjaoNa8cfgCVjhcBlsxjfOeWPVVP2sF93Kz57LgAR3tHYs66BI2adgOBOO/ixeDauN5eEirPd9L0lCu3U6mFqnwa8lxpG9XN6aPGHlSz90gd4kRqJuG0kRZ8BCPo0COaOq0BQTgiaq/YxKjfD1vN+0OhylnpaFGFC/mpyfXwQjV6UwMFOfw5SV4PvozdT9pWdJCs3nnqihSh9ywkYvzOFF+8YidXuimjDP1ElTxe2NRyHVGMPXF6/DiJ0d9EHqRHUPPko3TtH1LZ3H6/ZqAenNWSgp3091b9ZR6fWxONuxbuc3fwAfqXt4V3WFkPcmsQnx74kXKcNo11tcaCyBAUVj8OoU3Z8QncThh5/zxNG5PDSzBRU1bXFDTvMIFpvIZaoLoYm+w/YN1wJF/ycBX9jTHjdJwEcO/okCGQ48x51c/idFQM7fA1gzMVoyjtzl9c5BaJt5iYcXOaHw7cV8/ruSfR7uiREvh6DI4f4Uv10MN2oewlHzplR4JCHqC2IosEp4nDYPwBWHNOAgIAO+B3jCNbLRpDvkySqmfWHenz20vNLptBXVkPDUmPx3Rgh8JCNApFbl0ExZT82rRblPcM20nXjzyx8sg0F9ueTz6JF0JliBJ/O9vG4OQ9oyRE99Dgiys6RIezamQZ1Yvl4WbeIttq00UxXUWjeZMclnQ9xfacU7RRNwYmVurC5QJmDN8TTq1YpFjm0H4dvsgT57kr8p+8CMsErScjdA6UfjYfA8Fk0XGUy13Z78irhFrZvQOj5/ACWXXXhW+df8SIrDzTZdIpHHppLaqWfwWrlbRzs/Ir20SPgZVUiTPwWjqfvZdC/0Bs4sycRlEOBYO4ECpCMBm97Y3SINId5F5+j7XcX7i/SoNqZ53F6fhq2tmbwqegxtP/cK8ia1AlVkUKw+HE0Cga9hhnx22Gq/w8WnRyGI0R0eFhaJXTWCuIPuVEQbKIFy3vt6TpNpZvmoyF3XDOO0fTBhujz5DxbFCojo3lWsjj96dMGH4GhHBcbRDj2JIUUhpNn+jmYecUfQ3d5U4mLMFwXmMEjnZRh/aAmGD1U4dmiE3Cm5zE4cMCQZZsu81iVDaTQOx7cDxZiv5gxyNdtoGfrbsIqRWXKMO3Fn+4dcLlhFTw71gZ/FI+jxns7/nJACOoL9gztNRPCs6zZc/UZVk/ygZkkiSJb35L36iTghHWU5joJ7N3z4H7IbjTrcOHzOrMwMS6EHyV+A9+iubR3kj01X38CE70k4E26GOx12wN8ypmMVFMwLioU6o7uIeXkzbi2SY6tnsxk20JDaPryhfpNe+iHYj8Kp2bjnEvKnLV7LdhmLoPqpuF07JQljQjRh+lvKsDF/QbETymhXX/qKPvUd5Tyb6GRGiKs13STdnh68PnXBrCRVDBluxBpfxSmlE1BvCf9D50WvUJ7d/1AixN9kHDEgPME9KCn+jMEr/DDeK/jkFysA0kKsdT7/iXfrRvPZbsL+Iv2YzqgYg6eOdH04ALBu8E7sPaOBfv7nsK4n9q07bgddrw8D3MT6mnxZluQrFnNU9R7YLvHVdpfehXzNLU5cu4pfJ/1FU5GiEPem690/qAyiE/romkh3uRib4jfvklgRb4T2LvewBeuhfB62kt8ulkXjv2nDQkP17BHZwMrVWnQBpG/NHpXGk7Zbw/Lnx/Bue2aPMxeicrWT4TRfgupykgH700+gev8JflpVBOUOk7DS7v6cEadI69e8wO/mutCdGsDD2R74pbXbyFxhzMcHHzCy0PzqX3SWH5XshscBDPpz0YtkM+Iw7TiSJ7pGwq+pp9YboU1VT8HXJzSS/ebEzn85wn2NFeAQsUuXrwgEhtS3sDa0SI8deUBXl82ChOPRUBFdjq+6DKk440MymuL4UCQOydv2YDfJZ0o/2wG6Q+LR29/RXxzWJ8Fir6x0A5RmGDrBsZH+/Gmoi+35BrggWvSIOTkRuNdjrHfHD/urghG0S3C0DZaAUdOXMRWH8JhjJo5vWlbCvZVm+DEajM4KVfHi67fh850IzhVcR5/TpVnH6U6/tVbS2lxWygqtZWDBI7QxMmLcOHTAbLbPR5OBZeQ53ZP/HN0GR4Knw/rTmfxibwwSpt5kLtSTCncspba95iB9Oow7MifST8dR1KVgw9EmKtTrGMbjjMewWgizMaO6TD8pzz4Gqry+ERzfLqkh95+q4C4U0uh6nMv+mTP4LYRSnRi4Av6sTa8StnNR/Oc8fZQ7vMbsYTjOh/QuyoHmPylEVR6O+nn8FroyRAGhR+1YK5QRyp7VUA85zF3tndihb0GN+tXoFfHMhr9fjj9e2IHalXq5LpgCQ1DS1R3CgS9diFSmBvElzI0adJ6M0rSOwJxugBvvvzm9DJ36lO6j433e/nzzQYe/foJdbQupEvqtXDvKpDjZzlYgy4w9Wwtf95+BUc6e7HOel1qt8kmud63UPomDay5lDK+SEJ7fxzmTLpBZQdMQT/2B2zSiqUKHx/q3hJNZ7SleFxNFXdKDGU225e80PwpNtYaQOUtOeqau4HO922g9WkdGIK2/PtaOcM8G3hnF0/pFc2gcNyBbbbcgEbdaJrkUQ90xwFjPn0Cy/JUiJmvByoOlhA2QRvCsvbjoW4NUgkYz692W/K21c7sRb3w6kYduMQMA6WtL8jKqQ4j7SxpzaLlWLWymGVVLLj92iLa8jYVuFwJH9uIwrmCn/hhzTWeO7yc2t4bQpndQfjV5UkzA70hb/to+GDTRLHykyD9WTLNLf7CVlIitGu+E++3u0G/qprhgvJXmHpmEkjq5WL+9jGgtXgfW6sNsPyp8xSp/4OVjZ9QZr4G2ExbiWWyQfhy2lusGT4RBr1+8nqX3aQnmQ4Lbj4E0V3zebeMPQkpSvKUnGswcPkNvepXhI0LXfD+cU9ur5jHk1MvwrGP9XTq0AbelZDEh8zUsUmqBXesHwuGMT0Yt2oSPz4zBSaffQhbW9VJ3yqFwsZ1I3v5UKfjJO62UICsW+bkkaJOUbLn8dbcnbAt4xNpD/uPl6Qs57GO8aTiOQWXaI+CCJcdMHnsYbxtHQRGEiF02/gFek6Xg6acIlIQvwYujQUcuEEb3KcuZ/Pc9SDd7QApVvlcJrSOWxSG0/VKX8idKE/7k8uxfIIWSF4X4KRcBzqv9ZXmFn1l9YRqMqwxpF+hv7Hw/Vgap5iLSy4IwdKRD1hDRhVOfk2h+AtzQaFYn/7INvMtgXD+3XwFHknWwv7rDBtj03lchDGqOczBMW9GU9UoHygVLqDgQV28e+cPP1HYwjInTCB6rQt+9QsHrZiP8ELwLXZnPGfpliDePBCEA+UBqHGshxfZqoPui7EQ62bKCw0mo6fDZt40zoBOX/7GiUmJmPk/4s67LeT37ePnaCtNWqSkvTSQkiIjK0RDZJQVJSr6lhlCoqUiFGWlUqJSokFGym6pNCQzUhHRuPs9ivsJfP65zvP9fr0+x3Uc11JbOrxFBNssJ8Nmzx/sULecXQvjwNNnOE+4JQfx21WpfGk1P5PaTS8vzOFXRy2gbGMGSIUE4L8cJwh3doC0YUSrD57nR4HHyG1OM7+a9xlaCywh1vYXhirN5Ij1eiil5YQTjsaS3UAE5057B5YZtzh9/CT6Fi8JlzVNIH3hJXDyycHWpZbU672avojlonL+AziKO6guvoBiBxXgrnwPbp+1k8Pn/AVRYSuaNVke9aNWsV1MB9/7dorqruej4wtJGJXqyJZm4hB8yYY8jXUwYu4Cdg+p4pcCV8FYchw5SzZhh8dYCOCDNPlsJdVcvcTKo6fRxINqvOPbN7jy6wHPnSbJYU+KqMtnKCdF7+HmtpVw0dcUNc3HYqAj4Ihf6jyr5RZt6D8Bj6ZWAenoQ2HkQ6q8+Y8al3hgvV8VrIiL5/pl8mB/KgW9jEfz7tk9XGFoBhs/WnHZneEsYxlFQlc/YLBkFmn97ObG6nb+cPA97nlrS2WO2rAgt4EePh7iOMVF2Pz0O6dK3SXh2qH8ttRFkdgcjHO1g58T5KFzw37qc5CnxTG96J51EboiIvHBLy/2TPXCzVWzqMOnnQaqFOBMlCMd76vmkz7p0JN2AfS3FtMyk32coXsVPkvNoK97TfHRJX2YMqBIy4dnYortbbTOjYeExiJWnd4DF4Xc6ITaV7w2bTQuXiIKN8RNsFSvF8WPpEHlsrsYoNdFc2+K8N710uwrMx+vipnyptXD4XDxAjicGoTOpYvA518Yz9wuz0uql9DFs/Pxll8gPPJr4Ys/pKBaRY0mljwmgyPPsbxiE+vuGXL1+Jk4UfQHhnv/YAqJBDaWhjQVbx58akzT1i4CN70WDmn4QRuORuKUu9/hhdtiSr7QzfYmBhDwB3mZ0UbwU1vF6i2eOK1FActnpWO590QO2loOG9WiMePYSHCR3cvjGybQhRCCYuEtcLlTjz0HvXiwtoDNr1zDq6pp9DueobFZm9a4F7F7zUNYKxpCFsKqlDg+jc76VXH6iFVkWn8CNL7rwNHHTXRSzAZr5i0mD1GGVv9cUHnxBqNNQ0G4qoEkfBvo2SFTMHq0F+vyd+OznS8hqfMWrm/4gz5GW1HhcRxkzLvMhodV0c2VQDLeFo2TF5GtaQh43N6PCR6Z/GiaEiwPuQRqHMPawTFk2S8DiX3rMehVNr7ZcADqtAVo7SxXUiyro53eN+jZxGbWX+gNUaNUQE6uC9o+TcYFf5xx6s9JfPXxOf6q9Qt2blsKi2eNROgLAaHfGmCYNY3vCbjy3eXRJL8qit6vrCS9+TV0R+4xTrjQTWpllXBSYhy8f1QFgtPfUXgzYeJdfRx5bRs4n7aA1lOedPGvE6VO6CBrJQMYN1+RBDXqcMXhbST9URmdn5aSyHFzDGoZgC7PG9ikfAWtWyQgxCoLL0SspA2e67D8yF0Mz7HhkaL50Flhh5/XN4KZ3EQabBgNosp6JCO/FiYlFPA++EqD//2H4esH0TD7DGr9HIAF1R/A9rcWJKgo453ThbTkawx+XJYPNc+iuHF5DLpe+0sqzmp4usUYdU6qQ5j5VT7i581baxUx9L0zV+llQFJLBx4NiaPrKx/DmQ2XOGmePtx2kyL5h2NIO1KIlBefI8GLLnA7UQvNynvosfBa3vm+l1+eMIFXk+rortRb7P2zjl+WjYLtB2pJPukae7u/B60xf1FpcwC9NCOwcBRj5YwYqMvrZes7UnQ46huc0f3FPbqKMCfNkpeqKOBKfTF4YJDJ6mOE+M01AxrrcJLEJ+fCznc30fX8JHDO20zN1WI03UERpt1/DEaio6ld1ZUzfK1RomYmB6I/nJhjCdKq3vhlvRTENcqB1JpAjus3hS8jr/LfOh2SniEEsWuzoSXfEfc41aCdYSMOeirCNs3v9CS7Duv7d3GuYREd+zCCnQdSWEdBmf7ua+Ntx6fABwcrsIAYsDkShgovP2Hm8zAMXXCGsnv2cYdhDX3McWXp4GKabagPg1F6oJgdBZ8XB6D+syWY8n4Cv+u5AUnPc/HgORdaJufFG17rwczC5+TVaA1T0yUo1iqDy7a4o5Paa0qKuce55e/g7J4ENIw1gO+hI/j++tWo3R7Nuv27KPufPY/5OoCLeiczzTkDL7KG8+WmESA4v52nze/EtlYN/BdewbpbjpGS2XNQkVkMDhp/QSbsMR6qHw6x/jtI8NoW8lDsJo8ngTzZvAUELtRg7IMwXHDpKydnP6NsE2M4+fwtHw4mzJPeQanStbxo2GYct2kxZSs3obaGHL3YGseFkfqwdVUsTvkwBqyL0uiF72OsidPEsiWjyD9ah9ynCEFTty9mTZKCBwtWYWufAbyYLwUBdWu5GHZQ/PMULFxkzH59K6ln3HD29paAjhE5JPzsAE9Jd8ZAr8cQcjmAjFUCcIxBPhSOu0ve0wdQaYowlARPAAWxEF5jFkDP9tVB0+rbGBXmznsXSuIWpybcoDkDYls0wFNKCcvvLMCIS+PJ3F6KDY3y6flSDa77XY4PUu+D+2of7nafCJuSvkG+rAw/m3iez3TJYoF4I/oMyLGSYSo4TRiD1nvvIA9TBv8/pSjaOIZZJhv/Jv7FmfljMX+6EZTaXaKb6Utp/rYBEEhRhnsqJzFrzUkM9I7mTIdylEu5DROTI0BAs53fhW2FgNGroHEeQMTRZN4W64+W0XlQvS8fEwbCKbf4NXv+voBJKWkUdkgR/I6rwbotkpjrcQ8PztDnotufYP23TPIXmMuX3gKrrXXEsqoJPKxMArq37Mfs2Wn845UJp7xLAe0NF3lLjhntULwBrstVae3NEh6dKwvCV7eBXChAYn4/qWw1wLYFs9Cqxh2GaQqy6PV40I0ezTFflcD6v4UsvScA3edlg+fIFipfVMHHf1RR6WEByJZIg4T88+B4VB06KyMpKToXqmdMgSQTLQ7uHkXrp47DmJGutOvPYhT5wlxMKmAbNMRECf/Rxx8NMN/Mn10LVvP40ARcGTERP1zLgGE/2nFsNcBIt+U8Ir2c3l1qwU+2x0gCj9G1+FoOnDufJp39hurGFih3SRg2LV+LkQGHcMvxpVx2bjgr/7rNeQUleGbjdJLe54/fD2fhDX0lsDtRhQtQD9M3F4Pb2yW0728Klo9r4rH6uZTZ28Hf2szxQ+1EUGq9CNt7tGCjjAkJX3qBvwM+QvjJGVS0cwwmvrvMQu/TKDhHFeKHL+aJcleox7UdA35ocfZ0HVw3SxMbIgbw3+xxsMy2iD7KTwWLCSPhwDw3WPrClYIaLSAC9oLIkfNUEfwNU/1DKWvIyTp/6UKb+lpI0TXnrV7eGJKoifLeojjt40p49uwXTWl6hW2my3D5Y3kYrqWPB8JE4bWkGKdk3kC3o94wM18LbnXG8mLrGHz2tAsHeuVgwXwbWCbvj8N6Iin+dR36NFaDnuQbntlUzGELk8nmpjWWtArBrOQOaN+1iK+NlQGZvd0c0bsDxW+XonJiAvbItlFd+QkSHC8L18WfQquWAa0K90Rx/TOwJ2ESnHs7AJUdSmxg1M6HHPQ40WFoL7Nesl3SarDOUefWJWMh7us/ijxcDMmjVlPDFBfS1uxgrYCxsHDNMHa60wOpj0zwy5Et7Gh/nhvoGpQZ93Jz/G289LkFln40hLXdGXDlaCz3r1bGfYdM8a/vVPoyEEafR4Xx7bMWnHbfGDvPCcKXmigOcWFqWlfFJSEmLP55kK+d20IWe9RYI0UJVzoXwrA1VuDwNxm6BF+TtLMYS2Wpw7rOt9yemsl2sYosEr8EjMxtMUF6IphDANYrvyKz3VNxxfU/cN73AXcl7IMNai/gfZEMfXLOgL48YWgQXcle224TF1VDuWkXqJdYkFLEarCP8oSvcg8pzv4h53bqgbXzfj5w7wPP/7gO1rwZDquWVdJuaobO1SokVCdLZX+S8WygINTMrkTZ4zv4XPlC1r9ijunTtPC4gAVOSz6At1ZeBRPJb3xqL4O+w3+w+ZEVPh23gRT2TOCGgTd0aPdTNH+1aog914LLCw3Oah0Ht5evhYakRjh1cStklf7i7Zon2e9FHxn9TibvAl2ynyEHXyVkIN5Pk/+pbaWH4y/Cs5ajVPm6GL1ELtA32Vx21PlAK4MksfG6ACyJ1aMDM4pBvuwkXP5bTc0ONizeEY73u6/x2m93ecXD6azhbw3j7zmAhrg9FuceJxMHM1Yz6oSX9Xtx2+4U4pgqlDC/SMb9VpC5Q4eXLMjmgIOAr+S12GbqOhrcDfBWZ8i3loWg1+wu+n1QAwRt6nmb7jGqnxUEKZ2G7D7UhZNPLsQzYo/5wSZVqlgYxvoaRlDc8wRvpgSh9Y4UiMj7SYYx7RSdvwntIi/zH+3fpKFZxhsNhaD0gAXfyU+mqT6p8LEqFWMUztPIp6F09HE7TsuLA4wLZytbcRgv8ZyTJOT4zZfxMKPNE+o9N3Bi/GxMzTCEhJGxuLn7KYT/1oFnOyIwz2sZWellUVStJzotbOKmd7t5pekU2HVmJrqcjaOwZhUIdEznX3FldNJSl988mUnLr2/kQQdnsqquhK6APrAVTOAV7gQyq+/DMrsinOD2CL++mMjFCxqo/XYhfbz1Hm2vh0FA8mN4q60DA8HCbEAn+N2T+5yxTg8nj3oMbtfccKRxHXxZ6E5Zo7Rw8pdhEHe8jWuPxKNe/Ar6OziKsipVIdZ4Iqc9DaYVN7/hmmgN+uqpC1qbfeiQoTFuHPkW7Wf1gHrsPBrh8xPLtt9B15o/PFCTBamzNCDt3iwKOTITmo01ISnXjdYcrKQfoqKY7TCDNnWepvDhmhT/RRm8Bh/xWM8j4DpXiegIstvcemhrlKI5T21wj9ghwt0KMHuyJuiWvqbAO+uoqcOTz3g1UNTFA3i7rJ98/HPgQnMd9RTNJNOhffVM2A91dpoUd6gEbqZJwpjMZTh2yn06bGFDk2Qu46Jfwtz03QLCC5NZ3Hs9VTS3YmZ7OQf82cybReI5JsoKwxUz+Mj4aDo3UhYCLc7TPLEkfsh/WSNvJXZckYT0axEQvDcN/bqfYqn2AF+/ZgRJ/10F8SZVUt5swMOEe3Hxi3SAytU0z2zUkL/84s8P/4HJQR3AAhWcaLqBSgd+Yvmnq+R3zxrE2k+SodB9GGu9AHo1a0n1wmiwO/WRPUWW8mfvi/zh3TAKThiFvSIZ8Ou/ZpLZvBRPmC7iRWANko+GsflADhc1b6Gkvm6y2DwfolsOgs6vfJTzrcUesRRycVeH3XsecXLQbDhlJYwpNuXcdyMfv7i8oXphH16rUUG10f/AyVQV5q0qY3/tQLgz4wh52ObwwJWDvO7KarY8nUk1S1eAfNINGL9TADQfnKH8sFd89r9o/LR7MluuUGUv0xb81bgEaU8MuwsWovAuefC5Hs4K/roYn9AGCY5qRIk2pPr3A6dsbaCuliqsnZiLmz5JgfGLeWgo4UzRaVYQZPaam7TL+W3FfBzpogXXttaDzQoN2oAIJ4/bkPLGC/Rl3U5KfzEBfsf9oXdPXsM21518OvIp6QdLgdNMCRjrKET1ZRdoe8wlLGz3gJdPJ9CxPftpReUBWnboHVYvs6Xp0QIwVuMUrzSRhgkvT7HujKP8YdJp/Ln8F0vwMw5p06b9Qql424BhdrYbLV36GDdIN8P+5KOQ8C2YvecRd6gm0pauCPDS/IqjvhgDDA9i5XNOqCG2HF/Z72CVmE3Y/NYQAu2FsaNDk8VdrNDNUhg87mbit93jYNWADUr764JfnzIvufMELs8e4LPnWyHOwQ9PBI4FSVYnjW/ZyH6bKZdX4rnkVyxrFw9hyz6g5bA+XlCex9u6jOHXgUfQGvCIsNGHPEUWwj6r2Zgw5CHNBcUADpcpfq0DuQyIQv6HXTRacQ52mS1jqfwU3HxhPeOfBr6R7wKl79aj/qR2DBQcA4dni2KMnR0tPL4N9hxWQjubhXhOLQn+ZR/nTYPnSUZEAAOuj4KCxwe5rDYTBB3lsfWAOKyVEoH8wH+wQFqQYYYCei2+TH3G2pAw/CGVTT8NzZ+ncP3N53jlly4fiSsC73fnuTJ4B7sMVOP+NSYgPOU3kusCypJbTKE6d7DIKR29lWOhVNIb17xtgk3LDvPcJANYNWw6vHgiBrf6T8Lg6IfcJO4HvVknMUDeDP8eegbak99AXT5Aakc2OU+0QuexiOkvByivyQ6lL7yCEfeaaaRlJYtX5GO6hQgYTHwNNqHN1FTTA79H7SP3P47c57CPLOWm8+EBBnzRApZOpuC79BCtaRWlvdeKsGhTGCaG+NPB6kx2KvrGb8cngrJ6PMyolYY2QQP843yANcaUgvgVV/gnOIcmhZTRyyZfyD5sCQqObmAobA4lonrodVWK9xXloqysFTfYeqLWgekQs+MmKLiMhcNNm+n+B4ZLr5/S8zFPIKBsBcbN0ufVsY/AtUwXs51fwsZtgmQ7sglXXZWDP9ab0au1EQPOTye/mxt4XGQ22uwRwoKv8Th+iiR4KfdRU70yiOzpxMt4hIYtq6aQQ4C3bpnRCIlvMCK+krvNx1JNPPKKcwxd94pBy6iR3MXS+bn9BvgbZ8RyUQrcky2LMstP8+SGTKiJFIFVB1V54JkTvRCaSALu2zn3nCtqh26hX+WfME2jhJ83dVO3rwDkfonnhkJNPnGzCL6PIf727jrN9fgPrqkNsH2ON43bp8GLj00FN/G1nLH3AfqfP8B7dRzpTFQNzs4eA8Wlt/Bckz/tfj8cp2YZw9e7m2hKbjQbrqmlzp42kEkPQOk55UC7VMhmwnU0/bcSZ0tag8KraBKv/MdLCqeQy8npsOVMAY5UZlh5zZezvzvCoZeFfHLfVBjs8oIjhqcgWyCNbgS9h9D3aWiesBKeTq6hvlmNsOxOMHppiUFCZyLOfnkPvus24d3P3+GT3292MJOhf3Ee/GGrEo7aXcN/itWgZl0nBMf4wLtLS2DkWhfu/H2IEpSq+OqCMnz8Xhg1Xxqjh5IFyHlJs1PYAtoWVYqvug1pZrogBE6ahxdgI/s9GsF9FXWQWoEQ8iUU1GXm0rUDv7h/3Vfc5G2KbrKXwehIIdFGf1C/upG9gjWhbqASj7jMpjpPE5QKTIJx+81xw6tx4HhLEVq+XaSBihPc9nI0qLxXwH9rymmVxy262T4JVlrGQMcxe7jqOAtkr6hT2i8F+nF7PMx2eMr/rkjQx/F19CJUnYKmm4LAjkto4bOUczJcqfueC/xXawlmM2Ip8Os13jlWASq+CLI3xfLB1XshvNqUL2+fxZtb9OH6M1VwvdCLY06GUsudSpY82wZ57ftokq4POBap45h1k+Bx8zlIMRkBKjo2rHJJBDMn6nPxay9Y7/OMp9fvBSnJt+CXVU9y1ldprakmGEX+APUIF9qvqwzLA/uhW7OU3rlVQtQhZQ76rkB7P43CqZkmMCC1BS2t7/GMRVF006CRBF58hv6l08hecAGdvVNJbfZNsD1vLNioGIJ7WxnHPqjmlr+f6YmWH8v/TuaRG8+CdM0F+J34kBY6SYJCdiV5S1wnLbG9PEOvn8YFEq3r/oO+d8/jlXRv2iY7QAI51nCP5/OSAV2qiKzArUna6DtyOYv7ZaOuvCBS7i7cyUtIaZIR6Gtmg+ivtazWpo48yZmWvZ3GMbZ3Oa/0PAnHnIawK6E8/rUOvHxtA2kbtKnZrRrkZE+wZ3sgzjeeS626Z2lyeCqEp7zCn7u0QS/8OK7ZVInjjqjiQuXPPKN5MUSLT4MDh9W55ucJvJHSxCavRoHmiH2krJLGq/5+oxUnNrDU5qqhvnyEy++r8YNEXaw2H0EhKaaQNPozPNj4jw6cHo/Pi2S4UDEJ/4wopouxEhiSIQ5jbAOwwNQCXi7rpYhFfkBhH2Bf6EWSXvCGt6pG0AM/CdZb58ot/ylShrYMJAeFY1txIcfq3+d102bBfXETciq+jo4zV5GybTkFZ8jRtffD4cpTIb45Mxi/ijBWZBhj1OMA3lWzBO1WhELwqFTebh3K3zcqQZmwLlr1qIDg80cs80YFpHe009KCzbgvygzfjJTD2jR3nEwIW4x/QIV+AGVrX8IVxTJ0R2Qr/+8RYZcJMyinRQ62zBqG6QN6kJZiTBf6T7Bk0Sy2kF5COw0W8gupE2C74R1HLx7LmcHv8I/TaJjb3MrK6/MxvNsM/UsQRK49wpqPamQVaYrLK9th9zVxyB8uC4lLr4CBxX70H9NEBm+M8LqoJHf9zcFSvyNw4MgS+FT8DBVUzWC3aSCLlRyjVRBDg9On4h3dKVR4tABXTk8d6pknNEJqFh6rnQQ58ctoMOAfWRrvQPW5b8Dy80XWu/AAfG9+gLr9wbQofy/cNRkDn8848amavSycmgGh9VYwMlOaXc6d4IaMC7xNrhuk9a9TRLUK1N6Ros2SO8F3tAt7qwTh5N1BeH9lHT11mU9dgb8wlbbSomgCX189Vp+yj4tVXlFW50p0N1KjJV03Qfz2S+qPbieFisU4T8MEVsg2o4tiAP/6fo52P1kAc+6PJxD4RO7PJuDdb3acrJ/NMxWU4eGUPt7bQeC28TVaKRlxr3whBftt53OWd2FG5D9ea94DGzfIg3hiGm/7tBwaNPMg8xJjvUQ5yhe402HlaJp2YYBlWQPvlJrAf4IDVJXVDY+sroL8tnBMXH+M9Q9WgW+1Ke69lwu98ffIr1gBenQzaduoQarLWsWVqoqYu3837BTYB5/8Z7NV8gP6/mYk2asNg96jh+mL7nxS2NaLZ+LV8O7zYNzwzxkWTdWitLnb+Zn/Q9o8UQtmhwZwUqk7hOz/hA9HHWLJi8xKShNIzrEUmkXW0sbrGSD3UwFuf8sBhYteoHX9M6CpJy4/cAfc2x1w4FUsDMw9R04239i9fTLsUV0JuzuGkV/MKdQ26MM5Vy/y+mgFfDsvDCq8g/i46wC+TzQFbavz+HWTBg8+b4PpNdvAJnAvaB95RtNHN4DGDV0cPvUiFh7WGWKzr7S6YAdazNPhMSvm8PIVmeCuth/E12bQmOtalHwqnC96M6y9sAsTvD7yxbK78LrQBIuPuVO/QBRFbU8nN7XXIDLA/HuBDqxVDEAbs1xu8nxGD220QV/VDUXKv+Ix7dV8cnQNrn3vCcYftUCk5Bgc2L4RnJ0MOP1bKm5Kd4db9WO5I8wDQyfkwoCLOjSpGUH7ASl6gLJ8V+4ubZpyDQ+V5LFyVDi9/uvA58cdgHsCu1AmRQuWLVvAd1sAU+Ye4ZR6I3wxdgFO32uOCtGfYcGCi/A0K4IN7w6HzVm/+Eb4NRCy9EShhPO8ssUG7i54igr2raQRLsSrI8fTipfjwOPkbYx3SaenOd/JXvQnTVdvgcHH4ZAZ30lCTZNZaFQsXJBQB7fz/ZhV7cf3nkrx4syVvCT3Dg0f8Q7u79/B4+WHccWYdo7IHQZvx6pByIUdoHZrA6fJjKLzlnt5ufZ9HJk5ETX3jIXK1E5+MFsdZny/gR69+dRrtp0kPp9GwUdKUPTKERenmrOnuS6j92MYdVEeGkaI8MJcbQ4vfIJPcueh2R57xNUGsMzagiy3SNA00fFc4jgclpfOgRVTa1F/0IanfBLElY8/gmzuO47YPopGtOrx+8BDHPVeD1arZ8BRpbHgvPQ8PKp8ABImPrzMMoZXXumHP6Y+UDI8GsU1NSHnmyE2PN4Aw2NmsPvgQ/YV6ILIlMMY3GEPsQc6oGbcIlr1WhZiT3txmUkONy425uhV89FihwBceWWDKe6OHCBZgBVwht50MBxflo7i+xKwRTwTY8QzuFxzLti47iSTH80ovFyUMDOP2tr0QKGnH6tKy1Eo2Iw+bOvkPNUHaDh5O36YEs6yo7TgesU7lv0zGna+uY3SG/Zi4dNJJHkuHbjgKtSayuOMjKscLDWB9UebQpveEEc4NpGCySuQcVGg3uHIw5J7cE7KLZoxVYleVQfQR26HyapjYXeoBcruuUoNap0oeiiMQ2INYGXjMOrMt4GDuaIcECzHLx9JgMWtQLqiJkPb8D/YHOmBNw4d4u+HHfl3XB7OW51GGQufo1jBWBgn6AbN0ySgYm4cLX0dQ8viL7OIxHsoXeiH99abks+yRJ5/UwTiNHqpPXwOWC4UwMGtwKbh6vRNfgQKH/OmD45ZrLI5Dcr+M4Lah0oobTR+KDdq8EH2d3jwNY/WvHWB8GlheGJMLE31lKCY/wSgWaqAJyzYDjVXZoJl5CrsjzBE5dqX/E9nG0dEddCSRUfRRHoihIboo8HXOK6NM+PRZkf5u8QcFnfagE3xgNF3Izg78B/K2BrC1Y3/ketRU2ge9pm9jI1p5PcUqKk5RVf3/qJVwq853r0csxwV4FLYBxxcOR8mVClymKU8ZmeKoWzuGDbMrCKydWUpBymuLJOAbL1PZFF6mkOEZsP5dGOSGusFa1zW8aHglfTonh3eMi+E2acnQlBPGr6uMeMigzM4TuIcCeTVsNlQv1174wyvV0XRfJHbePnIJJhcWMR/t2rQ6WkLYdXlXL6leot/a9/G00lI+9bqwbZ9w1HUxxxWbHwD89abgtCVPzylLBuvukuQ76Y3pJy1GjPrJTG0NYDryyThme5CiClI5T/XPMiwIoWtH1/EaF1NeHxjIWnNkoOtPoWoMKgEp6cqorL2KXT9rMcjl+5i+0PjKW/jc9rv8YweyNhTSfdl3lJPsHRPBbSGu7DCpyzYUaLI0x3zedeTSfzd8BIcOrcYxC/o0QE7dfj1JQGnvxyJbTIluO+yDh6MW8Iu73px71ZpeCY4H8R/1ICJwXCAzjQ8ueImtwV9hoquGjq5X55EGqVxbNRcUvZ9RZrlSXBMTgsUbDZjpVEmzNE0oxeFS9E/IYNTAltpwskwHrbTnBROxhHfHweL1tTz6GkiEF83DjSaloBc6z+OKVpFX3aV0+QkcXIpDOSdDcNg2KkuPL11OgjEWvP236EkHPqGj8pI4aGZr/i/tadgzt8SUhKXBevPh/ianA/N71CiJ32HOF4vlk/s6qI+lVQeaS+DYzv1hxjLEEbkJdAENxHY93E17XF15OwCIcrsfsulDh/JTukPC+cL04puMxDMeIuFzucgdWoy//dMCRVEaqgg6AYcu3AQKVWTM0wMyHuQoDvpD1XO3MiqMXOQT+5htBJD25tnOXnPxaGOzqMNgWsxqcUaPpkN8OYzsrj83Hs+qrqCX2/8g+tverH93L/4bUEZhcoJgYnXRPg635ai5j+FNNGfLHOqgG/G/uBZautoxrEbaJq4Hpzev+HWHgnIy5hHi2da4KjXIyh36QXQkSuA+SrbuGj5e3Z6mAD7pIZRxIVxMP9HM+klRZOddx7vGOPHLy7HY/HZeXj40hEQLxal372ibHFeChbJXEVH+y6If5tE+rc66feiRnKpHstvcj7g2p4VEGnwF1KvicEe508gmm6IDt8W8HWLBn4/4SEG7dpN1y3e4f4tDqCUPAzKuqRA7MgZaAxTom+591HC1JIH9KbgVasdOPLbTBrplgIOz0dxVacV2CaL8vOSVgq+J8d6FZl46IYzDZS7YbBHJh6IqOe2qHK0l5KCkHETodeqEgb1EyBOppl1LFTIa2E1brgzgaPt2wnnO9HVsQz6i4vwk84X6pUrhls9f2iYTj/uL5oBdgrfua87Bk+OcqUgGw3IvuoAPUr29LLkIo37oo3nRiSSQroP71Ycjn7PrKigVhf7J02GuH36vDnyO+RebuJTm5O4e8N1Ehc4w38KFmKkvzS6K1/A8tiRIL/eElVj3vKvcz7YN8oGJQSD+Oqt+6C2dBddrlPENEdRktafAMpfT6CRVR3G7PGDhb5F8Cl9FK069pFO2deS84I2erP3OEsuGgaHtUXxfJwKK2kE00jpRywc9RL3lHTxjDwx/PJuPQuP06KK77Jg8NqHFimGkO9IWeh008TvDyvI12Y+lDTHcla9Jv8RP89VL8zh+PpfOLX5AHo9FOKJieZUmdPIjaI6pJIth65HlEDM4ysJTZCDF1N2Q2DNXbQz/0cz+ydysMAKNg8ewPU8F/uGvyYZk0q0i9MB+6L9MFnmJww43B5ieTEac+4x/JOcgnH0ns8e94ECEMI7D5Xg1uMCSk53Z33ZXfBhzwvef/kM9u6qxQSVaK7qRRas0wfJAxKQWOwJN83v8OEKA/YQ+QxPj53kXMfT1FqkCumVN/BvkQ62b1CH2bnvSc7/KfsPv8ibsv3pU601/7vwm/U3x7DM/Vz0PjdIHo4WQFVm2HmrnfwKy+mgzBJqatrN0WOb0PTpfhJyeEc6/72Cys0MEounIqQOsO0eTVA/WYJNS9fik9X6+O+MHD1a3Q9j7KNxwBrh9dMyvlHmCWE2X+CsQix8JFcIzTtOFS8eU7zjZz7fIQYnErTgTsss1AvJgt+hZZC1t4cq3qfx0kEJ+pKyFvW+fmOlzUYQtVINcjyj4WKQMoxonUWKJXp4zz8fg288xkVnJvEyu8c4IiaKt86aDJUtj9h89whctbyHf60Q5tknN8JhtTx+t+ohKOROhfm3qrhqwBKSz6dizUwzemISxL7bTvD4JhucMsKDs1ae4i3v/GjHzmFs+Bvh5ay/7Ch/iu5ZnAa9umK+9uUfVY5uwbFbFNB4oARxohUcXKUGvfq9NLj2DMdP7YKMbY487clx8A7zHDpjJ75v95dmbrIGUxmA8t8FTGvuYuyABS9tVAMxHW16/2sQUkYifboSzkdbtGmyvz6cTfuPz2gJgpzvGgj9aQLls3pgi0QHbne4yfWTV4CmwwNu7bWE+ul+6PimH/LUYhjim7k5xRW1Oh5QaX4pSYnJgVvsAZwgNgXW7NnIosUNpNevymp9P/D1tP20/8YuqN31lE5t/g8OLp/Lg3OHjna2Csb/SIfHDnch4H0jukkc560+DnwpT5J2G7yAZa2D4HlEGty8rqHH0iW4qs8fNfo62fFcNdtdtUdzy01o/M8W4U0cWX6cDJFTE6l/fgscOCqAo5vM8MjrCngUu4T2+NTj6OMT8PlrMfKNNQP/lzmY/DAEtm7KBi/9aprodBq+GoqQ+Ow4/HTrGakI7sfEo+P/397/7Rr2jvJ2r6GRHjHYpridIxfEQVreTkh+eY+Wbwvllb9+QL2BKniEa8KLYX2UFjEdN8bIoeC2uTjFTxvizzqT29s39LDAkRXblCBZcyHJZh8kBbFItjvxBNfuT6aUE8Y0W7cG6npUyS7lHF48Iwx+Sb85fNVl+FzygS6VtFDOFCtas5NAdlUYPc//TEddQuHS89HwV9oB9++8RiuXGvObIZfvMlmH0+AgLF0cRx3WlylVWBU0/E1hp34Q7viujRsqV/E5L2FKfXmGYnYpon+tD0r52JDXKWU4d1MFEgSXscitSdhfYsVjN26HrNoaNvmtzslpSSx9Ngwvff2Mi05Zgs3sh/z980o8+foiC0TsJLXrn9FWZyr+OveG1vV6sOnTVAraOBw+9hjgE58p7OUeAh6Gj9nY6B5Z7HLBgBEhFPfoJ0zaP4LrtxuC/lcp6FjQxfPGLGWHhTfwrkMiS4aeoIEV/dzkPAtE0vXIxG8SjDrwj6stjvPOC9o8cXQbfRmcA0eeHgbBUwfx/N/DFO5wgcpnC0J0IFHxglqaoVfL/+Lf0eSthLaR1txQ+JhKxct4pLwqLjmmDouHlUDd5clsNfsBJO47wV8MFHmC2hPmSFsuGv6UjxyJw6AOTVBdm4+jli/FDTn3ob60g6X8THD/dQvSftYIq+/IQd4TU3jrIQiNFonY8sGC3ZzysO5nGOloruPx0r84vGkQ6lpiYe/UdChK1IbF4eUQuruL7P84wSVPgvIZ6tjxPZL7cz/y9pZj0DnPGuapiEOBkRNX/LSCyEuBmOG7h7ZuOUCXpxVjZsRBnlDsxvcHhOCCszlMqkxm2dK7tKGlnE+tOQrth07xGJlxoKd0DsIDjzPuFIcri6bC4bs3wPG0FPiOqwKrDaHUa2XKT8LtGT0qKHbIY7fLRKDaYSV45XgK7o3bzZs757Dwe1/+PNsYHrj2oGGyLCwpPQNzgm6htJ4C7J1ejB+dc6nPdjiJfajFThMzTrCO58if2/DylWEQPeE2vronDDIeSugeYI7SfvbsaRvAtyNDeNJWD3ZrkKRbr60oqqCW15tow8u5ZhRaR6C77SFtVRvGk/f4kNDsUpr01orflgBU/xDFJmM9+P5ZDdx9t6GH+XocdtuKd6qOgQvhE8DxXiHOnmpFwnr5oBkzAjYImdCtBZLsOVqL560bj1KBatTjIIWJ852h67YPB9k2koawINTlf4E11YWgeuYZn20TpIfZE8nxwzvu7rXHvNaL3P7FH65XiYC1RRTo7O8DscTlWPPVBdJPh0Nk1JDn9LnyGZ3/sEuvj1pzEWavO8dOm05iTlY/lO90ZuvdOWgeb0lag6IMhaWo8qoJ94sags3D1SC55D58qM2kB9RMVQUPIVh4CY/5O5d+uXrRwup7KG8lDIJvf+GL0nUcJtxP8cP9Mcz7LHPBR9z9aQuFz7tLHt3HYGzrBDjw+x6d2dZLM/NtWTEL0eaxEbUYTIFPH4jP9qZzvFM3jp9jDC1X1oJ+yhTa1XcQ36a8w50fTyBFRrD8El3ePr2Fz/T50qPayfDhnivL1mei3mApDkp8BtHjIvTttz+YyrnB5Ofnud0+CGTeaoCH0QpQeqkE2fGadMTkD/voOzDPk0Opf5doUEaDwo7a8w9bQbg3/Tjs+rGa1c570LstXVj7nxsZ39LG95+uY1nwC3Q9FgkaCQAe757BtZmOFGsiwl7Slpg8JYrdjPfTtE8r6NExOfr99Rd77RgPup/yOSzbi7eMzecnmsdQMnUOqi2/RL+DWvHl05Hc9codm38IwoJZQLnem9jj/En0MwyiaaXLMPqlOH5Y68SSuTZQGKcPPzLM4Vu/G+cHTaQt1X5cKuMILUJV9FTnBndIakN36JDfqQrwe1KBb8/dsXGOM1z7ocJdBRMoPnEPTo97juG9CtSm7IHln1Xg4aAw7LAvw/qL6bj+kgV1XZ9El6Re8TyJJqjWb8ERruupMtMcEnYqQuFxSdijv4zWOWfQ+8hy2GYVCVFHblDf2Y1gKZuHTwKjQXuUCJyb/hhkDIaxStVpSnNoxjd6+pRTrwgjv2wh4zfvqDGvAOdZasHyAGfge+VUc+k3B8h/JKGl4ax9ZA5dy13MvYumDzHySX5fNB4Ek2cQH/kOIX+us03nUu4w2wT51isp6pwcbfvWQh7zXPjlOjUYyGuA0MKhHFllDFHNb7Ai5jlHlRzl1i0+9P3WTApIGw3u10RhytZiqJC+i7vrF8L12fk8ueANG0Rn8ds9t/nvGVn+b1kog6IuhCRpwLQ1gRBu8ZBz34ezxOQPkHk7gwTeCJHBpv0wIGrKEhEIWmtf0pOaP9xht4YsTh7nk3+NaYPxBbK7UoJHx6vgg7IciFUjuFPugF9N48HqifrQzORgTJcbXt1ZQ9NPF3NZSjZLTnnCe98imKm+hlmzRmNUihQPRu4ly2OF9DcpklsTF9G44h1DfvWSBcVHQ+8ZMTztPIp/OZ5mF6ccsn2sQ/mlJXBMdg3v+dROsS88QOqiLtg2jGW9jUKsp0Ys/fwlxw7cph9BduA33w/LLtuxyHwJrNyoB8JD87WjWxq3LPjLC/b78+e4sVTy+z0cXuNPIlcM0SJZAX1jReBYkT02zthClHIQ94dbUhQO4wDUoI7BVZzXf4r7Y5eizB9xyEjcBa735tH7WRZ84+8r7JvpgGaLgiADjPl+bBPPi3Um5f2jYV6JAyp+EyCTU024fEwVtfgtg/Oz38LlDVIQuSkCvjn2sYO+PhQ2NpFBpypZN24Ec8kcTFe5P5THv+kgLOal2xMg44E6/HUzA8MaadTfuh62Lk6iH4GhhGuaeYP8BQpQWQPTxhdzQukfOFg7Bi5JbaLBiaW06eA9sMt9iK1OViypdQf8ayTgkpEEjZqUzdqLxGHTDEOuGvaHmoe8Q7rBl4r00vnosVN8Jec0vtt6FU4Pf0snhiFMD02A04fa2ThrC7sHBNHnneM4c/RsGG9+C3w+zUfXt8mc1S8KQj3GuLrQnOouTORq/UE4ZxUBulVJaH5zOM3yM6HvzpOoaMgXXHo/0KppVSie5Es3fr6iTzO/o9fvddjhsJRaPd/C0u3lIDdRGkqFX+Bhh8WsE+FJRYf9YPCcOe4WceI0yRloOkELD1UEkMP/7p0GX+OZL/aQWs93Uimp586nA5Rp3INj//lxTcUm6kuZASU3jMH8Pz/crXSRSzrW07jYHK7wHI22Dc5YNXiH704fg0L7jdnoogAY1eykmRoHwGF3KI2/pUuF9nd483IrCtqxB5R7PmLOkgSoUlSEhoVCrHD2BFS0duD9OQ+58ct/4PdTC5x2prKa01E0PtuNfnZiYPZnDlTM04XmSet4soU86nywwljDepKIK4Adiltxw6uJfDhfCqofj4dJZkG8MegVLC7vY4uD43m/giauO7UPQ1KMOaZpFgs0KkL8l9VkdPkQTbr6mRQf58K723Po65odFF73ip1juvE/JUeU61CF+rM/seZTIOwMqseYcXNggsNPnFP0HhwNutku9gifaFjEhU5yMGfWDUo4UkTLpy1ECUk/uu+ki4krlTBi4Q1ojO7B4hO5kJSmDpe1VXiv1kw2a3Zl0UnLuKTv91Bt7eCf3eU0xeMg5d6zpVRZE+id+A7F726GhQe8uMHHDL7PrcRtU1+BfPktmmt/nooeZpGzuRmM/JoGDUGhvOudK8kXJrN5xzS6ol7FyqopcDNxLEu9V8TkY0Kw/7g3b1KSIp/QJH71LR9CZz1HYd9ZYPruC4t++QHpq9eTrJEERB+UYunTApD4QBetBL+yqsU3Hjmnnh3s8tD/STDGngqkXmEJuHlnF9iEPoN7eyU5Y1sMND2JJJGhudr3UI98TEezxA5tOrLQGM5n6lGo5zpsDzjMNwy/4MuzI/DBnGrcHqNDPW0dlHfnFeaPMIK5agPgfWOQtfNXwYEKhHWva3CsSCB0LBEmqb4lvMfoAg7MGQXWhY9QSbsLrtenoW66OdDqBRByqRG9F5bhsaatZG/cSdNfaEB/5yQweT0Z74eOIwFbX5ge3gGzt+TymLbnEHF6Oy4dP8DmHyZDi7INuFz7AWv0qnGKeRcXr9tHtl/O8JfrwnxWThr5ly4st1MB9x37eBTfgl9LluJP3Yfo2qlILSo/wWO/Cb6t+gfnfC34eKYK4C4H/rQ+EV1TL3NyqgAmPXrOjRMc0NxjBhQHrYC+HTsoYSRCuFQ7hvb/5NiIfKxImIMpDyooUnMFX9xoBGHemUPMcYW6n0vAic9O6DBsPR+LnY7H38ZQquN2ficsTsFzllNBhiZHbx1Pac8tQK3dnpKizLBbtAjLTIllVsyA9Z4POE7yDBTZrgPH4b9o10gF8Ds1lzR2D+DuzydBZKw453cqgNz6cbz3/U/wrb6J85yv8cRARTDQCuGuIW/8vXgvGijtph9rHfFk2Tt8kxlDjzbEUb+yNn6dMhru2b6jPVcWYHerOcqJAeppV5FI1WFMNShFo81byO7PMRaeZABTJPsgZzCVNUzuwak6BehfZ44Sk4dzVrslBqRdp5UWp6jbXBZcXAzoScphCjFSo8/9ZnS2zJ8F5ZLxR10LzxYRhRSugkkB4+Aj/4S0F5M55rs3yJ0w4PwsFTi8Tgf8/uVDwl5Nzj30DGprreFM/ARo7RImZ/kDrLYoko/7X6X4NCUcb+UKHe7L6PPTWfi5Vhq6Z1bj8ccqsDJLElb/FwgPN8nxsecL+NrUEKr87y1eFyoH9f1i0NzuCzXz+lnQqIG7lRvxdXYBCdzZjWJfZrD/2Zec136Zj7yxAH9rKdbuuYvNCq48NXs95xRvJhW7S7SrXYzazjRA7rJOND5oDGW6rZjxaCSGvGmE5P7xwD/L6b7nEbwm30WvL9jir4QksBltCjJbDelSszD8hTkQOvMfhc9+gFfOxtHBwM2w5s0OWGXdgmL1stC1YBW0XAc6phJG5aF/uO3NJdh//xUJuJlhsbkIvH5yG9p6R8C8f7Ng3vqZZGKdS3M+xfEfLw8yPb+R1vfX467Xs3CdihAnmimD2LoINLMVoAuPNnH0NznOzhbClvEScD1/N5OtNxl++sw/bSeCd7QpzjVfwC9OmUBMojHGzJ1BUtnzIXJPO975GwujdY1omLY2bLHezc0DhiDhX0xJb/Zg7rxeCjlYQMor3pNufRbb/e/fYq0YbFB1xSUzKqDt8QuwVh1BCXtjGbdPoTHlXtyaocUrx16GfY6aMKVmLimeNYWy6WXctiycGjCWxV8J4OiuFzTruxZnXe/kckkp6Kv6TdtuGqJ82AYePcWWlDzl4Iy3E0/MyoXBvoOculyetY7LgMLBregyXYj33L9O5EG8V6yCVl8gXHVoNfTWS+JShbWw1lQIoq5r4YHF5TRseRX2L0uA75Hd1GQyHmOi15DSPGWceNuC5o42gdPhV3HKzX00fLg30YWjrGPvBjR1OlRr9tOxy658//YoPjZCHHbGTYNTDi28NHo4WisewFaNEJw9KQ9nWKTyvm1fMdxBnn88l4bZks6oqa8Hhv9SeF5OJjnrqLBpVx5LLLyK0T7nWD0rmL7LmIF76hYWlX8OJ2RugNNWL6pWvU+1Mc34dGkiyH0vhfkev+lI1UionLaWBQO70Sf4BFxTvYXPZo3jJRu6IbhWkE9vHUTno51UNgMhXlSdZgiqcfHDdv67qQKOTpvEQo6jUD/GAXdfLKeGGYm8ukIGVBb70NNCCV4gms8//HZw/teD4FtSDLMVptHqwjks3TMZJd7Lg+yiC1yGH9ChzQbPH23h/wREWfqxPVvuFqeq8SmsY6BF/0aPh0zza5isNxMcb4vQvVQv6M7OwZd9L+BItwxN2PGI06YegHFnxGDggwfbXI+C6/bR1LG1nqtG6+PP1DH81PMiJg/tYNAMYZhWIwbKtz+hSkkSdRbl0KyIrRQ0YjbZh/2g74ctICAqAPp395L4KRHQa3WBuA8HMKViDNlPdaHbudtIU3UPmLnm4IZ8D87ViaJpwWPhwZ0DIJf7GzQfnYUWtTRcMuTZjWGK+DpYDOvWtvKYV6PYdKk6RIzZS24fz9F8JRs6tPY+qAx34wcDC/Hu2Wfs6CdHLe+2UGyNOgSOEKGgC/NoQ1gCTte7xFEnNvFMCTU6b2wF2pei0N4kA2WqjeBpzgAH/dbEh/75fCpBB84P7aBvbgk35sijrJw7+F4/NMTikuA6TgyeV6aC3H0ZPr2tDj6rl5FWcQh1t1ziI0oFvKw5DS4+ngQtNwHOn3iLAqpP4KlhLLTaZbPLVTdeOO0b3Y9OhNroXNxeOQF2nfbFijXVZJF3gGtwMi8/MRPWmWjDFe85BGNKKGHVPuyNHgknPhpxadc6SH8zldovn8Jz1TlsJDYXnEWuwMPplZgRL0Pv680g3ckILD1vkk/JZV7i85wq243wbE8QWAy5ocvHOHbaPAJGxI+G6zfcKfpoHybtuoUlt9tpt28/3TVOwzkR7+lGegBa79NE3TZd+PrgArjL/QcRxUg1w4/gsl31/EEmgsOqXenOswRoSLCGXfPUoY+GZtbbDA9oT+W1U2KHvtcIZy76km/4GtAoNoc3WutAPmAY+K32ABGZ1yzg2Yr9n7aQlEcbP1rjhA1Nf6hO9Tu6KD7BK5ajQfavC5iXh8B/917wl8wsfLisi9YcyUPf4m2QEDCJxft28SErXTi2J56Thv3A8I51tG9jD8x4YsZtr8ZTnVEKDleoJYp24XMO6hAq9ptKn43j8jvaOKf4IYU3yEKEsjy3DC8gGQEx6Pt3BnOahCFufgQvDy+HjEdmtPfnI/xQUQCHVsXCp5+h9LHyASVf94NtNRMhfbgwjLdrJW8rCfimlgpOSrK0/1Uo+V2+ir6rX+FfqQzyTR8JdjfmwMzTdijzLIt9RFdSpOQI/D1LknM2amCwMYLLn2P4fxScZ1hIjxfHz9AWDW2J9i4lKRo0pJB+ZMtsGA3KzC4KSQhlpJTSllHISrSs0EBTJVEkRCr17//2Ps99ce5zzvf7+by587PNQCxdAFZnn+dfKw/zghVzMLd1Cdks+Q5hX0145hNtEBy4wqW5ypD2qRqKvzbDsLHCOE8zAZy6Qtji71RQiJjNqhE/eNomE85aMgy0ytbQlaE9PPJHHTqTNrDWTHXa2H8BMj+u4uHrjoL7XkV+HigN338CCha8oqqUhRSfUARLmyI5p28b/brhjp9+dPDJ3N2kKywP1oIm9CXDAg2tM7l+uD9nD1/BD7dEoa6mCm4piqc97eZU82ACWPTUs8/hI2jZ5ge/1wfBAvPv7CVXguvOluHX3h+U+uUtedaYwxMxNdDqnM8G2vP4cLsHjwrS5p7IH7zuYzXpZOlxaLQLawxOAJPXI3HUbX0arNHm2qKRPCf6A+71S+ONj61YtNQVFbxLMOrAFPDYspJrt7ri50+xmK7wB379TsFj1zYCeA59L+t+LDEm3No7GbbrRcBJ73T8db+dTtQnkbqCM+m8sONDmXeg69RssnPNw6aVmvDXoZUPmfzHFZtG0OzYSlY2Hk9nhn/mLs8aDlVI4aNbDrHSE3nIOJ8GP3dmwfdpj1ByXAGNPOfJ36aWI9mMwZH9yRDQs551g7TB8CPQnZ5t8MvHFTrOh/GENiXOhY+Mza1YTEXQLJTJEqWiMLo5ng06WumS+EW+fcmT9jfepb2n5EhCYBfv8LVEQdFMvvBRHC5YVsP2/5biTa14fLXbDct/72DRBS+pd30ByU2fBtMkn5DgA2WYHN5C9U+PoVKRDb+6tBELqu/hzeceHLMpF3qF5tOBPAOet04aevVlcbPsc6oztoHFz9bgnH4p6ppvyI8nhfMah1i8ONcT9FonwdGEMgrifChoysPxBxLALf4ETpqXygnSlRSLKeRW1QmzvARBu3s6/00Jo9tbv+C7zXnYcu4mH98gBuYjPkLrlziWH56MnzTHwLyB9fCcppOLygS+eD4fIlbdIMHMYkyM/IwtD3WpVEsV2owBLMokMG9LM+3cvBpmBHqyftwMsBw+mQKvTMQRy9K4XjAWbhQRUEYgzXL35b6lB4ky6+iOYgdZ2kqRnpQ0v3N3IuuchXTKUQi6jn5lje19bCo/CfyDlnNBTS59iZCmCJXJKHy8HWsbN3F0/WQQrfxLbd7a9MhtNnw1DIb7AeMoX7SfW85GYrzgAOQ29fKuPAQF51vodkgAhaXfsu0DPXjZ4seFm2agrOJqXPoJIPrfFkzYMBpmaxdj3aMcnGj8CTZWxuCchUPuvHSAx6TnotmNRkiO3cHaZfrwtf8Gj9+5H04kTOdzAYfg+tleqmp4hV4tp+gb+1OK2Q9Y2DYCvj/4Cv4zc0DGfBvM+2LGBl8J+i/M5h6NkZgz5wC9XCALq4304IilFlx5U00rokVIMOg0rhLex9bPcmnZeKGhjHuOlW0W4KQ4AmRnJ0Hbgz04e9hX7MVD+LNnH6a4KcLc9OHg7/WJHk4cR2XjteBytDFHpbvzwWNCdLp+JbqoHacJ905g055SsJ6rx77aK3nBFQY+oMMvq2bhqxVvUL9zNOt/fwHrvApx0t+RsPPMQ+he645mu3TghmMKfirLw6VHjfC+7j6Oez2Nq/eMRFMzZ4pp24bqf0O5MXEKlKWcpIhxYVA3ooYbvWPhUtA4KHi1Exw+X6FhXz7QVlllCDWVhFf8B3tgC116T3j6eRCaTk2EqWqnuGOfJONGMW6eV4JK8ySG+siPWw5OwLfPa2FW6BLqHrBFsYc7QfXubHhYfxM2SldT6H4raF31kmQOt6Pt2G+8oLKJK1fcB83tKdQ7dz0oPovm5aMKYNk3cTiVmMNPXJKo3tmOtD0rMd1iETgFeoJMyWbc8fY8O65r5SnbRoLUJ1fINxXCqeVuNCkmlSznP2KjKln4IjsfP1t34CKPHByRNQwWyf0j98ZYWuqrDHPUJ9BVwQqwlxtGB368R5HqDFrgOYPOjpGDE6LdMOmdBfbOzQb1BYE4cPol287Q4dkHx2PNYDrmhJXCq+XCEKbsTvfSiuEkhlNv31gW2bGaldZkg3TkAnaIuc+/FMLZ96w1PDWbwppPvclxqHOFjNP51dB+74taxHN/1PCbt3chpNIck2tlwWf2Zz4zkmHn9BoSN8/iWD0pfrnoEU7LvIxdYfXsZCAFIgKjoEvRlk92e8Cc+M+8W9QI4997wrnLYXg5uZ1HbH6Cx2TNYfxvMzAQWMMJBhMwoaEf/wT5onunD1iOGwWq0dlc0bqSb4ifo/TF0rB2yTpckvkOzIrDWKjjH4WfjuIUkzNwwPAMeuvq4t5b83n10P7tvfYXa2NPg2aoPiTnyJHg/Gw++GwyFGlOpSlxEnDtgAQPHhGD7j3vMaU2lb1mL+KFzqoYaWcEi2cMkL/VUjgkoU+BBp3gICQNNhreELqlDqJOXoGMK2LwMtGbpSTy6VWPG8xZeoz6rFfjtgojaN6fgX9cXXBPQTcIOBrzlL834MS93+zsp45BHW9hn1cO7I4Wh0FDTzogrTR0a38gc+Iq0i+LRJfBnTTVcjbM0X9BKhezOShHAZYob8cVwn5UWnmBhByaeJjWFAjYch+Frt7B3TvkeLWKHd5ZpgouY8RJ72cl+qsmgvbJNvb1rwXJgaO07XcXHhxzAi3jvMC8WBqC3MPRXHEztrybhGLPh8M0jMHsxDC2dUJ8urITS0UfYsUVHfiiPw6nr9SgzFZTniPVx2/Dv4NUz24+9DaNrOOCOCI3FD/0WMNj/UR0ySulRedqeWD3DAx7tQn74l9gxbZa3vVmJbULviDDiIlgc+Mv5ipepJh9H/CaRwwfNNbGKdNS8fNpTVR2TIPD+x7AntsENk56ED/+E5V8SqGHL/bzqZ164Ow8F+1kD7EkNuArr0GquGAA9vN/kVVaNv/3biPYnXWCDcsc6N6O3/xgZCi6H7Plvrg07Nk0DK6EbmarUzPIyCYUtOZH47bRz6DtwheSPRQEidOmEnkE4A5dgowpD2iVdAqlXA0jc2FvyPc/RftDj3BKTRK16opwx6xM0D1uDrOUBnC3rAPaFStxaX8wvKv0gk3j/dD3pyx47R5PkvUjh3xuImzYdgX2PpcAPnMMdnlH4M68cXRYOhQvu3fD1uU9JLFlN02o0gINy7vYMP8EH7dcj1uvzaGi29twX7Mu+Qg1o8GUCni6K4q6eiXgyS9vkrHTQfmx0ty9QpA1MvtAwqeKV/qd4JN/z9NYu2pQ2C4NA//S8Kz4VVSzPAE7DgTznfU1OPndX2yKOc0NN6fy2IYB3gdCsLqvnyZu/k1a06ax3GAgTRrWy6Z3HKj3sjkvnXQCL86SJGtRcxCtegfLhNeBt+wDVq/v5oqdFpzqoIc2+w6AwuxQeKiYTH6i8hD2ax/lhMaD4lgzzqubxrmVKihwPZO8Ep+D74k21nBwwqYfovDrWQN8CV1NTrEB6PbjDx+tMQL/7iscOKCEmbpVnGp5B8WGSUCt0Xmmj8tQfZIjtsgc4Z8BpWRxbQ08emXIbULn4ULTJJadPQkaI+fgodV/wOFnA0mHP8e4JY5Qs/QaZ+yxxO66i7ikUI/Gmk6B25eS8bhLIKXOVoCO/Kes5r0eFS8H8jhPQz7QOh7GvpmJI/WGg4BgCunZK6PYh2j6nSUElSP98IPjRbDukMbTU2fCnOL/sC9cA2zDZ0Blw0qcUBfPqxZ/wPo3RqgV0cNbOm/x8gFPyDe7xXHzALSCK/ipyExcnXINPOUfscIlYZJ7kk79f5IhKCuS358z4bjtyvBhryfX3l4LaQ9ywXVaJYwxPsyztYrxTaQS9QirosTxcJ42diQ8KVDGkx8EYOvemejtEQhTbtyCzy+r4P1/d3nU0h14qSsAq6aYgEc18f3JBzmmYRNoanvwy2x5nNv+CyYk7OBjkIJhK2+jQoYMdAkdw8ITFzj1jjlt2zGLHuVmET7xRPevuexSLsOuCoIQM9oERiVKwQo7SQqoGwUKBTdA6Yk7H5InMNuphnVSOpi50ZwOPJsEqdaWfM8Koey3CkjtW0eKxx7xvkn3IKzRlt+OcUTZth/gO2gFUotKSVFZh5wkw3HVmZOg4FgM/esKwLM5m1QyZ7H91f/wqLICrNqdg4XmbyFMrJ3qO0xx99JqeH3RFqQX/eSMGmU6+GAdzN9kDGFVJ3C3kgd3FKwCwUmr+OJMVUzrKIHs4oe8Je8FbvvqxkGto8Bs8hSoXPiejy+ThIaSDTj78X4oF87g7h1dIHxZjuLMG/jLlRGwdWky3l7rStmnvsGi6fdB/X4j2W4YhBZnSdDOuwArUA3v31KHHa2W0DjEsH9ynKG/OQuTrg3Hw5ox7HM5grqFN2Py+9Gsri0PZ311qNBjP89KUcfG1Ra87MIk0k56hz0Lj8KT3hiYWX0fq+4Kw5/fSVyW8A1vyEnBgy4pSt/4hzvnSmHlyJskmHOatwzT4XfeZnBs/FQS+T7Ilu+mQ7nPP9R4NJPa3YXgQMVtpmk+tMZzAB2PCELyHhEo/n6SfW9P5UjDn3S1VxlGK7eDvUgImr69Tgv/KwcHNIGTAcVwyHcNKj47To0lFXD2qgUFmX0ip3uV7BX3g8qzT8Hyv2aw1+sWrH54AUdqVZLh8PWYXrETnw78wKxlFtAZ5MgzK9+xwCwpEJ6+kNIOzIEnP5fzVql4+u1qyx8lJKAzThFGN/7HLX+XoO1wG5CbGEtrvQ5D4npBKAJtUtg0maUMI0ilZDc0XymkuuXRXKstDnOqg3Dmt28UKqJHazceI/PJWrD2ygXOPXub9+SasqhvMs6ZIwiXPEPRZdcP+HnwAE02f0linRcp4LI/mKQ+pMU312Jw1UFUMVCBmetyKehjL0+4/hTmndfF1ddG86M5ozmnzhcmh+zm6XEnWDNYHM7fT+Hk86UUdnkSGWg54ZRbgfQlOZ6mp4bzwBMJzFo7lyWiR0D6jDj+pK7La5w6uX2ZAH/KsIRn/ZvI7GgLa/XI0oajUXD39mjo8hTDGMPLGF1yG0Jbf4LBs/9Y5kYgz7VXJ6/u+agxrQPLHk+AdTN0KFtNiMee0YQL1Zn4esgb28eJokxcK9ut0IZeM1mibjOYXOkJmm276WTCFKidVArvRMI55JkZKJscRq3Z5rRn7Q740z8KXvvX09XP7RCc9h3Sltuw27DZ/DpHHkZV9HFC1hEyigmhQ2eFYIqFGM3/pkPXXlThx6tB3PUqCKsTAymooJsTX67ApS/3kcUlRTisEk/S/0Xg6f2D8DYwmcMEXcHxxBPYrn8GZIbNY6PF2WhrbARPtV7w8oQ/9EI2j3fuq+fUwvUwV20yHzoTAv8UF7D3kkn0z0oBvuf48O0HDuS/6inlxBux+/UueFqpTxl2vbRMOIR3zjwC4kqCYNdvx/Yj99HdSclQaDEND8asG2JWTbqX0YMj6++D6ANtmBcqAM+W98AJS1NIcMqjf4VdYObmjZWJT6GiawQr3WyBRceWYa+pJfQucUfYvJkWZXqRQ8FU1v6yFrOOl4PHyEoQTZmOqx7WsJ+XEMx2asbYiiZ4+uwtiT27RxcTr5Bo/XWc/n0FtIT7ks8RoLvvpsDAvVDwGKcEpnVTOTC+m6dUu4DwqM2Q0K7Ig/ZqML4rmPef0YWzt25AsrQ3bJ2XQ8OqN/AwwThya7wEJVOUyPmsLEZ3tfCekbIgnBtLErb3aFT1Ydabk0GiVwfwyZUqcA45Ah8S41m7zx8HG7XBtzIAVZ46Ahqa8cITerTB5ARld8XSoVG2XOv9Gy9VhoNfO8HI4Au8oWwL9BsLsr+wHu7rmwhqBduhZmMB6ZjGwfT8BDI6IwP5t83IMlMSau80Uq32cF5ddAk3LsvAxfsfo/s5X/DbkQabphJEl03FUXCShPTN2fHzfzC3YDweWO7GLqdvoqU2woHNimBdrw2TgwVwdoMLvtZxx1UCPnBr6kUeNesR2OodxRXGP+BVaCf9zDCFW8tO4nOdjRCb5Azfx8+k/4byI/NrBX3eZokXNUJQCWzxxS41WLbyGCiMycA7Cq3wsPw2Os38g36qv/mkjwY0KnhTx7YELng5Fv5mm+Oe/Sr4OFqDUl+MxK0VZihcUwp/Ux7yhXOl2H9ZjV1GakP1NQEKuFHBrhOdYd7FCLw/2mkol35BtdYIbD1hCSaLWmm6kgWsdnyKKkdPIsdsJ98aY3YZfIaD52S5YfkyfBH1AoIH16C6gSQ42snRtzXheCd/C8g9l2CLk0l8PGMMdId9B9FPuRiy3Il9rQRh5pNE5lWlbF+WBq+Mm9HVM4mKlyax3LEjcKq0FTY1ES95KgjmJt/ZVGobjPU6SwvvPsenn8IhuFiAYiga233eoPgJS7xlqQZK7dWwUaaO/mSKcZPqchyd24MCXZtofchIkBhwHsrYPuzQGAtZbQug/L0zvKzsgkVhnzlo5je8dHw9SNplcLO4DDp3d8BKJxvYoJeOVaUX+KtRIZ7V240nR3fBLkt/+HA9EBwyK2hHYilkWKvBNnkHkFJfAjJZfiCzxwh23lOhAQsVbJW7AMU+dSSybi6+nzQGptXugq1RfuBWOhJnXF0He0y/YcWJa+Dt/JW3ePziYisLlnytBnuCmklxdjHJmI/ksue5ELbmFj/Jc4WWfXF80MmNRu6NQAVHITBvE+P8ZE36U7IJrY9W8+eNR6kz5AVM/rUX1mQJkklmJWq6CUNc0wMwf+uOTnE76cIVN1jm852gTR0dPU1o+ozT6HFpCty/OwLyC0fh5jGZUFIrSR9WF9PO05P4/F9xEKjZTQkXX/CqedHcVzEZeMxeuHTBnqNjmuj1/EjOlGmmureTQf2JKX/5F4jJC16Reo4ZHC6/xH0ro3BjsghlzNXF6l+nybbrIWsKfMUVMRfxvx0H8eMdG0hxWYKGKrlYcG49NV3QgDTHMjSqlIPZFdNBaU08SGaI4hw7EchW9oJ4y8O8yb2Uheaasvn84zjlnzIoi41hwZG+tFT/ND4SVIKCghT4M/0ZHJkdCbIFIngs8DR+UD4LS9b+IvVwMS5PfMlX67Sg4pA4a61Kopdm+SDjcpBLK3Qo072BFE+pQ8PZRdDlf5u+H9eE/sVX8eIrH5Sp3cUtiVZYuroUTLeNQr+Cu9RjL0QjS2JB5aIJFET+oRyV/RwpvYgWe32iG6HnsMZ3DWe/uA8hKsH4YdxrCBAQgZCAbhifsB4OmwhiwVDfFVskY6fIVTyko8SVx8/zDSNhuqcmDpl6KRynuJctv7fR6mGnOPFRKPbXnIZ6rTbIv+7McnM3Y6OHHJifsaePDvJgB6WEM2/zLUd32PHYk3X8dOhLRTU7d7wmucsqoH+tnuFVH4QURqBa/EZoGGGKB0fV0ro8WQ4q0cDwcXUc8dYI+gw9YLT7Ix69PRPX6uyCDavT+XVJPrkrnUfdzGTYesiIUiYbwN2nj3mJxzMM1vkPLgarU+Kt6TgxeRIqhOuiv/A80JVegHYWUtBxKBqvprdCSYAXv/8xn+vjxEFNZA3JGk7kn47/SDDvNDfdZDhYZoUtmyxhlvEweLXADbu2hOC/7TFQqVVEIP6bNskfpL/OBrDinRs0WClxQqsPB5zOABfRAfAaf5Zdtk3nrW8tIHGzKkqaEtS1tqPU90r87lcF+xcL8O4tr/Hbsz903sYVFz/Rhpeh18Bi1xhY+uQkGG2cSHcmJ1Ej+tGoNSUg4ZhECjM0IdougpKuvRyiMxs4skiC1B3tcHXPebiXo0KrPoWSzQM7dh/1jxQOvKYZ7yMw7YQYqJ/Rwfy0VLq6Q43G1n/HU+Ff8dYhgMBXOSQgNIzd3CTZ44kwDC8bBUbe3jSQpMJr25xpib83SAyzIu0xvRi02IE6XBphmrs5FHkZYWDWRJy1Tg5rLoTij/lP6ZJ7CVjMl0PdZmsKeGtOK9TNIXiXM9p2mJBISR7V7+jGCw8suOiIDa9qkeHRp1WhN9MQXj4TgctxuzDLvYasi6tordk3MEh/ymfX5eK89i4yctcE1a+HeXesDLTqn6JrJroc0rEdeuS88YyiPsS6FEL6p3i847sYxBWVeNRjczD5copv6pzGT2VV/Dm+jY8INPKZqh3srZYF1+wWYMmSMZRYZwpG1Y/oxY8E2NfWyQ+FCFfY/YW6qbbce72RIx8+5b03OvnQRUEoHrsEL2fEwqaRy1gl3BerK60wyjiKVadd4suzPEAat2AHqcPC6/9QzEYTcldJUbzRCfwQbYPySlXs7TEHbqUWs65LBeSNMQEl1ZG8p06W41fk89GohVC0SR50pxnibZ8EUHC/Qws/34CVXxTgnvcqcjtSzu+uL4e+VGdsklZg+xd/6JezLI4+X0F5Wq7s/94CygxcSK88BWtWt2Jp3Cu8o2uMXiVrqfitKFsHKcPY4Q04dpomGI1WpJab++hKaSOHSYxgU71+/pnwjt6WHIM8GWfylbUFhfHi0Fciyi/uy8K9P9E0wqYP31Tdo+UhdihfKUC8fS0Khu3GaX6acOVFHK0UKaeVjxbB6nMfYbNSHUT/VSexN95or72BmqTKYVUZg4T3VpQa78c/poUTtaaD7jM7ePn4Fe1fH0VJUY1Q8HQO13RIwOXKBnpwTw3W5XrSy7wrVNx0iJWDDuNDmoqxQYU83c+Ky9oEwP9TLLz51Ui3w2fysh/+oJZ2ky3axTnjcBM9tx7NM7e/Q+0CLXCqtEVL4R2s/6WBrkna45xvf/iorSHvtPoLFml3MCpoJokO3YHzXWGadlQG7q4UgatD84jumQZhl6bj884B/rDvA2UrXCeDBEtoH9MMymtn4IKYLWixJI9WCb+H13WSEDLSkfo+DeNDUzL5dakERKbuIamALl7mMo8+bDGkNJ+LcHNVEG7wnAfjy/KwvO4lTexCqK+XxpSJU9A5sAWlJ1XgpTdCGOe+FecXZNH7k69Y1vgS+P2RAtG/37At4BTcOBrMZ06mw57JsdSv8RC7ddQwU1gBtXJPwrBEYei/F4y/x7aAk8kH5mnzQdNSkTMm5YHX3Fe0eK8I7NsmxslfAJ7I/CGDyck0duIKvG56F7rff4Tlk+bAmqOPMG9UM5VtGY/P11rC0aImTrmUCM4VYvzk0EIY7P2BDl8fQ7b2bfaZL8LKR7bBhlZr6P16HrXuFPIeXyF65t8I5aU3weflfdzrfY/NH8vC35C5VOmjCVnXLckt5R38TtvKdunDYKqXFMhMekcFd/ZAksM/lnm3gALGMdzKK2XfwdVsrV4AguJJdG3uEZS5PJPmJRfyMc0+3FLlya6RUhBkNYmKqIAU/L+B6959ULwki7YlnoKdlV/479qVFJb+lkpTDEHvRDKbTlwHX6ct4XusiCbcgya/dWkbfsdY3UbqOmjGaYc1YZ5bLe0eZ83/Dp2jY4d0ILvXGNOn6XD+gz6emvQYNJQeU2iRIvTM1YTL66pgvHcz1Db3UOqPwzi64x0PmziCd3fW8b+I7ZypMBIaKsro7rOtoKHezUGTffCB6npota2gsL19eC7EEAXnf8TRfgZgmn4Sz6UR5Ebd5DKdg9gxcIDX7n5OnRXDsOLSerzKBvRfpgasMS6AGXPVaa9fL75YMJ+L+qzgNTTwnrC1aDkxEi4kZ/NNK32Qk8umlqpy+LoiHQNtcqDK6wVYLK8F9RupKCiym7Y1nGGl2aaQIeRPE5XFoaV+Pnz8FUL3TEx5+5OvnA565DXclwJybeDUTmmwftLI9kppmFmYxqLenqT0eSrsD1engDcXsDo1hiUWLOAXQ96zZb4VW4iZMdnMItnoMvD4rw7/qv7k16FzyHxHGLz9sZROKSiBR20mj6zZRbnqAvTEbSK0vT/Fq/0U2K/jJ1x+NIOuWsXR+ceasHNBLSxvNqbLMY9JprOLzmw0pzeS43nDZwW+KnMRju9UpGfP9eFUtROdbo2CzW9WwQ7bYBq1fpDadbRBY+kZarbSwCcWO3i5jgBseZFPL4Jaye7cMpj1y41PqS6B3yW/4FDzDbyW5ALJo0M5WcsQClfd5GtNh2BquToWjc1kla/f6PLRs7i/6hlF19aj2EotUlmvAqH3QoB0RGiZhw1EinzmOarm3P/5CbSENHPBugAaMXI13nqoDiKpS1HkigvIm9nSLNGvOHNDESxyW8BbLathXtQlmmhjyCs3a0OjjB5yQDUPLL6LK1YLY/38mZAdMw6KxAxozukT5NJbh/fnAaRV5dBbj7HUF5CPOXNfckKVCe3yXw2eAdlopKFJg6VR2FE6DDTTc8g08gNuCRmDY+Z/h6xhR+GgvS09dVwE6kmJNHzRYRaPEoQz0cX4ciCR9nVP580qUmB0yxGoeQaGpe1hZVML8knzwuuxFnCu1J8n6/nwPvmzJP/jPV7LQqqT+o626dvYf3Q8PhJnyrs7CkapzofFRT54avFF1pQ3ph8Lx9IW961U1ygLxvsvQnK6KJe8UoBzL0+y6XJZVvj7FlZ5q1FdcxhYWq7jE3YtKNkWjFu/etBUWRPo8XiACwyjoH3bDX5bPgaTfdrIdnDoKrYO+Z6yFrWEFrCWrw00025SjgrnfOUT/Db5AQpY51KCezjXHnDlXYPK0HZZgzTeSMBbqCdVhXd0K0kd3/XPwMVfj9G5QideeiaZ7aas4hys4baz1iA70ZbG/wqBbMfLtAdy2TXdCyrcden12h4I8wyHlCmGcFNeBZY7CcHD8GHQYDjkYqflyO6nDly2qwX9PE3IWR6KWbpCsOG3Lvgu28xbl00D/eU99DchDDeCLcdZf+YXK0dS249V1PI8jjyeGkFVihsetLzMW8VOU5FQFiWLPaBA/Sn4sSYBKxeFk9NSZ9JcPBzKkyVgy7Hx8GbFMZbS2Y+VeffI23Avjf/2ksIXWVBPWA7LbpIGJ8fPLJWtAbarL3FOrAfeeLICFzUMB8G/n9HTbxxKrk5GsYuqYJgWw6mmJmztZkLd3U6Y63ycLy9XYKVlQwxzohD/9FWhqboBpNVpEG3o4O1nk+l1pxoYmD6FyaP6OK7Bn2qt08hvsgQrq6rA5/Z6iJFOpVK7lfT0uTA3XXfgWFchrDcJpme67dS2YjGZ35wASWpv2TvuPc9siYRfNg64+epWmpSBfGnZT7g71ZJmxfwhCR1raHVVpeRBU3Co9WebK0HYrKwKTu+30AzRZ5T2K4Mra8L5yb/hYDpbjnX3qhB5tvLxyUs4XXQ9VikUwVHZajhVoIphxYo09wGDSHsCnFdIp/7gGrg24M0+ffr0TUeKQ343wonqMLYqjyfxpNHwuXcxv76qjs3qx/i71Um6YXKWVT6+wyxcDW272/CgoBdHr2fQPyWFb4zS6M5NT7yZ+ZWeB8RhvIkpOUyQ4NItz8E84xidjRgDn/ciN70+Rv2wleSNJDDcfhx4lKrQdjJBn5dDjC1+CiSNtWCDqiWZj92ME07Lg0F0IO5aLYI/jtyhroGtdPDyGfQNs8TrJiJQ27ADAvdU076Royn75jnstWvG+YIPKFv4AT20loddXbm4NX0KFE/QRZPjW6C9fSj/t18jrz/SpBl0l5ffy4O9s77RQGc/GZebgpXJFxK2HMFptRfo93ZAt2GVcBTrOXT5Tr5zsA92pLhS9RkluC8gDl/+usCgwVZ8rLaFpWyP0aH1Kzl4+mjqmP4MtTYdRdUhfnk78ir1G9zE7NQgfGHzGFXyzehR+W1KWDOK/738RMCW5HRDD/om/qUVnyeQzeMLFL7Hhw1eLsOYp7NJ4E8Hb1WNBNGMUYg5k+Doink83kcBf1/Xx+cbREGg4CcXPs+AfXlSdGNCMRc7/Id5wSqw9v0Qa9x1Y4mfZ9DpxFqyG+7I7vbbcJdPMFeM8oXAeWZwOJAhXesGd1apYVnreNp9J55uGQiSntkG1Dz4B2KTH5CtRQfdPa0PNcm+MGXyQngQv4Er/YRx1D1DPB67C8/UXOeJjdUQYdhJ4n8VID3+DghJLcK09AweCkI8oL+YdbcchshxcXDmmi8n31hGIlvHwtXP4lzU8xdNt+fRv5+F/F73IfUIyFJcyXVIXToKLROm0dXlIyDQIxDf3NlAQtW36XHNblyVMh9/lGSiyGZzUhBfgau7EvhgqyKsSvbDJU7y1OklBp+vXeVSb2H2Tw/Hk84O/A5/89cwS1Y0Gwbn7AQpRSCOChTOc9n6JSDgqQN7zgrynmOK/FfLmB/MsuY7m9Rhy5hDuPJFFVtc3gMFuRlcfvgKHWmaQnjajq8HxVO7xwHqwIlDXLkN5F7FYrHtAf5ATXTzZxY77SoacntRklkzCULPLgbB2RMhMbFjqLdv45+OmRS51J0OnRP5/z/5UKDrPrwfqIW79tNBsVsctj3fRWkl2lh6SgamzkqgT/fusduq19h6UxPbzS+j7itDsC8yhmeJzrQjeQ3KqVvT1atvaVn2HIiIikOZ8yLUpNEN2+EItlubgwDFgvsbea6bmI3jBSLhtsEpEGwxAiioIf+GSritEwKnHBjmLq7HroRWmJQVgaNycyj5cz2Nr9GHQsnV9M46kC+OKuLrdyeCsL4Sbh9dxhPjj+Km/0yH5r/HN96qg2BxH71O6aDGjE8ctV4EZpruxeTruaAbEs+/NAop3VoHJX64sb1tLjcuM6cdOWacYTgMHJw3cr+IPDiekIMHDy6Q+bQsbGp7Btpr/tB+Y3s2XLOKYxpEYFXrdcrWtMO42QH8xjIf17WcxLlCZ6Du7i1OPDNI78a+BZE0XTCWWU9jHF3JhgZx5mYp1rUe5AkqzjB7ciuDlgptGXYJXSvFINJTFaJNjcks6TucDtsN0bfyOChQHEY8SAV1tVr+FhjEpa+mwMxIO6zzFoHp9t+xd1kDbyqdSHpvbXiWPdIi242sUnodX/fKwUrVqSTC19lPaizrOw+jmS0WPOHFOjw84Qr+fuOAJR+/soyQESRsEIR1gu2w7dMZGnFrDy4LDqb2UbM4Znwoz4Ip9G/EVbxeYg5eHobQu2KQpy+dCaJ7PHCY7H5qtrzByu/qcPrT2dDgvY3FF4hAc8YrUPuuxT79sTBGu5MaF+VTnep31pOMJHNIZqtJziCTaQPv4hwppi+CFm4ThwufXLGQhTEqKhWwO4evy0wmbwtpuHcRAZ4DuKkspv6QEbBQSAjEwo7wg34HzsqrJvdx2mCEidwwZgr4fz7BDvtnoEzTEQi7qQc786upPPcJbavP57OH6/DP0VKiIQ7tFFwC6/EKvGr6ArH6N0H1tQypdQ6Q3JIY6DlqgK1n67koeTzIDe+n+3WW5LKhiMtudeBr21+UJXeI2vwCae7XHbBeMIr7VkyB8p+P4fhrNVqcNJ4KMzPgrk4e9EEKL911n+8vceXUwQVc7i8GjU8/U8RrAWqeagmpGxdy/jgHcm6/zO2J9+HhyzyObNvC5euHQe754fz1hhedLWlBHx3gqZeD6fmsOXBitwms642juZBOfsOF4Tmr8wHL03Q45y6pGY2hZLmTrLBCERK8IjhnSiiE3P5Dq+8Yw5iqT3DAwYlPZ5rQzWufsMzsCrQdCqFN69ogcNwISriYQE3psvBsrzNXOzrwYG00SGYHg/utqbChUxmfxmTx3ZwbcHyJPp/dpwY/bA5wT9QdupX/Ay2THGBfXytVKi/gI+17eLHqXrz/NJ02DY6EGyfCeNVcGZ42aI1jFXfDME09iAyfTb3//aWR8mvheGUFPikxglt7TkFcRyesXzGeskSqYfPEDHiwrYh1Rm8g4bpEunYyk5deUYbpG37Qo81rWNLJj7c2zsWcpZH44W4QxPfugGCNCJa8+Yy+xkpA9zBfzHNU51d+ARBrXwWTX/rQopDRoKN7CV5cnMiWZtehKFgZ1MZY4fiMzXR4gGGdsT7m74jm6bbl1LiiGN9cmglrpjZA6BlBmD1tB8J9abJz6qdFJxLYzVwHd9RshlTphdAV9RsraubhugiCgGZFfLATUEdUDDfq3mZ3tVH4wXQsPpB+zoKXs/mA9SCWLjOD6R3PIOKIMf7V3ANjPVphfEowC75xhB0+xdy5ZCw/FnCHj4kE7W960D3FEc4fyORbGu6w+4ELamxwpXynb6hfHk4L9WVZiyyhZZo9PKyLxSk/3mBNVC5PNU7EwAPhME9Fi6rjr2C5RTU0xiCg43f64D2PLM4pYZL2G/y5WA/S8or4kPIkHDXgS3fjjfiW+Gg4n/GClGMKqfnJLlqpZs+F557Df91rYLx5B/vdmUGGNSt47GMpcL+uAv32v6HKRQMV7TrxhOlWTFnJNHaKBdoYTcTIwXfoc8UCMiWy6Yx/FsZsj8fEImcs+DiNs2JrcGLfJz5aXoZ8tQzzSwDq6qbwpo0yKBf9DlZPy+bp5+zhi5wUG5UoQtrDw5ychPR4mTKkFEyGTR6x8MhAjj0WJgB7AoQqvsUd2+UhsNWezqUu5bt2VtDr9g3tx82kMkExPKB3EDVPnES5rwU8/Bvx2P4XVKD0icfHysPoytN8esJcqvcay7OF+nnO81gyaM1HJ+8EOJRvSyPSrck2RAak3v9DbQcX2FATSapFKbSurxbsotvx+oOJOPnPVmwfswt9NFQgSvA2vxUrxKqYq3h53E8MNDrHz22uQNDldZjVuIgNzbrgnPx4aK4cRFdBeX7bm4LZC/P5sL0Vl471BmZ5fhafA9Nz61l4UAsehyxA4Wk3ee/Bo9invxzcHrrizRffwTD0Fh8R2IiPvtfj/Eo9sJyVhKA2nfzsZ0KG8kmKWx/GK5IW8Z/0QrBfMBuW+/zjv1JqEHvuAYj2+4LxhBfQkWqMRwJ+kc28KHD18CClmLs0b/AKf9o75PtCkWB9ZRB/2UeRk5crPTp+H66fLsbFmuXwjpIxDMxI6qUS3IzwJsGZzzBxpxH9vK8DAUrbqbcJaFmEMKZV1WGgkysZbxkBO1yr6MJiVc7av5K7bjxG/6wVpPRWEP8GlqJvozGpjjqKR4b4OfKjC20qj4RN2yZwmNE9soyejEVfLTDr0Xys8L3LaeZjgO1VIfU10HZJB8wyy+OKh0MO+lMSPCS/UuL1JFj04w98jvuCpaOl4U1kFpvP/Q3ktINuS5+GUc8ywaVBABZFviC8JgBPDkqjV4MgCPJ7rszYh/o7j3JNyEx4rb2LMW84C1WtBZfG/3jcgqvQY6UKOx4K4+TifFIargjKolVs+WI+ng/1g4iXRuw+6zcZrhyLLomWoCp8G8fLDdD89qWs8mMvG96op3EZO3D4gxqe+6UN4jysSEdSFMyv/YHHYvKkJWKF2OHKegNH4WjTeFhnsxdXmW1EtyJXOPFYAa6GuMLhNjFQeTIW3Y88hg1mTC0rESXuZEK1vxfVqD+n3lZt+JbwCiQDFsDDZy+oeoItu5Z/h8v2LaxROTSvVyfpSk3n4syJcFrsOqQlFLPhKn/8/cWFCwt/olpQBnOiG3nOKeQn+pXcEm0CHbZpMF1ch/9TX8Ib922mbV3mvH/eLDi5fiIZbP6BxRVNNPWZIDzqXo9qyZEcmbuEksMbWG+9CXoaf+eUBfNx84gv3MRT2chDFrIVmzA5agO4ZZWT06Iu3Oc6mVwftFNvlDIHzkwniSNX+cIwXXCL9GX5DS4UnPSV/F8rgP6qVyTgfgw1h3Y6apw+e5Y9ZIdp1lCMD/FfhglPetoCqx17KG3dMJ536Tg2GXzjdUIq3KEyl/6NNIA/+YrgevMVXN17FP/9YboWdIfL0q/wYa04unHxFKqdKaKe2Sow6ewgd1R9gAwfX2qZW82b5mbhZak3uLx0PV1CO6qvlaQZs01A+ulHfvX2Iv8qtIIfC/ZjwfEx2N13FQNaU8B2/yAvV7Tn0LMa0DvEqiNnCpDUjFRQUIrg0w9VKc6tCt4vsOH4exfJ958lWW6UBNOqVRRcUYUWOQfQ31QALCSNIW7XLCrIlYPPXrlUu6WbAoUngMejo6To1Q1X49VByC+Zi7YLwtIDk8Di+CpOfdzFBy+I4b4ccYhaYAepP8sw2zkRDjxxQ4Xrb+j9dWsItLLjvcbj6FXJGJw1xHUtSRbUXp3Dk8N2kuPhXdDfsoCV5zrB4XfnOGduPq6Vk8a6GRZw+/YlKshYTn5XpmCx2gD15cuwpuoMDnr4EywqFaFLKhLH7ZAAlwoTyg/049vbhWF0TAsmjYiAg5aP8KDNPJzVs5VvfcqkgK9KMOJKAC9MCoCA6/Pokv5oFvMbx836NyjwhAkajKrkwpHn+ZTQOFD6/Q0jAgAOr/aAmMJMnN6tSWd8YlneUIzu13yAR58+wLXy4fDq0lV4t4pgm40ShW/PB2fZhbAMd9HdQiMKPj2DaLUAX7plCPFDXvg3eD2LzloINUGxrPLgOL0Oj4WD8U20PEAWpg8cx0QbHWh5WUwbcm/DCoNuHHjpQY1vlvJbSX344bWHUh4/4jF6CXw2yAaixNvwQ+ZkvPQxDz4vfQp/TVeBxRsv2HxyIU/Zz/D8tz/N0BSEJH8h/DeuHf2iI4ZuJwDvr5/E8vXPePKup+g/dQFMeHmS71eOBY+SBmwMeU1S60whUHQtDBPv5TtK7nx19FvuPquDawye8u0RFnBrUJfPNNfgq2mJNPAzApW65pCDXzGJSMayl8VFGpP1iSd8EwPhrE4oHZVNFb+OsHHPCtR9PZySQi+x4vgwPndQhqu16vHEYyWQjI6HpqRjpLCtGwriilj1ZB9mjpVm37lzGRf48sArCVSfKAL/tF+BxNAu5B1+BqFK33DxP0l6fuwFms68BcUXOjlvaTflF46B4J3beMLVApD0UOLvnQthqvceRNVh1Bl1HxQ3vCHd5HkQG6oD62Ks0V/8Iw8esmQZi4nwnv7j/67sx/miVbBS3Q2SDediZbgkqD49B+2eKmwvGAmd9TX09ogmxg6sZPeABK7/IIRi53pRWUsBSigaBy9KUaFlKN78HIsDbq6MRuNg3VZznNPyGh0qvDD2pRlYBJSDqPQvFrqQhMOffwAZ1VU41cOZKeQ+lvtEcntBL16NsQS5G5a4/sAXGHndltKs83BTfxuaTM1Fy4SraDUpmOe7ruEJPRNAVOovL7+eTFBdS7seb0SVK134IkcEEssjcImSD+Z93IC5w2xAcvAY2Y+P5amCG/j2o49887IHwO8QHlWnC4v08/jHikV8X0MR5qe4YWSJJqp6tpIty2N7TDA+vzeLOoot8F9WDIs/kofDjw3Ar7GQ/thFQGRHDfxz/c4+SYXoPiua51x8xOmxWWS+S4rtp5rCo4JvpBuliw4phrjRI5T39nTj1g8HeF/YSDzbeZ+7d9/CvrUacC1zIp/pn8Zed1+Q/hx1sjbNgBNlU1FTbIBOjJpHvnMdYdYUU3gt4MNvnPq54tALmhd7H+5fbqHNS9OJu7WhT0h+yFUVeI2WMXxf1sonDtvwtseX+Ol9U6Qx8pRhqQpXRnfQ/nH9VNIXBY1Z4tCZGIKXvQPRc1c6/6egxP+F9rDo9O8oLXWdBgRukq9cHciMs4BftnPIw08dHVbqQerHy/hkQQLt8mjH0Y45lJhWikbTIuHqTn2QNW+late9GGXtgqn/3aZv9v1kN8aYSM2P8nfHQsWS5VjdKALyZgFQKieLDx3u4e3PqlSV+oFt82ZxZxaAdMM3zL0uRPkOU6DapZ094wv4cVkj/M68x7NKuykoPg2yI8fxrNNalDSvEI8vU4Jnegb0beJqSBX+D556ZVGZZhCvrLsAw5Ka4djhn7imbwtNL9IEQRdjFCk5jheHssqwKRcMDIheJPlR2/xP5FCkjlLB66D9sxTEdoVzTWo3VpT9g/Xft4LXh3H44+RndN1SzAoJPuSo7UHuh41B76Q+TL4xjkssBen2pnug4/uVa2tXkrF8My9YwXTYNAHu/jaAmw1BOPv1TtYz2MPjjffhjBOPSEP7PU8rzMJMQRk4YByFd5jg0MEZfNBOCY8f1uWVB0PY95YtGHz5TBqSM2H5/kzq23YUYn2lwHP3fvJ/sYpLVRMgnz5RYPd+xJCDfPzXa7yZLYELHl7EkvmWkIyr4VS8M/fnbOFjPga0MLYdUvYO8pswS9b/pk1egmsg33ckfLsWBe2PhWB243IyXdGPi8NG8WPd4CFmbWCwfw0foqPAVGQczCg8yS9KVoHksxLo+zwCxb0s2WrZbZDNDsJfwTvwgpwDaCVKg1ZSGGgrvYa0s6vhZvQyFBbeBF/3DYLDvQ2sqtrJlafu4a1oS5jtLgdf9RRhQUoG7knfBl99XlJL7yywX3UYonsb8EegL144irBmDPOiczt41vFwUI+fiUvnRUChhhOPO+lME8bEDvV9D03ZqAv6Jj8ho/4sdjb/hfAgfXils4KOnRLlf4ZDOTXWjn/IG+HRPH1w0AiHRlFV8JxaTi5KT1FEUJE0touTlNNTnmVyg0avvwEqlWrgd1kGGgzncJhoBBePWcojmibR7saNPNbDl4KmhsD3VVsh6bwNNJR1UM3CDn65nWn+7WkYp6nBejYtJD37PDc9CYW06cFk9UEGfv23CyUPl3G3pQeoaq7hUk1TDHg6j+UTcvGY2maeHvuMzR8JQvchSzL9tABmpmXgWGdb+N1vD+JtGylTegnqDZsNRXo2JHNDCwSElahlsyG1t++E/T3JtOiYA/o/06KYcsKDwkPPSiqh5LgJdEbIwX9PROHnZndwqJ2Ga5a2oeTqJn5kHgkxWW7oLbAXrq0UgpH5jjR+Ryyqfj+Hlw9Op6yN6rBB2ZG1Tb/wVocG2rooF5eGWsG2cX/R0tYQtZesx9qyQlqj/5ae7WpGoyf/UeziSTz3fjSv9lKAR2ap/CK3HW5cGA7eO9aD3/aHWHh6Ak5weEdKkutgoPkEhYWIw/HSEDZzSIXdymZ4dtAHhbasg0BvTZ694jq3RWVSR/AZstsuBwecp8K6WFX6+voZ4EWgo0HN8HLFETi6ZjF4xZZS7kVpWqBoBCUVL7F/4TmeKzQBokeEQdHHa3RshB3E1emQ0bIirAz+zfIVMvCw7BY5pg5C/V8J/DqlBEvE1rGfyhQoGr2AbjyX59DpUSzhpQJ7jKQgmsPp6YOvQ+/9x5r+Kmz1aBSlnRnN4q/refvFBNR9og/br0riufRHnJjdRtUPc+GJRCGHDrPgVGU/KJD9AQVpi2CzuxX8ElHgV7n7MSQhilDlN4ywEoc0lTNgd7IGUobXYLpcFmxVVoaIPeNxqtc+ctmcjNhfihflgXtNczDQpRMOR3+BmTofoXGGFVza2EOnJr3EV+vPw+mBJ6wvsgbeL4rhP8+3UMjXEto79STuX64A9xMm84dfHqyckA2dt3NwV9gHnpy4nItuvqOAwR9k46wDx1InQfiaXta8QXT78zw+t2Qt2X/cSx/GWrCroTvOW5kHB5ofQwsrDvHqWRij94hMx6pg/YHbVP5wNQx/oIGuvdcoqXEOTNldwip1JiB8TocmBnvSI7FMOPWLMSJQA/LbZpN/GKDXg6mwY3waTp6hCPkSN/nKtFra7FODET1f2fKBPNaFHmAd3ePQ/NQF4g6FYHLACNiS4w6zrI5C4sdqslUbzefZEVcaF5DVYSesmPaAb5troucmYVgbWQA+eSVwVM0E/97fycMO7gLFli7c1HcNTplWoFzEAD9+qg/u49S4JGUX/9FIgcSdRXiP8rlg61XCWjnIHB0AHvscuDt4NJjHhXHSlXk0L3ceXj/vwWvcVfh3mRCfa0xkscZ9ZD/uD+7Ok4Btcg248m0O7Sw+zJ9j+rAzqxsC99XwnxJPSpZ24ODUXEx7Zw3XBt6T3bhiqL/WDN7DVenEK32W3rceo3OayHDyeyrQ3gg938aBzJhvvEmgHNe+HgFfqqPRLyEdtJovcVPsZGzfaIVRGxW54KM1hDk+AVJ/jVnK86Er8jjGBp6kxrlK5PrvCkzQ9qYle9px91hjSL3zhjaMO0tX2+rwfp4Lfz9vxqnnK6DjSA3KtH+CfaY/aPZlAN2DXbhwUzdFP0oDS32A1v3rIW5NCG4rvoApN2WhQS0PjmwWgE+bf8NEq0SSz5Thx+1KpDD7E6b/fIs3AsvB1aqW/GYsB5tLY6GpzpPbPZL45P+IO+++ELz3jd+joU1GUVrSkIaSikrSRCghlaIopRIqIZSIhAbtKJSMygpJVAopVFKSzIyQjzJCKb++j+L3DM7r3Ne5rvf1z30OhdLShWIYsqkX92wdxTt8/9E/5TUQr5UJVn0GQHP/gv6cu7B7w3rwX6dHW66OpfbPK9n+hS26a/3iq2sf0WpbDZgtv5C/y+7nlanauONLEj/QPQn3dY6RWr4511zdR42pJrDOUxvS/LK5LNyNosoKSUDoKwQ2JcIZi7+gsaqNsm7+AcUTcqBvoA+yb+IIVEdQQUUcPH3Ty8N9Hamn6RWa+2bQfhcV2r9sM26ykIblp9eBRbMhT/FoYMmIHkqrvgsLtubR/SlzobyqkyLuHOTQJn2YLeKKD2LqaFXtcpjq6w9lB+eD/D5zDrkjRVaTJ1OuxHB4dVcOUksRDfZLQ2sWQV7wWPIK14BsiZdww7qQJq07TM7d0vBhjDAUq0mRdGg3SP+3iCJPPKeOOQn05nMc5zrV4aRRrhx3SwVvrFCCpBX1YPF3DfqmucLAgB2dmVcAz80LSCJrCaRskONzRvswR1sYnOsmYp2HLaQrf4cPLQto0ZhLJDTqG7PBK9b/5ALzqoTw0tkxMHVtPbxWDKGO8a94uPEPTF84mkrbvpL95xqW0BIFzbIEiLgtB/scKuDEunsc0ZnHHee206TWAO6eNgsmOt4AtzstsGO8GziONYaanAH0afsIiiM0oHVSDJ2IDgW/V6v4zLKvUNbZzyHFnWCTpQsPNgexzL7HZOV0mdWnJcGGRfOgMAVBLG0npf7+js0W3+BNvhiM3lBO2odEqdDrOIR/yIP0Bh8Y8y2Uzp1Mxip5PXZ/1gqdA+MgscMWZAye491r/rDNtpXG5W/m90l7+K/6H3CE7VC0o51+2RG8nz0Wjp+Opaxhe6HCaRL0SCRRV/VtKpmfD3J33OHgj4VDHqgGFWcrKDZhNn2uuYXyA/dAueccuGos4y9bXsIdq3BueaLOUzfqQqWIMLmP7GPBKabcv3UkDSsRhk/7pqF55B8QkXCiusGvaLJJDuZ4LoI5qlvp4gYnmGmXRmIhpWQsqg0vz9+F6J5sjD2UBgEKahBWfY8SLn7g+fSETpktpZE1TSD6TB1r66NBS8GPBEfWcv58PXhtM4CuClexoH85npupy6GSJRxTq8y68zJg8bptnGfWjduOTIA9doFwyqEH5L4oY+GZ1XBkKH/dZxbCgqrPrL9tKWsnFuPIMHP4dESV3OY24pVbb+HFdGfaIIg4f44B//OzY7n2XySzOIRK1giDUJ06OClH0s74ueS99jXkLKonwx0CEOy9CEccuExuu0/TVxYGJ1U77Au8irteviKV5FY4kWHJx+Y2U0S5N5scyaENFnvp89Fh0HG3jyRqRsDYrQ1QNkGSni75Bmuq94NISDs/OqCMy18sQrVHKvBO4hQJ1Hfy9HGXsWONKPlmzkBPlyP4y2Y7ZSgzDSv4g0drjKH172PuqGmEWU/3s8P1b9Ck005/g2VBTUSQ3//spPUJLhQ73whSZDpA3TyFNcs2Y59+BrcengYlb+eDg10XqC/9B301qRjoowZUMpQBajv5/uVC2rhiiBmHTWfBmesAa77jcK8Acu30wdrb4+GsvT5tDFfBYRsT8FjwSxy4L4I3B4vQJiafZJevBWnxpaQ1TwlW+pjBzrtFVMWFbPrGn7f8dwmH3euBC1X+YK1cSTvGZ8KRnWYQvWsPGZMb2O94wL9dipD94/l0vSYXTJ3HZ4tf0mHDfvhmIwPJOm8410AHpvl8oOGuYrzylTYbbxtON4+V87rpFaj2N5fkpsrB0pcvMTZRH518w8j3hxJNe9eGok49lC64i45ozSDRdE3YlycI9V6nKctCmhOjgmnB3c3s0TsbwooEMGZKLWg8DMJBD2d0SzAHw9ILpKYYjR+ntrG06lIw7lrNu46Xoaz7arA++xbV0sUxx30iPH8rwuvmqZCzVjcmn/qBV/NbUNV4Evc7NNPbil3suegn7ncQBMnCZzzQ7I1LnmZw+wY//v59FdbmFOD1wt1U7tTHmLSPtv0WhDD5jyy0fDVGzxzJduuU6JdJBhjXn8X8S/tRtWs1TvprwqGmM0E4YTc7jllBMZVNNGFzGgkKfMQDjmdwb+l2uLVnD7iTLLwabwrPRn/Ci7/qyNdoEvntO4bVn2Pg7ruJvPflc0z9/B5MtSQ5xVkAph1owTjxNThefQrWKkzF0wtKoKjKmW6u+ss48TRdyDnMuiUzQPJcOpxeGsrjW2ai5FjgNx+egn3AN9z2J5Acxy0ApVFS7HhDEgwfjyYJ+wV0LFSWC5/as/VNFcw5mEC39MbB4Y8bcPtKedZgI6g+r8bWH2ajdfJxDq7agXrNdrQqeRpU3V5PL/tHQZXmRDw8Sx629m5EHw8/Dl4pR+EzVtLHl/P5koQLXu9YAx7SsZjx3QlXzNGCRRqG2G0SAW9Xa5D0qUkwu08JpXwu8c7gBVjnZ8KSyk1k6g/w2ceJvP87RZ9/f+eZpwRIzTUMTW83QtnPVsAJW2h7xUkyUDGE4i4TPtFdhBguRls6t9O8uelgVhNO1bLHWaLrHr2JX8uCR0TAYcoarFntQZMWhlBdRBh0lw+nNzEt0Hc6FXLG+LKjlAYWz9SC3n4VaDXaTc3p1XDC34XkJMywKt6MrC+0g1+JJyVOcaWgQiF4lxWHhwxG8fLJjag/7AG6CAVSzN7JQ/cWx1+XWtHDlSpk1KcH++38Qdn/DhepZ8BLK3Fab9fKN8J/sFq6BFUXWcKV5gcUNmEk2OxQYqub6ylR8Aw1Bv4hST979sNI+jsngudGR8PPpbY4a6sgfFIxJbVVr2i6iSWdLY6AydPWc8zWYhxdEMS/JyaQwLZXuDDHHIJiXEB5njQrC7bDT/sI1O0tBfu5pliwvgjCch3JVPQdR0saw1zBL5D55SiETXk4pHsp9JHsxeM6qaRY+YMUBuoxJEAEw1o14N3dV6T3+wwuzu3j5BvKfLXtPC43NYBtE//ifOFBvNMYBZuN9EFBsQQhopYr7HphMARQ9NlfjuhJZ7/06TzqUyMcyirkwbxJcPatNl9timeNhW5kuPI7v08rJR1vK7z/fOgcY7dQtN5DFkyRANHUWzChrBP/uo2iNtc95J4sRIeynXihhy+HzevAO573qRxngsyoUdBhMMiisQV44nUr5mzaSiuV0+i/xjb4L8QBaYcOLb8lAUem5WBSfiNv3LMIymaag91VoBsGhuynosVVL0PwdOo5nFsqBf6K2+CReh0f3piMSjsvYWHjD/y6/QbpuWyliZHrcebWM/ygeDJ4blxOXoWn4Y7hCzhZN5XWlTbDo6wEvG75DuZ478RUiXSyzxgDGjNdaJXlBZAarAK9b8PgsPVFunDJhTtf/sN9CY851GvrUHYPh+15bSD7vpTOD3mxn9JXmPjEETs843DrtDaaF19Gkyv7oeAdgmt7L5ts+8rfpWJR5ronVP1cyjV1K8ClbgpPPTcJ1h+bjnu9ZsDS1UdJMfsNLLzxBrzsG/GRWQgtTtNBi6lRVP45iGdu8OW9HiPhz2ANjQ5TxfFRhrRwRwZ1UywnJv1Ah9LVmLdGAdc/vwS2+eNhSvdRGBNmhrOuP8GFWWPg4gYz3rpYmdVvP2Y7PzH41b6fFKwIwjLLQFX5Mq5oOEqNB+2oyPkMX09axkumKYBdmSs1/ZIChSGGztqtj7O6LrPdnb341rGLDtyuQuVfUbA9SJYWxyvBd9/ZtKLNDHpEgvj2amluu3iQ+OUKPt8sC9qeHeSbOJG+mM2Gdzv78EKhOViViFDWghOwLUiafu+biHsWRaOa3VN48OgvCmpNBcvDaTjcZiTcx2fYbq6ATxUlYe4exivyPmQp9Z2GpdjiZ/WzaBJUA9VrNEGoxxBHj5Ln9rUmpGggxuZLz/LZv97888s7zhWwhM73KjBliz64jbiGOcsnYaUJ8k2nOna6Xwzt74Rpf85fro0bpOuLVnL+Wz1QaZiIK5IaeIPGJ0qZEYmW3cbQd7yDFuQ3kVvOIHUt7uVXeWIQOiaI71tOR/mUYHLXM4HcO8egVbEK3j0LhNgbS2nZ5dFU/kcEUkdYwcJ163Dj+5lsOXokNjQZ0eSCCtw84E8HxidSbukEMmjXhrtZW/howFRukWN4EPGbVus706/DhZgiMwKNE6vg85IEypQUhosFW7k7ch4HJJ7nH/+ZoeHAffy0xp8tuuPg2a4R6HpnH01VFICsJ50wR0ePlEs9wcc6kELENsHTGQ/JUMgAHjg78ZOikRD1ZypMVY/HtEwDaLAtoGdNFrjk1no+m3ob4+z7qK5fkLwaV+LR2cZwuksWVvrvgXMHUul80248v/4kuD2XBYH9AVBnLQO/Q2tQ32kihMrUQ8X9Cjh3aCX7+hOYrN3OYYvnon72KgopK2Y92Sp+qCMMc2dHc8H2BWRkpw0Rn7ehRsFtPPtvP+SMPozx/nIA25zAQEgdnorLoJzlXTz3zJarxt4joxt6cLXWlp9UNsGMixv5yqoPQ9wrCD9zTWHKdX8Y3vWHh6fG8btDs0HVq50u/p6Gi1qc+NmCJNyrOxYSgiRh/NhiyjQNoWVvsmnS3G7UPFNHXscJYx5dG3rbuzjXZwxsdZZjxScm8Hv1bGzpjeTOxEaM+LiSy/N/wrF3h0mxoJjXzlCBc1OUwGjaeNjSHcWKFccooFeAbvVqsfWVCt5+wgR7Vq1H2wSAlqQBwmVHaW9eEHsXKkBMbhEv1RoAPffzOKcyAldZTyPzzaPhlFEBhjmL8EtlaVqrNI1nncrlrF3Mn69m4tm/miyzvgm6J8vCuidScOCCDD1Tt+COkDjSnDEMXF0U0botCHLqL+Lat9nw4vgocJbuABfjWBr/5jM9WXtv6Cz5aGEWASOlI2HP3ed0R8Of1kVMBxX/Yby+czRozLmOtx5mcfrgNyjWz6a55hl48uEG3iyrA4oSWnDdKZ1+tErRxUfx9OD4AZCNv43f5k2ngI/WLDRVhYS8//GoFCO44C7E1oee4aCmM1cWCXPMgYW0r2MX+3ppgvNEeY5RGQVhHgzP1dfxVoMcfmVTDs+uaoM97+OeR4fRSKkdje9uBn2RdGhWEwf/05Ws1NFBVfmWNPuPNZo8d6adsiGk+GYcGiQY0hl5U+qpkYfVn5+xi4MEL5EGeLHDEsZYLsDGrVOxPVOM1Apewe7ZiTR3sSk8GvxLXl9/gk9DHboFW9HrBR54quURPL4dBBJQhw9WV7FWEcE/dXWY/3wzuCaFYFnqEdJ+u5si7//ks1uW0KPh32AZjwTVfXpQcj6H2lNyYcc/B+rK/w1TJCeCiqkLWfnZQZG3DzqrroH0pQLwsSEIfio30k7DQRyupgAvbz+Gp1PMuHbRMpJtOMOrRVZCQNQIeA/5aNY1nAYa9bjgVjnunl9Br+udYd9OEZa4sJECKvtgnf8UiCruxfJFM8mqcwc2eUjSS6lfNHbPa7Z6weSyagyJ1gzDvZJy8GT3d8z6JYPSghaU+duLMl6OwzTLZ/xyDPGJWSfZKMeJ/shrgYH2IdymPweSMl+DfNImvLQ+A8qsZXBdwkxy60nlsTZ/sTxvJBx3f0SyDq5s1ZLHuQ0Z2K2/EAZ0LpNyvTn/bdwEC9YegsqpRjDZoBxO5amzdK4nbNOWJVOvsdQdq0Hej/pxf2Q9DF93H6ulRsJoA1G6s6YK3j+5AhuyTHnjlzQYuVUCJ+68iksl50JHxjmMExwHJh4aXOIhDq+fl8Lg9V7Kkw1C928X+XJaOwoqeNG9Tdcg9IoaJK5YR8X5vzn1nRv8DCti05Ua7OAPqI9W3PNPluG/H+gogGB1W5OchvqpuXkGO5Zo0+exOhw9fiirl44Gzl1Mul7LIbBcBF7Hv8KaZQzkEYe30+Zy6AN/rjqwBV/tdIDzw4JZM38aO8ePgknJnaheFYCXynXwxPUdXCefzAGjLlDDAw/aUaCIO5d5Y0OMLBg9dKdNMldgIC4Yo/bUQOsEZyzdZEcyT5Vwkq4rQZIUZ2QpwL+9pdDTFgM356ejzJNXqB06GUWqttJYOUXW0e3HH4vOY+0oXVgxVhzm1++n/Y9/wOGK+/TAUxZXyrZRp8lzPvJLBSPEa0m/Qwk23hWE/vBEnN2bxMcVbtHUWj8y03wFDtET0D16GCmkHITgIT/v+R1P398lwO4btyF4zwwujFiImDWSN2rJUl52Aai/E6U6a0UYZr8drg0LpcJrC+B26n3oKfvHl6dvp28ayVxSHY7/7W+i3ZIz4I7AXYwffpvfdr6ksvshHCnqzhoKObw1OIx01uZwv3gtnHUdBxIDHznh3FEwe2fHv1Tuw4txyeS+dgBu3UqhY/nycEHcig92mkNH7DFM0BKjp7964PRYOepNXkPVa01AXmsUlMZ28Rdcy81iUgB9PWTVkc4X3K1Q8qITR20XJgF/PzhhVQZ9as9xS/NVlFLQBmc1c/oXYghh0/rg2oQHMHG3DHVttIJw61J46WKAo580sID+GBinkoUzd/fRXalZ8M7sIke+yoTszQVw42Y2yZXHwqUFwMEpWlCqNInX8iY+d300lSZ3wmXxlZj5+BkVdneyx4/ffDeuGq6PEYbtMcF4rOkaL0puxA0BM4kLRPho2mdWUz4PtfGH6P7XeorRVIaGweUU6XgMqosy8ejwF3BouDF/eFIFzobbsMrEgAbezsNBVz3QCNmF15/8R2ua8uDoFi92+jwS+1zD2O7zL6aD3uThcQQdheThy4i90HZnMhRP7MDZVQpcKPWdRRRPwy2Zy2T+rYjNvP+jTSGaIGZ4ES79NmVvg7tsv3ULyXbXk9uFSPrxRZEFvtUiPoyFPbtVYNTMUlg13xqEleV51L9f6PyvDcLULtNfIWMeNlmKWppcMOgYgnSxBToEAj26XI3pLk2wLPEVPH8Wypfcq9E96QrTOGlofjMVcr1k+UBbPdjNbkAf6Um4e58SqRn6k13rc7jXpwhjJ3bhucOGMHxjJ+Y+cKaK8jhQefloSEP+UPsznXx0t4CzaDBeHilLAWMkobBrL0xIvESPip1oivAkTNL9yzMEr8IwxVq+lOrMPnvM2FFJA2o9jCmxeg3uPZPOSj42/HD1VVKdIMoh7rcRVb5Qz45GWm8+BlYmB/HShdK0udmGj+YQKwSPJVn366Sx/iq3uAQi6Dlw8eHRYPv4Hh7r2wvj8kvATuIPL6+0oLkz5GlyqyxZJJ7GI6s0IEPTCN4or+S0rapU/buMF/keoxFPJGDzHGPMudyFZYdK6Z/HWN7SLQuVT8UYCgXJp2wrvDi7hjb8+EfZfS/R0uo9iOtIUvLTDTQswhC6r0fB1qGMGXawGrdct+aDkhWsYN5O1+9OYYWK49TxLBMvDk4EhYA5OLJlOPcpToeJdaeATwuB8D5H3tEkBMaGzlA5wofOB0vAmwovTA6fh6tm/8Q84SLY2OnCjmKFeCw6mq7ODOFOv01YMkYIZBYeZAEzZ0i8dBzs5zwDp28DVLtuIhVKR8P3sEoUuv0BH6SawS3VIPYbZwvJVWLcHP+N1LPeYzwf4BZne7g80oQH7p6A6Q6y8LomAUWX1FLF9m9oUnEYl6y8zCMG+mn+az+4IFaJ5Y9lqPWkFDhoFfPvFX9hYsBGcFUuh8cud9hvmiaMi/UnMVfklsFNPEpVCVaFFePtC/H4K/0s/QezIKP7AF1qv47tnUlUY9+PEZJLQHEoZ9wsa3Hl3zdoNaGTV8w2JPq2kQIXZNH88DzaPfUdnRZsglF7TGFqYghPWayHLjff0YfVv7GzPRBJpgYiPeV5Vo0kTRvdzG5XdaHdQoBfZhjy8wN78J57LWXuDqR+14t0ZdYPDrIYDx7zEvlk9Qzw3ieAL9KToWv6XOw9dZIbHoUjWA6iyQgjNEm8S4/W76W8NBPo/zGVzQsOUNMdQRjwNcCGPTuh6lU91K45iEHT0mA0xdLhRCEQ971J9dGyoH9UncyqtlP19jpwNPqP9KVHwL7Q9bTk3TJ6WCsOSY9eQ/GNhxAzfA2etHWDkKoj4P3qKhwP1qcX+47yomHxvHuHDuTvb+PuHBm4Pns9/AiI4uFi2nRGbxF+W/2NJIS0UEZpDNzrVgfRn/F4LFUeJ12bjvn926mkeT7bqIvA1dk2ZDvTky/uMUZlKzHITts85FmDZNvViTINycxn/mP7FVXw6V4pTWi7Su8b6wEOC8B3MXeuPNyL2fLhICKijc6fImBeynd8MlUCll2bDpvmOFLhq+HQZjobt/Tkw0fZcha0tKTGvEVw4eQ3MpDLx9wl7rjOvIPEnw/xxrI+Uj0QSAVO1+jZvmSSVzmOJyca4RWhKuhX/4SWtxfDW1VxiB9eyWrjzlKthAG2rF4LaLGJ+/0yKVdBjtrEN8Fd0eeY+kIIdt0ZjrkvjqHZ+wm4+VEMXp+gwHpObnjYexhc/3wIPyi14ddKUQiPGcBTmd/oTI4sFKlcBSdNCw7pfU8NYUtJvr2Y/I06sKebQV07jhb0jKbP+3eyx9qrUC5mDnMurGKh+dcoJicLTUyeosxcQ+i5d43a97+Gy8taMKHUBwwePcfGe8JYKeaGklnm9LBkIeMnXQg2lKDPvp7YuKmKLLXW8zORcfDmxCead84TTlWHseLf86zgpQipI+twdbcKXTlVzLyhgARu1MPsOhlKDbqBTzK24YmgTPZu0INAuwpcozEfojo/YfojM3Bpc6O3Vt74t9KG79yW4Oag12R1dRK8l5GGWzqX0djjDP268IQ3fbZHOm/Jz2ANvln3FFVv9rJm6EiwshygHZmB5Pp6E4yLk4bJj6fgy8RS0PnbDz/NzWjfr8es8FUaSm98ZfuSO5A77Bgv/iuJO6/LgQeO48nt+iCRmM0f0q/TvA4jcHuaSzuTnmOfVxNlTp3GukXisL92LnyIE8XwBa/4070FLKs+BkYWzUY9s9kgeu8gzOkyg+j0SaDolQmyIbE05Xw+zA9Mp8oDBOHNXhxy3hXeyxVDnkAiqS/owJy6pXT65lyYGTQBJdGZ/BqGw/MRt/hwRxVbf2gFD+Ev+GifLe1b64g1i1tx0s1vdClEjbUSdOGcWChGWjfx+QbEYunX+MhbDwzXPqdo+6kozEFY1SUDebZiMDLcljyCWrFA9B5WHJCkbxddoG1sEd7/EcO6pRf4hs5rSE4zhnDtAgg5d4PD9J6DxZJqduv6Dydf2oPRz/MxpNwdxyvEs2DJBFB0kaEx6z5h9ebTcDxPDy1fJdG86v/opooGj85VgT45Gbp4Vx+iH0Th35HzIc+rhirfXaBtERYw9bw1+mi+ocieKF47Po96/5OBJ5Em2LQ4gnW2PERJc2GMVD9GkgH7qfFSInhIacBfv3McPFcKOndeQ1GLhTy6/xNa3NhKHQsHoGX5crSecZRFh+794rFCVDDSgMp9wrRU9xEOXt2OA231+OPcXFq4pYrl3+7AI5tE4OHcxxi0Rh7s/61EZ6FeWGH2HQR1s3HZJyUeMWEjoU4ULJgdhD6TS9lhxDS4WpJCxu8lQTJuGjoeQNaucQWfgWe08X4StMIWDvu6CbByAvyzvEhP0tZjlt58Pq90Gie9vkYlR+2hWesI1bEX/7i/HZcpT4YdNipsbvUHF3X/w7WjBcHpYz7t0gvCX6Gu9F5jgGO2bmIFNyk43DbAb4U8eX9mDdtYt9OixTdxissj0vw3hUx1faBBWo8EeSYs8duCNwq80bdnJN8SeI8u73/B7u3KcOKEEugrCuLvo9rk3GEGix95wNIhcCpQN+d0X1luPjuZ1qXl0FLHm5h+9ywsqX+DpmOngGbOcw4YeMY27M7hvrV8OmMEV5+Tw9WVJQRi39nr0E4O0RGDq+Y3eJnnAU6IvIkrJPfzofwhVmgZIKUR98h3ijc8OzaPlk8XgPXvD4Jmgy9OPkq8S2U4KLuE0YlxyuStvQ6n5X7hO5FXSO3+TODJzVSUPjTjgfk0fN9tEsV2ypaU57Uxm3nX0RAIpTJU3aYNz31+cs7CJp75nyJ+d8jA8rh6NHQfjh8VH+P08ijsuC6KHgmiUHFTEi8pv8Scpy382Oozm5zT5BdZdXjXpoE2zi6mm24ree8sVfiW4UhjIjWo+OgkOCVpCRb7ZOi2YBXs9tkHk9wjKfxgF2/TJsi0LOAu5zGsNFWfrMbIwPCBaFyjN40TVq6A70dEoXvnf7BD0BAax1yDF7Jn6dcjhHHrBWm8mwcHD/ygj3e0+M48c2o/5kA6z2f+v/3/u/PcMh5xuxZ8qn/x80ZXcvx4FBsvh8CVrLmQpBxLtSub6WLZTFhRGom/RWN5xuqTqCd3g4SM12J3219+3DsAlzfvwnXqYRw2axR0sxpGnXQGrQ82ZP5VmMz7p/C84ncQay3HweUmJDfdGDKH6uivc7V0TqWUI1vv4FXlNfAi9zQXFhqBt/5tTIvbRG2L9LnskQk8PeDK54z76IKAJx0/eg/SHsdxv08Cydrvxch2NbqkfYyW35OFbfMsUe6FMfziaCiKvIgf0oOwLVqOUy3tMb31HY/ZNR3qDFVh5KyPEBrsC4ndl3lv5Wy+8y2SB1atAv0hBoq4lwMVn6X57nopuF1+nb2v7yXbEbWk7RQGSWl6rKN2DnWb9sPyw4K0qNUdhEM14ci/G+xIm8B8ZRp9iDenpcHH0OngHj4Sc59e4X3Qa7sANqvGQed5JY4/shlsmu5jvMpy3BSVyIoGHyjcWRED61diV6YHbPylAsHhLVDyy4hvbhpHmh5mWPJcH1JP3CaFOaq49P4MuJ4fQv36YlD5w4LOpFTgofdf+d32MupzGckan57RwVkV8MvhLgftjOMwGQV48O07FxWu4808QB+LS1kq9SkWW55CzWFn6ZR4EgiuqYApGybAiIFmGrdrEBbObqTPXgQ7bxiRg9h2EFfwxRfCDmSAjdwgbAhmamcpcVEbG3pH8Gj3fNwfbctPdf/SjiFukVVypTfrxsGGLDUoOieFzfsq4ESrNbjfGgFSOcbg/+sHCWZUgnz0UUhNkcKvd2bCjecfsHqvDG6fmMNasoizKmtAR+wQamVfI/3rWaDTZgbLJURB7eNduh6ox2pq77FpkQKVNshBUJ8afJoiQQ2ScXjlRw/NqREFa7OVVJ71nJ0DbShtXCg/2yPB1fsu8JcTY0l11SJ2H/Jj7/TJULven5aleNDBzEa2/KpCDa+b6Pd3RWp6YotSxuPpT787TfI3gEM3pjFYp9PS/rWUe74NexOCYWG2O03T18G+qOsg8b2OdksKg7GfNcofjaD7saf463h97BWbhymNB8k8ZxxotdygLyNPQPliM9i3WYJ/XZqEbr6pZORxHxwDzCHudgr0+y1hn0PCWLVaALPGGsLc4cK4Kd+K6zrHUGrRPjj9ZhR7ZxXwzwnfqCXej7ad3EKed6eCjm0ftMT4stU/fVyjnYZzXmzhDd1VPE4hjz/Kp9O/ziLMkpED47QG8AoUo5U/F6PvmiSkFh8OiJ3PcfW9pP+uEGKblNE3nCDmczI5nNiDCdptaBFZSU5mZ6E4qwKH5doxj/WF3/+dgX8xM0Erv4vMRHbSlfLdXCicDl8Lc/CAOQFnZvLgmkvsdfoqHi6UhT/t0yDpiiqG7BxFZq3n6OZdWbr9XQ7dUqLB5dNyjjv5Fj6Gy8DAt0Bclf0GjnddJ2f7I9C/2BFnh8xDRfE5GJEZzzczDtPXyikwWlwdp1qew9ArvfS0QwvS0s/zCAMZvtycwiamWfg2oYKUjgqDeJYtisj3ot+0iyC/dCzE1zwn1zvSNMZ6GIyoEmXeMw9yPojB1xcFuFwjD3dourLnxGoyXVLD7Zcuwslrxpyv28514bqg+tUcIvwW4Y3I43haMYiPDpfnrLOq5FCSzDbOvTD9qBlGvSsmm6opIB49gjc+qIdT6z7gnVHBNHO9IOfJIA+MKYTM+0q4r3smL0ExGAxzpeD1y2mzpi2c/VWAOb2rOXCzOdmJFcJrP3kWTh2De83GgMsfhL7kLPQ99AJnzLQmv6J/4Blaj6t/pnLRvw7SF5oMt3ukwb5sLnokLiDjZ2oQuk4Y3IsGkF68w+MGnTCvM59+x6znLZ8k4N7CT7jx7AFansy0o+429Ro3wKualaj/YjpfzZ5Jb08ux2n3GGx9l8Ps4p+8Y/ZZWljtA8L3H6OdZw5XG9/AF06jOcChBz13EKwvmQfi3e8w2tGAYxOj6IfQTfIrM6HGtBBavv0k9aRPI50KgO2bvLh/7BtQm9+Cj39thNr96zlxojVVbGjEsPsePME3iWsEDSCqwYJKinPorOUozlROwsvLrmHihGReqVtAof21qOfgAe5dWrAp8ig/6I3m+KH+6h72k0u6HoBpnjNdGNLvN30TcD2+in2GPOfkGRtMO3AHW0d3wUX/QxD/+DGJGf9vZ8VSEvgpy4e3SkLVN1UIDXHDu9G/yPvSahiTchzbhz0HbykBdlDzg4jmc3hfbwEczB0/lAvTYWSbPp422g23VLw5v6sDRg6fAIXjjGlPdTEuz0tByTFakO0dyA72G3DPjO98fFQMN5Wf4+qc9RDhTJyTLQf2gZ4kJC4IGc9OQ0VfNn6wPADxpllsFtQPX94ok4tpGm+cnkjXBJ6CdrYISHccwO2SA1RxzZQUZJtoTH0yd50+waG6w6DzZSg4qa2HoPJJkNcynX93/CW/nnj8OWkybzteSstdBUD9nwDnL/bnktXmbOWuBUa3XoPerQMcsrYAFn/uJ6VHvzit3hFEvLPJ/kAQTbidyoPJDJVnNHF/pCi9jPsMgo2pHBv6g6VWyFNlQy1XV+7FuBgNXvF4Oijv7sbsQnt8GxZMntEeNOz9mqHePByaf9tze7Mbui0c4Dd5elC3KY83Vi2hTQpTIXBqHsvvvgB3OxJAdDrBhf4/kHmwmI9Ky8F9y9u4/L0Iz/FYjE7C+uRq28wqc7Jxmmc7mpYMdZrKbpQZ4quSPhUYPOwDT61WwGInaz53zYhG1FRAcskLFjIT5ZVLXHDpXB3A+jX0RGUJJelNYPGCVGiQciI3+gYH1jVx9ZRLdGqSHy58NgxuigIsf/kBC3/lgZvyLQgVD4Z03W3gGz+IXQH96F3zBiOUtKAmpIFmvVZg5X3tbD73O8osFODB3EE6UAHUXviUpMXcUVl2BDwMcYBu+8mwdttd+PyhDHmvHL8SX0L5q5/x6rJhZHv7Dys0qUCQfgIJ7p5Ln/rEuFZnPqZ8NeFWW024cnYSTf2XCbGzfOAyCoD5tCVo/0iUFgT1DvGRFf4s2o8/zxtyQIo9eGt95C0pi+n28vHwMPgPbBdN4f7EANoysxQU3hG2zPkHN26VQp/2TAj7sRB2xavAusdToNcxFT8d7ORxG8ZD/J3TMMFo6A2kudK46mo8I9cBr4dJwMDBC7DyvyioN2vGGZ6b4EhfGf0bZgCxq31A6eMyOqp7CTzllEHRwJ9XfNnG37/+RaoJ5HvKKjhWRICNgu/i4jlRHO4kTeaS4vAwLhLvTZyFF3tcIC70HAnaDfFhxHiK9UyEC7qhdMy3GSc9FgXFfzP4xfFuXgHNOKe3Bt1r10HJrO0ksns8HVo6SE9ep4P/XXE4eW47P/zijAsniWDAk0t88lINCEe947tBJRxUcArsWpMpoFwRKsJawKY+nG2VQkB1xWdKOriDftTn0/DgKbzksTJcboii+T1acKo0Bs98cKPcuzZ8U6VuaE5WQ3woxWljTnPHsDm8dsNYzncZBTVmB2HbnTjgx/XsdD6NzaLEYetoKUiRmYSX4+rJUunqEA8LwrsN29lrcQO/kTqBY+cZQuaiJDY6Is8fWg8xG2iARMoV7lPVA6ktuSAofBIXWhTjZpfvEF6TSnZfInFr/g3wezWGxsWuw+y2GbCqMhafLdsBI8e9oINB6iwUvBh0L4hB/dfFGJCwlVoLDuKwIS0Hdn/Gl+KrkXfdxLcvnkNWoi/HWDD5ve8h6yMacGtzNF4JHgdfPV3p0MOlEFuUSP01B2hw80g46NjN6x7L0BZJY7z+tI4rq/VATPIWzpV+h8lHmjni4FeMW7QCcs0jwU7mOE5ufU9WQcNxQ70hrH66kWc/qiW9IGvUGvUPm7SOQV9tFYzP+UJe/z3FqzP8eFS8GVz3m4//LRClKIGx4HNsEfue9+avhvvZfJcuXuycSwdGyvGJH2awe+JXTvm0H6qOOMKXZk/+IqeENgGOsO8MkrDberLw9YIHv8SgRzwQPf485SVetnBCxQyyO/fzuJsvYeReaXhs5Qw/78XjiNcExYffQN+jAKwyfAEBN09zgfIwKtpqzwOiL/nJtxN01mUm/myRBdIpwxTlJBDG3zB+wjfOG/4W4t58pr89mui87RXL69uSwANtqP80lqor7sId0Z2Qf0uVtnw1pU2vrmGCcytkLDXGSRMaoNhwPJw4c5Lruz1o15e5GLD8EO4Z6s3rjRNYILEdjC/ew8t9EeixeTocXLoRwu9XkQM6kupAC32+Mo8qzn3n357r6VeQDyka/wADYwbIuM+jpjxAf7sztJIaWP3uQiryegDq9W9hbqstfJVvpS1rxSFC6RYPdrZSmsg8un4liwzPbkYN7Xf8RuEcWYtZo0FfJj4fNIJLl4Voyesl5PSygfVU3SE1QwxUbvtTwYQFIByUSm+UvKg0dwI8E30IUh/NqZNfs5ZQKKePG032iZN44lp99Du0Al+/SMJ+7RGgH3+UTvaqw5srPmj3rRvAVYvlas9jygWg8E//sW1FDl3+ow4ju+s4qjGdw0X9KGifAHhdPw+JrxT4vdli1PylTdM9imj4a01Q7xlAIZt24IO/ICjXlpNEN0FlVBOPUaqn/bZeIBk8xPi7h0F8yBeWOi6Ld1p2Y946B25V0kADg23ouzsMMGIQoltX8i1lbdiqJAfpOakwOfANtB0bwMLlG6m79xPYjt+I+7c9xCK/oxxTOgmmLLOj0/+CoVblNfR2bORrkZdZzlKf1+oQa57QYNGWcFwbKgO5G5/isAPS6CTuTHG3ksBf9Rj4x4wlT7N3fMPGGi3WxuLGsQg3PgRRN/zApcnIU6XNQKgqGrNqlvFFU02+H3NwiOO+4qgaOZB9uh2aL4lDcLw9Z2Yh/UeW+GndLHiy+APftSsBy++meMxXAdb7PKbPuWkkECbO4hZvqW/fXQw5YEXZBtdAfsMXkB/IgHA5Q5jnVsr6G8Kh4r0+9k2R4XV7haEltxg93YXZ5qsNVdxYghu/jgTruPPs5jyRvz0coJwlnVA5GM6y8xowr1qXor87Q5NwDv8+JQxf9lqi2Gw/HvxmiwczEshseRlXiyiQeuZWuGnfj6LKg7SrBSDPei+skVtC42tWwYMUBRSLd0Iv6CCrnALQPnyTxe3WULmOHlx5HAaNPRLU/72JIiYshNuXztOHqiVcFaeBrTqZIHFNFc1+a0LroWK2Mb2IPgUVOOP+driXm04LbNLpRGoeHvleBr4rIll/vi6Y/G+/4JY6mvD9E6meKeHQdEuQapzFAkFPQbcikNPMSlhnrSpojjUlgRHaSJcywORNCGgICeKB9+L0O1oXK8KL0c8/hQtODYfhUwZwS+VEvnZOja5X/cGjVEHJo9N5221zcpBJQZWx5hB8TB/W5KbCtMm9+GN/K2doFWL5vy6KSHPDFCFHEL+aAWekJsDZ97rguCUTvq39QHOTark9cTg45haBw/cpLLN5Or2pr+TTr+rJ/rMe/K1fyY5BpqRehaCSPxYSNNshrfQIPtXcSoXlVyDPUYlMdPUhdJsLOdkc5+wCA+w/MIHL3c/RyXtfMCCtlIscH3KXwh36+hZhmvdjFFgTzm8CXkNmrAoXiJaBvOJI+P1IkhTNFMn9ohrNLhwGMz6kk++/s6hm+Q12BMpB8RwNWK9nxUH18fRivydWZE7GU01j4dXSLAiRSyHjyEy64roGjBM2wqknz8imOgRN+kV47GNJXHxqBChVC+KzKbXg/tqfJhScQXXzLr4TdhmeRx4i42gn3Lb4BK301QUV/TPkm23OF4R1IcVDg9+pR9PNT6MhyMqWvHNledWdYsqYqQK7daIp53cgR7XoY6j3NnYKCMcRiUWQuUuPttvoQm5zB0mKC8MHg9m0QGYCORivo2dloyGsVpONqo/iOqVEVBl1BrvXKcO0Xn04OVsDH7pl4d7OAMzePJ4VFk/FiAW1fPjyfrY4rk6XT77nLjVBGEiLHWKvVOo9vBzy3Edz/iIJuG2gDBqXSzgkZAMLb3ADyR9T4ZZPBFO0Bi0MW8h9ujnkrFPEXd+3ca9ZDM06uJuqLtfy8mnicLh8KyuOyaKvF3+ii2ogXSnuYDuxI+j9uRjPrJrKKWvKoeDqKPB5EoGxHm9YWdcDPjqmUrr0EV7w9AO+DLoDW0SG5l8iRQtltGH1lkFes38Kr3JohpaYW7AodCWv7PpINZ7ReEm4GCNCtDknSxTsJNZg99UPHFmqRbjqKqjr3WNr13IynSeIqmktGCY5gEb1SrC2UhQFH+3EUOEivkeCuKNvLvrlV0Bs1E949csGdjqL4OrDUjDKohk4O4iah7rl2idhULnPCb9fvAcFCvWQHdtHZvPH8SEtGXgaE4mvzm+EL8ZtLOargIGnR+Cl/WZ471oYefYng3ZYGIxaLQ7t2mowekkyHgnq4rsbD1ObZxPuWTWPDkt6Yn5eLP6uNKEl3WPA+N8erG9Qh2OzYmjOmOEYL1fFtqab6IeeAEkIBpN93xlUapkOp0ticf7XbjIb8sxcFykUuca8aXQbJkqq0zuBe9xh+pAVBY2gfu5aOjhxNpkW7uUj8zpohshb6G6fwAdWHWIts0+8IuAxWMmrg4PwZZz9oZQfSWWh6siL8ODVNv5jtImaKIpHKgjSwj4HjhihDB9eS6N1oD3Hvro0pJkFGLXnHz/L1oBD7gI8tqcYd+6uhrod0kDZyWBWMUhtPytRZ9oG9Iv8BHEFbyhq3lHW8ZKDETc/o9FvJdjQ6Mvn6lsxf70Spw8XhYk+n6AWPpEBjsYc7Sf4Qeo0JOYM9bzAItD6uIu0Q6LRouAC8jwfdl18E2MP7KBbCZs4anQx/F2sAtcD8zCokemo5y42S7pJP9138/6fffhA04aS71aRCK3E7i4NWPTrAxR4KPCKM/70rm4i3pn2BhTaxPGnsgxuSBzHIsbtUH/PAL5PrMdVwbboFeBIFVrV+PrfOFzpchZXPdhPh+zKuOpWK2ioT4bVfSroEbwZ8+1DyaciDONud6HIOOKAH+KodfQlbm00gtt+orDhWBcr/TzFU0Lqyf+7D47xmoaBZEErVBzo9A0JXLrFnHYv0wWhrUL4UziQn2w0wYayBIo6ZspPbWpY2D0GHtoxiaRtgktv1eDsrDJ6l7ELx+uJ4LiEBSTz+h1KH7pDnW3juajrND3MHsRQX1NQvdkHyYrhUCrwCvyymmlS6V70yO+BCflnMd2qmaVNw2HuholgEfodPmzwgJf7Z6DisRH069NjUMjcQbWymmDcL0ldlqd4opYGrCk/DejiDc+0H4Gcxj2aqKGDG5S9ISegADVXbuFNQl749PUMmK3rissUR6B913nMlF2FJ5TraFPsAnRX0cQqW0W+lhFGUDIefPLWYoGhN6o/zMYny83wpYk+fDg5ggvqLlJ8TD7MalHG0RkMTi4h9MNDE36cU+Ivn6Jx3c44aHD1AI30VprNS0jmzR5cvUYUkj7F4NkZxVQ+t4McVOUxuyiDqu+2sLBEGO9ftQlig6RZW1EK7ilY02v9DIowWsQ+2WU8yuMwx2l7gPKisTQ+6ix0R53lh6enQXXpe7ax1iKtDeLslXkHAzKE2Um2mv9LTGE5v8m4SPQ1yEWLwYdlZ/EJH8ZFM+fRLPTF81XveCCvn0L2JLPU3WrsFFKhmjIt+EhKFJyiwaMFjPHpSQ822jqBJC2kYKITgo7oY07bIwVf3yN8XTsODux9SFfmR7O8eh/UvNuBI51WwM59+RwbU8GRv2NpzBoEl8SzdNh3NXnqlbDGgmRQT52PX+JGcLS4LDyWHEdh7YdR54Ee2KbN5r6Jmzkq7AT1JIfz7onfqPlxMNvvFaDSLOB5NsmsNEMPSjXk+e/s19B66jWIFzpQq0MRl39/iycOSGBnWxPulFDgBcGj4d6lUbjb4zInT1mOBiNGk4TWN5ae8Q06XXfydqtmkt1RiCWOQvBgmB3p6JpQkmgi1o4IxQ59wk2VU3HCiof8vjORf4gmgWrrdFiovxU3qzeR3I5MiCk4AUL7U8jjuAAsWj+JBlwqaE2WLTWIi0PCxnk0cdd72lDfQpcblmHtw1FUl3wIzVzek9/e+2ydKc1+5gIg/bkThKIaYVpZGH9cYQKWZfn43VwCX7hYY5ndTTQVHEHBVTPhl8UXWnS+ml2CD6BrvCMkxK/GCQ1Icy7eIuU6V9y1Wh6e7heFH/smY1NsOGmFNVPCgmbyCmwk8VPKHGycTMoy99G2z4Fkx4tAosstkpM9w1IhfXj430u+knWSYxZuwwMnfckuYBuVux5iizMjgXeXgf+8dqzyYzIQP02/sws4a0kjzvjfns+/+my0thwzzdQgPW4yfhl1iK+XSLCEfC6aP+rFFS37UC1bhyar3EDTyfI0Q88UjiZ1U8HgWtyzazPXxZ2ChWGzsF40jDYou/GqLyeRzw5AzG0tSC7+wzuGP+AHNbL0d9tLkBm8Rr7zHsJyL18c13UYrFKvc6iLMjxweMg95YG8dQbBoSWy7PvpJUVJd2PLWxtuaD9NcX8+oHzeVHjt/oj+Dsvg92GmXLHKF9a+LObeJG+2y/+DufmlNPfiUrD5KAJl7cvAf8MF7Go9SQ3TVeh0vjgstj6IRy02op/JJE44UMPHYCyEi2WweWAtq88h7PntSaU3F/KoBcXwbJcQKikdA++xnvTk9ViI2KfJf0TksX2WDQ3svYAWOwT4kWE6Vlxaj0U3TuCqd6vJSUIRXgq5g+N1MQjcEUdbbbPp6c9m/tc5ESvmZ8GKiy505X4Hlm4ygZ6MRVB/JA1b9Yz5SH8R/ijW58eCxZQ4LgRz2+fAxSMesE1WCk5uNoVjFaO5/slSerHuMTlEprFaWwCs1vrOo9uL6XDJUVB5owozrgdxQsF0PHHWHVyDounnvUOcM7AOjwz5xPyfqaDYVI95d4ShzGCAva7ZcZHYNPoWqUKxzll4r34JKY6Ih5XCtRw/aj+cuCMA73Kew4phNWzx7TFUPmrHBb0iENiiCBIqbuT5/ji0bgnFNUUKMC1Ji9UCyklyZiFWbo4HVb6Iu7bN5nfTXGHTlRnwvn0snbolARJnBLBxXxN6T5ZDC/XtWKHgw6EKR1lSsQqUa/6DzZomYJyuCgGS91lMsos+Cubj1MPtvEhrBhi9nEwnWs7gTP/HbKOxAnXrADzOy4JmWy6UHlzA1cIPSfd6CVX/u4XtT5/SrmODcL5pGwxTEYB7heV8X/MPlGu3kJtiDbjslMbnXwZYSUGX0q1lYPvVPDC8Ig9GPpWssDoQPI++57e9tyFMPgSfa7bRdXtNOjr/Cik4qcCwVFGIn2TGo4IvoNL9K7Ts11xqevmVPfI+o9QZAXDq2oJxySnoulsahDYOQoT2GW7pt4aQj8rg3x0Eq1Ii4GKgIX7M1IOjO9Iw4JAh/Ow5QR8sn9KJF+Lwr1GWT701g8jGfsj01oG3u+ZC7utnoBcyCXYKR8F7k6vodfgPTb8Qi7eMUtH+zElOmmRD6tfCsK2yiQREJKFf4StrOtTxa/caXGR4Df711kFmsCBvtbcG0St7yNXZAj/oGIHXntH4cNZYcJ/Xw453HqFBG6CkAYJmdz+HnPhLSuK1MEbMGDyy3qLbvpn0dvNS0ot+wa8PPYOl2+5BbJkslNpawHypevybJgmYnUHnmqPZMyaNIg+G86NKSVJ9GwOHKu+wW5gqPs9v5WJHY/gZ8ZzTZVRh+0sfeFi/Fxb+tx1zJfvYvcMPunu16f5nDdRwnQnZok8oQ+8QjnUrRV2DJn6Wt5RumiyAGJ7FY04nwMbCNBgU1Qbz3igKUviL3857c07NDZ7kMxnbYpzxhvhO+D8KzTMeqLeN49eQssnM3lv2H2WWIqWhgaJJIUqlQdGmkobSVEmbSEIoRUY0FSHaQ7LKKNHweN6fF/e5P9f1+32/n3M0z6jgk4rL0P5YC4q3yPI0LzOqlU7jO0aPYXvFVNz3RZdSsg7R09IjIBu/kYbpSYD5qCXwSi8aKpV6OXjNKejVjqW6HGnoGu0CZTKxdG+3GqdfkAWzk9fAY3UdPPs7DPR1GiinVICNUt/jrKNTQCkokJOnH+bP8sqg8fIGJwl1clXEC5BeUkFrEizI+OBwqj1ygruro1Fj0SrueYJAR/aDnmMNYKwuSmb5oOcleVrWp4m39klwmGwIbjT8CwUzGTROJ0L3XHdsdCqjxOmSOKx92RBTmIGrmii7rvAfYvA//C1EBK57nYXveY4kWvEdk0vP4a/eAMoW3486I99Qbew8HFR+Q6evDocFK53h8fYecPwSRVLdclhZsAM+hElAWoMvXkx7CKRbyHPSGQy+GaKc6Q1Wc1Xl04EKFCF+imSeveTrx1op+XMmndJHDllvA8FC0fg2Zi9cNJyFjr8O4egALWo1dobJpU1gYaHBt1VDWGarHLwqrMXrQy4cesKZbFvmc/UxQe54N5VNNbdQ99HxIBEcAX0JeiDm00jLZ4tw5yNlkHEvxIDcZWApI8Sn/YI4P+os7RIay34KYpButZ96Cw6Q+kwF3HNOC/9EdFC/2Vuc8zOBvcICaMDkJM1TEIJbCTMZWxGdrBtp0gJLuDY9g917v+P4xHX4JFCE4xWecsZJLSias5c3Wt0AXcqgY2bR/KVdg7bkvKKjR/xpCoVj05knpCRnBj3LY7mw5xDYD3ym8ofuNN5Ng0RWqkNDiA20PXzCcfqxOIIYXuZ2kmiGMly4KINf/1PHItaFpa5qiHN/UUbHRYhcUo85IwRhs4sqS5U44pM5w9DnsgeEz/GEY1pfQcIwAWwXaVFFrAu4PzWE618T6dnZImga+YOvTwrie9YroaN/PDy/Po0dajvwY64oLqsRhq9TG1Ba6Q0+vPQSLz+LoKbZm3nn/ZV8q38FrUt1AYHWgyDuIQcilZ+4e/J7XiR3AYx9W9DOcAn8uh1DlksPoelhfT6wTB9+Dg6DjNRVbPT4GMfvTSet2CDKqXaEwz+zeNhZE766ZgCs3/jBQjMnaL2cTFavtkLR1tFY0FuG8KIDXMv+ovRfIVid4k2XbZTI0c0eKkK08e2GYmixCoS0vmuwK9KBe1JbwGVdDlvcGQV1Fy/w/nh9cErVg29GbdihXEsLn98Dt9eTEPedgXV311CwezOK2t2AyLEjIH+XB7pHv4Y1DjHU4i+Pzkq1cF0hkLc7++Cuj+vp4OzZ+HK7OZR6fcFpe7aB/oMutF54CT7edYKAqj6UWn+Cy17/oW79eurTGAUeHUq0USyIVvfs4+Kxh+COwk2WTtaEiDsXMGxcINSvToH2rOGQpXMUjypasqthPl+IB15dHAe1+ffhv3ZhEtpyBx6FPSTv5SOg4+h8vFeVC7fTvci5Tp3PVf8BC+2PHCSygWQLt9FYwUiQrbOCa0/VqK7GC/wuWoKey24qq98PUzZ549sn52kgwweWzEe84KcBz5MS2UnKBwYEl0J3lDeMbg+mWplwevXlFj0sS+HyoY5UthsJK5ImUX9jKb2/chKLa9pQ3DOB92R088+v9+n8rj84rFQSFy6Qh/OXRGCfVCnGfGwCify9YGr4mQu8j5OE4RuMezGag+qiKdbPCR5eU2TfS/W8yFyE8yQTYGNRNs+XOc75otnkXXwec3ve4ed3w8E6qgr7DC3I9eoYeKwvhG/eEutU3IWzW/rpz7+N6BgijP9e64F6dgzayuSAy6MH2LVrOobapMKL/kB88sGKQ/JXsK9nAq7ulQOZFdnQdrIPJidtpkuHhLnh11JuylhJI93+ka1rFt7tvYpkKgfH1EPRZ/gNklA7RFsz/5J7/iku7duKeWW74VLUTxJa4cMln6RgiWo1h0RfZa1qbZ798Qy7zY2HOrFL8OKECh0dZcNdF56wZaUqFAd3D82aGIxaH0paWW40vUGDpzj6sd6jM6i9Vw82aLqS3HAjWLh2LXUrDPnzLsLLKrdYUKUVNfgYOc7bCVHb5/H1EAN2VZME75vJ5HFDlaplB3DVz1w2Un1Kv0VH8aLBTBKc7YcT7BVhsYwU7Eu+TXpVCjyz5RwdP9sBVmfv0Yo5FbSqdiptxjukmumNHzSFofheLqleuo1HahtA8NkBUG15Tk3m2eTpNArsVRbjiqvRfE1dHm58b+BxSapgkTYCzy6upx09u0AzKg4yJ8QC2Ang84K5kHDbAv5IBOOwtg4OkJPm+PSf/GrzAV7TP5X+PcolvYPqVKt/nw4p68JD52RabL8NQ4fO72ynh4VPemHLwQ58km7NqScB7DfXUpzgcNj/6SdvNKqkDxsy8cLxpei9sYhDzs6gZW+WQ90CEfAbE4AbFXVhrfVCVv/2E6TXlZHaPxUc3F1Ofe1XCLYFQ6jSVv7Z/I2M5piB6skLJFvWyeH3J5OO6FyOOZ5LZk8eoXeONcyIC8Ld1wrZuXPIB8/84Enm7bBBIAAXSnaD5u3vfHSLBT619OT5bxUod9F73HLAAf7c+Y33vkWy6Y/rOPqYGxdBJueOD4fHFs0ccFiLEmefozcHZMD9nCnNkFpF3vXL8a2eBYZczSTZNFk49FeHv3TMog0N52GnjhrYJG9G34613DbwA8tuBdIBp5EwUu8sVsm0wqLnh9Dy///LxuiBj6QuREjchkDeyrPXd+Kx6jp0ryiG89VMfWGmNFMnmjQfKkF29A523mBCYhd/oeTbfoxWrqDX1mG80DqIf9xsp7JnFVDmpAhfz2vylbtpbDzQw1dHfcUOpUUQmPSVYoey/KbEach49pdUt42Erm9VNLXdidNVQ8n3QQKpe4XzFqFJcHMsgGhlPm0JreO4W+pgcnMnSDdMg1sx4fSoaDSbna8GehYCrUM+7/22hFe2l/DGWj0oqA8FI4Ot0Hl+PKeLnsWMF99h7+c0at/5Dh/fvYDD29PoYJgpjNqqhWuDpgyFVxzLr8/GB5IRVFH1kF4MX0w/BoVg5LDh8H25KuQF58BprbGoGK+GG/wvsO3lQ9QhZ4YNuf/xNvP5JHBqPU8pZTgUPBsHpgyHWhktGvCwA8tX+jzb3QWDXzfTlL/TYKv2T7qp6wAlRiVkfeopenXZkaLDW1T+sZl6arsptPI1X9rYwe1yafguWglWqbtS5WA+qHa70ne5flz66Q1sqLOnHa7V6KNzAh+UjqDXbspQH3sLbm/5xfviZOnism56OKCDVan7sF5Mkea5PSA1jQ9YpWUIB7+LwOldObDr+xwS3buQa/500681k8D3uA7MK8vhs1nlMPufNJzWaICeKxMga/Id/nHCi1NFVXH7j6uQuSAMn8V84+z8dSC4WAXsrt0lRyVfiA4K4lddq6nx1B6+57kHlMZnDt1NB34OPgFPGlRhd/0WuDjFGDcs98egBQHwQm0Tlib+RZv8czRTuwmg9xEZSFrDi4itVPRVDV8IiqLOp3UY/EweH2jKoY7dU1TKrYWEplew66IUTP5cDF0P6/E6NNHmx3/AaXwH2eteY5ebnrSjexRd2voflDfpg5t4CA3eWMVPFgx5Uep2LlA+BKNXqpNwhS4kZ3fCxxBX0gwzARHfPppkIUNxqUth98VuGKhYQr66FeA96jXvfD9A4hMGWRQdQMTzGbdfjuQDp0VIZYwdqPfqwuQ/yzDi6iDnFN/hMd/fkZezODhtmwC3W52pqEuERjR8B4kbdvxstg3f+yLLdk7P4Ov9NC4vNAMx1Qt0L60PmrxTYYmHGV3SlcCz/wK4eDXBTo8aLsv2AAQTeFfnT53xTvw5RYbudX4EzaxfsDZ0N35beRBnxubToSNThzrBDjRHOaDhll/I9sO4/jpSYNZ82HdlGM0S/QWLe36TS+hUTN6kClqTy6ExpodNn5aAfEwQBuWdR3fXbdT6LBlHRGiDw6o5KBEvCJ2KmaBq95MsH30Ch6W/+LHHeNpO9ngr+hlOvpgHL31X0+Y7o2FT72faOS8QOq4E86oDi/DAHxdI0xZh0fow7vf6hKo1XnjKm2CcUgE5tJzG6akGPLi5CN6hFU17K08RW0xQapwZpHZ9hJqZMiCm0Eb5JZm8VbGHK33/8PY8aaRtVwBsL0J4tT5tMdnHp/vFoCbiJM/TKaDFzq50NdQbxjU6U6FCKFxLcAd7yyl897Apmpmpgtm9ZFrk2U9l63bxy1l3AFN+YOjmDDxnV4r1k7XYedpiqhWWAz/VJP5mfJ98W0Jp+6jleHr6Jjpq/5mmu6+HqaUBnDHZny69MgRLEz+a026MFnc98Pn8Ddyt5cMLdp2hF+PXUsGzHi7NNwEXRR2YdbkZfU4sBN/FM0l+eyP+y7Uj/00reX7XVqjSGAmafY9gpLkChPukgpC3PnqFOeHRfRl468xJiJaS44bOtWyonsKqbldx4KcxbDnmQI93uMNrPMBCptdp84zHmPdkOAVLd8LphMW8d14L3QoQhbvFGpAdegalfavRviMRYlzi+PePRuyb0kPZ/Rth3MJY7jolDwsyyuknjMS3R9WocZkd5TUF0Oagu1weFYueogaw7oUGuGwUhJ7zgag2zJ/DfgtDs7cpJCwfh27u+dRjb4tL313lfeJPeYmGCaRE/yXHXDEuiLfi2UvuU8bdrRhZLUIlb76Sb9RDWLrtNq4ZsAEPiUV8sWo33xHdQb4jg7BR1hZ3mlnhH8ly2r7Ugqodr/GXXfLgnmAG8f/G4PYJ13iSdiBnhcyhkafi4ey087xq5RE0LGnjNCLYsu0iiZ/PwHHBWqzm7YN1MZXcNrIQ5FZ2s/0NP3y3xAAWbBKD5etzINbyLiWONMDDuhU0vzmYrs34iUuXd0H9MxH4mhPLaz00oW5xPN869hl303J6u3AD5w9zpJ5TqvTuTScefmxIbReG4f6NOrB0uDnYtt3BoEvbed7oRMwyqQTPG06Qfe0HlZdeJqWcRFzcNBzm6xtxVfljrM3fDa7rduCS5yugLeE9pweMp1oVSzzaKYc/fAxBZlsLSPyopYgj0Wi6JRiGTTaCxRtUSHTbTpjzJxbHm9zjJFERSJa+hscHy9Dgbg5on2/AR8J6FOf9iwvHrqWdf/dAbVEkDm7SgLR1B2hRtC0a3ZGgPBtkLcFIendYFyNGlANbiZJgbRznhY4BqxVqfNt5Px2KfII/Ht/iG5iCwodvDfFrNjdn3+DnRzxg1BFD2FZej3KjGF5ZNIJzng/c25MEUPuc/vs0msuPnYeuB81w4IA0dP414/EfnDBw4BEcixaguxKecH5xLpvrrIE7m+aSSc188lCwAVvZz2Tv/w8VzxmRa54qlGiGs57jR7h+ywwcv1vyf7viybsG4VyNKQ68nEQjIvSg6MU7mmj+HX9uv0aD1zX4weV5nJBkj04PVMF+vhINtxTn3mIlLF11DpryN1Pp0wKOSXWmQ2NcKH5ZHjQ0D+XQnTyQe1UOzVLjaPLitSCctZHfHvkKRVMXw6d5Mznp2Bq6s04VZrY/Z/HtN0D9pR1Ml4kgj3PHYG+8JRudvcGL5j5ldZ2XtL1MA9Inv8c/F67RzheOdPD2THjvFo2F/g3c6a6F32wOgvYcd8yOsgJH2Et7lmpC314D3FL7BfvD3nD40DvlxplS9etCTlvxHWtytOFIWzqaz1fh0oOqlGLwB+8/+Y+bpG7izVVE/hsKcG12Hb/xk4X7KTd4h2MCnMj4RbJyt0G9TZuCTsuy7f4Azru8lged3Xl1CEGFsT/mrllJZd56dP52MBdMU6HjFf18zrIcj51cx3qajmSjJATv626DrdMTsH+9BsbcLYHRCrNRNzuQrQZk0TptGx2LrKBFJVYgdeIgiCXL8OrK+fB6w1lcIXsRE2+L09JQSwq8YE/XxsjSCBlFOL2mBqO8E2mC3UJaNn01iaau5dbKA2RrPppnfVcF2SAliBaWBceJ30i/6wJOdA8indYhVtofxeuedtMD82m0z8ufFj7dhAU7hcFmqyunL34N1scfQqyEKvncOoIzv3xHYdudIPMxBJtLvPjDbk0Ik5mG0v2ZuBy3sEzFGxjRdJ80q65AQoM0jDI9xhLXxOGWtBy47VDmr6vqSbRJiWMHC0ChwoNK3Pz5a912Kn1oAkmx8yjfW3yIHf3Ip+Ey6XzK5ck7JHmyRR9f+bAOrx1gfODiiCcfWPHCRFEIOkrY37GJrX89g223u0D8/gi02SfDVaojcIR+Fxas30OH2gwgytgKRwhnYvWECbQmNhcPOR/jd1EBZOxrzYsTPLFMtx5kP8iBadYI9npvQXNeBGLSUn282Ap0zHMmTd+3ESJke8mp8jY0PzGHuJH7+JvPBKgK/A2/jp6CKYHrcd1pQVhg3o0N+na093wqPz5lAZXui9CnVAxU1m6n3StvgcUEP+rZuw0WbxRE+7lKKFReA/MsAapvKlP+akZs28DFb4/Tm1mjWCTlG8lIbCW/speobpLAjxYZgPmdQajXWcUyJdrYm0m8bvpr3DTmCoh+H4YpzZOh2tgN280NQclqF1R8/QWeT6zI3eATeFqqsoymHgcUjobImWtQTGjbkN8YQ871M/g0K4/7QpRRJS4COp0Tad2CR1hweBBF1/0FgftTqXyRLuxu8gXFpncgIL4MzfK8aEvRZErN+criM7ZBiVAt6md9xZh2DcgzbsJxsyywatxaulMuwQ3Vh/nuZhk+gFdh9X6mnLOf8HasLkjs+Y8qLS24uvUNatschk7p05x2v4JPbBVGf9/7bOA6ha/pmICM4SMuvDKSvoSORvHhMdDXtILzdcvI9/Rrujz1Ky2QVoQdX4RA3CcFRn6aROpbf0Hy46soXNbGh60mwucroRQ/5QCt3reI/ixzgHORgrzzwjR2vuGAtZ8isAtKYeTuZMo3twAT090sVukGujUmkLvLhkKyC+jV099QWpfO5m9sSKJHC3p3HmGtgs0gsOUDdEfKwwbDYAy9KUrKz8Nw5fAbKJJ5Cv77m0Y7omuxrvAY+1/azVkjzWFu9UR45uYP68oTwSLOixfUzgCJlOn0Nv4TxPwYmlOd7bDfSBrOPnoBMYP6KGAZiXIvjsOf6j20wGE86XnogGTvapaeHEoO37WgR6uCHytKUbjbUG+f2s7jXH3h8a2lEFU2C6e7RkPv8Fe00WoUbJDaw/1Lcmn631CQL7Hg2bWbYW/lc7ijOwOnxC2DrS8OstIaQbB54Ezn9+3DybbmoBR9GGS+D/KlyBt05ls8F56oppRRjfTlgymEv83mG7+rUck5HD9YinBFmj0eGdEFFXsm0P1vw+hVSz6KLVeEs1uQFp8xgHMv6uBSiSY9oWFY2bsSfylHwtg1SiTo+obrIiSgemEcCO2zoW7j9RA9+gWnLXtAnmIm+K/LhJ43reGuL36g984abHzeYFmtNweur4HTq3yxLLWNDo8oBNexA2z6oIW3zX4CZ9bKgOyYGBg7MRe0PylwyfW1VFL9gd9ONEZZtSNs130VjS50g+wGPdhGkcBFzmwdPB0N9BPwGG2lI8cVsFrxPz55kEHEYCa0iivBmftXcM3BmTzsejIuKPGCU68FqdFCHK4KTWWBtQZwf48IeJQ4QXTtZnScdYP+xPhxTv4w0N2cxB27NkDvl1ewNUoNBS+s47INUrDhsTGPmqaG6+t28z+Dwygp04KVC9fDm6IJnJXkQ4cye9hqmRKsy+skiq/FaJFxrDjE+WouKXhZ5gV2FKrxWBngztbdUFNmAWHNLTB/tiqZwRHaaqRN4nlK5FmSjCsmq2PZd1dyDc6gvnZlCE8PwMqf/3jC8i6ucjjLl63E6dQ1War06wS/9w/5a2vGkPuqQOYlSz7yeB9O9dvFnsvOwOVTbvBO4yoreFtwc+hqGtmRBZO1BcDdQgOju+zZZWAjjd3yCoK7k/jLtG/YWfyWA3XWwrRl/3D9a1u4UfyXwm5ogHZiA0Ul+qHOtBXsOkwET915Qhc+TMaJ3jK0VcoAtt+p5B6FD/jQ0RmuVeuCYGgjuFoHwuID9/jSWku2+88P8/brgG7fQ1idGc7BLwuw95oK7dZuwP0uuXTmzFT25eV0+EwbupYoA2w+S4rzarD/kirpmArD/uvHWPDoHb7m+ZJEzr5nzUcz8b6ALpz0+osbY5ZDUtRn8B47Bm1ffSX+EoXnt+dR8tAzHBtH0x1sodhuNbQ8Hw5+hncwLbAUxTsL2ML/LRppHKaQ0CKS1zuIkcuHQ1nEAvghc5kjg2LA4ncwFf7Mg1kiKZB+JQ8SjDdCz7l1PArF4dDSTjIZoQG6nuIYWPCagn99gfjRCjh2Sg31b9kOu5OycI+kA6xJPwNnFKt4Y4Epffn2mMYaJvLY+R0Q6ZdIRueU0TbwJ2w/oAH3L2+mjTpbwbgiBEoP2INy21xssmyh8sv1kN0XBAvXDODrpxKgulKepRvvwq+leeSf68RhqsuAUopY0UcWPHedRpEZA2xQKgvFvREElfXg9NmNyjdo40ZzP7iY04hln80oKfo7vT3fT+5FVnB+7j32m+LBYSobaGeJOhr2z8JZ4jModYch6An2YP/tn/BNeQT8+ZlIuW3TYPyqYfRvhQPaCU8G90OraDQsh2nKrZgd04l3X2uDqMhXCjf0R/utTvjp6CbsE3vFDimjqMcrAJRMLtOufzX8xksIYnLqYErWUx6bl8QLtd6j89sbnKLN5FFylkxfa9ClEm9MuGoKFxu/4vWNXvTEo5LmbJqGVfci8NXsGKq4fp9WO80DT1FzvG4oCFYr//CZMRlQd84RHoZHYk2kPf2e2g9FT2Vpcs13HlQIIAEva+h0RC6xPYaHV02ECXAFTs47AouGuDZnojRovDtPknAbl61wAJE1N0lrYiRnjJ8BeYG/afrw/eDj/h63tTZz+9oQuHmuDnUbFKDL9Ar9d8QAqlyj6er4n+gzIQ88glrh2dSJqMHl+KFwHMw5IAopRwv5Xb8E7d3jDiPM7DHzuD7a6JXyXMcMPNp2myxbCyg3wxrKB19BSW4LCWRMgekBgxi/wo1GJ/fhcssY8rj1A1xvRfJMq7FQ0bARHw90otCxQ7S4sgY2YxVISh7E/MxIeBlUCW8ERFmq2BCm7VuD1r7zcPb6CiobexbFHv2FaSCBy9YOUMqLYRAXcpq8he2g+e1n2DQshFW+J1Fc5WeW3FjDPZVDbHjen3MmP4Ux+0PQN5OhYOF9Op5lhFEqEvCf6hK6aLaZV+zT4dUTxjDNVORb/pfRy0ELxu28y9sub+TplpNoYswcujhRhLzdHsDWKQfx5wgznrj0O8W5KkJ1VCjdfD4RZi/y5nGL03mgop6X607C3/7z4WbsJdaYEoeSZTLQ+mcQdM8cAZGcizwrr5uXrSlChb+a/G3Uf2jaJcdVHQ/5e7wjfEv4hvM/emC3hy2e13pJHdKLyD7eFVrD7bl23Bt8lLgGXvsaQDltoOfXjbg2Zxjft/lCYVYfqVa1GAfvboRp4dchMGFo91xMwbRnEOsTF5L/sDKwna6Bz+72UrG/EDbWFfAzm2c48e15zn2lDS42Pnjr5D34susnNZVZoUTSJprp7AMie4f2XLkBpBRucLimEshd+wjGfzvo5kRL2i86C603FoC26G2YULyKW4QCeF6nCmnOUoM5STPoxttWeuUfiC2yVlTn+AhETKRgjU8SpG87iVEF8nQYhGFmcDwemi6Pv7K+oOvkJMI1zqQuBdQVF4L9K66RsbIM3F4iBDl6MynmjjhfXVRENjqVLLd/HTY6vMQwsR6Y420L22bMwHHZ1hAQvQaEN63j401CHOMxFx9ui6RxP+6B5L9j/ObmAbZxTKVLasYQZz8FBzNc0KNLCzKu3Rjampcor2pO2YnHcOHvhXTM/wH88dQEBUsPvDQlG/jhKr5v7k15a1dBa8RK3nvvN6k9C4cDhfWkvEkcflWPYg28SGvW/cRem49DWf0Rs1J60HmGFvmmrEDh6lN0KlQOUhf8Jl2bd9iSuAuMWw/x+1++OHHOKVqRMsQM1uaw23sLqkw3gFsfd3B42g8Ia7DGsbtngsUuRbh6Cyk67DkI7aiDKEMVXrZEBZ787oEFvAeWKVRB9tUDMOObG0yTCOawEIT4cyIwrXYWTlYBMNoRzN0rnuPn5RuwxaKA18t+RYFJp1nR2w3WiA7H/SbCdPe0EYS378PDP6Wg/2oadZku5JsjZaAvoY28uJBMpQ6iy2t3TBLSgJ5R4diwUohFHFw4dNpR2FlawVG/62nYcUFIEsoi67eN5HnSEDLNi8hz/H28NHcDFbqvQ6+l50A9eTS6Vn1ErxgBrtjfS3MarOHb5kwMqnejffq/IDTtJ7lubID9ZnWo/Owa/vqTRYorA9iwTQy2vejA6uaP3GtXwGVBfSBaZsoxR/7BvvfWcNC6EAte68CPXl24ouRBc0ZdoeEzLIjenaSa5lzIzLHi/cvvg39XEf2L9Mad6obQvnc6ikS8oGlVoogHO/B24hi+keXMWUpi6DdsJfqY7MCTM4zhSpAJa9pcp7J1P3CTRxv2HE6lyye+QsuF1ZQUN5b19cZzoYM0iHk0w72IXF6/fwaIzorEO6PKWf/ST1AePwJuPxjB/0aksOROabhS1cbOLcUwodcGNQ3m4fsXP6Fe/w8PW/gCOgP3wP4V8XCkTBrmlq+EgcCX0GEbzpPnxIBgvzO8ah2AcaVn8arPSfTves1B/mPA/NfQXSf+pDiz92CX/JDc3prC50XK2PNnEr89weD5/g88jrEC+xx5XhReR3Hap+lN+nMSj5SA4JMp+DFai3cF5PP80bpQI6sEgZVieNJsLAvwetzlaMiC/mXUFtvPnxSO8zeFKdj/PAf/Ex0JP4RywKGlDVLeroLFbQkkETSZ93utoge7ZGDd524Qow2Q5KkPAYd+4NgtxRhcup8lZ/hB4uuZQ30jio8uq2BNfC27HZVB5+PKYGS1hxzupdIR1YtsuRnou85UcJR0gq3nYslae8gZLTrIIVgYDklIoF9pERSKr6VD9+35hPpLsE23hqPO7+hB2E4471aBHwWVIMu7ic2cc2mOnCUcO72XGuokcWNbHr5qqIIDyRMo0WctTZKwgYEkOSiV6GLF25UU8NeBn/pE4uOVJbSzppQbVk5D1WZNni9vC18i9cA35j2qC8pg0fUumKEVSAPph8Eo7CMaLnBCzkC2LJGGpolDZjf2L15f9Q8/PG5AL4ltbJj+F90yTEjbfQIZbf9EVaNkIDSmm+xLEnnOjwZ6Z9ZAC3bNp4bBYD42tpPaLRFyfyrzwZviUF2TyQIp5XinczG+NvkNd86fh4cCj6Fk4Uq+Mv8RNkQokrLEcEg55E8+8oE4sEcHpjUowfFTo0m1K4Q+nPKBmw/nodSJDMwb8jyn0yno2bQI5b00cLjQMnq99g94/LxBXbVJINc9AgwDG7jcVh4irMex3p4yHki9BHO0p6GuTQpvWezAzR9i0bLoJX222QICs63gv5JDVKK5lnN2pcKg1V3OSz7NNXpjwCnxLtqkFNGxiIMU9EQPrF4rgPXFI+ydGAudLUwh2p2w6HIkGYx/jhsuZ5DBF1+6ESUI7j/WsEv+Hf6gKQPx76y5a1UZR4YmoMTQ3pYUHaU7Y36hq686/LEpR8XvgzDcyQiE7yXD0fo++lmqDRatESwkdQ2a9HfQl8kScPt9OLoXa5NxTg6+3qWH63vKcHTfJ6iQT4Oi//7CRnUznD80s8nPT/Dtsz5wROUDXuj5Rx84bKhHV0L60nR+3OiBNQ9WYpGuAqQnBKJ5ZxOlxhZD2IxODBCMp/R5x+n79VHQeXoAnihak/RcVWiKsCXjq3Ew4ByF//KmkdzTK5x/bRNLb/TDtWUPwKgwDpaVGUFpmCQcXMj04P5+mN6oCKW5xqyxSYsarxxnzahq8PhcSTnjEdoz5KB+52NaaeyLPlfEaLlBIK87txxu/v97xJkaiDxmADqWY2GeeSz5/hvPn/bUQfcZaxQ894iFgxNR4sMCENj2FdrKl1DyPFHQ3HkPGh1vgmWEFAUWGYL07BHwpEKZXj0fZGm/X5QssIoTtQSgpi6Gvm4PYy3Pemp9Fo6+776yRZMaT19qyheTpXCNjQ36OAlCv2ch1OsN0qgDh+nZhwsofcoCjg4bQZWNaiSyLAniPIupumckjDwzic3OvYaZTjP50rirpDK6mCxim6l6YhfOsy4F9cl3YWGkE0ieO065AduhOd4N/ku7yUWiUZRpr0BzlM/zvZvPIMHqIfrKSkLI/iCS/KzHtaoytNihFqduf4izzMJh5qS5bFATTS0qO0FxlRkkJtXy2qID+HpNJV4ffIXjDg+jIx7F7NZlwELjVWigbjyU+2tDlWgITTP5hudf6+JUnwZc325O18dUkcTIIAoOlwSn4DZy2WcLS3LtqTUhAwxuToJr96IhxiEcz6/JAqHL62lM7hYoja3B8ZcQxNrM2fZzEk14HcChlk28PyQJrb/XceP478TRD/CxSAgoPDMFibdzwSkzhpc9nAf5Xlfwn3opZs/Nxh68BzpZh/G2tTwWDSjCiDm23F2kQmaXloIzS3HxDCluV3iDfbM78NnTbvxmmoYi5cPBu1gAphbosWvWG05VbePvNmsx/JcIhWhNQYvaKDLdLIzxQz1d/PoTpuh3kZX6Htq0R5FDtD9wcs15OFCVTzpVC0A86guzowSUCsrj1XorbJwghj/tfWj92yTozq6HUDV5Cj9ZCr/7vbgtSQcEXN5jnPMltr3gwmNXD+N9svkcNtCBubapZHiwBifdvstaCxmkL4+kaHU3/Kw8F4+tzSDH2afJI+o8dbXvBimt1aDjbY2rj2hA7q9CWuLQhE9CZwG8uQ5v9fNZtNGfF0Ad7b4QiVZuLnBfSxsCRK1JqoJhy6pDsK/KGiY5KPD9kaL0Lm6ISxTOUajAQjxorABykrlgqJHNjs32nCp4kE8Nb6VM4xlwObUDCzkQGzXNWWCbFbxo+cYnhF142RlR8p/4A6xc59FetqB5g7to9Zc3WCEym13XqcOZR2JQNGk8FHe7UulINWrQN+Jtk7LIzd0VFu+PgBmWliDiJA82rj7QcCCD5Y8Y46yjLizo0shffC1IYl0bbvv9GeON3sLAdFOYHAKgJWXF5wUO4gLlRpTZ8xgfVD3mLb/7+Lu6Akd4tGPUz9HwuuII2xk/QYWlzTBXQBf23xKDXtu/EFg8g288kALNvR5kuEANbjw1wvXGU6nuHLL1pBDwCryFx3ymQrDREFduXQQmaVn4YutQb+02IxtH4GX1ziy44RW+GrkMV58LRM3zZ3Bb72KwOJSJznZCUCgrTv/Sc/Dt1mw4ldeBsnOX4/olXfShXwh9S3TwtL0mVihrwaqzE2n2sgGyuO+KwS66bLlvPS3UmgotH5vBo8oezgrOwt9LxSDK4QUbv4rmGb1K+HVuL5U/16JzXsNp0pkwKjyRDrbl/6GyjRG886vjM2mOXPjvPvc299DTTVvQYjCWvn70B2Onrey4oJXODNODk/9yYMGfWiqw8uG2fW048p8vXL6nAjq7lqFJiyI07HwIQkdsIaKPwOlUPR1yAb7zZSJ2rKrB2JWTYGZYFMzPnEAuG/oh4cEY+MZG1PvbkMYOMcLivaVk+HoKHAwdDULsRmorCGf75PHJIushb4xnLzczdOveyr7tg6yWewIWexvRtf1BmCa8mDpHy8JeMzOY1UOcP+AGOrId5NTTTLu3uvP172Lgt3IBnssdzqUSlRiywQjGJmzldsO3nISmWHT/I6+foojmrdt41GFxXlQhhhMqTUmyVwgGWn1RdvlzCo9IZB1bBeoI/0OlAfIUdS+eTv1KGcr2EzRjmhU8vBuGXqebQXGmJt5ae5xTR5rwSsWvoPc3HN9IfgSn8dM5wF0BbK8mwODxsbx6oweoGASj+pB7zlg5naJtzbHkmQLc/ppK4msNQOq/I+i/SJ0C1OdDYG8anskTQ/l/TfBmTD72dwzHqxbFtMleEwwfqEBuw3RuDagAh4y/MO+SMB5v1OBx91eiW5Q0X4uxpjejNSF27nGGVwfZBJ6DFGxEYbmfPH0W8I8DEXRseznXNBbzmmY7GHZuIvGhsaDy6STu2VsG54NyyZZWwpl4Ef4TeJuiauohbKkgqM9bz9dqDsIqrWpMnzmZ1NQX4dpWX04tHAPbMv7x4A4dFq3UAtuwDNR1f0zlRf+R0nxx2n95EcxtbwT9g7Moe/kX8PknAA0y8nBZYBuPkUrFJEN3aLw1GoLs1enXKwMofT4Jw5VFaY9kIY4/oA6dhdMx+epXCNz1gVd4WLPkshU4cYUh71s8imcE3uOvo3vRarQgKGX0c+TvnTRt9V3M+y8Gd3Y70u3ro7B47CdujQok62drYHi2CERXmpCJpTh2+DziXWUfSNJsB94I6+DKNwVw5Gk57Y4uI5tJQqCS8QnrQ/X45fxAuNAszyN+rcdR515gn9RZlNozldxyd4DSMUWYNaIajN0a4b/7nyhMrwQPrlrClWE78b+TG9DlSBzuWFoE0/W1wCKykwMW5yAYF6FSvxTqX19OFwNmUoh5KMllR/LTwDTu+8WwSOI9pn7+gl83msODnZNAe/wVnDf8IWSpKoCp/AsqluilyjGC4PdqP4/C5ZxslwgLlp6jVQUHcdmmXxSEH3Fv20ycUWkM6ZfNQN+0E3eZPsWX++ZSdfV0uupoA41r1PCTrzJG1kWy3TA9Fq+1gAiXD1ClGMa1VT9J38cIpQIbSaD4BAuWLGWVKbl0TzkWjhhagQ03YsPTMazzluhirBLrjvWD5b8nw8xTV1n6/WKetvsapPbowtIH6qTgNTQja7KpPiiTW1t0UTBOjBKOepGbTDMZHTbAhC3KkKz9gzP/G4QFORdQqW0i3/YKQ1vpHyRdG4AXj6zkHZGj4VXiGOh/8B1nm22HuwvXQPudAhz9Yji/frIQV1x4ii9micLOWfIcSgg7vHdSVNt5TurYwGO9ZnPZzGxSOSDM0nVj6JRzGB9ctYe9nw3d3/VOWul+jYuXZHDKvwraGV+DP2dpU/Cqcfw31hwcViSDYoUanH53HObNbcCeBfOgIjgB/o0SoldLAnne31cYF6oL+0yO84ivw+Dvxzoad4axxKCJ86OL8GKVE+Wabsa6zhto8k2Sjp3VpF5fA/A2HMRvibd5sKoPxxfakRw1ksLl92xpMwVicQBjy8NwS549fEm+Ti3qJ6EmaC6kFRlBhosanHu3m5IHrsP1sqnss+MDRCRLwcsx9Rjq2sV6X4RJ0foBdg5/AnFJc1h87GuoTEjgX7tnw+OlQhDQZoG+Ayd42/pVlGKvwvann2Cv/CjOtLiD61KtObeJYVKaOGhZjsa7r57i/jHpJCecQfIz2kD1ox5KrNwDH2q9YF3RLEh2M4OEf9JYU3iLNwQao6BaNGVUrcXybB3+ERVHE81305upIqz2zAHCx3+mansBCi64AnsmvkLDDQq4qGUHnq4TI4WPEiRbkw2VbAZfjz7g0Rc3UOw6Ld53ahRba33iFz+7eb/oS0qzioCadClIWG0AUR5j+NYnQ17RPgMlpx7kNamf2FS2B9P6/vHcvrfUuasDHH6Mhq9Wglgy6jM75ASC5+JfpL5pDaad2093Xl7jrtnKvHNKECz0FwHdQX32NwnCGaedMPFZODX15VLyDC8yUtTiCazHJ0Pb8dBXGbikcxic54jiNtEUPvL4J8zNt+U54u+52SCTM3Nc6OwLFxw2Sw4W+w6iStJmtlqjQCXh/8G+yh+ocVeTzFZZsIxEANpLdvBkv5Gw19qXN+pPoSzB+VATuQRD09/hSZ1Q+EcX4YBnCK8cfxWHpQ+DL02tLF+9BGw2fsOdeXMoZFEU3FUeA5wrDk+mIS+6EcFxBRow3/0Tuo6TpYvzV3OV+kgsC7zLV90iqGSsODgLPKdGteu4+KMSyOQLo1phA8zY/5wXa9/FDbrpmLb8CL++XE/WNeNofkUlwtExcFDuCfT/95lfj3HC/jl3qbRJANfVNWCzmQL5/veCXeWvwL4sKeiAHdhq1wqy4zz4VoYXzPlogjsv7YH+l+fhWJ0CVpZoQb63JkyKuc9S35bS3LJ4mLHRHR4HBvPKjlzMcW4Hw2lZOP/BePRysweldypwpU8LT/44wyVjFtKubS+gKV2YsgZ+w7n+EZSSLIj6RiqQukecOtMk+FJlPdv/SsLVMWq4sGwsfrq6kvdXn8XNs9fxzf2CEFpSQi0PTsCLl+so4N9CuFK5Br9cbkDzB3G0NDyDT1xZSxFnrSF091vu/LGX6+6544l3FyG0tZIWndTiZ/4KGL3Tlv+KFsPJHoYTQU44X9wX27MDOGZxEFRY96LM7xkktnsOGmgtgT2DS0naVQo29xAcjJJEo7oG2OHWCfeFMjnigBZItfvjFGOCG417QfigAdQYtOOFjBwqG7YbXS48QPlzd/i8zHDSf/QVi55vwr0cxKdfmcKV5ngMf5sI60/L8o0JmeBcdhumPRPDtR5DTLT2PF9KnUBlf0VA7Mp9Wqzcy/0mt9gsfTwZOCpxpvgV+hSylgz3hfGUrib0CdeGYIkM3NQeSPmBx9k77w5Ju0xlvUpZSFC5SW+85LBm0Sx6s+Q/KG6aDpOcJMDbu5BrFLbRhkx/jvkdBoaXrOBe3iKauauMPGcLQNUVLYjISiWxiGQ4We4MSsN28L2tWzjQ9jM8qHKGM3AHcpWHzrfOlQPSxflkwx1cH/uIXmjSUFasxgcq4ZjSbck7dX+TznpteHJ+J7iUdEP66wF8X74NBJZV4K2KMDCTDEA3JVu8DcPo/Vx12OZ0HFV363L/lhI4+cOJHVN8SWFcDgvcfEw+mzaQwtwW/LjGBKLXrQblgKvYcPMDWtdW4YLQDlxuOQP2312MP6Y94x73bJCQHA3m6wY48UY9jd/0jlNDNuA7s4vYeeEPPjo1GvYuL+N7yrN4daMKSGYvAyo/TocvX4N8KXVaUpmMq4Is+O6ekaAW2oZxu86C5xMBWH1qN967n09bC7eRtm4N2/UNQtCcPux08QeThGYMsn4ATQ8RbAbGUb+nHcb/u05WnR9w4sx9qG9lTcmHV7GBdSikNJdgj5Y8VA6x9iO1udAxN5H95xZR8ZcVbN9QzX8WJuDlaYvAd20BG0SIwMhv+vTxnQ7Fj7dAAbOTvDbalIpxPxZ/nsUBv3/zoPJLXnVXBmJSTFjs0Fe4UqTHGTFx6AW7afqP1Vz0shknDC/Dy1Mr8Os+KYjveUpnfb7gpIR0UDSZh1vSr3Gn5zASWj0FlcPe8fyHq9EhywqOaJuA4XLiKzrPQVYwmn6tXwpaXue4WvoDbFzQz1+nn+FMYTt4u92TFTJzaVnsTyxOU8Pr4w1pzmpdnrJ8BtmrBMDPPh0mPxuogWCMWbuWjrxbgu46w7Hk62X4+GQTN0+9Df0RmjxzuzdsfioJ0geYhWfKQvpIbVo9sYTWS0iR8dIKtlp6if1+t1Ga72W67CMAKgU62MQO+MB1CQUX22FayHDeZzeVI6JC4ZjFSoxcog6Vz4bD2lZxHlOewsbfruCJfldyf03YPfCKz/Y4s4jwSO5JsEPlqUP8vmEHvpugjeobwmDsLDU2ndjJgbHCvN6gl2dfVOKHp9zx01YRiCz4h0vv9vJtK2F6v/8T3p04F4P7m2DXNCV2VdTAX7NO8pwuYZB0uwRlJ46Sn0srRPgdhXkjNbFwlRLd/n0NHvf2wuyy+fDiixQUnyWyz3xPDXNf8HVPSTzz8hB+3JtAKl6NvHVpADr0TqCKGoS9gZ0w8vl7bE/di6vfPafvlgNo4PwUx6ueoYl5m6Huw0+62I1gKHaV4pp3sP7w06wzYRwcPhHJAWW/Ydl4CZjc8BKykmOhbboJpP0o5oLNnhBZrw/2N+YTRL/kqSPUQLf9EfnaE94fHUpGtibw3wsVkE50I8cn++hL/jfKMnSFv58zePu7Hm73MoDifVV83twUmjIWwaO1TfjxuwlWLb6AJ0qqcekmDd5Qfw+q8sah4/hdfCTOGAL3i7K8xQz0eRcE/lO3wiLdQZqStokOpg1n1UJDnOWmyP63rOFQbTGo55SS0LFukhgfhqYxBmhw6BVceLiJWp5XstrMpbhojTiYXlKlNyVJ7D09FbYfbeWdaafI/sROEDpnyVOvFnDEmCccesoO1pw9TmOz+ijfTgI9DqaS7LMITJk4n+9u+gBnKBjlR8YhtmvCrHEt8KfeDx8/KsDD7Y/R6ksEaGk9pAntR3FwxQ2Oe/KU9e5pwyfDC8Q4gcZkqYPgSHOs2h5JHSe3sNmBYdx5chGdnDIVPd4qQt73cn4kpEh/Pveisdd5CnmvjWGFEfA8WwRnzhjJtdUH8ewseTiXDewYVAwOMZ0okdHEU0blQ/7deDKFH5T+2Rmac6XJZZYU1Mlq8VGnb9Bsdot0ItfzTRt9Fhi3mzsMW2DEqdG0+5sDB60bmueYetb8ZwqaYX9pddRdeNlUDWmzt9PpLc2UZJsOOvJp2D4RQP59EglsHoGjdLrIR6uPB6aYwU9DZRYNTuYJQc8wJHQ05alZgOrvLZjx9hbhfF8sf3+fznU+IunEIPyj54OB051oqVEBZGVIgf82Vxx3ZC/LmanjuVg3rjV7zmKnB3mkujFeavzDx/b9pvAGG1jhr0GOmWX8/r9fVNtylz4OMaTxhtuQXrGXQp9L0AyzalqX4wjSEabQN3MeT1xYDLd7p/JywXR48TSAQq/N4pU6grinL5gitmlA7LdvZOFuQrhgGShLjmDFY5J0cZk0uJ28jGNObqeO05IwztQOkhJ3Q9tpB8j9bUJ6s0+wwPwuyO3QhxZYjx90S0FNpAv9pumAmXwLJZvcw4sNE6C1MAjPx9/gBR2lLOA/E1uKTnG2Ugz1VArBVqUUGN13nKKDnKDc/SNuv58N3RnRpBkyB7zV/cFcsAB+75YDuR1L+IX3Rk68IAcvxljzxHE92PWjAO4NyNK0Q3Yk3G/Bz+c5gJl0LFPscZwpup5LLVJQz6eF3t+X5sNaj3jeoal8dECM/d5bwrIzQ864t5crSh7gylfXIfNSCN0tTuIjzUvA5P5h+LY7gbKahkFvTSXNXvSHzP1u4ZSGhWCWHI7vB9/AJ7fJ2C7+gOytCTbfU4W/Y9row3IXHD6/bWh2klBKOwL+LjyJKocvc8vZ5yhdMgvq5ijBhH4TPKc6ncr2WpPl5FhYO9AKeWJyoGfjjjvk/PjPdHHQuSEOy088RQlXMVSLjMVLGyspp8KItQ+X8b643+Si/ArCFptxcq8dCFV3smCHBn7IecMKtbPxk5YZKm+Koub+AC4f5UmCr2dA+yMl2PPFC2JO28K7MDWI/3iIBad0U1T9e5hz5SFcMDgAH20TSfy1Jmh0CMBUkb8g1i0JTWcHSPq7BF+YOx3Tw96D7wxjbiHEmj4DuPlGgRf0CvPMkRGQKTAFa/ydKVbfnK8+rYDYOUYkf+crJ70XhuRAaXpp+piK0x7j5fvhpDnRmLf43YLCyg4yuz0bpj05TTvBDPoMV3LZGVfY3f6RP2rs518LBlDy2Q/Iz2nF8YKAqxrT+GkCw1/3dlgjL8R/ru6loK5C7rFbROcE1nPE23U0f2I2OK/ewOZDebrrzjBc9EQUy9TL6bTRLV4/8hl5jdoHcjIN3Lw7BZaNyOI3ERKQ3X0db7MPRtjL8eTXFXjo0xG2HPAEk8oFlHu1lCMsTeBAvCwsnnuAtz86T4/HBOLTWypw4OV2nq04F2MDg8lTLZ5l+/N5h50IdNWEwsZzmSyjVAk+CxjNp/wBXL6N7JrvkI+LBLbM2wK3s4aDc+d6FJi9nLezEM0/N4w1Z96A5W9aQGFqJhx/9gU0Sqai5iGAnXu20pdMO/B8MBPc3h3B6DAHOGP3FfyEU3l67T/Q2ZCHBcUaYJE9nZbtXw7rVyhSWZEuH7V7wuZHHVjUJh7Wd45Ar0NbqC5pJKyWPgaHo5J5UXwPP/I8Cys/rYeIxkKwj7fEayl+OEpABWU8RSGtcgQZu0fwgHcAy4caDpVsJf+PuPPuB/Lv4vgZimSPFMksq2xCZkg0KBmRGZKWokVKRYu0lKa0UIqSihQiDTKaP6OdEmmgFIrbs7ifwfU65zqfz/v919fSbB0ZqWqxzNIlHDJ6JlpnK8Lkp1Go9f4QFUfvBzkXO068LYwfnyRB3tZ0WhyYSmY227jOeCKcLpiDcWkHyDFZgccalUPrQyHSHnsY64bdQueGM5x59g5u/TkRChYmg/OqG0PZdhhP34vg8AUlJHsuhgoORtP2xgW8o6MTc/p1YX3pEqh92IoxyXN5q3IF22s/4xXbppB9ZAYFpceQ2dLpeCh/MrzpzIenf0Ux1iIE97YvwGbFo7jYuRzOOanw5e0uGBX3Gu6vQthRfIPHGQlwpN9ujBPcxtA0mn9eTeML/65gnuAW7NityXZjzGFyiy6Lr2zEV7uTeePQHcWaG/G0tcupzViUZ+1+zjlfF6NXkTVsfyFNsy89gEUHDHBnbCW+Y1dK8TiNfbc8SMnqB4BOLcl5jYIm2z1Yc9QWhCfkg3TkIn69yowTgh+xkKgND6a7wiK5D1z0ZhQYkCQGtAnwvfOj+KH3B9x84AfNtWyEKTf/gpzjfu6wdie3vxqQVrcbhf6NJxFHddZQb6LJaTUwq74UopV/c/vpZxRTd4fPmQiCb1YsvPxcCc1ls1huZj0sU3iBx9yycMRsGTbP3c9pU7ooTt0MvJxNwD3GDfa9OUwrdvlC1vA/FFQTAlNXTWLBfZ/hicl6TGxncI8MwrkTPdhGfCY07rjPenu88Yy6Lrc86IXacYJYFD6L/vjYwBdnU9ST/YAqt6/SxH8u+HRmHR0JPw37jzyhX7v7sT9AASvjVSGxvQxy7NW5KkScYny0uC/YFeSed3Hocgl0vDgIr/RHwCvf8aDh8Au3ZJTSJSMJmt4YRn2/nlDYNVWqWGANn295YtSypySXKwTrJwBnrathU60fuDpjJonV3qBEU1e6aFvN5cOa+fKXWlBpMYfMki78WD+PX34aASebb4Pnw2csOlgGr1Zexra9R7hk0hvIG2EF9VFCMP6YOHg4/YAAvwUU5rMFJsNM0ujbB5IPb+PxZ8vBOFwH9Of8wMyDJ9lHLQFvLDyNt7fPwQ7BIm58eh7nSHniv1WNeNteAUILrwEMmKLb505+tbcHXSQywNBvF52u9Se+lIkH3Guh/58sXJngg04e92CGkQHOqK6CAZ3tvEUtg6vj57O83Vv6blFAky6ZQc99I/R+GoNd3i+oaF0l5+aWsptqF3aOq6SDm0OgVVuNO75Kgtz1HG5o34ADs4wgvOovhl9pxMq9m+Hj26HeXqMN7z6exqIiY9A0l6MvnywhDTeQgLwsNMtvwSIRKQi0bsL83HaOU7Wg0IcW0PnvD8mOsAP77lDufCtJLW+TUaO0DT3etXH6HAvWf5RFeyMIeuaXcOHiZv7v8n9kF1CJE2uTofKgJx+c5YsLI2ZD5oMf1OuvD4EHuvBmZhYftfUjrVsHec3EEnhyeAruleyH0X82UYfYXJacNgFoghh0zVkNkheq0TE4im65dVPxvlhyNv7Lg67fueMk0WozaZC/Jor5hcfJb/p/bPhhGgcrnKJbdRvZ6bEjvSkcS81C5+h39ig4tH0SrzHVgWLldZTV5wObe67gmHljWf7ZU1ik70yzjKaSyIxJkOR1jXJ+ZQKNmUbafWk0yaOSbKXMqby5HY4FRNJwpx3s3D0BEp8N9ff4IsxwDeX2Def513wFTBK6xQKS7tTQ6AqVRzZCqLgUjD45jC2lP/BdHwtyljHlwZfDaFa4E55PNsJIqUr4UnAX30SKwdyaRPJaOw9s245iePAm/nBkCasM24g+8nPglKf70H7n0s37k0FXsQNO2Z+ggfdzYJzHB4jenQdmE5/BpptzsGh0BYUHOuEKeYbty/XAeKogtV26S+sS1/PZK21g/sCRPq7fw/5xFUM88p1rrijB2YGVrC1yitqtBjj/uDA97+mCndse4OyCM2DQMBqev7bE7LkyIBObA4sqBKlz3kiY/uIdGjvP5H8bT2HP5kDM2FqDMwsfsZcYg5ZWJk4e/ZJ9r5+l4aLz6PuABP+bdwSeGs3H4SaV2FAzige1psD+R7tod+o5+lSrwnXLdBDjL+BMu51wO2Q2Fiy5gDX6cSzdCJD8UAMuj7Knh2VfqMZ2OoQHHsAdVxvReO5JHK2XCC7ndvC3NzJwMusFNBkl8No2C0zdWIzuqh9wQt0HbFf9DtPiL/OwhkhKWGgE76am8I74eeT1MZoEN0ZyV5AtLt5+DRqcNvOh6P1843QeVWmPgHCpblIZyqjA6plscsQUzBT9qLFfgONU5tMzud3UEjecZ05VAH3fMviVqkBR8b1YrT2eL0zZAvZjf9LnTSqw3KEbhMN+84k6K7jiJAid/+lz6vZP9Oe0G4hNjoewRZe5QcqFS3UScfTXFsq0kYPRff8wJswDvt1Zidl5ZZAV8Q83+ZqjQuQ9kqksICF9ISj+Lgn99SOgcrMya+r58O6ZmzjPxRtutNnD1unRpHX1ATfduUgag/Jg/UYV3dZ7kkrQUbj3K5+y+SU1PLWF2LBl8NLWgg45FvPHB3rQVFcPvxauxJc+77Da9j69qu0nl7QZ+M8jglYafmdZt03oFC0JC28n47WWYSTqo8642B0ywgrwtE4h268PoHJawIf9lLF/nyYUvjeCuD8BsKPbgTqXboVpLjewcN4fuhQ9jZ0MM+j9l5u8C80g7WUeDrs6CCYdq1G2TZkjtnhg04x1GJb4A3VyG6HVSBFjFbUg5bs3dg/7iScCujFi/kg0ejIR9jv4U9XFd7wzRRL2XZ1MtptHQcEnQ97bsRN0sp+Sc4E0uF0XRbMQY5pncY31Y/0oafZ1WOmgDVlj2kl5vS097TKmstkfuUI+EQrV6sDj3iI8YnEU/6QtpYh0QXixVIbjXh2mKZfCsOTzRVy10ZssHLNgbqcLuUrt5+bH1/D38Mlwa5EYGgkNhxcFl1C6eAe3PdEnz/UTIVXLBYrSJ/OdCmWafkwNpq57SEs3acKeqE4c1tJPquui+b7Jfbj46wVL+7XA5NV9eMRKBv7FNw4xuxmqF7zChx7RuMnwPG2Y0sd/X7+gk1tdweTBOdp/Whw8T7nBJZOJMDNDEIdFHkI5/y9Y1DCVXXwC4dwFP9z7MJde2glDYHkydW0mura0ARfc2cK9GXZgGmHAvhfreaFnMYTe+EFO4cbw1FsaBvT/o8zgc+wXrETLr8RT58TzFPVqE2YEaHNRaSL+/iIKB4Lnkrn1A44frMKPu6PJtuc2Bbs785ctT7BBeAVNPaZBBbY6kOk9mSPtLuL5NZ/I99AE8M3/zAKxT9mhwxBSQ4rRibXBfrYWzJ8yAyfd8cdn85/zCNuZYHfyH//610DWb904L/08D6zwod3vRsDRVSNRUtWenzXX4rEpGyk2MZR2bWmBbaOcoUnoPvyMteb4ZAk4u3Ul7H/ymxd8QdDLHnLsj0103nk4pvfVcfB/V2ChQD4JPJ0Mvet2Y6ZBLh86Nht/n72N3eefwoG4LPxxfR+YhJ5D87XX+UStEGxZgTAuKxIX3O7iI97x3BkqAMOHWOeykhzd21iNw587o1XVGLhV9ZFovh3dujuFHz09yfuPvmcfyWmcU98A1+9vAljeDC6/ROHfiN387rwcdzf9oCuH5+Pc9T50AUxwwsAuKHGU5OpvPvj522hwvHoGU8b+5X1v17NyTBLIZhELCpfyrQjgvIbFqOikDld7TEAX8jHlmjzKOD5mknClr5FalNV9Hq+qzoA9Z0fRjvAjrP5kDNQGPONlFvPQ/4o7hYUr86LRotxyZSz8J/sC1T+7ofmTVXj9tQQIP/1DGrfDqOK7PxZnXcDl63wg7kY+xtcso3MiR1HcRhrz/6mAruE1MMsowFXTpsKfPwF4+eJ7GKixxjk7TnDoDQGsjSqCpX8AAn67QpWmOvu318DthlR632xHCZMXYuTsDHT3+QYfFFNAavoEULL7gMd8XOh8gQHWdyHKvgmjW7GGdEbuFM2U7ucOV0F8/MwclmgZcpLeR0iW8qR006Wwtsmd5p/vYbl13Ww7xok6lWQ4YY802LyazJKhHSBGYfhkZDuNjmjF9SJFLF4SDrvVX/DhIytQT3o8HNqbwC0irmTn/xO+y8ynnXanQX93NzhJ74fpXRZcU1QP836KQ0wQ8cxoPWiU7qA/xtNRMUgTg3bZ0JVoA679t58Tlh/D9iUToP6yOte3ifJN9w7Y5xBOiQobqGxRCIje2o7bV2liymIN3nzPBiYc+Q5ejku4vsGHpQYv8mPpg3xI5DrsrvgG36sjqbevCUzWWIGDYS/sr34PC1d1stZkR8j21iLlyAr6kTeezP7mob3YVfa/qwPRs1bDapF46l53AePvj0RH/Tae0dXNeXkj2aT4G599Xc3LZK0hM2kmOmW205Q2dTym0Q3+vamYOzR/yz9efHLmfnC9bsRW9QJgUjSX1MGG/UOLccG1ItIoKeEz32eyuewtnGu5FzbL9cDrtaIAN4nrYj5hbGw0mC//CHMzM1j7lABciQriYd51NHVNPBjNk4fBW3eG/mk9PDn/IZYIXeL1ZW/g34EykhK6gLEjHPiI3wBOnGgCn/4Vgp12L34sGICfHR8p7ZosHL2XQ6cFFXFvTxMsXq0HN1LlYNgJSa7LNMNW0RwIjRWEJ1M6aY7aZl5e/ZQztkWiepsT9n+QA6XQfdggdxs+G6nRG7lWnnR9H5qWidMtxzE852A4P3CQoNVJyjBzRACwYTVK+YuB5fJxWB/uBvdNhnzYRo2WeBXSVM0cKJQxg431G2BqgDU1SZ5nD6eZnIQy9DB6IlTPzsVPZSO5XFcdZqQKAJ37hVeDi3BTrwg4hnrCQPFF3OgbQomv3+C++3tps0EniUhYQZHoKpyR+5H8N2rxpUIbCDK/Q0ucGK/9FIEVJ3tp8tEdNKlSCGCnCjneL6JLzUYwz8CKHzk1sZqYNZ/Zep6LBpfgRJl9mBk8DoT9JkJEkQsbL/CHiHEvwSEuj6fvDaAYhQL6vDqN7249TpcmAXDrQdQ9twzCG6RJ40IS7x0M4bGap3Gd23f42hhKbSYj8FSlNZS0fqXhdo4kqafDiqmPIDg3DQ8tskKTsZF8YPx5/mR4ALxRD7zzSjGiYRJLKspBXWkS7dcK54VGmpQsJgVnLi0mkUgV2j5uKF8yxTg//i/d8eyh1KpK3PF2FLo8GEEbxswgxSsb+IVTDJzLHwa35muw54kK+jmowzeO/eU7TVWQJJpJ4it2Yr5BBEYPKFNfhhWM/a7N51f9IevQNAzLeQWqMnf5w2dttjFeyyXOu9BkSjwN36UCZwrG45HxVuS/fAMN2/2FNo99zTnbppP9XlP+FnYdNLYzCGvIw/5NA5Sm/g7Oqe5io6RR8GRaAaS+Uia3s4XUb9XLhtHLsMlPDkZZuZF97kWMGvYIHHJ38LRt5RA66Ihje8tYdlUv7zctp09+gpAf5UBb9W+D9OmzLHNTHVw7JGBjdhOsGybHE9UmocO157A8bQQEyQ2Q0DFJCBn/FebOq+LfXkkodqeLQ2aFs/uofOr/PB68cmRgTPFrfuYfT+/mHQStw+Po8r6VFGyhwHcs35DFi3t8bet0MNsiCEa9jbTTWZDH6uXTh0fzKHv6cbomOBPwahZUXkik1CR1HPFaBEL2z2fvOT9Z6K8UTTmRiQ4VT2HnCgfMa/8LhVETYYR5LLYm20DO5FXoJBQFf3eLUUEnwfCKeRxrY8Hj1PRBuvYluyqn4MUWYbAc4vDAhUY0rioasn9bo/oVPZq6+wsG3ZKCwzvW42PVtxzoYQXeHXU8N0OTilQPQsr4WxRjNYb0fk4FFyVZEgi8x/BgCSbEK0DHmxJU6VoOCvu7OdJfBb1OmWPldMLod0/48tqn8DdxNyutEAefWT/BY9tc8pBYwYbrVnPlw5G44tsNzp0fRwebA3mKbQQ+GjsckvaexNUKt/Dym/vQumAD1Di9wMk6OxmWnyVKPEOv3ldi1oRJ4FkSweMb+rBozHVclDUd39w0gidi83iHcwXrfutEaadzdHuBJlxeIICme0tRwuEUdi1pxeGqXvi6/Re5B+bj+oJWSL+5Gx63CcEXHW34cWoy3fEw4q8f93CQqTuHCXuQ5NulOH+MG6x3uMdnx0iAnAex1eqHnDXJDfz3Lcd/crmg39/EF7a1cnjiDyr7p00V92TB+IM8CGv3kbG0FBVbl2PduVW4+L+JVO4+C24P62aTxEioiLIAvTPy0LTdgUo2p0Gq5GQqUQhG3C0H/Qdu47pl8zj8vh039Q5x9AVLupqSxhvAiM4MFtCExndQ9zIQottHg+Wnu7hixG0a6WEKA9tOk+LXmzB1yThq6tpHKZmKXCL8ERYM8eDJJhdo2VAD5R+0YM764ei1uw8vbbLFZ3XH6fCyaaip4Yw5g5Owuno3X1Uo4HQVabB1jGbBTZvwW/JWfvXtEg1+SKGm1Bje05hON+xlYd2fr3B1ng0I3VCgyFRB6gq8R1Fjn+DKE6moL2EKstPnQcTFI2DnVQjfFhrDvofh3O86hW48H4FXms/AvewGtt1zHP0FkiESamBZxAgS7NEExeAHJF5+EhzEjvIyv+no/bERm3+3gBFuBa1FTiAXfgD+3lYDuVWjyCgggvp8+nGYqzAkPVGD1U0mYJA/Ez59XEAC+VModPZYuBemgMZ3LYCyRmL1GVleGZGP+09FgOr5Y3hBsBcOvb9MKlNMYE2sAZu8y0Sjk4582mk+dvp9JN/EHJZpk+dFA8HgtasVivImwc3/QkH+SBqN6rLGYS9lOWy3Djq/AgwIzUNP1T9Q6hiDtTWGEP+8HmZnHoF7btNY+Jwxv7YUwD02Z6HibRWv3HQAuzreUPAYczinlYtN2xfz/IexINbXBUtvdeEuy09k+2Uptm20oId5Wfjh2WSAnplc6PqBKpN/8BKXY7jQ9CzsSfmEUqzLbe/sMGfxA8hMUIFkmUZMnCWCBe+vQ0txEvhfbsPypD0gZnqCNKZF4V6FOtTPMYAlJ4ecInIPBIy4TDcdr6PzoCEM9/OCTbWZnNoYBkpzbpJd6kQ4OHSDc6pvcoKiB39behpqPT6Q+VQhdJo8CJYOC9H23XlWmcZQ8sgCu8MWk5bSONB1lqN6tZ3UqLUdO0NaYZVzFrnNPU++U3WGeEOIuy1DuejKfXB7u4mH+86ipsaDmOdRRtUH1/E36fcgIakKW47lsGZWOh6SVMK3pqVUXm7IPcUK1Db5CFwXXEknFBpwb+VIqFnzEA0PVJKykgid8D6FCloi6DjKmN9NzaOau4m8tHET5iT/357/hVPLRWiskBAarN/IMQ6t9HG9AXrbjKPDB53h6KVukPQ8AzO/qIBMoCRr7H1Bgf5rUMBvFHRYXcaVNSsxpdUcjJ8mw7gxOXhsvwQEG5rQuZknWK2sFTYM6MC94RIcPPwT1VbE8OwGDxBWX8IO8qNg5+9v9Iuf0GVtKwhvrYb4zHISzG9HqjIDmzmzWGHzPBxfog1h7jfwelgLrH1ihv5l17FrThluHz8O5OAiaPe5YxXcgeW7ZOA69PNKXTcEjTMI8zfzxoHX7LjkLaeYNcIM2+/0qs4dJU8KQXO9Lu2iMbwx0YuUuBtil2XgsYcqFO+mhCZe7axpOBecZpiBrHAJp1wRReWTUXA3+w64FI/k/uAo6rrVAsNsusk6xI4MrpiB87RYslo5HhOD13HeHmf0q1DjxTqrcOfnbJDPvE3Jtuuo8MuQnxfk8zqbHDwxr4vU2ZXjIqbj3wklVFm9mUrWrka97A766TceInwvweEnF/DGkQ/U9WUujllQi3EVzZgxeJsCGjpxq/FfEEw1geyEJP6x7yo1Vzyll2X5IPx8NwQWzsbFSYE8dsjhHBp+4JZLErC8fzK9necMGnE7uNS8nCN074D63EsovP4bXbQBPq/ZDBVnzcDfZTtH7Rz6vtqLXCC7AoODruBOu/24fLo/pNqcw+m7zoGFphH0RK3gvSGbUHvjI9q7eIBCvlvyMKkhRpVYQ1O3vsE6hzJ6uUIV/mZtQrnkGUjaPXzqxwAFdoajrbYcVUSZcmKrCvhlR0JyxBgIlnqCFXCVR39ZhI8PXwAdzVnUJ+6MO7e94dl1+VD0UIEe6KrBk6CxrFNlQg2/nKiqt5J+2gtA/m0Rzj1tDE+yXPl8SxqOkpGGraVTUdwnlaPP/sQlGpdZUO43N+lOpRoPU6p4cBk7EpzYcIcMeLsWcsAZd8wprwX9t5Oh6NtjmvDrHI9qM8eo18LwpK2aVSYOh98fZEHxoiP0PfXBwzbD+LrFEb6aEkMK/7K5oyiWHnw6zpYHBKH3/Eeq9gsi8wkrqSqnlGO/OfCdNXvY+VUuv5HKwzsPRDAqUwu+T0K86mwABdsMUKL8M8yfM4ekl6zFiWdEIVSll9paReF+ni54JElicH0yvD/6Baf2eSJMVYb3uU0cc6QYdasCsDx+Cin+M4DF3bP5ZMsuEr6WinNVRVlG9Dv65ZzCT422ZKmRRnP6E6kgQAeOnS8ly3WvUXvrY/DUPADr82Ox9uwh8DQbjwEPw/im+LEh7x4PJ2QC0PrgdDAlDbqDI7mF/Nl3VBclqt7k3FYdtE7JxtcWk2D2z3oaPGsOv8ZGk7zmRKzL3QjG+1ZyruEH/jNPBHvWprDkJy0oXS+Jh4YfgYPHjVHD5Cxs1rRF6TNHeHiJH8j88cK4jh08a4E1fEyxwyDjGjh+VoPaVRbS4b4cvBygRiq0BY9l1cL2kx3ckyMJygG/afF8Z3i00pgOPJehrxpfKDPaAAWyr0NNjzLeS5jBY18OA/fkKIjLkyDbvxUg0KQLrQUTMM8vnwJLLdhweDxHRZ2G4i/y8FZFnKU75TmtJYJXTl0IzTUv2Hv1BBSuj6PnufPITfUJVG0eDmWJ7rCoy44e6inB3+8rsOKaLxTYGUHL/U3w2S0B7WZcYflogvTfO3GH4h88us8CzQ11abriMMz+3A/+IzVgY4QI/SnfwcPsrGGMvxnzr1FwP9idZKqS+O60FgJfQ2QfTfhtu5+D1ULworooxPmqoczqefx5ZS6qrtTDjmJdfBuSioK5a0g3TZq+HNoHXusEIOmCAtDZYFD9e4QSDNR588duOqk0k1elq9CXTafhVnQUXhlO8G78C8xdVUZb53uw++UO0Oo8TLul10Lpz42s8MkS73eqQEG0Lqxd6c/KH5fCdwUXUi0J4XU4GSwSTqJTeiHABCuoe2JEB9fKgaDIPHxW4Mtjjpaw58qHMHnZST6grc0HhIN40eORlNiWhOYPTGCKXQxHK/rSlXwDflFwgquElOhr6FwOTjiCYt+nM+e7wK5YAUi+xahbbIDHPffCDM9ccMNs9G0yxjfKFgxjZsC2IA2UNZCBUIFTOC+wC+Itw6nhwksOcs7luzrLaYzsaSz6EgJd0+rh610tyM5ZQiqLl/Fbwd/cGPsSTnpl0d7VYvCt9SLLn7TmdI9b/CtMFpLWnMK5Skuwe4gjJBPCWWK1JRp9PMg9gY9p8LIe1H2KgYRbJiD42o+uFAvju+KzWLI2GdvxDZf1X+VRxsIYrOkAF2wlhphtPIQX9cKHlJvoHc1wwWMhFBl1s93L1yB4tBbSrazgfv4BWJSjDYo2eWiSZ8RnY9TZa4MUKJca0uzdt/GvaTFZTPIkp3ubaK6/IgjomGL1Vm0SgEhOiBuEuTKf6Gn3AbisvxnCwo3h9PQE3lltDhn8jWpldpG9VAb8atSnpKjLKC55kqZPXk+K5wQp6UwGhWmLwchQD6xdZk11ica0d/I6cvn2g9L5NRpt+8oTl8qAiWgla4qIwkvvNWw7R5dqPZby3h93WXyfCdl9r4YJI7NA03cfBJV+4rxHDBsuC4F+fRCObGjHC/LlnBdkwPlfLHhWSRz4F2wAy70X6NJBNbCScISJhRvZap8Y1ule5BX6arjtkBBXXD1E70s6sLj1KcR0Iiz7/pvFnyzkqBHl+OdgCxx6ep6fjHhHKz5PhvnnJpDzpACYHyILglJh/EhMjS8oKkCVtgV+stTH3kleqLx/JStK9LLOPGXcbTAeBBQRYaswPfK/xZsfdYJ6WSSodd2jlJ9X6f2JuxhxXpZttujB+i/HQO1zEW34LEKqY6fCIl5Ob0Wa2H0P4YLR2ah6NxH3d+qBZ6o//3X1g2OlaZCbdBmNcsX5i1EPKJl94dkzZvKbiOkkcNMGHObvoJ+R9yHb4AONWOOCitX9dDdHiv19H9ORcjN2+2FIloYi8K3Qi9Qc2vG4ynNeF7QRv6w1ov6+M5AXt48WwBreZF9GK5xk4cI2dw6w6OFlnk34n8JzOFC8H5Uqt8F8p4eo+c8X1bdWkL25Bvz3JxRmsTdqXgSekbaKlXw+gPZXZ3wVVA/HiydT5Vw1OnFGFb79Nx+/FIdhyPjDUP58KuwxW8bfHXr4bO0ccDRUx3GVPqDaPxHeL9UgeNTEvcKThtg4Dt/Ze7LCr8nQN2CPIS49ID/zHkSvEwb9Jg3IuZhNsGkydB2Ug7ap5/CTWzI4HdPGYr2N0DrFBbfdMIBhB7tAWdIU0l7oUvq3Ao5dvgubJ8zmnyuHD3W7D0+jN6S6XgscZ4wE2fFGEHQgiFNmnIDhRZJ4oXsTTBuTD5NsXlH7g9389ZAMpAS7svuG8dhjLInjjJyo7VU7bK9fQS97HfCK3Acsu2DBxRt04Pfqi7RvfwsGrLWjxqNDLv33LgUKM5Vll7PYSWCpGYKQnCAEeECWQn+34/Tn17l7diAEft7JD0b+4M3//QdXTbNZ6bQ6fTYZAXnX89m18T3O+qCGJztDOeF8PO7dq0u5s9RQQg25ZrUSK4spwvsRsRz5PRJ/9LpS6VwjiuhoI+3fE3nCcTtIPSTG/67f4dxoTbg2ooqlpk3CYPbA3X6/Sb7ZGReUn4McgXb65aZAH8vSOd1GDGyOioD4Y2ea0j4H7hT5oPF9ARJuaaP53kG8y30BTF+sAo2mCjBkvXA5yZmTghkFO4FjMjVpQrkJWbVewbKyfupXvYTL/srB46/6UC/7nrRb3uGxowOYtPYSvHyixdIhV+H1pxZ6cyGdKxWF4eaudrZfJwsu40tIbLYdygwkkFL2Vvza+xpuxGSwtl8r1w/5UVKCM7jdjiacZ4Pzh3JreEst7RNIwW5pbay9mQIjznzBKJWJoHLrLRye8Qr9BF+gWo8JLr7zDqQKO9Hx0ksQmWXN9VG51DBFFhw9RelB3iKQ0TvA7238ydDFkc5+eMaTjISpcXkBF7TmkfJuKfBV9eXPXjWgu3IpViyQxPcxzZAWPoqKBXpod5AavpgeBRvPCUOmowlO8f7Cj/Q3gM29FBr0zIHTvvLwQ0aEFxbHc5xuEflkCML8mD2csrWUNl4o5tervqB3+XvwOFLKZ7cP0rScPmhN0GSXYQLw11qIhptPgsjJU9Hh8QOy2fKQdrl8pd4lDTSrUQRjo17CygkEExUPss7Lg+R414JLxHuordoGxyUMUhAKgV3hczqs7osbxqjB6MEy/qFaSPmWFSx3pwfKPz1lty+R2FeqSGk2iJM6xvDaKAZFMUHe8DIOE3OT6PRScxQpkyXJW8KgnRQI7qZu6PJzEFFGDvbtV2YPi3oa/XwWKxUdpXFLs2DlGjlyXeYIgjVRPHvuCn48jsHuRANXbVuBLorKeDfjCGauWY6iL4poy9dBHGiZBvZj+tg7VR2UhOSofO1s3ji8FGSEzpHr9NfEF/34jvQHSDT9C2IPp+C0q+LweNYUPrJtJq6cdp8vHmum0beSSLDqJQTbpWJpkwqsLI+BQhkJ2BWcRB+Pb6errc5w5lkCZprEUiVosP6T2dwKV6Ao1RQvFkwAIaqGWN9psDPuDh6cjPDtEINHWyQH2u/mvnOhKPWknEulh8MTsY9DTbmZHo5I4S1jK+n3s9c4N/Uv/ArfwYGtaih5yZN0BIfB9bP+vEg3mJVL00j4a/wQv1+H8tWT8GXQJLC1VGOlAW0OOacKt6U+43J/OZZyaOKDsVPZPVgd9EMmc2tUL+afOsWpGb2wP00JXCeXoLyDMzk5TMBZ7hc4afEGOHbsGydlII3c1jrUKZfYOGMKtFaqstqRQnYeF8Ktjdu53W0D2nmYo8ISKRBbZAyXip0xcosFrC87QiYlwvhd+yds29VEUs1SXKJ9HtKrb+CrNenoFvKS/lYOAwX/lXgobBPPkQN8VVyHi437cPpWHexuDCHVqJ007ZAd/I3TB4nm17z0kA6d6n/Aesc30aQPI8nwXjx/+H0TDW+8p8KGOxTUIAiFIutAyPgUpM65Q2J5RMPuh5H4oy5e/iKdhNPe86wIP56aIQ7T1/bwmbnucCz3DIx5PQx/DFPgE8OrUGVsHYxYE47fpJfAxd0AoTqG8NC5gB8cmIufoiaCPjbgqPFbqeTVkG8fO8knq07h/TQDGLXkCH+sfATfU/NIr2k0aHZNJb/2S5jogDxXPoaCep/jriIT0Bxjz/fPyUGSYChvDdFAdZtTeLllPNWOGsNqyoJoVhKLuQ/04HRoOlXffQMujXHwe+A+nnpgRelBXZSd3IDtqVU061csOd9WhxNfH9KVzDlgt2wbSb37xyfF63mwL5QPvmkmpS9KUAo5GN6jDGf0T8EbXx1s39LAmXZAtcbLcdjoKbjy7m9e8mEHVy+7QMt8reFU3jM6fXL0UObchv75T3FErDv+2mXKI4H5YEUT/HQQIPFmazgoLomFN+Rg5M1hHFnTRKW37lCqTQ+shc90pNSVTWqXY9EoIViTPAhNS+LJeVwNfgqJJsn6ENaNzOA43/WYrZQDRvci4fYZSci0iqJvR4/x03fTwXLxFrxgIoKFPlXA+2xoIK+Ryof95bcHjcFQ7CnKqopw5FFvXrzzEu4Jzuat597DgbcJ8EzoGFms/UpHr1jAt63+XOO3Ey/Y2XJ32xjMn9kCaQ2fMerHQtoQmct58Y8hVdgGNtTr8fyaBpxmWIhuG28BdPfQwl4hjBja05i2m6g7YSoFORnCevE99KYlhkT6MqjBNhApuB087gEeWXaRT4aOpa2Nb/Bt7ygwUn8G2Z6D6PNQCg41TOMpl+7wyXcDPNwjkiMWn2PBnX1clGkDTes+wMv8EZztmoZTNjvj00v/QPHYFXJwugsJZ7Mp0TKA9cbKwUe92ahXGYy1A9PB6F0gfPg3lafXZlCdvDBKL0mjA3GHON1UBJaKTuIFatX85mM9ptnu46gZ4nzIYzUUOrSA7utK+pbkhQEqE2BXoSPm4UgYGP4TErwT8ML6M5ypFQDJ9jdo6cJHWP3xLNywAHBUbgDRjArQWrMOrG5fgMpDthzYbA/iLp18I0Ica8Iq0VXPEg6rVKOBTRbtIg8IzxkGHw/NpDDnY3wvxQVWhzzAaw87+UWCMqx7rEirwlaRg74iLW4e5N/S4zl9uzcZUizOuDmePqfMg5m3xGFWbx3pXhKjpvrl3Km8ge2vtJD6oZkwI+4RlC97N+RrlpRUbQA5k+NQ/ugc3L5PGa+uDMDvh1vxuGgKiJRLwY2/C+GYSCuPuz8ZZqa6oe70ZhS2/YWNIx9Sc+cr/By8hF8VLePF145j/Kw9mHJJAMpy9vC0hdkw8sYJ6jxEEDNjEYqYNYK14gVc9joMFDpsMHIGwZPQRyCh7g+8YQbtym3hZdXzWfz4HTCvucxfbwdDZl47PPO0hgIzJb53ohy03Ls5ISoElYWaYM6AEdtfNyavMj3IXrIYLi83hrLb1+jtlc/0aX8Z+Xf9xZ1tddRGB3Dhk2sQZxiGsRsIbxgIQcqAGl05cY5/f4nix3dXs0zqBHiduJztPV15Xm0Y60aPx6C88dChk4ajr34E3+ItsC/tIv1co0LFi0dx1jY/CqLTJC9iRkF3reCqxVjcUPMUPdbtw3TDKRD7YzYdU5gCW+2egIOOEJZf8iZRZX1QHGOIPTrf4Ym2HP9ruY6z9zN53X/HlSJx/G1WEA6eFkCVSbJgcvgl73ygjqUTNfH5rYOcqtxC2QmHGDfcou/dXaA5pwtaftjAO7+bOK3gO+/0iyKNrX70ynoa/pvhAv8GfnLN2GfktXkxXlFSgQsd2aSkl8s1a9XAI/s5zUoIh3kS5mQ9dxueGNsBkuc3UUE/wC35TpoidZ1jHf25aaMovdoihmMdDeC/xjEw/H4M6LQasMMnS3BUvA6zl33EquNHaNeSABY/VwnPZMooa+UZ9N11CDNEzsI3FSvwNnmAgfdWQHeiBjsaKfIF4wgquppNPouJIoLtMXb0Y0pcYA1KWt343MgchQMe8j2lRzj3YxP/m+REP+va4ZVjJ43fMx90DDXhRXkEKCl+wWjlDNgnJMY+lpvgfHsoOsU9oeamddCe+hsdb4rCnFI7jok4TSkdB3nCpkKwTl2IF1cNg9SyaH4j9wlthW7Q+V9jQXt9DqcELYB6pbd0MMkGjqSc4J8xMuBjlUaqC7zg2IyR9NLHGnoE3FkyIpA0wtXQSC6fd1qGoeXE3XRaUp3vbb1N6s+zyPiFJqyd5UjHr3ZTWo8PLX63EHK7FnKKoRp5znmLwytC8c8Oe9TyHw0Co/bSpvyt/N26D1UvinChxCmqitvIpxxbYMOTg3S7oYDwpyqIbnfmisMjONqhEE+2puDu6gdo8H0v3Jvly7bb+7Bywz901Ec4ssOMt99VJ43FXyldzwtGernjh50rYNhpORDVe0b57jY8MEwSgk5t5+BtAuRS8AOmzjDD+TrB4PKoGZUbBHiadz85H3LmP4eFYF3FPo5cHkrL23/zITcLticPfBHmTJPGNuC3IS4K/CIGdT+EoPnzcBLa/guVs5p4MFoR68p20sUlaTDgHgnvnsZzAm4CY/exsDyiA2K/nwDtLgOa8lOar02pwbvp+0nqdRUdTgwiMYfLlDF+FJit7YD/Bm+Srr4GaqoE8dtrm/Gvfg79qi7B40lvwbztM7xSUASHv7LwW/A4fX6hR5K4gOb6j6aZ5udg3KhHFNtrhCmz50OXpglcXbwTtiTvwuXbl/KssC2Uo3KUzdZ30py1O3D24vXwraIL0x8RrPY8joqb52G3lSKU13vT38G/uG17MqXlG9L3ObJ4VFoXeg/JQuCTal4pIQUJzv50I7aNVv8SYLPc62SWX8sjuheDYaEYTpitAH2TdsHnNmMs7HCmcLMMXPBIFvQlfqDCnOk4Tn4z2Hl6kr+kHpgJ1VJmny72rz2D6bv+I0FlSRK22wL7vyXw2S2aECSxmld90gCnxRMh6FcA/ShfQiMOlcCZ9jZusfuHKYbzMEzXHadvjuUzNAE2Lc/lnw7dHPLGkqTu3KHIw6E8euUPDH+7i9SDC2n/uBX07bUYNOtIwAzvMeAuaALPH/nji+YFXFm0ie4HSfJrjSXktzYYv+yyAZVHzizX8IaTDwrBCs9lHN3/if4+9cKSrJ0caCELSrQDLtzUgmmr1rDWp43QJTmaZXIzMeaEJdwt7kfFzKcg7CLMblULwbtiIvzJusR005b/uDGNrK/B2cpm2OrkiOtqPWjCexXwPD6N5563ghn1a/FN+hE6unkuXAn1gjtRIVxz7xl/i2vnd7XE62+95/nl5lDS4IgrD67j0V+nkdTuKBgt/I9KJ1lAufVxUjKKJNdNzzBsry68cv7F62vSMWfrDlbfOxEmhSuglPF16HikjRUKLmDuVgrezvpD3BPAo7fq4XkHSw57hKhtIQxbD4bxm8O9bBCpQjunJVB7kxp0jc6DA/497Bevz5PmzeGI0U/p4Ps9+LPrAfXpmcPMR6J0YLMZ5FqtA+UzFuj1KZke+Blg7/erFOj0nD1TiwGbToFF7xqKMLQC890HyMTjG+yY+pXWXerk2JHVsCikCTKLm2jhl0mgLG/O33YJwEvpA/j59mjwmDaKC19corjkCN5veoWDSx6yfb0529YowsQDmqBkq0K/VyI90ljHc8VO8ULDbjR954yiv3PQNXQP7shTAf1nE+C8bT/smVhO0DAWzj58iLazp+An77d8a/waUPY5DeVFYyG/2BCsJ/ZA/b0p+HjCXTQz7eDQgH088vBlyj3rzMtsssmqywJN9iqAuuRdumSuwhfvSoHHa22sG2IdsypTOttsANsHp+O9OfuxaoYBPJojT7UJ1bjgO+PNu348mFmK9PUDxk8U4eGZo1HIQphPm8uCiNJ8HLMkgdeqz6MYRXXsOl/HF6fvZ1lIhfkHGN/stMVNq6fA6yZxznhxh+JuXaIb5degxDaV5t3dTOYxG7nP9D6vUCRKHzCFv5sXcvLLV7zs0QmU1FBhM6zm09qCVCm+HOWjb+G009J0SnEsiG9xgHeVIlA+TpZCL/1Hzw5M4PAn1bivSo6qJES48fFoOuOtBj8yaljEzBYu7E2Djb93MvY94BbxdOqIiuJXdatZy9SbnsuJQs+KEq5ZOAJePZnJs0tncdMofyxPPcArp3eQ3MQCOrn6D/f3aQHlL0GB1NlQvf81uTcwap4opJTzxfje+Qm6dcqgwfYiUNBSAuuP06C0+TdnmdygDdr/6NceQ0wbYwmvih7Qbxk73P1+DZaN04XUS17s9i8VFFpHc9ztZCiRkuajf5FCFR4MzbCZx5ecRp9SQzDdqs2PvJ+B00Y1WiQ/B5b0OVCQN5C1wCl4ZHWCTl23pYhzIhB2ZjK9C3TietkJ7DC+hT7X3aaL8//R8/8OUaqUF8iVuHLpTmU4u+IAHJ3iSNnVoTR1xVUozpDjsKxKSrSL5eWzPCil6hecrzeD3tpWSI4fwMREKdZJO0BBtdt5e04CTttrA87r+7BkRwqbWelAQ4IXhc+u49uqffzP4jX5Nbxg54YD6K/2mfWSfXn0c2taUq4GT80MGO6pc6X/R+ztHEtrfW1w04cSfrHmO++944w64EIP/hrDG52neG2GIOjrzYYXeaHskR3FL15a0mDfObz2TYKWBx7j01ISIHK0kIzlPPn6gQD6c/METDrO+PH5Mt7x9QuOfpLLCWNHst8iVahYIgfN1ttIfHQNub0voNNCZyFduJAffzpEb99fRYepj8muSRx2+y6C7kIPFNmlB5rx9jzr60OQ/vMYF7SfoOeN2jSjNhvsLTRgiXkkfBR/zdrzrFhcTgLefWpg3/92kZV7KmtceEdz0BVOpUhC+8Sb7ORqBZ0/BUk5zwbMzdrIUHwn3VvoDrcmJ+G2mh5wO2oKDioPYEvMaHgbL0LsGQAn02UxJF0DZKcs57UNKThy3AsYWT/kZVbB1Dv5HXxdrw9FsyZAosuQgVbKQ0++EQ/PEOYPa0bD7d2WYGmBuHhPEgz7rUtVN0xA+kwybCrzxVl3LbBf5hb6qi/BUSsEoSPNk6O29bK1oDerx2ZzxCZ/vi94DTQ32/MFwbUcfzoHv541hAeV0jDcWh90L/+Al+kHSKB9NGqFtnD4qna8UH+fHd8cpY48hMuaz+niY0J5rXd45dAb7PXsgt7+JvZfYQBT5Rfyl/Y+8i8dC749yljQ0w1jhm/DRU/vgJVJGeW5luACbws4/EiKFlXp87XHE8D1ZxssLaxgnb8DYK84lleu+QLBi9poXZsNL5PYiPE5U7kmUQ0OVSeicq4nOK0bhrl16fTV1Y3tKsbCOeUWpLpWGitRBxntAnBi2mRa+usliw040JULE+jqHUnSHq0O1wXMeFbMTdSb5YqL74qB85BXZgz184LfDRAgGE+rm0fia+k99HDkVUjeNh/cRATwto8lsJ8f+6psw+iXt8G0ZxUkrY/DgJS/sChLEwSXpfPBwS3wb5YmTDntzCYnluLR+y85b+k4/JsbBeMyfsBEYWM+cUAOLz9NxekfxGFTgB6g81cuDZHnjGNnuEl+AM9F2kNNgADryHyGn1NPwMbjhiD8SZFfxt1D5YqPaJ8ejquyZvLI26q0b/gaPJgwBWXuvcJ8f23QSvwHmx3c8UqEC4ycGMTpWdfB6nMk7cltwlPWMfSzU57SfqjDILdCXfVjuvh7I05q6melkGsc5VRBlqWi4Bouydf6a7Dtsw0IpJ/hkRF58Ff6PXhmjoCwD5vB8/0aKtt2D4a/ugzHLsnyTUUNKPIwxZvPRVFhTB5p1Pji5owUvBSzmmaZD7FMjyJsDa2iQV0xELGvpsx2VzhwvYWbN8WAwoItOHDnLL3f+BbGyJTSrZRcqps9Gs40XofFslmY23MHLNvtOT70DfQdWYFV6vF8dPUGHlmnx/uFDGBkSAQualqM6a+sKHxbGJUUWNFG/zDyPDQH9lq/A7e9b8jBczw8vt+Gemt/s48jwa/yJegzKwGvPzLnQx2BKLNhN9/tqoOfSybCjO8ePFD5HE+e7OYA/SL6tdKBvv3JpCsF92ibaTKVlWrB7xhBGDY2mm6MzEGlB/u5plcPLk0YgCLj56zZrE8BKkqsIjweZ5uOh30vaknfvYemV41ipe6f/CbcHddf/EGrn/nzcFFhEMo6BcmOZrB1kS+OyHpM//UcxJKzXhSz0RY7zO/RfGMfYlIEU3NLqjEWBU/nOExc/BinzfRD8cyPUD+4HWfZB1J99leCSaH4t3kRV1w1BdnQ8yBYLkjDnrvw4xxJivpPlLhRCr9uO4o7Vobi7f4q/FFoDc4Z0+CY/mQKFpsBXvbiXNdSBdr7k9A02pKDVz+jmXc6qbpYFPwdkrkjdxHo2ffS4eBx5LPvDnW5yMHRY7+5fb8qyOy/jjlrFcE1qJ0frw3CeDNLHOwazZXrbmPAUUk6a9yK57I9Qd4njQOsx0K/zTVQqiih7xX3cNrIq3zygxLp7PiDEReeoY/bMyx/JIdllVbQHSgIj71fY4hpM4irLMQbi6/xUttY/HjTC4VFBsCnYTWU/CcOg6IzyfDAHtJdEsISMdkgkGqNFsPP0KHYdSgXUEZHJwnil9lmkOF/nD55+uCf30ZQl3mYzWfa4cg1N+CdSAwsK7oO4t0SKJlkALVj3mJqzHKS8Tfgq9+nUl7Tapp6PZOWbRxPBxMug7K4BKkmycOYEC82tzwJq9SiKf/kHlQOkYY0obvYUJsIoddTeUpxJ69frQapcsMh5dZavH+riH9118GfI0Fo9Wocj/puS9nl79C2bR3MGBwGPqqPqM9SiaNFukHkqw3cUyyAbfPTcLZ9PdXmjYDaLEVa93YcuA17jcHRS9F4iwsoOuyi3ute8EssgJdZTIe4nSGs/LQbq4Z49/FLb7488SWsXCsPxYvHQd+fdlI+/xP73cfSOlkfjC89BluC1GHijp+08MVG6NRewlpf+qFs6x2KSS3GgrcPeINWFb6WXET/7IThfvY92J12Fyac84DvzSrot2sGi47/jRbClQRPa+F1QhePEZCDkDxfEFgwG5VyDLCk7AQpl2Rz/UAC3V3xi2OGtfJ4m9ewXkAGzn/T50aNLjIoKwX5zZ95adYmfND2lffL/WT56g1ktqWfp89GSAmyo/46IzBKXcI9y17x3u2W5OwvA763z6HxnhhqUInEMfsQvD5tw+R4CXywK4q8E+P4tmgwiWxAbBP8D88GTmeNh41o8GIE7DLx4Yv9t3HN8qmknnGKA0XVhvJtOL/bso2yDu/AMy9ewfhWhACDG2B96xdvPBRNQWcegPKdTsw6lY/vPvtS+b01cNGxlp/XaMHhZQGwad54cNxuA0fWHBmasz1NqvgGY5JDUfqgDUfvU4DL/sZwZGsSa8VUc1egOJomK4Npiy4NbpzLnxRMMf5YMy0+vZzaUiRAdn8354XPppqoTFYecxSeV8/nth3Abd5uvHttA/ZsGOSDykNcfFaH7RZ9IrNLY/DQbCN47qNI9928oMh7Le3JlIVh1Y20c6QRNOV7cvLAG7iR0Ed71seQXNlCfJLfBCUrV1GahBMse5uDYaLqsGG1OqWmibPNs0kscySXa72mwuvQFlxufZ+rTTzIZWIFR1y2AKNtN9BVsoGMHBZRiZwKWrnu5glDPPhMaCzX2pqgy003HKc6Cf7STRT1VWKtsQ/wy5VpoDW+C47JGbDZreWg/swToz4G0sU+XejyykZX3Sq8KrUPJAJ+QWJDGNhH7sTRrksp9YYU/o+i84wL6W/D+D0oDQ0tpJSkVLQooiFFKKGlUCIJJRIlSqEQUkmEKCOUpKG0iZREUhKpFMlI409W5Ol5fV6c87nvc67r+/2cF7+Zm6qp/YcaJPq2c8j1hWSy/QQIudRz7Omp8DxoOkYcicJzbdbQO7GT/jhOgBrNaB5T9AbNPqRj6FEJjKxqYrWoPC59oo6L3lVSXdJHXtkqAV8+hJFI1SycMHECjqVCaENfQKFOPqiZSpKWf8FVq5A75TSgcOJ0ij2QDhNm9OKvr6HQbvACozsXgMzNo3zWeRJ/WShAmxZPgtffBnjDsgPYdSaJMzI7UcZpGekuWoe7rvVRZugPqDpiheru42HXdWPsYTEsOR+JnZ4i6J2axn9X6bHQnxGU7NRGVz7vpZ2FkqCstIxyW0156chzLPTgBi3RGY5fY/fy7qwVkO9bRobFpWSbqDnE7HNpmoYjvC24wQ89h8G223n8e5EUb327j4yPnufssHTepjwVwjJm4WS3Y7ypsQqPy63k6t4YbFFeiWUPjCjthDI5C/dQ93uAK/sKafCxKI3vlaKQKzPoxq3FkK6ezSu2bYITj89TgcRKund6JtQFf2bzS86sfUIBjqsVctzgdVoQcgBGzp9De7VSYfHxUvyRJQVzdTVB/ckApVlUk+uqQlD4vpTG2+/Acz+swcHeB0yzltGiBEUIGK7JZsoiJH3fkJXE+zDmUAcEX18JoiuDcIS1PeseGIkm8qpwL6iFbjQchv6DP2H64pXgLV0E2p8Bl+wbujbaigYdPpHpgCAMrvDiVW99OFNpL+Q1epKXzDX+q2WIBSdH0niPIxgV4I0yvgKwKewRtK6IwSszQmF5fBgfsDuAf55tolrxEDDSXs/Wi4pBbKMglGqMw2cP7ZlUPsDod/kwuuMcqH1TRFy0ktzsxOCq2QlIZB1Q26GD5XSMo2UH8biiBWtkzmDZAw6cnGgJbuNMqH5cEM4JMIFdzS70RTMBHn9NxINxs/HMExs+vHyQVyXk4VsdW2oYNo6MLcTBsPEYNu8Mp5mqO2hQ5CXedZxGYh5f6OIsQdw2v5JmRDylsbfUhuZXSq+svUnQIQ0iJVThttQQD+0y4SXLj5NHcTZ2FXWSlyTBUlcrEE4bhy0ZcbBrxwwILNyC35TK0PbmRVBMVIGf+qrwoWc4VBkSNG+bwfnFipT0+zAe05Zm04u/8Lj0Chp7+Bystx6gAxemg73Ncfw4fiJqS0RSj4g/uJUF4zwbFbC9EQS/hr9A+9PFGLVXDCam3oa8uIs0P1gf/7PLB8VmfZTfEIBmwjtZt+8KvBIXg4rfsjBruxvPeZeMideccJHBUdaYKUgvv27nBQfD+EylE9bs08bK8Qw7RLI4NDQNm7p/wu5hN/Ce4Rna2nkRjxQF0aSJ0uC4wYG8ekTAaaMmHenOwNXRAfhwxVkM0C8Bx1vK9OD3IMybeZGbhu+F/EgVEOhfiP65hVR8SZPujHOjd2e7cH/xeqhwzOMzp1NpZbsSZvgBJBtKob97H84/2Yxf+lpo35UpdC5iF2y+PxFdWipJd7UY3ZsuBZ5/N/O/s6OH3v0c2H81DH78VYN58VfxzvxnJGl8ENSDx7OZkwp8OhwJIZdmcurXIc5IdIWj5f3sPGcLDbaI8zM4wA8KlSij2wh2Te6DGzHbQGd1Bm3tSMAYsVRc1JxFv89H0NgT4axv/Bj8Z44A2WVi/BqZt0n95ffpf/Daxc+k4nOVP5x/jyJtUqR3YgR8MpkJUxcswEN/9aiq6y8sCFtEVj1dsCwtCavqN9Lb60ZgqTkIh+YLwJljL+E9l0Fm/zxMuqDBl20lOKNvOpVE3ISaW/vhapEgpm2YDukNKXD5xxS2OO1M+WmlNL4inm264/mjUhQdCKoH9WOlMC5YFfpWvoX590bgprDV3O16Db6VeIH0QBIs2GFMQneX8G8hK95VLQf7JSvgVpg5pH41J49fdTBHWJed1dK5e89zSDFfj4Hdq2iK0EgoHf2LFX8agFDybSpdrwzlD5+B+6Et1PvBkn87bUfh8pVwNGQEiA/vJrugyXyjwgu3iQ7jRI0bVDamEvdMFEV7SXmaFTGJV22ThHvW96Hn0WoQKkBqjvLnhwpN0B4YhAsP7aWl44fR17Z2qjuoAilDLmEyaSydCptHb6z+4J9/faS5TYUqjghi4+VRGPpYETSnTIOjIu6UadcK7wo+4M1nZzn+XS/mb9oJUokuXHJwEZ0v6mVlyTFQ884LzG1KcKLvQeakHVRZuAbbK85ATKYIFIQPeViXChiPl4CN+37TiWHjuHNZCKOoPKwtlsX9AXPoetgM/Hf8NQ+7OROfXxUFtU8bSXSaJxzc6AvFM15g55NH9OJHLI8OEqE2wSvwQiCT7bUNwfbcPRwWFIK/H5qx3+pkKn2hzw4apzku3RPEakZQmUAKnTeeBhvE9uJ/D8egyvqJ7PTHBtbpzYIyTTX2N0dWV3TDeztjyCJeHzaEZPDXcVYc7nSVl1vK4JTPd8HXSQYUqt/Rh/sreVR1CeSsU4Swa86QLzgO49fdopFf35BF0ETWdismm5UfcYf8XhS1+Mli2qPAa+dXmu0pCXpnNOHht0+0Ti2KGpv/cIFsGuwNM8S6owVgnSoD1rvV+E53Imus3gpx71UxtnovSAnsZvNFqjBqwX1QnX6Rs37Lg8Dyp+S8ooO9NW/y02UX0Kh3J7nlmeDarDp6/VeMT8tWk3ujPqg49kNn3BbIfz2Fv93xhqsVBH1Hj8Kft1lQ90mTq7x3QdEyE2ie5ssy/guxpSkfkg9W4N7Z/WBn3QN2N9/Q3Y2H2ffGZ1o5QRKaSk4zD5ixiTzB/KAI+jr3IFYcmcIr3u1gk5M3eEHJICyyEoWRV4nHuRlhp6ERTB5dh/8+1LB0+Qe+JdEH++wqeKf0XbQzGAP7ThaC+s9TNGZNFKTsf00DsoU472YV6Z85ylpOaqyw0BbfP1QA+0dH4cC0dN7q3IFb/L/jNQ8xNPn4HKzbrXCmcw7kjCsBBz9JWBaxBPZuXEgHnvdB1+r3UF4miQUdkay1eylHb17MCvlV8LpqNKyTzkD5a78wvT6Ex6uIUlyzIKV+u0uZy8/Q0cKP5DhlOT8dYQKHtt1n13hVWFxVTv+NDiXjyDDSevaJeoUc0H3ACBwXnuNFe41hgnAVifR58Oh3pWD45S+eiF7Bw19LkIKXGF1RC6IMyWH4cYII9M4oop/m5fjF7g1aH5yCaS+V4XWRExgW9PI1C33UkFZjgYHZENz4lP9emg7TMsrwa6Q5xO8c8p5kN9BxOMX9E3bAlK/tkLdQDTZLZaKXdTN1Pg7BvbNqaPbKobRtKoGD23OAd+8AjyVXIdtwGqhEH+MfO4zg+nE3cln5DWdPuc+vno2nwpOO8NjUB7hTG47ay4G4RxQpd63mrWPkSJXcITllFs0NO0ypyvPQU9MDlnsYUJWuOvwY7Y6XZUR5vvIj6Diqzdsfb0dxnxC62uKKxfdS0XTMRxxnZQwD81bh0py7tDRoCyvETsNdcYbcm72Lhh18gIUvZpMy+tOi/qkQKX8GRgxo0JUUDdg+jmi9fCv6jblJSbHGmCM9HPprg9ggRwYGck/BNJ2xeH4wG7ycZOnYgiT+8HEYBcefB62/K6Al8ggoDmiBm8BTKgw5BL8v9YJEux3cLuhhA3Shsdq5ZPzdDbimHjoqtcDbYjO5ui3hEs1VsH/fEt6plAN3N9TRyj05MEfCjR+M8IMU52nQ3vQFZD6pc4BIHE4K04X7E77xLtmTGLtJgdseraGTWeFoem86aCUUsPaoe3yroZLOnoyEfB85mOw2jq4Kb4ZPW2/j8VXrUX7aFPCKU4WEI4zKZo48oNoIC/o98ZDEKay2HoR9jVNZSP4Vfg81gjyneTxyz2o2b9oBajJGlA1vobu2kb09JemYeTE8XaPA+1sB7GAcJ0/p4DXfwmmW6TW03fuMfQI+cEPXRSi93Eafi0cSrBYGk0/i8HX/KbjdI8u7an7zR7ubkPPSfMjFrcCkYSO7VPlhfaE86G1pwqZ3/uSwXm2IC86TkpA/LW5L4U8T0mCC6TvKUAI+eGE8HA4Tpi+RqyFcpZafrhOFmYaWKDVXmj4vIpzzXzdfPd1IySNHwX/vAD4dewPSNgn8I/wYdNV4c8v6DArvKKa1dQ2QvD+CSpPUQdtJHq9/6wL1TTEwyW0M+VvvoBdlYUxJhzmxVhjL73hS+2pZGGfsCxMX3KSV+Q/B0k0WRlRlotsRO1yraQP1Ps2gqFRPxTtkQfLYd9j45BkdfjSfZWVaWS4ngnIaH7AFR3Hfsqn06PJaXm7LcGvtcT417xFUpaiiZLIF2Sa1oePVBzS3fgM3VJrDXc1cfCw9BfR16+GIlg+p9/qS+T0bqnY+BOCtRLtGpdB38zyc/OkzXdsjAkekhUhscyQE2vTz52V3YbiTNMvdKEfVDW9of8FfPFUfDytcJeD7unqcdt8Npn1MZY1sA+q5bAeh15po8o9esNozi78oXsHCdyMg/EsYFj9RY7NUK8q4ZUx37BO59G4KnLNJhGlpPZxveRx2bBGAD6qmJD4xiVWqnXHM/Aie9GsGfhFdyjqPfGjL4Gg0d3Ll2+pCsGtMJuwzUaB5O+NZ7pgubzolRa+DqjCrLJqjHiyFx0PPU7V4Mmgd/4wnD7lyQcxxOj1jOy0PEscCfX++8EQVjVMsuOXwJ6ypVYZjLwTARlsA7bylgJ0tMDZqObWf8oD9QofAbaQglDiZYWmlAOhsbGSni1/xtnYj1hytBOtnPrTpxV98HPkMbTEdvx9WgrH9KnBs03h+4yPLEV0ubO+2CS+efYaPL4RRdJ0tfvRdA2s18kisThvO5gmBRsVxfjlLhu6pbwDlJ9Jk7xDLLku3wcW5tbiqpITNpoyAJeHbWGONPJ42vMlCVEI/7D5B5csRfGRNIOU9eMpz9MuhPnsiJCgWkefCx2CdHICNfj44amcqbZ78j2fbqeK8jwGwr+wAJ8tPhr9VDiRYPBoPlr+D2gFfnCz0BTMOV0LGi7P8xfIFNz4VQ/8vUyC4q5hj+i9D/ZpXPG/CM0rIu8BGa9bRj1hXpHWONH7+eTgdOhLG3xTictHFcEVdiE+IhnDCxDHssdCOewsEeMfhx6j8JQIiYseAbGEKGx0T4IhPQ0nwQJFq9wxQYFYWrNhihwEiG9h4SwYfFwRQjplBSyERrIydSbtWBEcvecQ+4oHg8e4oXgB3OnnHnJ/mKcJPg256aHSHUwSms8q/96RUqUGGz5rorNks3DJfBQy90vDSAMLpPyZwa/NJfLRrAY14YM4NhiYcfmszKY0NovUuM7HM/DAeMZaCYmstnunXjjtnVzGd0oeqxDZ6e9eaHwx+oDW7/pCh1iRYHzkKHFeno/IEI07UcaT9tYN8VKuTt376B6etilAjyBLveyMl5ghAkp4bmVMxzDjphlVmUbxGfwcuSQ5Gp8E6VnEoZLWFHznztAa8kf4E2w5JwaL1h2nFuwdcmjgKxucKotSD0+z54xv3xAmhc9M4qMmZhDkHRdgspx5N54uBbY81r5W/htt3maD5kWTO9p/MsnM0YKLTUXatckUVSz92MtnNuclJoHlWAqqlY+lGjDutueOHxqeMYMu6HhIwCmPx+Xc43MIVimPSKeH+Wyy6eZSFE8vgNT/naHFDcDyyk60GzWD9MDsSHMpOj6ZzlGz4AbLb5XBu8SRYMvYsu9UZQPObSFC/fAI6NuthhcY1EuifBprq4+DC9TB+kaKA1/aYMYhLQP/D21znFwW2awNB5WUpj/ltjFMd9+Cpy6X0QuEBjH4dgDF9U8H7jg2cz23iIiFDrvqZSs0yHbjy4ihOlLyIO2M6KCgsjQuei8BdjaeQYCnIF51H4LHA9SDlsAfyp7mR/MMMuK24Ek9+P8gv+vTh4LRSHL3OCpvS6rgzOw6azyvy/UXRID7pMio8dMcsmSE+8ZKBwiEP3XQ3EE2MrxF8WwePAmdS1awxWPYohhVv/kfbxH6jaL8G/On8gAnKOylu1QH+Y60Hc4NNYFRWFbeclxvqxU/YYvGZnv4QgGOedrR3ZjHe0lXgLuVsOPOom9+Fd8KsY1XY2niTko9YYLrCBFA4OIullXPB774BrRUzgQFPT5ocZEAzq/9xZsoDKnv3m/Nem8An64l49cBKPhUdRuHi+fC88CJH/zEfYslibC1vp7PazK5eIpAWNI+7KzXRNWQADWVq+dW3FTAx3gwjZv/Bs1pXMKL0AvgYzYQ+9WU8ecxlTh1vSisKjtGDEhPepS9JCR/no8KiBXz65Rj0Pq8ID17H8rYaW8w1qkXLE0U8XesWB+7+Sa6rklEhNQPNiKDj9DhY1m9O655dJZvSczA/5S4f0j9CgvMlMf24N9y5P5W6Bn7i/Cmi4HVzAISFN3PM1HQ092nnpdWbsaK3G6qyW9HUZyGOOCpJsSGS0PLhGvXcmwrrp4dyp90paJN4QTuK/uOUec64rVKL2ygMBSbqg3PUOS62Hs1JHxj8O6I5p/0TZ7g0k/cZVbIvWU07H93iLZqakHX3LReNu0N/vhTz4ocN4DErEKZXrIaMdkf6HWoNH50GSWqOMvi9fIhnM8aRZYwkzbBcDxauVXThnyOeL//IspdLyOP1AP7FCdC+tpL3UDBkqT6j91XevLUSYN42dwyy8OGG6FfU33eVt5irwYP8C3jO4xf5Rx0hOVMxGitwimPcremGtjSgkwWeWPCUlpXLwKxaIUztdoWusw+4pyYdr/nV86KcW+h5dSM1VWnRfIkXLP2PYMKIyZS3NAE0pu6At37q9OmuEZ3YdYFW7pbFD+tvwzv7AA7foQ2v3l3AJvu59MnPkgRbrpHruJeglgLgPkkHPz1t5jXKM2BnuDhMeGwKerrhvKqyEuZEquDurmtQNGBJ3snr+UbLbFxkZUDXApUg681TDPErpOILrrTpoipYmowE4Y4dfCarjAKaZUHDQwnKHwLsSLhKe5onsYjnUoi3b+OsN/Zg3yCLdiKr0eK/J3Q8/TpNlSYoF5/ED97tRusXc+jS/8+XeJUFuls30PSLsjS2ejIPT1vNuQlaUJr2FiO2mVH9qaPMbi24f/4vHJASgK3zFNBphAr9if3Medt0QUtQCF4uKUeLfR+oUOk/trIM5z6qod5hwZRsWY2fs1LRP3AGvBm0RcUXgnC9OY8evnzPp7ovcINvLI96PgBFqosh6UAHLTUQAJfJH/BUrh3nHq/jXUuP8zeFNSjgOhEuZprDEatVnFivi6eyJ8AF24nwKryTWkd6QJLmMlBeORqPmjbRpp+bWLjoFvxMewDFf7SgPTgfWrXew/2OdGo7HkgjIm/Cvuy34LRbH4IffmCTUyUcVCYJX/NjyL90Gd1V/kQjg5rodb4NGOf5Y8rlYMrcOEhzEmPo1m5RWOktx+pKIiT5i3B5RgfNmPUUMz2FYaRBEY7b0gY9H2Uo6pwJVK4sxQmzhsHDgNl0baUmBkoOZ2ntSkwZm0Pia16QnWcXH/SVAU/hgxB5eiLqtg7giLU+1PWmkrdeXgjdB/rg9+0PnJQGsFx/Nnx7WAdvN02ET8d10aBhC208swvirc5BXEwHDmuYjM+WfYY7P1RAR/AVvc9czQ2hFWD/po7s6rrIQvcmyfvs5f+mCuHX7RuoaL8AiA8Poin5o0izZRjZnGmmgIPbwPnLXdhsFAPn3+9A47cP0UB+JpgWdvBX3VYqybxGdWrv2ar1B4SePMhy7Q3cs2AufeRvaDBoCCPt3tCCz2I0UlUYYj/8ZeGTszlQ7ibdMF9DgVarwfKaN6YFG8PnmUow17aJ/2Xp0eOViOF6I3HDMi0an8Z07XA0Jk2+Tga+U+BIYCt2Jeeww7zxpFw21MEDj2FbwG3SXjcNvihLw8i7sZB5UxR8TOTxwI975Fs1Cq0D7nLG3BvYO2kB+LxNROnjAdj3XoQla4Rhk6kkic09gnlTvMjp0jTcO8YOYwSU2HRMB1nRdehcOp0mXlKBet01/D7Hnd3mVMGc7QWcsnsDJgh204Y1jWyzYzKcKeukpIUqEH/HAGJVqunMzj9oNtqSvNRfweYCdxylfxYvdCyiqnvHOPmVAajesEQzraH7+d7CZTK7MWPLcBBcIIm0Wg2yPTp5f3Qevq4CMG3fh/5n50LWNj2ceVKZ96c9IaPrLzFc9jLpiQfze9jMCwVkoPp7ENclraAjZaNppmAbbXbzwa1x6Tw6fgqUzUigqS/bYc94Qzg2czJ4Vz3BAkt5kHdo4jNpb2FDxD7+L/YcWXvc5OSsRxjUNRXcNLzYq94c1syLxdtn9+BA+iD9fvqeLdGCuzZloNsUG/pwRxUkP//CiRtcyUIMSfH4NJKQyOdgMVE2fOtOz7+m05x0fTQOGAb2jSbsSOt4fsZuin4zH47PFgeF6Dp66P6B2kxP8vongbzAAKA7u49/ZoTgtpNWsOFsG/6IGsPdwe28SlqEt96fz23XzEhr8wRIGPmehsWVUff1Nrri3Y8fB6PxfqY7+H/Jp9yNS8DGsZrUx06Fij9bKdp0Gha/FYCXZ2rhbMt/OHthEU26lw9FVx3pfFcrPJObClJPlpFfkDJVW3eAqN9Y/B75GAsG13JTyCiQrEvFj+Ey6HVOF77dzabhX9zhwhMdynwkADMkfrO6xhPsFr7Km85kQ/IOTejNlYDhlWq0cHcD1cxJ5Eibk2i2y5zb1Hbw3s/TqVNoHbhnDvXGLCOYVjef7Z+8xcsCLnRgRyNEbmjnS5KToCvAkMapO5GEmSeIHxzqrWfLcPXTAd43TI1v2h7AD3XC8F5tNnp/0KH9h7WpS6CdDm4XhIu5c0BljQVkiN2GGdvzsCmikGMkPlL61N1wtjgeVj/Zg6UHRkC6owCVhClj2ZY30DdrPn/LXINbxnxH7xh3KLouwMnXz/CoU2LwLfEFjq0IRl2bLP5XM5qXUS5KVJ7gO3pnSL/8Dpl/duIZc+Wh/IYSGbo2g9z1dJZLVyfNJfHQqGOGTi2KUNo3HktWRZDHt+ng6810+n0S2ehX8KKx97CgpAJbZC0wT/AkuZw8x2qB7RSyaxQ8S5RCkAuj91c82WbEdc7vXcNL0wto4XgV9iyN4i9jDMjkzmRIEhiFqbIe1BvzkjbEZKC2XijEF6hwedQc5NU3yXKBFLxzGgvvzYbhuioF1jGqJq/CZDrR6o3maE2W61XQeV0B9N6OgGeHDEDe0B5ThndATttIknoryxplNpgdMZ4XHS9lQ8MLMLzrB7TFIrya+4++OQagxeKl+LVDHxXrz8C2PE+u1FqBFS8lsPhmytB3owjds+9y/Q3EPU3X2bR7Bn3eHYBX899Az8VsDJWrRYkoY4gIlYL3ieY47IcDB8udxfZoG3i7NpHUIirA9/VFfvt6GCsn9sFHT4a2patR55Y9LL1dwKdm5IOD6QZe4VAJG38KYtuhRUCnP4FXkBRMzvDkaOrB2CpbOrXvGhjpXAAL2VWwoGUrjvO6hs+X6MLypGGgsuUU5D6KRrfYFhh99z0K4yw6aZpBdkNuNHDoL+eWu1BWxXSwPu4BkXyaPpc/hqzm01yjGQPPJAfg7mVVMir4C0ceFKD7JoCrAfW4VSsTwX0B9m8t53nxAlij1IMDX3R4U0vqUJhPo0CZ2XDaYwnH6l3mjjmfYCDJDO4GD9KAlTM+SsjnqQtmwfLWJ9QxWRi2t9qwoNENDAj/xoeSxKE5YTrE6p1m57lZOPhvNHq0lnPPXEmwe+/BR7JescqB7ejWdZM+lSnSuf+28eVb3yFQzp2V/a1x/QsxeHHqJgcbv6HXn1dxWf0q1rvzEV02GKGfcSdrzbYgBwMravkyGkQ+BYOJlyVsttOl94Ey4LRyBHxO0qY9l+VhVqAAhzyVoPN1ArD7dC6mzJsJ4HyNVW5H0mytRKoM2IPujhP5aqsvRNRE8YJWBVB6dJgVeQL8+nKOly0IxXrtXzBj723+T/ICVItcxQ6fHg5bIQGyD7vYyWsfDF8nRn+HB0PdsRTYVCSHxknf0ep6Agz/Zo77T+lBdPBVVKpohD9emTw1spuPq8iTrrEP8NEaduifBwlC8exeZggyx6rJ/3QNTRniivs/K/H7SBUaG7kJZ1dkgu4mV1rbBjR9piGsfxSPe/ADBtRNpbnH+1BJzhkt+xvZrPsYHs1cCrsPfKcbq/Wg27EbiwUq8OL6cp4k4YFKIf2kmfMbU16dRckafbbuLeMT401h908JchE/gi/PB/OfSHPaNNTvIvEWWFS5BfusslEPOlC/Vg32/VMA05OCGLLNgNLnKJJb20b+cHAUyVeXwVgzJTr7Wxd6R2pAdPpzCNRPoJShOa340Ag6oYvwRTLhMbvzfENbByaQOgzfyjCpMHjIQyNgTv4gaW6pxNv/rnHRvLXs6ngPnTZ/gwTdGCjTng6LG8vxd2Q0y9S/xr/R4vyw/ghOMO6DRTtTMM3rN/05th/fHNSByMvfSLW8m12KVAk/3YE9tSkwY6QdsIIRx7+IAc2ToizVpA9Hs/xoTG8UFFmNhQ0OEhzaYAvy2nVU2txNT0alk7bQCUpzGwUSrvHgdlCDLq6yRT4lD8OPltCVPfrgk3UCesYD3V+ghisfSID9Z3V8MUMWfUUTOOHQGd6tlE0aFttoa70tnAmLxdlTH4DgNYQDYoNwJ9+Zrn1pRgmx+9CkGwylw734yOrLeCK8hRz/fMK5z6dDsmomtvRIDzlGEpXsHYnbkpp4ndZaEN7Qga/qgrBnixbM9zaFdqulnFP0jAL6JnJ25ndWs+jBSrf/IHFPPw9sLofN161JT2A2jExT4+XxNvy9WpUTrxNhkxTf8VyDnhsScXzYeY787w/eSVeHiCJ7zljtTZHzY1CvbQ1oV2Sx7NchJ5XJIB+TZejqieT7nyCYj08Hsac+WNsxl5xixuFj92Hg9yyAHlo6YmqjLc05Wcg/bSZAZ+4t0vgyjMYVi/HYEg84u8mPe2XPYE01QP/ebaw2XZn2DejA1bhh/G9ZGcUsvgyuu1+jcX0Hxy67jgO3gU/KudHx6iBa1zcSDMJ+475z06B5eTAZ9m7gtc2v4LnJC9zs9RlcsQ47HkZBXK0oXLhlRA6dldy2fzNLBHpj3PtQTKwaBnMla1l3gxg7yEyDcXIzoPjMYyisfwvPZEbxkw2PeaNVGti6rgLFESlkMkUSSsLXs6nSbNAd/YtOXPtJOlMW4F/xIFZxdYG6E/Mof/cY2Pi+CJqWjMfDL7Xh0LQSElW5TDn5RC+m9JOiqD5qJE/g5UGe6BItiDJqS3DwjgIU9CsPuYoOzIvsQt+0w7zgkimGF7/kXOchn6rfTiqPN3G/vQH8dFqAN17msemvCjKJ0qb1wQ841+IAZ4a/xO4YN/ho9oQH1PTAbb8WNrqfwc517+iNfBoUrM1h8w/1qCeVDPlDHvRqZyGcCtGEFbObUKY4m5+8P8mv90VibaY4qhfqULaQJqR4GdPJK+PAZ64WuPvVgPK21+Q/2YIlL4zjQklFzNroAtH2a6EvR5Iaj38ERyN96H4eTsfuR9HuoKnw9/sP8Kxt4+m+o3mFwiyq+ScGIka74VX/FBhoOIBpmbVQWCrE7RPUyFRYDq2lk6DOShAz9jyi5gBf9tgrC9XNI1B3UTQPWzwN9EOzYXJwGUZZF6CB6B1SX/eEFk9aR1K2+hAU9Y1bE0O5SnoTO5gHQb9DCUXe8eamJb/4jEgYmHXFcPBWJbBcmkqe12Nhqq8hbMsY6sgr0nBf/QG4GhpgS5cXTYtIpPchEpA4IwIsxfvp38unPEZGA698kAbPlXLYafAPvzXXQ8V+R4jplof8XxkY3NULc1wMYOyiWLj2Mxt2O9zkiIWONLakAR1NnPFBmTjk9Jnz73V98IIN+Y+8Fnu7LOb0LDloGaUKJZP1+aO2KW5RHAZSYe/I9ukzsp3twL7CTfRHfTY9/tQEkz5v5dzJ+mh5/xiYNArCpd269E/qJ9r9NCSTnEJuvTWGRoTXotBXM+ww0uPnfp4oVzcSFkr4Q9is89j3s5O7TGvR7EgBh5ufx/jxr3nviYXsluUDRmOHQU1gEZ0z8UXtS830xNwRzO38uSxsBQ6uN2KRsB+U9nUJh5ybCaIWl7EudBSa6e1AoeUHOWzgOP88MZJbFh/mahlh9vzvCSyymwFnLl4D1YOFEHD7Di9K0SCZ3fGcKKuB8p0K9Nz0FUfrG9C80aPg1e6ToG3sS7d7GALGOVF3uTncctMk/fr39K3mCz0+E4GeC8fCgUX7YPTl3zQ7IpaePNPAtYOemFNphns2tLHpv5kQv7ITPz7TBdV9x8BjdQYrdw/DC0kNUP13Mh9agvz0ygEWP/MRH27/CS1lxjA/OJWMwg6ie/Z4OGTuw/NyR9Lm7clUYtUBLkfPYrjOUdx9VQuUX1/AwRJttpP+wS6DoZTudwHWuK+FAnEl2vxOF2SmP4aJn+Qh0+Yp3jM2BYWx+Ty2QJrmHzjFMfetSH36Lfio34tmjxKha4U8rBTdhKfn5mLF8nu0o+4QDWsqQyWRj+C9w4zgZgvGSHRRs8Q4eLrKgafna8LmffcpKd4Ify0oIp/JNdiyRZePZtTjKS976BsE2Oi/l3stX/GjkBE0W9KOuwPCoMpekzweT+HZ50egSf1DND8jA9NOZOPDgAxsEjhG+7P30+kVZ/lTSyr+PacKynHl4GW0jot8BOHRmXi6mFNEsaL3MS7iJn8/uhWDb+7G7vB9+LZ+K4Y02FJQyHTYejeVJ5vmovCeH/A0eQXpZujQHhVlFhzlyOE3XMnIZSPK9EyFnaGz6UfJdgiP/0DfWpPp8+tMdp9cAMYmvZSp3cpKhtO43EMVdMtzOFflEPpWG0HiXWuCualsvnQ8RqdpstNCP7I5v4E3usrATMktNNFiDj8Xmgiak9+RlHEuNy6Nw+uf/CA2ex3+6xCl+dWGYD/YQebbczD5uwO9cKvCLY+e06x2RYhTCaaW4wHsJBgOx45KQ6K5GZVo2NH8Rauo+6gLig68wcLyTMpukKUdAxLsLpdKj1UmQmKrDI76eBtWvxrGatkVqBM2gO8LRvCjSBmuv+VHqyY2wtVuCdDLE4e1FjHwPGsJSSSeBreGTjbfJ82vbZfxg+AnbHM9l1SD///fz5jKRJRg82I7sFS4jZfVmlH1TRT54ABX1U+nMcOW4mK3YfBCdRpM8h/BxucEqCyvEaLezEGN1B66JXWaZo5SYfFoa56sJwrBPa8oW2kWzX71C10vOkPA/qNoMkWJTz02AwW9XPI2voOoPB0OjeuiT0N5QZ3juVPegUJ7PEHW6wa1qL3CnIv6YByxEyBJEApf7MS8vDvk49ZH6xZksrhyBWXo3IaziTrkafsaZr1fQuPc5cGkQRHu77AC/+4ZqNSQzzUe/fzd0Zjv9zjQYuswmuw4hRosRkOcYR/4/3Tjpo46qjHUgKTqUXDefAHa+v6Af5FbIeLfRgo5Px3OLllH75bYUcyBHi7e1YihPZdoi3wxlBoiag6eJt1d73FLvyA8SClhPR7OLrobWWFUDWhc+U3Jt+Mwz60bVB2vUmdsMNOa8aBo9ItDFy8hyXgZ2FTrTBvO+XJh6BLYszCQ8nki5+8Zx2VxE8D7TS2NOSNCD2+3wLIfdvhwLdObM4softlwnibhwyNmJWBOgDysjjsHqrfzoWn3HqipSka/GbtQerIJjWqNRgmrfew9vIjOaInA6JUvQTIhn8z/huNCWX+c0laNx2+54uaH6zB+aRarVm8l1xm6EHTDio9cCGbL7xn8pseO5w0x+VqxyTAhdA2kzVej85WbWTt1GBjsieMIo/nk97aMlVLCaWPuY3B4NxMDBZLAbssPNv1Pgtf9ZwgJD5eAwA97eKtsgeNDP3PP9j+wvkAG2yVeQfqNSSA1axi8SVMAgzU7MdDqF6xfpg5FAb0ot/YSX7y9gEQKa9i89RQqf99Lv06LQW1yPFk+LeEUzkW1XY0g/SqE+pryuSB0Dk/dKIOpumEsvWYqHF1zDs7JN1IZ7WLr9ykkblyHlv5rIcL+GOfo7OIEg9e4LNsYwqxKsPPRW3wz9QrGiE+gGRUarCpnRjvmLiONv3KEhZ/h/kVZ8Nd9yYeKc2F5+T0aXPaTjT7Y48kJx0BRX5ujBm+hnUEBJl9Whof347FHkKEoqpzmLv5BoWe9oKNkK+978oCOSR6gsXJZwNvl4bp8Ky+umk8SBm7YqY4U/LAaOl//gs0JkUOcQ6T7qBmW22nAlWuTeI1CP1i13h1io+28q7sci58W4ejeCySVvwnP2UqCxDNNELXbg2UObrB+Sz71KSyk7WFz4Wd7KP9+cIsEKz7Ar509mHRbAq6PWc3Czv7cbVRBD0QYDHcugbEntGHD6hCeGrOaG1RzaMp5ZSiYvoJsayfxm7yldGG+DG2QN+JVPSEwzFsD7P8WU8O91fRnFEFtyhcaIaFLARMM+E10AWbheZIVX46G54/AhItyWHXCjwUbDSDy1WTsmxvIkwo+s8SNUrxcIsJ7AkXg7K4E7ltpxcvvzKSx1ibg4uSBWcFmeC83lV9LBbNriQvO3vaOgrVS8PC+O1CSLAGKh7RgTtkLqPxXyM3nxNlu+X4Ysc6Zrm5YxHMPzsVdA6tI7PQj/ocTIHfsc/D8Uke5O1rZOXoqLo+KgKQ3J+HU7w7Sn6fDue42aNw2DdTbi/i7QQ3fcTmAajenwuS3h7j07jb4418Iu5fvoSvZbaC8VwK+RaTystQAVu+twhufxlCf8RFIXJFGF8+956g/URzwRw93vh8Lc17Y8LGd/mgeNpHMxNT45vvLnOMcBL1bZmDNcCOwmr6Qo41VQcPeBRXbozCmthDcrp2GisBBPuLfip6zffBp+xNskS2ljmxRmBOnxbXCGyi4Yzv7qSTglofz4Gs7YF36IhSuiuLdA6NwZr4epDtok9WdNXi76ze56tygglTVof1WcsXFCHKXEWfNtEm0z1wRitJX4m2x/fyl1h/91OrZs/UsH7iexgZKSVD7dDxuE3KBmHlqMNMjiIav2csJT0So/rUtyx8H3n/lK5o8+wq3szrgtf0D7o8a2puECZmOGeDX5mF8OaUYwm5VgM/J6xihRnjn6DOetkqeLj+UA+FVo/GHxxial2pJ9npHwbh9DwhZS9G9OR/wP6ECCHykR1LXpeFg8ACHv1oKjfXZYJVRQidP+rCHbge+lHzK3/bP4IV1KtRqKQxb0lP4X0Akjz60h1sTLlPdfiOYE32Pqt03UlB5EXztX4sGp8ZAWFouxdk3QnKHARda+XBL5wCZ2qpivq0j+/lGwd3rO4nn6sGG+xlg/3gifNfagUtSk9Fy7iSybV5Em123cc5u4nRxUXr6Wh2CWyeAv40MuhsI80DmVi5UHs4Xf36ASvGHMFNnJe3/qQjZeSPhsnw/tI/9wgr+dWC1wBE6rXbC+KxjtGNW7xDrLsTo6yFsOl8Bgh9XU2zMA+Ls6zhNJw3P5x7iL1+v0KER/rTe6xXZHYsjt98jgBWT4VdkBdtQGfZJ34W+Mhn45jUFJkgsJB+D0zRa/BL73ZUFVLtCfg032dUpmm28R+Kq5q+gJRSDEmUEXdqbKbXsO4U0KcDm27kQHfiHs7uUiexUUUcF0NK6CKzGfKSPHkWs1lDBpauNQHPeNKp+/YXeCE4iTWHmruAP9LK8GCYcU8MNJmdg1isNiswYD62qx1A+7xiFb57CCTSW284N5zmbbEC7tg/NZo2j7uV3sVFbEUa/mYEfenXI2O8LVi9Zjh8TisDaxAIejtBBoeLTcKrIF+Z91ACndRsoNG4T79iah2vLhmaTsoU2CL/lFRslaeTOEBosiULvbUbwsvckKQ+uoaOxESirrkiO0r8hw+ESHrC9hW7pi9nIN4C/lytAwkFgY9+feKtFiAIO7iWX0ghuk6ogvhXBmtdHw6rYGtiZpgcNf5bCR7Fz3H5bCfq+KKGGyRNw9w0DC4fldGnsMzyxYRr62grDrXO1HLD/Arkar+b94l1cvM2UNZ4H82C0CtQ+/INlpj/o924BSPcKAXj3FoWHu/OS4atRZL40hGiXQ+akC3yvYAmIPfLH1Y4Mo68fI4eekXT5qCafGfzFR8qyydp6OW99U0T3hx/kHeYKHCwoD7WRmXgsQQ26fNax3/p++L1EC0a+u0+lBZGU1LiPp4+eDU7zTKF9fwB+eEN8864/bi7uxIWpvjjPayzGi3nD1dobUPnqNnvuN4Yjdk14sqqKrjoIkuy+BtqlHs7Ww2pI6f15VE3QpmqxJFJxlYSoYA/ckqJNi9/+5sU+/mhmMYaa37wEQ8O9ZL2+CP28h9x4/yjomnYJZgkKk8jvZyja9Aa+6XVSqkAJo/8KHvs4HHYmeFBxtwIcl+iDCXekactbVbqx6z7q7mgkPV6J2poW/O2lHv2xTKXzLSKwVDcQPo2wZIHarSDZ3UD1S9ugon4vn7gsipJSRuj8NJnLjbVAxmI4dLR8o3SDXFL+FsFTRSXATA3x0cRImPz6B8yPukLrhvI3dbQIrDnVhs5JGei1sxPlmoVx1ZsLpCO4gvWHvHfd7hU4yVQBrHwv0OWlX2mZQihYX/sBE1ba4JsqBzZx2oy3K/3pwAQbGj5RBiaMioGfOw6Sh/pLHAjyxLRQM0qUT+PDb47D5QndVPcxkE9pGkNN5GTsTpShuV3CYO0iQgsv6aL5vhrqE/oA1yyzuDPhNM1rEwGjVzY4RyoWfuokktWeEv6dpw+/faXYdfoe1HF+S8b5Gxk3zIZxc4a6620DxMmNxJJ9V+mI7fMhT2mEQ6ZxEPPbnh+aStPAtZkwcm4ltupI4vKyHaRubomTrt+Gu6k+pJO5g6bcBBwXJUlJX4fB8F2iJOjlgE/uOUJpNGGvqCM4jBfj3UfGUvzcWJh4wgUNW4Rgk+ZtPFe9i2NdlOCfzl2Mf/2UtgqPocPf5oL5ET3K/zsH5H7owQeNt/CuKY9tqr6RYp0UzzokDlZgRYEH3Em/tgvtJH+TgYoxfDF9Qtem+5HheDf6Z2POLmVf6fV2N1b8u5u+v3zHG1a00NZZarCi34XPnndBmyA5eDasiZ0+RrDsD1FWPOVCf2ttYa6tMEaOV4bYcd0gKHyY1QUussr8+7jPuQ1n1Q3DPWFeIPBEgHVyuqhElKBVIgWF3ufhmBPRHDwlnv0b16N46V9SLZch3z/WuNsuEsWz9aB+2CP29unGhvUJnB7hTK8uuZL89uXkMbSH0S8V6U5FEs+Q1wKDFaHgaX+IV6/UYKuMHnps+ZUWD48AkcYH2DZCFP/82g5BSRJwtWUlH4uzHmKlaxxoYUoLzj/mwzqZ0JV/id52L6LejK+0zVocRnxx449fbdFSIhhq56iS0RRbTt1UTmeDF2JgkS5KW/7lBb4mILZ4EJVWGUBLxTScuH459n/bSKovcjF+dAL2P4gD8SpJ0kwCMO3IwR2TvqCeXiR5qMkP7d6Ljlyqp3V2h3DngcPw7HslyESNhcvtd7ih3oTsNFU4uvcHqiZG0Nx7y9H++FkO6RvEhScWgru3AEDKM9acTdjALrRNejY+sfBHvV4h8lO15BNdVnSiRZ8Er06H0+cv8Y/vGmAk8o5TPz+h1uZP9MF8Ml5RGIc5V9RpTmMdVpgqg/MpX76wqRlPrp1F0Qefgu5XJCEPO455d4GMU5O4ylmETP9j6IraRIndCFJ3rnPgLx8u3DyGItb+gU6hs+w7o40+hZXgxeLZ0LTrCRYZq8DP7UtBM8cPxlQ44TvjSpZ7/w2eDM/ja/d+0M2zE+C41QvqWe/FiV/FeeUXC9hxJgYE/xVAfpEuO13fRjIvRCn1P1MYNdiPP8dWcV34Sd4u143eGv/g15oRNCs4HA9IJZF6RyfaTpwBcXpnMXqnDTpIGLPK+BQOz/lKL3RrOW65CJs/OEPfHc3xj74IpAo/JbP8L7Dwzhg+uQbYcs4Liqu/CFduxfHMgHr46TSZTm4cBSnjjbBl0y5WunqZqRfp0KUoWHeiHC8HEU839oPPGVdBVkcPYOcYCsN4yoto41cLV+M9t2ks5FSFV/X/cYNELjSve8lKgabQ0GYIhw7JoNe/FFpd2M5eqwZpj+Ji/CduMuS/k6BfeAVZ3hAAu6YyOtTnR+reheCTMh0ubvyHTq+F4WOVMVYZ1sDxJ62s2ATgsW3IX3PVMWa+AgXdVIa5ex7QcZWjXNpzBUJP60DvkXdw85XOkMdXcardbNaMbcGOjEXg7PCYy0cs5YLxYSyDHnRYw5hu5WhAYuEMgl8HUcpRnNsFe9lGYy+VmM2FxSVaEP7wMHffX4w33slAw6F5tPZ6B+ufrcGaP7Io750BGS7aJPvCGMSGZhVRLgiPPCUgeGYYrO2PpohF7bRG5ClO/68QUxXFwcglBO2XlcBEdwNWch4BclnZbDMlg/ZHtpNZ+BfSHNyFG7eu4L3lD0jTdjEm+EiAafl4YNsBPqD5l5fE+Q958H5asP0Tryw4yNv6gzn6TQE/OlDK3b0m8MIwDtOc2mnm6FEUZnqf1//9g6F3PvGNga/s93kBdmx4SHJaE+CoZj7GTrbEBQYn2H2iDc1r7CbZjGG0x+weLO0TxKi/H/HR+JGAr4xRpswM5Bwb+NJ9OwpuDMepO59TkuYkwEfD6Ogre8jdOwXK7E6h58BWOrQ0FKeuWIm7ws14vmQiFm8NA8c2czqVowjLH0yC2vWf4IhTEjy3M8WeJ73w1HsDhnfEovnZLFZtfMIzo56jWqAcFAb+gasd1nRXo5tE7W5gUVsivn2BoEb6+HBGOTj2p7DWzFGQGNJJb7IL4cv2+XDfaR93LnLhLMlnoF0tiKcvJcHLaVN59EoTEPzVz+7nK7DxsTKP2JXJzVMPYObTQAxcIo3beglD1f1hm/AE+DUzYYjDAllvuQ84GrrBi5/xWOsSCa+0HRAOOfOBsdrYyDqg8SAPt47WpuTuEMpImckLsw5DyLWFZJRXhDJjHMnc+yIdipoBStqhaNNzltcoP8C3pQlkmL8Kf0ZPgjX+pWienQJvfjRzJcvC5Xgz6nOOwQXRsbxz3mEM2WbHIbl/cOqvSIyZs5J0P7jiLEsxaFuwCZ3CImnjwHAw8UpE5WUFGK21ENU114FohhfdXC3Ky48MB91ZY8C6RRptWzdB/5JlNOPdZz5zT5T9xP9Rzol8PhkkzufNh8G+Ix0kvCyFao550zmBbPpxNghVyjvx8r9zGNc4m3b9zIMVT8aCdI4sqVZHQULmWrxnmEPGFZdpsLKRp0wldpV0oMkL+jnIUAReyb+nvymWVL98FufFiKFZrizJ+92Aln9+WGavQoWtXni0Wh+Er5fAT4t2ump8iPb9Ok1/7tnw/DuTyHetGKverKBZzt2YfWocGF/NxX3DGuDoFkdYp5vHA8ufc+D9BTxH8SfSwF5q0JnIDcuV4OCak7Cq9jC7CNXTFtUnrL/vG6xI6ESlE+vg3uMLmHclFedPnQJR++bR2PcJbNDazMfThPGnlDBUBSvwq/sbWct9Jw9MKqUjqmJQX6uFv54Odf8hW7rlmcE1q7/Bll8LaFn2Vu5bJ8cddl5wZ7EYyFarcPbTf6Bit5dD7hnglu5i9pw/leL6JLl9y0E0fi5NnxQEYf+Gx/jvgRvdtF9O7WKqsFbRlrc+/Qm/Mkv5cqYA3RL6h6fyAWykDHlB6AQ8uUeIdCaWU+WZn7Tr4i88mueLK7suUdapXjz7aCJckveGCetE2PnSCRy/Qh/FHYqhqbGdblE/6agvwgz7WLDTnQYXNB9DeaIECO0P5z2TguHhI2WcOTidYp5ogFZLKL0c8vAQKTU4BK3gsSuObMSPw6jOBHR1uc9bm8yoYZobpS98CklZyzDy91iQGh1Amz9rAG36B5YCifRMCMDSfjreDtoNdSs0yPbRcQ5+Q5Cg84xGPetAu09JtOrtOUy52EFh4j4kHeuAdywz8cgJd2ArETgVzbgsYgHeUJDitPXp6FVdCotLjWjGPKKN3zVY9+V2THMxhakV56l3tjtGHguk8xKzMb5EnX8vewLtxpb4tqKZhz/5QMsuToHqvCq6sFOBRd9vobtuF+BbfxLMj/sfcefdDYT/xfE7bBWRmZWRJCNbVJJQqKSpstKQaChNo1LISElaUkRbqYTSQEYlFOGLolIUpUUp8fMsfk/gc8495973+/X66zOb7yzyp6YdshwgtAo8k+SgXM6Bpva/phASx0Dh65SSvYOM8t5h3WgpaLC2Z8WWZtpOwyAs4SUmZ3XjvCY7Hjkrh3M7pEArbYAiJj+AHYJToPV1FyU0CEFvuhjVp5iRVehw1mxL44d7d8PBvktw4qwRrL3txXpVajQ6UwIgxQafvg9FJzNLmqq7Fdf/UwKVsK9MDa5cOeIunnu+l6ZmmMHw0+M4adEcqr11m0a+PIAdL/1Z4nw0TH88HnsUD+LdxSFcKKMBmwf/oOK59fjlkCDoF8Wg3JhrdGdSFYlMHoftyxWwz7oZ284bwi+WAN+P6bzm5h/IupnDb489Bw/LmzhingzuXniE3i4aw31rJ8Mm80S+E5GMGW7LQNw+iBK77oBF12HYuKwTN3h2DOX/LJAyVINb3Tr05n4ZKP2agktvWEBYWxAmhF+DvOIpvGThTrDZL8wfb4rA+8rxmJS1nyKvm4FPhDyf0FABG1cF2CLvCTrGj3D8zQosSZGCb827uOnLCzTJSmJbUSOqNBvLZaWfYO/OOhp0sAOnU0aYrWgC09Ju4ym/DJwQpsen/lqjWpokP1lXSh4LNxNHb4dj+4RJYYYGpKc74xMDabwsL46loyVg1RZrnKVfy6JRf9DR2hk2ppyG4VKqoLlaDzU3rMT4kDfk3HmdzqbbwsE6K9ijlEPhdm9R/EIpex5G6L8QwCNProe4XS/w6MBfMk8wAotdB3jJscnwhWdy05FMcDotBNrHm/iBcTerNJ6inkvxONEoFZxmrCTdlYPwvv0Wfj/5lp88EwbPd444W8KD2i49IKMzNmyzVJPSNNNZ/j2z5pAz6vyYgQe1ZKGhYxVvjfTjylsSMLO2E7y9O+CubCbd6akF0z57NDm8mN5ri8KaZ/WsPO8Qr88ZjUUrTmOw5ENwG8rZg6lPOClYH/u/e+Mme0EIubYQgp27cOCuPTYvHIumX3vAtlqdewLL6FCrLOUmdpDRYlWY7vqJwxecY8XL+7m7eQnfSCnhgEP74KbuLz6+boDPLu3A9lPCkL5ZC99Xu+Do3AROsLFkqdJV/NXBAh6sPMLbW+bjoiZnXBNoDoVRNbzm10l833SFsneq4fY/C9CuvA0275LG6uxTcOrnMJox1QCKKs6ibvcEMr84AdMDumjsd2Z0jqf4ijYOPx5ISW9GsX/DWDi+dQH8q3Vi4UfJnJAlAsHTakH+/CQY51aF+Z/iMCc/n+y/msCmbi8uiKvGjFqEw/lnMLhOje3pJT580ENbbSNZKCILlf7IgppkNa2WucbzG/1gS+9blvs3BtVsCvDl4RW0pkSAhZ0akK2mwsXb79hq/y9KL1xO1RfOs3P5O9K5MZOPr9DCfx4VtHKCPzbeMgdjxyL+N7OB7oaOBIX+vXhPYgcI0GO4ekiXnpYr4PdMVTyWogwBa7q5JasWQi4OwOuBpXi7/wnUfdoL2SsNeaTCbpyaMAD7LpqAFDlTqt0/2Hn9Kz/ruYgxcmM48NlsemS9ka6ffYelH1bieXlBAIMR8NI3DXsPRqKX7034WKJNy+ao4JLOE6znGIvbH2wn2zl6MGPjce5ybSajd985NmQ1zH12BdwnNdGfWYvI5YAPKR5sAM1xCnDvVspQvwMr9SjhB19FMHoiSVrRbpw2sZ6f3BIiV7l21g4kCNgdSJ9bNsKl4RPISGEE7LvuzT3fqmhVgSIPPtSmjdYn8MNsTWhYcBSsCqaB1p0rtHfjHO4uVOX6eT3glr2az9vfwuzVR7CPAPyiN/GXZ9P5zbtK0j33ht+muGKDw1ZQy1gEbZFF8EPlAN2WlYFPmxxJ+/ZYnBa0EcO5hR67J/Pi6Pc4d9cZGFT8zss9hFC9SgX0b5hAUn4xy/cQfHIfxwPjlpBU+B5CK1vi+kzI7t8KPvet4HNzIPdecsGATzrsEPwfbpkkT9A6kpsvH4ckoRus4RZOcjXy4JFqDylS/ah7QAtL5vRz6NH3mKnuCxYLVGFL+BZy3TXAyz9qwaYLl9lodd4QK/fB7cpqCp0I5KopCMmS9TAlZCq3d/qjVNYUMApMRL+AmZA+fBpljEK4+HwKjNwmBEFrj8Bf1W0Y8VeVHb2F4N8jYywf2Aeto57gtTXeoKszHI+8SOGnWS/RMrYDjKfOoBXXRgx5aSYaXi0lgc4bYKV2hgZ1C8HGLBHbRu3k9Oo0HLDdDCkXR8KVuEr8MOcxvxvQ43v+juzlXEPzGytw7qwvFLIviw2k/+PA/KmQs2grjdb0o9NVSlyzKBzX1z9Eq5HVtPmDFCz4VkcJafkk7KUD1Ul+1DLuGPoPZoOs5mJUW2uOXlpdPDLXnWWXrcf3vpH86MFo6Ao/il8DZ+NPg27wzXqHqzoreduxN/BpRCQIZmvgsjM/UK1UHta/2ASu/c7g/uIfHj7iQJ0RyyBO8ggOuoRizpxl4Km6gOOOKMAKcz+sL1qJH40E4URTHTzc28wJEcfAttYUOvAF/jt/Ha9dMoDxTUIcdDmPTuRM5TGW+UiOBbg0UARi7r6iBaYRfLAwgM4uHAtt0bJ4asCZR88spxGzP1HOwShUiwjntt8T4KHaSR54sId9PplC3PhkiI8dx5YP1uFU/S+oM3sYz13mBz8n3MC0jArsCBpB05wmgfW5+2RfV8tLrviCE9bDpW+nmX6+oDmhN9iK1DB8Vz/7V5jAZvEt4NqpTFqJryDA/jXua3iM4U2BrGCtTUp/j5LKaEnK75wIR1aGUEGBC2KSIT0Tf4Onf/fxmN5yMMuVgUmrzmBK5/yhnh4JWrIInjIhuOypMy9tMMKf0vcRPkrzr527+OT4v/yvNosmLRgGOUu+YdmeBCxfPwOnDKzksv0PsT5cF36fHISuK/6cafwFnk80gJ+z1Cn2egv6DB9GgbH5dMPgIsQXJ+Pplwq8fmMyxu6cQf7ukvDidyubeavA3+Qu+C/QmdpMfsOc1HnsJLUAbtSP5M43tRx8Vwiadh4F/6cbyN8kAlxDF3OF3w4qsdtPYQ8+koz/Z37mVMrVcrLwzrIIGoQ34KxH59jCejjcDjOGEV+Xc6VZAgsp9/E0fW+s2KMCDrdcIGdyCfedV+KA5j+8f2QBnMr5hf0lDjg3/D4GndsDQY7DYWFbKtev3AAHys6A9Ics2O87kz4ZR3DnmFkcJ3+Af1o8h7L/NOCA+mW8dNiLYmUVYY90G+XbTaYvWjmYrWCPgZkV1DDuGX6MVYGpX0VxfHc7bx+vihv8c2iUxyccGCNN5fFSEIbm4CneDdO3WkO51yALwQIIjxjKwJowWlt3HZJtJ+MS1RlwvlMQnJ60g6bPZPiVaUYbAoE/agTQu9pPsLT6BJhNyMTyIG0289tITZ51cPKpLiiVusMrr0QyLImDA3GukC62a8jtC7ihazSLztxOXzwM+Lz4GFBRt8Gxhz5wzVlT7l76iYoO7qcRCzv41UAM7LG3p2CXo7jsyhiwdVAD/xIf0rS4TntkvvGkzHFo+ncF6vzIxiTn4/iqrgoSPo6H4jvtFNG+CGOqozDJpowE291guZcsXfbYDZoOlTw7ch3Y31UEBSl9/DvzLXg+1mRhg520NCOYsltk+a5CJijvT8ZLf5NQ+bAEfNkxH8UCZ8H2uLGs53OPS1Z28teGRgo2CeN+5yf0/Y8wev2cBI3vbMhtaJ9WmU/EZ58u0UTJs+Rw/yZ8nuhDwlMnoLPBVThTNgx61EVhNXbibY8e8t4bwT+bE8EtxRfKFf6jM461qBd/jx93I0TmJVHxwsMwd1sF39POh92u2RCwxA4urLtIgUdM+azJTG49KgYTLd0wihzgdv5YTG8OB6mrP7kqyoe3LlqNNinOqN4diIcrteCghRyPPhHCz4630ORQWWgd7oGfOt1htuwxEphmgEql4/F9swLsXNwPhpLP8MXVVpbqHUVH9z3nA34tOL1bBn02AoZKHiRZYUEITw/C8C2zyCUmG0N8aiAxZBH2aR5lvX5ryE03IUf7MhbeJA2i86fhyHwX7LLfwOG2pvCdCyDmuyZaJ2+BPAc93vb+EX3YoARqycn8cFsu2tTNpG63kxi38yK+ONtNFeaLYURHA9g8XE2Lo5RgWP9fWj2rlno32WNoXAH51PiyyfRR6NR3GKTDl3CHog3/jdYFqVw/HnYhlkQeyMEInQK+274CzuVdw3GFS6h08wee9nMjXDujBS1Oh/nP7nrM3ewG/Rvugaj9HRCIyWKTPzchSCeX8sfs5LVDfp5Rp0AZoRsw7LQPTkvWg2uJX/iK9QssznkJuf2n6F5AC7h/04BLHw2pyvIH2Eco8bCxl3m4UjNVlzVyxbrdkDE4Gcxl9FnPxvj/9v/vZfvzNOF1OecGfqP3BTIU0K0Efjo78XvgKhRQFefpBsBNkdZgeD+do/MKIT/FmQwynVBoIIOdzruzdZseVxyYh0L+R9m0kWEgKpjCduRB/GozPOc2j9f0nAOre0UQlJsANZUVYK3kTvsaAeyutYOe2yPKO5uIX1578OyuAtZ4J8gSI9by9wUpLDS2kD6EmICx11H2eXKEfp6uZlvnNxBgFgf+5IrjrI9io0QPp4w6COXWCNvFd9COKdI4V8ARw3J6WXtwGzl4T6HlC7tgTosL1O78h8Xiw2HAs4zLzu6g3s/D0GvuKZ42voGWFR6FKklvHDMzGJJ8gmlmqSh4Pf0PpoXs45hNuaiTupdiVHdCx9VlULc0iMM0NuHTF/Px71sLWBkawiF3j+LEYTEYcWcZx789yBblM9novDAN6CiB11wH3ltlDRpSyejw1BqSWqOxY+JdnnHBHHuvdVKH1HpKbEin/0Jn0RhJUxDfOZpvTVKhs2s1MHY7gk1rP67XXABfXinBNV8iYRd7PnuF4LFWKts+98E5T47CfZv5bPywnxyt4ik5ayKWxIai+rdfNHeHKDStWYqrj+/DQidJ6vsszcUDP7hg3Eyyu5YINcsng07IBJo8fCSs8lGi8UbO+HiUMPpnvobhVRVgtX85aoTXgv2VC/xcux3XVBhArfwctnLahU9vXiHH4W1cmTwbHr3T540mMnR1ZS/Kiajh5uqpsA8vksR0XQydokrnt9mQyCMFGHnHDWofGtFNlXhwHP8ZKg9agKmLHRyVLWDVIkNwNq+lNOfVJPFpJXlLi5BYnSYMD6iAb/VSECp9BgwjHrFLRgHcvficsgMs4KrtXFq8XQ5br6zDmWvsKW2WJez9ZAbaaVvAWyoC6/TE6Y51Eux1ssKrK65za7QJGOrtxYsq+pBaNR6NOm/z+X3i6Nr8i/4unce2cImjkyvJ6oIYjOqawm2y+hA314+Dn9TiH1tXyA42w7V+pXQ0uB5PTldGSxlXyjrRCh9MxkCkVCxIe+QiCcVT4OX/OF32FF0KnoCyo1NA83ott6sjihwxgvhLmigy8RguCl7MC5KsOORYD2s1mdBc/5HgNk0Du73EsbpEDmRnxJBTz100P78Q3kv28InDE3GNLoBryTRePG8zdcTpwHsYAb8i9WBLsQvoPmVoEV7KC66e4bSMGnjw/jn0KqTzcmkjnppvDB9NbLFEI4O045Vh0cG3GFJxGhRlpanlfCxe+9UJKvOqOemlPoRnDmNHYxMqnyRGXmZnKKFmFhcYhrFq9ARwMjAl87BcevdIB3z7G8HeXodnPzDjsZXvueJDL5fKrwezRbs4aWAsnevSgHl1APsHb+Hiehfa73kdwzIP4dWBRLh85B1Mr7gFW7R66Hb9FYyrHQ7uWb/ANPYkqn9KxDXnSlFn7VJellmCq4IlaNmJN6CndYwfVQuBxsUj6Ll3Kn7ctw+ON9yk4PqbXPtWGkpT+/Hin7/sslybRO1GgTaooENyHi6X1KEt0d58xlkD4gvl8GhLATrKJ1D6uolwRt4cXHd2wAj7k6DweAN/U9rK2DAJV8XWUvZRa3pweSm0ru6hhg4VEKpqgrST9dSaJc/pPv9hwGItTGwwxKC55ayXVMzRlrch6M1U8Pvxh3PL59DRln9k9E+QNuwqhovT9tKmfy2oGFgD4xZM52OtY4CHB+B31y541JRAB7Miee+CKdBppQBq8gMQmTAbHm4w4Tuy0iB2Ix9eXF5M6WZjhu7MhwLM59D02a+p/MMC3HzvKTqk3uNjTWNg3pqbLDpXDw82f6CM7u2Ydi2fHv8VgpODdejJNfhvRA0K1ovDd6MGXPizn9uuC+JNWy9oC1xK88Y/4v6I42RzKJ0NxWtweosa7Gi7wwpjRtO3ZSWg9fwNpLYYQUGqOtZ3OMK3BZFMC03BK1EOhikbwJZXWVi8oo1ezj3OX+dl80B+IdQkCbH4wrX4n8heuuAnDROnzOIL16N51ZGj1BN3hc8pOqOlcyW1LP3HOZVB1FD4D//t0YewpXl8uM0Hltyx5PGz71CjZz5mt4qRvtZuyg5TR7/vOfTgpiKU+zXzki+l4JpYjdU5q6Fp/El4tzCREu+uAOg+jFO8trNclwm8dB+gO3IpOK6yGIweL0INkyFm+eVBd8JHQYznYoirWERpz0bAwa0lXLO5CJceW0Q7pV3x4NmF/NxqCpzJ6OM+l8O0wGQfVlhpwNVqGWyO9QPPYBsMH/+XtJvSOOBYI40+uZI2/kph8pem5TMFQDxtF8Yon8Jd1T2Um2IGmm0x/OXuJfIqnYLq3/uwYPZfvKAhD08NHsKZvstQeOoH6ZpOxrER8tTsyBSc/gp3jukGA/EsmmOvAtqxiynh0XfIir0Hg48ugrXyVA4Rek/ZDwpxXH4lvM8fSbaSQlC71Ro/zHiBizba4gdXC5Q+aMtRqYU4DYdhUZU0meabgcM+C9i9qRI7DgfQV48WEk0K5V71ar59fyFYrX+HM+/t4/6RH8DVYMhXN22lbzpPaYvsDjp+eQYtaz7OGT3h6LFkKY3q04TtN27hvQ1CcPHgSdCoeM4BCRG8yMOWb8XIgHnQWJT20kbv5OegfVgCPa+Mgj9TdPF4vwctVyqml8Oj+PTNs1A7bB6/9jPDpAtW2C4pyQEvjeDAlq9gE3SPQyvq+Nb0flxb6s+JfSYcoC0KyW9rqWTUGhwQngyq11LBxUcUAys0ef37dfho0ACM12Xw2AovMDC+By7yb+lsjBCMNhDge7v/Qtzhl3gq/A6JLJiOUttXYdXXKtqTM53LghxYKkgPxvzxgIW7iriiuJxfukRiwpn1GBkYTDlNdaxnFcmXFEfRgzEioNevR/9em4J3jCjuz1bDiAoTvqxmgfpKvtwQZEDSP8XYZrQSaKmOBOttz/CPUyosC9sHJ3ITKcr8F8o8S+Y1Dz/RLuEpFGUtCg4TB+HAktuQ3zQb4y5MBZM3Vlgy3hlPLa+CtJVesPVBOb6IHws21nZQEK0Grf6WVDZ2ObUUxqCMuw+VOmihpW4W5n+/CiZrjCH+XCeLbt5ExU/y8Mw2d+qzScXf2UIc6XCX9iiZo5fHVrg/3BDiFvnwzhQZeDLTku7Ki/NkmyKucztAvR8kcU+QBEw73o4LZinDlbAHtOGsH1w9jqSdu4laqv7if5mKoGwrxjv6LrPFm9ckPlwZXEyNoSJzBtX3uuHNm02s9K0KKkfos7CSEQVXfMM5ttK0+Zsq5BwQwd3bcqFvhxLPKyvA9gtzaF2ULkZKHaSMV5n0uU2brVkP/JeG0NW9+/CTexn4DySBSelymGh/i14Z5uBy64scdkeHDnwbBz8XzqXWbmlYscGZD2R9xlf31vPEmT9g2YATH43qhOKxk9lFTxJ8uyTpzMwcbFO/gBs9n8JruTe4zOcVxm+pRQl2RvfdmpgsNRqs8DcOSA3txhUDHre1AV3MLfjNxF0YFdWJhgYG+GP9DqgvNoH349/RK/9l6BUrwaWFyWSa9osuicwmqWURkHRykL6KDeMLjlpgwl1cJOBCcv/64bKsPF5fsI7STr3B1NAJ+NN7JZ+9W4qVRlMgWEYWmiVes+kFQf4WNIG+bInGfZt9hvw4jxslVsHw14IsOs4QXkndowvRL+lNlyrs7EzgDRanKVjtDQd1i8L2xZP4jlUipTmZgdULoNdlhnCrfy/qukSw77JT5L1mKU1UOAInd36mupx+6l4xDl6/L8JLb2ow5pAk5cv+INOLBVgXVME76yzI9+A9mG5ZA/9sheBJ8wq+WzkON6xO50MCW+GdoBH9aDOB7+FasCnxJ0bU1qHfawHQt9pOZ17cJSGRWOS6M2DS8Ifcjktw9oHlVHPQjL/cXMfCu+UgznAUCVdEU0ujNm07fwNbFl/iL13S1PZIBHu1X/F2xT80GGIKlYK1eHRZAFRcPwNvZ5fBnIum7LErlSSrB/C69To0cWmFHRmKMNVRimz+3KU17enYLHiacFAMQ12jGGdYQOvzDJpetg57m/Rgzlt10vryDmNjwvjJubsQ+ykOnc9uhrUN+2jd7EZ8HTqU01kAGV9FwdPvJF3MXwsrh7pqq/9kjHqvTKdftfFF6SLStnfh9GoBKDijCg6qrfB5z1IUa3TFHUp7+XPkS8iUuYJqD7vY/mwciitMgoKyRKQ7d7hA8TK3aClyWvEDeBUtQd+Funj0p80w5asFJI+eCNUuMdyjOQCK+Vto2Sx1PNFzgnb8mQFaQ92ncU0Cq6O84flkXZBsHw5WH/x4g1cm7ejQo1GJdnRuljI+v3QHN+mm0mDkLu58bwLJ4n2ER/X5yrdueDw7jUb0u+O5/T/x3sGNbGhZzypvavHNWU2Ypi+CkwMIZYV04MrKNThXZhml9juijGsVz/rhBy8DA+j7ralQ2FRP82Tn8ORvIdw58ye1zuii0sa9aBlcyFGfxoKjbyPghXFw/GkPN/rmwWutALrhIU/LmxN5ftI8mDfELvOC78CulGUcNKAPAfE7MEs/jh1UJoDqHF8wfbUDNc568+bjqlQqvZfk2y+ht4ERaGSbsdtbYXa7YQJKhx7QRPOnoKa6nZ2E42GYUyYefNGHMoOKMD5JEk6k2POFadOh7Y41azqnkP3p6bj6vQI13poMy8+/BXdVfRiu7IEvt/zjS98nIUxtx5aDKjDQFEuzo2bA1RYTWp56jvffVYfIUWKotViJu212gnvKFhi2f5B6qx6CeXgcav37hJH1JfBPQBfGL7jDcxcXUcthE2htLMLNe0ThU2oiTb4+Gg2OeKB4bxaI2IyC4s8OFHq9H/qrz0K3QiTlW/+CYeu/otKNLlh9OI22/TgPLToTIS4plF56qnP8s0T4/mMU+6idBlNNLw706oaA9Fq+rLwCfvwcB50W+Sh0yQJUUuaSWnU7+jz6y9a+HnjISx1MP5vw9NJM3NWnB+6Ncbw7uZzERlaifXYY6RpkcdgSZ6jtvcyv23+S/3ErWGepDPdtA8DU5yePMjEHrxJjiJx6hquOzSfjzK8UP00BXEYX0n/LrCHn5W8yychFqdNqJK50ibW8buKPP2I05+88Hr6jg3umuEDxUSU4YL2AN1X9goU7c2G6zSvSSaqC6LJ5XBq/nH9VS9MFAR/SttSCXRhOl0NW8tXUZ/y91BVe+oSD2bR2tHB0pl0PHlNChQWJLxWEYfXR7KgeRbaFDPKfzfDumKH9G/kf9VR64Z/3D/mfkwmODVQe6qs6Frw3DxWl3lJA2gDOqXqBZ/9cgaL2RfRodzqux90Yd0sMwtX1aeBwDMcX+ADozkS34ZMoD1r4xpB7XwkbhRGvT+KdUF3YPskBHnjl8P0lpyCoeRsb1ogzdsuiRaoICjz6j9c+XAILVYVh/jwliFtvRu53YzHjjgTuvbQE13oI0O+rlfT7ch2PSyuAq7kq8KPJDv6r0gGXJTV4A0fQ/Lxm1Bv2CfTOF7KflBT6flvDQYV6sEjuFHVP3sgpY81h1vGjZDbHmVav76ZG63Z8lHefl/oIs2LNZJhSfpZKxSTwIaTBjXtLqLseuaa1iJ+cjgGN00oQ9OctLt9hDnd6XVFOWhsshpvRbNUE/DhhFtf8DsQEkXccXeYEdi7V/OLnBLh6pQlUw2ZS7tgfIKA/Avc7pLHUcAfSd3lNigrSuPzjA1p7SAss18Xhp/GB4NEQw/2pJfzNJwzkSqowN72ElbNOY4KDF+kGIwysHk+ZvuIQOt0JNF9FwRzsInfV2Xw5cC386ivhr0ZncU7laHgYtZ4OS1Sjy08VPn2tmAV/15KLwga8+kOSi9JqwKA4mC9fl4aSF6PJuaWX/NwH+e2dWxhyMhTKZ2az6whfvF/+nXW3LuRzz/XgUGc7hISG0/MGKZRMkqLmdkH4+uI1zIr7QZ4Tsikp5gUICCsAVYez6b1XdMvXAK8ds+P2t9/Acn8P9vcHcXJrNUwp6ePPOcNg40Ft2F1lDvfalKhupgzIdmaij3EMrBL4CVfGW5LuyaVUKDQFTrl/ALtVqTjS9j4sNNzIj5558/2MNdAUqA0rlzii5plFdPvwOIho/0ynJ2jRM4tq7HRajIfgFWeEaLDaSD/wujgcjguupGWuYpBY94GPisXiJflG1Mnqw2ULAsA5XI7yL24jCS9T2Kh7lRNPCoPws1LSlPhBK6YEwKYvV7h3zURMzgnB6Qs8IU97BNbGttLm5ZrQt0gONk4PZP+oB9hT045HYggWvd/KMwy86VxhDDw4MR2UR6jBnWdbqW76Ca6Yr4zvL1SR78UrYO9wmNec3UIx2tU0Nnc5eJnKg/2eXqpY+Yf6ku/zgw4x6M5eTQljpvPp3QmQHF5HvL4GvLeKg8DLGTTljw+9nPwEfhn85MO3lKlf/hkdPFDJZRYV2CIkCfxtEoQ5bsa0VXl8R2yA59+bDHVVBaw4Zy4Vrh1F5lfd0X2MHXeqm0KDhR/fNjzGp2QEwHFKHRtdPQTxXy/y8EITas04Qe450XB3mjhskB4O3VltPOUqcvFjAfzBoqBYpIEi3pJ8uFUEFgRcgZyhfGn2fQbOzrk8tfkjTKy4jXBrA0T2u5FrgheGFznRg/enuP/KaHA8Npz3uYqipeVYLG5+Q9fO6UPpIS0U9PwEs+/LYPGLUhitPhnWuMTCSMkoTNTrItXaetZeMIk6IlbCiRhvzpT+y75THbha0BzExm1jj6FeaH8cDH363WT52YD3xh5C47cDEPU6nJ/Wr6QUb2nQ++LAZZtnk9Ly3/QeTtPitFD4z0OSXv5cBPWeSqCgPECJkmPh0JZ52PzAnR/9OoHWHYewosOeersn8obp3SgcZsc6SZfZ+/vQ3P0DFGgVAspWW1m3WQ62dNRjjc1bmCP6EXa+a8KmNRPQZJIOFMz7hJT0iJ2v5aHjqkAwLF5FV3994UMi29FW5RdeDtpE2Y4a8GfVC1515QQ2jfbhYwumwowRj7De+wc8rGqC/r176fOHY1zzSxPsrCdTU2ocnjAZy3cbQ3mVfSIdG8yH0AWpWByxAK2+NcGu2yOgoDkAxixzxmm530DedzUlDTvBjo8zYL3ADAyrAnJRNYAIg3GAbmvQdvYxDHJMhi/viqGx+hzK9IqCvWgE5wSPBP9dCzn9sQ5IbUmGO2OqwFzkJwwIPiJRsRaIyX6Jtk8eo8iOLSxUJ4LiR4UgtN6S3/3tAFVJIXRM2seuqx2oqyGdisyjSKbFn2oUEkmiwwCOTi8hO4hGx8r/KH3mL+iYp889ivMoYX0vr6ou4Flf7En+21jYgYexYsIqlLw1GvOOSFDis/kk4+OP3ncvo4so88iii9Aepg5+Zc9g8PVNyjSXgBkOpaTu6IvfN7/HFY9LSK9QlE/YHeIOYgh5Z4B/ztylb/6bUb77O/20XgnnrSNhzO5KiBCxgPY36ty0UBlW9o5Dz3nuHCwdTI+sFOhU4zletU8eLh6+T4ueLed9DqfQTmoy7LX5BR8OtULXVVeKHVPLQWeVIS3vLK15moRPG924yewChDpbwQcPCZTGazzLKYYMij248OVx+jJShwI394CoRxvPCG2HeH0j6LWL4U7BbWifao7rA49BqoMKB0R3865l4nQo1ojPmz1lNB8F6cqNcKGsBfYeScSa5vf8RPA7rTxWxmcdCodYaYC+HzgJqpkI+/Sf4Erb2zhHdCoHnDElvaQanj38PsFDRc6svchaPrtg/PDR8GZnLxpujsbp7afh4oRbcD5XBbW/4VDOatDSb67saW3Ob7P0QeVKHgr5zSInXTnurfLEdT/XgK3eAn5YksD7Zabx4QozOC0vBxm3DrH0AguEzDheMfUd9Xo4wPK606AjWs1KykbQPnc3XnuM8OfqX5iXJ4WiGWLU+PEmrGg8TkWVTRDjIYZpv7bx0rCVJPvXGlaeHAtTOrVBLkAZL5xX40kBxux5aT+tr6nkUrnDoPPUh+WfiIKFQRpVejbzfQVJ2iS2kIUbJVnLCrnHdSnGzu+DW50tdKFHACx/9ILbx7/Q5bwF6s9vALu9iRDZGgDn40vJ68MwnHL7PszN1oPuUY14ycQFC4u3sIx0Cy2uPsxWSyJpwyZn1E2TI33ZMjh5wQR635RQRWEZRc33pNdjTVDn0V/sGxQEq7szsODfJBCU94KC6aNBpsCXlCtEcFPHa942Wxw61sdh9rUETrSJ4wnlkVgmNhu9z0+CjR8z2bvtLqiK38PQkgWQvlsedtddR7HJZ8HIJpDutLty0aqp4JHay+JCZ7jVeRdOPJPO65eHwJRJp7E/EvHlw1+gG7idIxQV4OOuRZT7you89Bfh5jnrMfi2Jb8y2A1vEoQh6ewSOrt6N5TyKPAzaB5iQDdwWLYNFFLkgHZ/heCZE+G10W+YcHUyvrJcS+UhE+DtpImkW/6L/Ob40Y53sSQzWM6m72Lob1EQGTw6ChYJJmR+UxuWBy4D6ZX1bDPuITQc0aVMp1x6+MULopzXYOu3r+gt/xKfbDKBnStGkbuFK2w6+QXX1P/kpQZxmKQdCZuefqMxNnm43ESbZ+eJgFpwJ756fw0do/XxutYCqO5P5vPL83hEhC7Zhxbxx4eraaOsOoz0CMNpqlVQoGIFbd5bOGTSS7Z+tBQlrQbI/+d1znONxr9/jSDoRg/IbPGm3E1tYN1QRIP3jfGzcRffWzYXDian8fzdebi9QRSs9WWwa74nmhd44zXjXowQ2wVrrsXDLNkkGJl7mF/G9cKuEgn4EGqCfy6Gw+Wdv7G51I0EXymQaqwj3L05HCa+UwGTuCFHmycDnrIP4eGVD9jD8/nEvyP8QqMVk44D6F8N5Id2vzjiz0SIviAIFvskqO3LBFIzymHL30U8rGci2b1OgPmxFrj1shKcHDedsIhhmZ0BPr9QxaWLhdHJKwe+uJXiOF9fzBG6Tp8Fn+C/9xX4O0IEDC5ch4HzZiBqOALDTK/TmJ6v3Jr+G3/71nDGTC/evCuNxn9VBim9EPg7dzb3X5yMwal/ecHPh7S3JQYkbspRy8sW7Fp1nL3LpYHdrsFetY3YdlWOBL/3YczwZsp2uozJp4p4YWQkFbv5ovAmMRhh2sR+rk04p7QS/wt3ZD/Np7Rk3GOKOl8POSNKQTfsK4TdNQPt/ovU1vWC8+XkWXneKHbepYQjjR3xyY04ujDE96qp1nT8jCiMNArhzPYuNG4dxkqJ0zB0xi/cLKWIv+VW0Fv2JMUpV+lU8GRYaTiDtRpvUHxCDyZGf6Zng7EUK6SBrZ8Kwdu9h3bGB9NwW3PwP5FFsam2OG35D3rzRZHlX14d4rkCuqEyit8VetBVkVDWsRgHRfYjueTgVFQob8RAuAX1y5NxzuZrgEJKYDO9DV06YjA8Qx60NLfBoelD9z31E5weUwnjRQ3Y9FooNfkKYFnjfThUPoKNlZRB7NhmitcbD7MkTHmfMHOzoynsSPhG9zc/4dUj+2jZu3b8OFcJjqt74GPpKTw9z4N7IJluHnTD0zOcqb34MD+QmItWHZJgFCsNqhOMiexGwb20JD5n5E/D7sWw6w/mm/vnkZKXHWu8LKHtPhbgF5SGLV6e7GOai+tKxqKVwCM2lBmaeY4HlYu5g37s0F0qyYMXKtL3M50wda4AqX/vgczZO2nDmCr6XPQUZpXoYfg4QVQ9rQ4HPH7w0npt+jV5GZoWRHKRyR+KyrLgCcbpbJ3TjOuva/NbHREoVmplregYzlPowuEGUbR2tAFkJT3lL5pBrGKWTf8a79AfcUsYLDxBka8/DrnOfPzXYcsqvqY89+UxrI12Z7UdD0By2zb89EQGUme+ANVXzEfP7qPlmarw8eRaLj56AQxUkMSsisjpbRfEK+vD/rODOFFAgC2npcL5lGHcUzSI9xe8xpyuAND/t5llo7pZ9ak43LMMhG3BZby7QwboyQfafyGT1otOxqkr5lPpv8nk57+DJr2ThPqUGRhkHonVXrk4fEMJr/jaSTHhXhAmXkQnWk9g9IxYVv0OsKu8HcbEOoHWUP+9HNVAovuVsP9QAF8IOA1OD4HUh95euEgMdqdtIZcBN+zND8PRHYHg7qUJvXX76Ob5buo//IpDtwlxzRRhsNu+FU7m2HPGP1HW1q8l3SkdPFvMFdY463CYZyGmnh+EC6fGw0KPDtq+IoSUqo6Sm8IbSIwdxkLFf/mR5B9+ov4L3JbEs07tCHAnS3IZ74nOvr4wX2QeHJxEYJosCO8uzuQXmT9hZFYKvP0mA589kvhq2yH6nf8THCMk0D8mAR5OPsfi3rfo9gZL3hI1kVTXGIP10Ju5wi/pVp4EnfArAp+EPVirVc4vWo/hp9QJvD/RFsKnqYOQzR2sGbmS/eKngF5tGa1euA1SYvrR0HERBKXPgMxtmjxbSwbc7o3EBINW3PFqC3hf8uK/eV953w55ni9mhl8uT6ZeSUNqj1SH1BsVIDtpLSfuvkNHa9poU7wqRjwVw76C/7BYS40+/XsFH04Jwdv4GDz39iI8bvODiBVHSTD1H2V9FuDKde+w+ccGXOtvTErWQrBZsor/VC+mX+O2w5yN+ZRh2E0it5ph3pV9cC3mOqnpf4fg46KwxC2G9RLN4Jh1J5m9+Yk1zlm0rTwDvnxRB+Oq3bg9aTxkbFWEXOnZYBGwBcuuJ9MI4TZGrwsg7NTBj55/YIv7iugXJU5CCWbw5W00ac2Kosb9OiyqVcOehcHUG/oQ3G6q4c6NE7CiaSlcjpoA31pfwphbp2FdUxO9MNtIpnO+QeOkm7TwnQWM1M2F2WyJeqQ4tOtidOPNIwxoEMa8127gf8GJlaLaed7vXFp4XYtsRKuhTUgaerq9UURUGrQL/4NDmjXwytAY8n6U0ka/NMhcYMIX5S/DOXMNaHQ4SyMcb0DqNhsW7mql6tpXuMvYguInjKeqjKU4pXsKP08ygsBP/wH9VwpBxm8pYKcFzd81ClQHX6BE0iD67NbksODTcOGhKXgubOTts1TgokYDJ8w1hB+lE/lqTx7OUTvBQt7PSC3rKM2YOwmeOKyAv8v20NuAsRh2oJFGrSxnLxsvjizdjIfkVLH30m++pCEMfnt+8NVBb4idbMdLwhdS8Fc7qp6oTH3ro2l0wTEyvfaAx3kag/ssJZSwM0PrgQPs/msKyP9Shh2zKuncQle4MSeJvQ3X8DFXQxBWfs3PFX1Q/E0gWs7SQZe1OcBB2fzvzitKMBWnF+cNaTAMIffbe7AbY4C7nrTRs3Xjse/pYhjsG+rY5RfR/U0CH7EVIvcsAuk9weBcnQ0f3W6z8zIzGLB3JLofBR8aFhIaOkHO9LM8XdYEyiy6KNBiOGdedmNZK23cfPkjPqPhsPDxMbpxXhPVT4jxvd8KYC3lCnHTXkEHRdML9yL2vhaF8klRMDNSlndM+kyGyqc4fgjDy5TOsIO+BMqse0YZUpsxLfsQ//22GK49LUCjHXtY1eM3OERPgCLNHXxdURpf2Fbw97B8OqnjRBWj0ml+nwz6rctk7bxgivxDkD7vCDd2LaW7OJPmX/iHK8U+wpi18rw0eC6KBXSB0tIPLJUhBK4XXTF+xhi4X7SCrgcM0JNLm2FiqzvJXu2nIzZ1dMRDlkrzJoCNzls4d+M1Pi+WBLMvM3nq0s1okb0LQwpbKeiFNU8+N5GGl1vC/Xakb/dmkoCXAZatfU7H3c04Id2eq94tgWPecTj5cw/MiR0N8auDYWvqJ/hypAyHxe7jlWMkYH18OTZpSaN19lCHixwn91YlOB0hS/9dfYF+IZH0b8CddcN3Qb1rBT2V/oKmL/LB9UQbc74W7F6lAcMWbiZ3HVeeewYoyD0GHNMnQoRXJda8/YmPtd7zC2N5GC9cxyqTYvnB842UdVQVVyu3YmxgDumXLQOFsJ0Q0zCFzwibgbWBD3zYqUH5dmXwV2gD++3wgJMV2hh7xROvp8zHt21H8GmiIli2jsc9S6LwmHEGLj7xDvc5nUUBVzN41P+bPOzTwH/SeVhmoAqbzlXzKKk2cvh+nQOeypCgtwkqiuyD27t9MNXqMEobi0GQpR5ELD1Ib8slYaDXg9Ys/cH3XEv5mUEXqlctIskl7+GS43HaeGwiaJ7aTkWztMDLQx5Oarmg36UjJLJWA++KhqH79nDQrRbnovkAz4fdgNsHtcF2zjbIWRQEdmn3eckaa6pTdQC7UVdY+FYAyu2TBl95GTh9dgKW58WCltQ7pLRtIBOsQ893PUC7SneYanmZxilqQ/aB+Xjd+ymPWvwZxU6/RrtbQXzh6AAIWDmjSlIgKNi9x+8mRjBTbhglFc/ExoLXHC37EMsqd+HYIQbQmBZK3nsMKOzxS1SwUYPav/9g/c8NsKfTksetkuUzn/N4xclDNKz/Cfb8vEy3m47RtiOC8N2pg6RufURf+QxS/HaJjQfrec6Q86TqI9dNGw7q1zbiVkU5iL68gvxyisClPRysSyVxkmkCpu7Q4V2Fg9TZ/4TXPZJkh3IjcAo15vjO3/hK/zlOUt2IxsG2+HGEBKi8Qby9pRir4gUoeqUyxK/5D/ZEdkLvEmcIjZqCIcYCGHrRnw9vi8fByOX81sKcf9tMghVoxQ/kL+OHVdtYKl2Sbs/4CXuPFXGfyiT8e/4hXEU/Sssxg5EDx8hF6B4PHu+mth81mD/xEG9zncJhz1tobPZKPLE3lVbUqcNGgUy+I98GY+MqMbl0GMqEXEeHsHLuFaiFqp3beLR9G7tkysN/MZ5UkDkPNl0KAomCOrop9xm3+Ddg7aapPFregi+VvsCUXFX4HZpD61su4LUb+8nLtwrnVLmxpYIbOLWFkeJiUdqxLho8UqaCiJYxWXy8DQJzmmDzP18osXFEw9l3UcumENWSKnHLiCfwfqsahNnWkneSAyX+W4tb3aVpmpoAPPh6jmU1Bam9fQdkDY7ihkBjGGdgS0FHlFFs3DH4oSTPLG3HXweLcf/DOLpb0cdLnB1J5O1U0BIo5gsmijx303PcsUoeI+sW4726erzXEUpRwlGwzfI/MNcZBnOml+Lh8wOYpFOCVUoirFJ+BDZVO8PCFdksJz4Wfus44R5JeZgf58tvNC7ynrOD1LMHsaYqnITXZsGbele+pvMaNFQzybLKFB5Jr6CZd2+S893FfL13N8SJz6fiwqvoP5APH6/WoM8GW96/UBSexryl77Om0ZLZ8uC8WYthdgPdPUNgfK8Vq8Y6gkpqKHzYbAB3Oi1Q7r4xf4v/Bw6tn2Cv5mnqn/sPAserksLHs5Rp/gUvpI+HHaNmsJzlanz1dzWo7i6FCulX2LXrN7sbEx5dMp+/rmuBadNGQOD2WCh89Zhzu+Zw/twu2G6ph982PMHvY1zgkNZ1ktFYzCleciB8YhaF7NFBz5/B+PLQL7hp9hGubIxlnT9lqLagDgbEvclxiSSs3jqOpr3qxIPYTmoVl+n53vlQ5vyFY7MNSLDqCpyqmAEH6wAaFdpJtauZViXWcs+HZvT7wQjv/ODMortcnR8Fk6/t42otI/gU+Auf35uPVzSFcXfSZdz/WAb01a/z5MvloHgqHfyuirHHcS3o8vpJe5WtOf+wH7kO+qGufTKcchvNETOewNRPRRhqcRQt5cxgwYeN/GydCrd0CkBbqwDM+lmB99Uvgkq9Ilk+9eLOYE/6fN4KthTY0sVFniQcq4JV9cQi84v5o5crr7mlwymvqnHM+0TQHCUL62btJKV3CzljrS0qNl+h3jOWsGXGR6y8+QQ65gezymgdrtg4GnQHdgOfnMghX5vheogHfSi7Tr8Fk2hqUCIt+vycP+pG06q1KvC86wa0PQnDoqF+uvlyExxcPpVXqNxE95ltYKcuwikufTDrsTy0+rrSaRF9GtYYB1PzTFnVLRaaRj3FiyaOMO7DdxAV7aMDGVLwOGA+yCxRpD3rCQKOTcWbz+JRZbQTPveQJ3ExhlVVa/jxaE0weh7Ks78sBYu1l3Dco/H4fuZO6iq+C973M/CppBP3tL3G0bmjYH91MBlmfsYvq7ZCRXUqPlFQ5wdtX1H/TAEcmJBNdG0+huwXgDrfjej8JBKEvAJwotMK+qmD9DK6Bks93MCjaxoeGF3Hl7wEYVv9XNweMBPvhxSis6UbSs0oZd/yRFDufkI3gzRBV3MfXP6GcGzTMTr59BMvmn2KvKd/JZHT5+lGzznsjNhGpruW0JdiUVqfCbBB+Q0nO5fQw7V9+CTnLeU2LKBjmakolLaV1765DVnr0qj9rBD0ahhw2j47jLuiwcMWxLPtdC0YY9hFJWd2cJbGCZYwV6NfZfrQmVOHRV7hUNGbQQMCu+n1iEiyXN9K3cNDwUa9kaumvOd9kfpg/dyW9sopsuHKTeyhM4ufRf/CNhtD/qRYgFKFz3FJYyWJeGrBr6/uRMFj2aYhFcWXzxziQRFo7lrNta1naJ1EGJc+WUf+Iw3hBNxntRu7+aKNDx6e2gRNdfcARfzRzjaOXXst8Zp+CgzrFoGXLydTbd8AvJ/qj4KZivBlthft+1DMNb/iOFI4nTJXX8b6cVNgRzNR1apg/BYgDUppzOFH5pHIwmfoUecHAaccYVfhUfi9SQd08sfw8zYHlhuFfGFRFPotsufnzqcp7vMBUKouIUX3I7R6sRXcOjiT6zKC8cCQL53ZaEyWybn44NdwVjp/mB7oPcfqvz/w6R1dULOIoOv6N7j3w1KS6vmFJ4aFkbfWQ/hbMIqe7vfjPqHVqJUwHhYP+w/Xrx+OGT8+U8rMTbBhdRXoyuRz25oRnPZHjs+HuMPhYdrQQmXYmeIFYs7GGBf9lYpZnYXMeyAlLp6DVRs5u28rHQ8ZBT5OWbRcIBsC352D1VYGdMnWhw4uHsl5jXNJ1D8WjzXU8fOd5rB/w1jOu6YOIl/3wG/bGk78+B8VlYWxuMZ1eNgRxrc1HeinrTG4dIbCyjxrOnLtLs5KecXr/1lji9RS+njpPs31eE9bfX14rYwgWH7fw8flXKl+UAdud2uA1jeAE7cVseLcW9S9fQSU06/Amy49qPstjWu317Lm9S844r9PTC5aaJ5UgysghT4+f4i27W9h06fR4Duigx2W6NG75BLsEtmHNqNrcPEbbczpysEDjUtR9s46zhVTAt8HPbiPxLFl3XqaXRgBDWuUeMT+RRj1Ixf2z5Oln1rlpOVkBG4jF3L38jN4YVIASi3UIPP4UnoqtIiSfh8mrrwDW9YkskCWLkjK21GmkS+2nziDg3mh8Hz1evz+9CHuvbmdtE+b4pZxV9CzVxEqVMPgc5sgVT1Pxxv25WCTUkLB9U64N3oln89ZiYGCk3BMzFgI1v3ChnnzwPWSKDu+sIaSSXdoxXNBHGjQwmv2pTQz2wg2W0nAuSBBmGPXToscAynvZCxsVRfCqR8vYvHSlfTliRhVRuRRQ4o+/HsRzPNWixC5XsXt/nm4WuUhCY6JwODY/Zj6zgkKSudA30ElmF2yDNYdPwdZ8S0k5reGXwm/wkcGG3BJgiH/jtKF/xxvoeYSQRBNbuOlU7roabQG+jqvJbfpAXx96TSWl73PG8cL0P3TyejePRGueIaQ46S7GJ0mQkt+vmGJ+ZoQsqEd6xQDaNjvRvzhoo0D20zgwiILMFWeja5/O3FDWDDs3HOWTT6Fk4y+D9dfXc+T20/x2imTIXtrDrj6T+PdaZ58/bMOawlc5p7M/3F0nnEh/l8fPyMtVLT3XhoaSloSESEiTaMhfpUiSYuMqCiJQqEhe0eR3bA1yIpIS5E0kOzu/vfD68n1va7z+p7Peb8fnXf05tFj7vu6iiWOy7M2yUC63isIDNhFkrdv4sHHrngweD5LrD0MxcFKWPpzNM9qH8tnrLUgev81Hi+Yx2rHdkKrqB8+i6zG1Tkh2HdyIxQIz6XNy9fyDENBqIKHFO/vyK1hkTzG4Sh+bFJFY+17ZBu5GcdXqFPGBTd8MXY8TNOay9OH7prDFHOSK6zCdr9tdOj9MH67+jqFey+Hh9bW/HVACnomCSD7zKHch2Mwo7uMRC+m0uuHztwkcY91gwJAvUmGrcqF4FTRVT7kLM6O2tPoJe8D5+5TWL16yBdNArD6nRqE/zXnaVFW4DvkC5u9r6PHx4808tUcblMMoVX7SyCj/RRd73SikrwttL1GDaSNgknaxZeqYglLOkO436OUZzxt5ZVHBzjh8QJWvH2Vi5oIWgQ/ELtsx9yDS6ll9S9sUfUAizXWvNtYm446R4LclkAIcRwJca/HU6eELniEnie96Fb2Hm4Hjsbf4M+un3iqORmfX3yIPuf1IfDMAF3fsIpnL9jFz+gcrds2kQ+o7eITb6Oousifb8TvY8U1MuC14yUsFdgFPSXFJNZkTeXbzXhVlgOJdirjL1M1UDgvgNleAFuOPgDPjDTS903iXSPuQuB8T9yk4QNH0gf559aZmPfhIvaeMIbMpGq65KhHTv1nueGTLSTu8AC9zoXge3UOj40Xh/cjXOiagDEsXLsDUiKcYZPYZZz6swWWf7dE80ezcfK9rfzkyk8wcz9Kw3crwcJwR1i0qpu996dxvaoHyw6bSVFJh2HFtq2wV66GrWYsgU8rJsLRURkQcDEGo63eobvKbmhN+4Xv09+xk/sdPLi8kMQn/kcfayQh56goiZxLxN8K/Xx16xbW6z+CfZqHWaR0OOlduUJztl1l9fvq0Ogsi2ZSrVhrmAYmHSOoWECfsu4+hVe7UrgKJnKm53KQeDUOlqwaQHzlzDNveXNliSPJ7QyHJX8m4WrtzcRJ86FReitIHzUc8twWbJrdSCNcrwMfuQWPzVdg8dZ4GG3zk2ovdWCby1k2CtKD/W8XwP7Je3Df6UdULXqPHUKfY4VVKTgXj4CTjvWsEqUIFe1icPBbMVyYuA1C/nrib2FTqhjlCEETXvGVrxX0JieL9+AuLm80g6fqp9BlfS99qFJB3zAZbNTdCE+PLILkAcLo2a/5xbWbdOecPsTMuUwbjLsxvyKCtn7PRus6O+r9tQVf5i6hZ7NH0xz9DewiNQw2FfTDFimgJ0mp3Dwygc4OU6GjuyZD3HMntPmTPcT+UXxWbgRclr/HU/sWkM3fw7huaRv9mdEMA2GlaBTQTQllo3mHiD15JSjAzhkWnDztDJ2bXM7cuIKOVXwD1XsXyV0jEE96rCb1L/NwjBzBt18GfCXLjIXuDXGl+0QQGpHAx5/UQFwgssSmNdy3WRbPDnFi4RxtzJErZbfsKtC6pI0OO85Ck8kJWnVChzTmrsKQxCU4XMkUJptfxKRoWX6odAuuPA/nnAxh7vF6CmM2zEVt72sU2JwNEvIMN370UkTdEfZ/ncbRRX/wRWAivPsWAu/7wvnA7Sbw+qqNepEqMOZvGLn1O3D//d+8cVId53qI0KPdnXT+8mGes7sLxY/fZVErQUj4psrlvmYkvqWf7xZswpna6mC1wApEG/7gsLvN/EljMSg1qEOMgjC7nb4ILj2jyGGnO3wf4oLluIQH7qTgksklfMx9K9sP+dt1h2RIPviKDQ/+5sjltyj58HNuvqKDC19eQm1rwMsLLvDF19bgffYplLo8QoccIoGQJg53sQN1kIKuxWtwwi4/6Au5RStXqsK0I+8oe81KnBcvz44/x1FkpSQk+pXTadEOFEzezfGmKaCroArqAfX0IaYYLR7NgCAtSXq6eRS4yewF7ZbZtG6tBT+584eMewE8pl0gqac/0BglQaqoBeQaNsK9jqNo/94CCkRf8+sJNnwzWRt0e+vJ0U4bEoz9IbxnOZZNz6fEkDTaUPCL9mX5sPCzOprXag2fvasoMz8FfXpl2S76Pcjt3MCw6QH8++mCH/324WX9MLYwHg3Q5w1C38zpRGEBueFK6lnyghep7OPOxELuXK2MMwN2c9sGM1Bu8mAn2QWQVL4R2xfKUsAWH7BZDLRWV59PV2dybKAO9R+wgbnJv/FG0XFQOb6MzXLGUMlvEe7piaHtoMyOstn0cNECevtPC3ZI3yLH1/th+8V3PCzBFMk2CXzXBuPNhSLceHwstv3nCk6HxkDthTK8N28Jr67sYPHLO2HWZXF6ndiPjWtaOUvWBuaxNAbkWUC5Zjy9krTE1dc30endgxzz6hd4rugmyXJ1FB99DH1DH/Co+ZbQoNhJnuknWJ8aYGJFOWPXKXw+tZDWZiXD0+/h+Fuxl7yGq8FaMwcKiRnkje8lwXj/aSi5oMMfN44jq+kfyWPmBRRokIbnkyzBabAODBIX4OfIILz3toD/9cwCa98KKJG4htEbijDSajtGlMpBuHQNbZpuxsqZtXhbZya62HVz0LlQuvawHSRbg9BK4ihJuUlAw1hjTrtfyuOEp1GEhj/suv6ZpWZo8fdzrlgx+h77m++Dvc/GgraKD4l6qpFhchHuEPCkCcPWQf7dG3DAOh2WpFbDrHdrqHClNWifcObdx0Vob/ZqaNz6gUxHrsOlRtb43+UilDJv44mPw6D2CMGXrGgIc3Ggzs/JpDdfAR4Gj6GGKe4UemYKRKxK5luVCrAiSRYSK3egW1g7XTI6BuudOrFVx4ntpYLooZkNHvj7ifdq+eObd2bwr24FXLy2mE5pbMGd67Up+sdBaJLpg/rFU2mqmie4/+1ig9Oa8EazAQOPr+YmTQFU4pt0SPQXpDwPpKlbO7k6dzQd3lYN23Ms4W3dRdjVawwloytYY4iLxS6IoZqOINdXFvJ4lzAUXyOEJoOS4CXaSZ/Sz1L9sQ7an6LEr5q2wmRFQw4XPIyHt44AeYdRtH3cGGgJkYfxKXF84EUDx/ciNNaa0jvZOoqqyIalVaZoO3sOjJ9qBFw4xA0JaqimqErc94Hm7f7JBY06+OJLJxyXcOJN9Za8ylofrPd8hPKLG3mzZTY8kgUYuTwJlCNSIfjhE1h5q4AyUmMgu8oc5LtCUb3sL061aucd2bNhddUV3CWVT696+ki3yBEuj2So2CMCLYm7OUlcilLsnpPV49WcgD/hZ/Yo3LhzO5lvleOLZXvp2jNdiL4eg5Iy5SRynKm4fBNOks2Gdod+dA6PQakZ0/ldfRTPlRSDsA41Gq/uRMumlHCf417+c9wIn16egsfHufKauPk04oAvW5ZMhGs5gvx86nlIm7wfnwts4Qez8oFwEbZHC+JCHI0SI2N5//ZRcGW8DwT6mdKIq1pcdcQSt+5rJ4XSBAoosEWXURakn36f604qw4F4BtHgZzAQNA22/30C2eJNlPVnIYgUL4Q0iQ4Y3FfEV2NHwd4gbZr6Ixdo+AeWjtAFcT8helTpDYa73sC5o/f4jYsz/pg+ATLKl3B0Uzq8PT0AdY/voKpjF58848Fmr+3IJX6QSux6iZRFYM743ajdiyw/yYInSIwiiRFaXN0hzFcbcqDa5B55yxbTEisZOKo1DKIlh+MEzzBOaLUE64ElOOxaAfuqIn6c+xJSUBz6xfTAxuQg6D8NJ+lZy8HGvoi0Zm2BY9VmOCH3PNYY/odCTqqQsFEYarfOwlC9x6z6Bnhzvyw73NoImmfL+ZbkBXyUKIZ2chZ4z8cSyoQMcHamE+P0A6iVpItPy8J5RuZ6mFeoyuNF2/Du313wrM0MajOHccN/qfjibg6/N1RE+98K9DncCeNOt7JyUxn0ON/AT1elQNnEnAfbnNFuRhtE75zJrsni+HmbE017pMef1Ifj/YYsqKk0gW9SnuBifQO6AuWY0mbCIv3XpHIoGwUiTvGyIW9tHbETVi6RhI7WUhp/3pQTZ1eg8mNCeyclvKJzGbt+GcOKvgf84UcAzk0yBVSdhtGNjylp/0IuiWzmU02N8GK8MdhDPRZOGEdKYq8o8601/LNeDXGdx9m45hbKzO2DH0cG6JjSMlSd7EPeWYlQnnAIVj40BrtQL945oIPXb7xC5ZKh/3L2oKl3+nBCggh+OzIJQh7+4WGbR4PicHd+fP8tJyRboZNkDoxz+wP/5E+jVMod7m3rZpkL02j+V1OYKHuCT+5UwcWrY0F4uRsaDBRC7a25tGjsP7wAj2lDymIao8PwW7cOFyYMA5WT72FNWS50fNgJr0fMJpnKJJYcsRz3VaSQpaEuOBgoU8sdI361wIw6LiSjSpAl/JCahCZTBdg26Sb3v63B5zZK8KNPCjaZu8CrmTfYcWwvmvtPYn/jWVC2TwqOrnbgmb5v6dNDK/gz7C575lrBxyeq9FD/Arx+dZsUj53Dz1fusOb6Wbi+OIutx1rBqgoEySvR3OHwAj0XNvPngi4oe7qTF4rpo+UkdTKMX845xnLwaqQXfCpTxXOZ5/l670YseXcMp0e0wK8saYL9VzHsZAGdLJKCgauXKSS3kYwPheDOSAVaUdJLVTctqDfaiA3SXchpVDgr6wKcTR+LT8lqyA2Z3maVs0+QHMQ++kBi+c9AeFE4+qYMB/GD+jC4NABNT8dB5NHZJCGSi60PP8Otxnh2SvuBH4vMyTkvnOonCECDoD5O7fTDQ6bykJcjx9bCxB63RYYc6xApJgjz2bzTuHedHjTaA7zdGIC3PqXiucdHeXGxMl5bLA56c7xgkXIU27x+SJG3hEGw2I4OnjOGgutLOC5kNzgLSWLYYy+QSJ+FFfe1UOruCTqvJQpNldLkmbwHm6pO4FeFBLqU2Quukdfo8EIFkjn9FZ20vaEz3RZuv3aED2NmQNyjcFJ7NokL6Tv5Fbain9oByt8kzZILHrG5ji7oOojx39BSSvQ14meGglhzcymEfF6Hx++Zo/PvaTTx2Gd8Wi4Ad91q4dDU66DmcQqeTnImt08zIblDn91vqsJN+1QcJv0N5f8Yg1+5IAq8GeT4+b85seUYd0YYk91SE0q9Kg3JEIT1Jl/JWcsOdoZvx5Jny2BppTilZxdzkkwoyuY/IW/RsSTs34GT/Yzo+wJ5uKo1HgRHr+F/x+N4mbEIxI9bDEmDlpgsfIrTVgvAX/dEjBWzhwsH9tD17T8hPyQRS0qf4o2JLtRxMRo0VutBQJYdfHKP5B1f9cDngh75eLyg+6NKSbqnE15PF4FVm9Oh9NMdVhVwobMSMfRMzxK8WpRQVkQSrpUYg0z5VZ6QdJAOn3oFGRRBV2yr+OCKr5R/WhIOri2EgYRvbD5Ut+tGKWh57j/WnmsKU55qg4SYCyvgTrYbORLkDgvxL+GR3Fn7B1ZZytKXrGVYmiFJIOVCF01H0E6B8qHMsIf2z3shyC+Rt7+fwmstZtCyGy4wek8UD6zPY+Nve/iPdxbPNjaGRmtNjvrmiZu/uUJHmO0QV++iR8dj0cTsCi2cXwPJy5fikkPG4HDoNFTLh1LEgAP0V/rR2BnRMKrhGVqOLxpyzwj6WnUKy8TkIWNwHPuuekCXhnWTUIE07tt8mb9ZXoO8h15Ydvoillr2waNRRhB42xwHZwlBjbs0S4THw9qZTvz9qgNWr74Gh32EwHrXVX6wHuBPaByccrjPc91y6fi7IrIYVYf9Nyqh8spd1i4cSwU249gxWwKeegnBiQd32LXoCYw2+IIdL5Oxr7GZPiaWcZDFMi6YOgUvLRaEyIAyujsii3RzD5PTgXvUcX0ZPvp8HV84tMDuT/mAm5wpxUcEQitzqeiiNdZ7asKpr5rwaZ0UjLqxl+/VC1PXqYfgrJnGXnpS0JtbRHfNdXlGxmd+cPAota4h2Dg1hfd8t6PSGn3ctzofS5aaw7bfJbBm5VrMeKUE7578hbob1nTT4AGauC4hhytRaPCsmMUiJOGWtyRqzItjLTcLmCuhzduObmafY8v4lsFYnG8UhHqFU/j5fkGY1DIKO6Zv4alecaAXsgtF59/GL5ff05qL2ezj8Aqyb8bATrCFb1OrsOoSEr+ahjoRMbj8F0OG01ySU5DCG+cJSj40oYg+wZPzl7ghQ4P9fq/gZa3i6PBjK6l1z4R9g0qUYmoN8CGX5qRbgNcuoLLoFP77qJy+zbqMMmcOEi84g5fc9kDkp2FwMHMKvJqkAj11R/GmiT77uFjT7aDDuEL3EPftUqdTsxppfLArLrdXojW7ZCFCMhPNw3po6uxTQGa24DQpgarJGme7F7L13wTqfuvKe/NlYUPXGX6oYk+HLd+TpF4uTXhpxMc3vYF7I3+jr2MBRtfMwBsfBWGrtBq1PzKAGjIFmw9esNwnB7SSZoPl3Se47M1PVDKLwuG3BKFHMgDcBBvRamQofZPOZ1edVWCUlMwhFYIUk1FCC+oIT44Wg7oD7+nLvGp4YPALdt8+AnlZi0E1XQAym8VhvEcdzuk8jfdHDXnFz9XwQauYpIM+8Nz2IcecKDzU60H831wZarVXo8qC6/zlkChoVI6gqRFfyLdMlIv2LqGZ8qJQ+vYd/JOpgL+penzY9BpeWGkIy8ROgec8L7rvf5uPtkizkFYT5UyfwFJ1R3iJ9CT8U72CauZKQ9kTdzpjEoavemRgmbrE/3qYkiU7cbbUQgib6UO+MsFw2tgA1EJnwsjrc7h79H6oOb4epwRHoERwNVr8945Pjs7BhZMCYVYswGjVDBqmpwbGwjJ448Ek2hBymz/QIdq8PBjuJWSAeYwpytxVB/VDukPPs3HakS98JW0Vyp2vwoobyXyz0IG+HtzAOrmWuOu5Ftw+soUlNunD/c9acFloGd4p7gGdpG80qy2eN4iosI1CLZ8hS3i5cDSLiDfgxDX59LSeCUcT7lmtDVI+C8h7jwiPf6PKJnk28I1ewWmRKnzy2wZHL7yM/9Ja+K6RGAb4jobDv7+wfsJo1j8hCRmu12jTo0KIVXhD35a2QWrmfGr9GYHul3ohS9Oa3ER84elHXTjcvxbG7PwHmwXGUWPBXThgN4bH5XWyoOkmjqVvsOBFBg8sGAttFzLZ1y8B/fZYQtN3Z5yppsyhNQfIfm8N6CcMh/yodNh+nuHD2qPYft8UgtqOscgRZx7e/BzV5IxpQFyDffbewOcH56PhOBmoZg9c/uckqm1IwaVnvoHCmiryW/2FXh6t441FAWh2bhZmqinDhHpvcp28BCWOVZLrGkXw/6xOXYOj8Oe3dmpMCoUGCUE8pmYGcZU3+Et6C7Wn6TCtjqEkMXdaa7KevEce4Q7RiXj+wmjsfTgK3tdmoPGKI2h8sZJa29tp+eI8uqnQQbpCiH+CWsFtcDPG3LIDq9LXUJTxnBZceoBzgqfT3n4T2Hu3HnY5qfG/TZk488krSLRk6DufDzUhLylh4Vf+8WjIJ4LPwzDNSzwi5BfWufeQs2oOvJsmAC6p82FYXQZGj73EXyW9wcY2EBTcL4LMBSlakvMFg9ZuoY0oCGma49Hxui73zk1Dm/l1tN7iHYVqP+X9VZNw7GARlpd1U4n1cNiuso6O6Tnj/t4y3vzUCuwCOlD5SAxFywVSyvZYWuyXAf0DluD7Qoefiy6Dc3tf87NHghh3LA6KxmXgPUVzvPd+GdtcS4HmG5IgrOiEIhNzeOmHBewWaYQN3o9gY89CPjm8B1R/OVD9/vVo+UMBDsiGg9ZzDYhsiYQ5XlNZTec/6hmQ5ifmEqg8bz4c2KNFS9cZwslnMWC3fSlO/RnLWyaspvnjDci23IoXPTgHMqlR7N12i3uOWcCze7ZsPVMCFp2tRg3H4/Ri0BjTNp9Au03bUPvEa6xQ66P1tXaQqCsKPeLzaHpFDXnuysYOmYXUa6aHrRXl/O6kMR3akkURkbKgZbybdjivpKIrLyD8ZxdmC1xi8YZ+Rs0tfPy1EAyObCdrKTlYNUwbDB548WJXKdjLsSDx+hqtDUuErPomTp7uCWany3Bqqgms+vQFyvaOxWJRB5KYfYYWil6jyEB5PJHmA3W5v5EDnpLZXwNQWfwQKyytIL9pH7btdaezpV/5870QGvFxKD88M7ne4wJGvZWH9t0qrDVZlQQyOthZaRQ/ymmhbx4nKLTRC/YLpIJsugxfPCkNxpI3UHjTMJS/J0dJLsFkZGtNy2ccA8+kG6wRVYGdfutgT60tGOcosKSyExw9YUOLyj5DXZoS0oPTfF/Fn7OthPDduqc0+YMJ+Fu6scSopVRfVkuiBbFQ+6ecOibMg72rj7FCawDXVf3h3hIRWGs1gf8e8GCd3m5yaFeCBClXxP/SuGhEFmqkapLz8r3Q4SUC5d+yeNM/cegsnQDljz+w+7QdUOxtx4OSqRR0Yh/8zrqLS/5JQ9yE6RiHF3jmBF/qPS0NK/y8eO35XAzK7ubJw67RuoQ6kI8kuD8zlE5JX+P28f78/OYOaswqp/s5v+j3hzl85L8m3PvsPZsJisGMv3MxNQ5IOXga/jsiAx+WxNPCwQDybU0i0R+nQe7aA3izXweOT78P02RH41j/Y+RZWwI0bhu1C+cPZbEIbxVT5v/mC9H2CQiXVyRxmEgNa254CyeUo8muLY88vEQhTFGYOsXe8J6Vj6iiQh8mNI2kigca2NZoxO/KV6Jp9TnEllw4vfgBKOSU4brCWhiZbQ2XDhqR27lYft90iDqjJpC0423MSzHiyDupXHush/JLZ4CjjgYI6afytvYSiE2bDZu8GzD3lDW8MCzgEo9syPP8CF89hEn3lwQ8LlkFXR/X06xoW2zZMxWKnoWzvqQ7lYleoMwFs8A1qIVVbojDnL/mdF5kAUb/uoCB4no089pcLtlVDeNO3STbGVp44fxjWKCsBlleprSRBqjW6zyN1XMEBaMkPPXtMh0LuQhBKpVQdkOczd+KwKcHe7lFOh//Ra+Buu2bUM9eDgwjQvnWsgTa3VYPs7UjwEtDCR5F3oNlDT/g6AIrbJkuzW33a9Bh5GL+tLxuyK108a1QNXnlq0Od7wR+7rcQ3n7shj1LznC91kj8ZVnCute2UmXSCPxvRDbU9oiCwq3X/FpgPzwJdoQGt0zCJles9JuIwwZm4vzGVHKtNgTvN8YgKebFPpMCWWT+Uljg84GlLONh0tlruExQBVuiB2DXnIu40V0ROs5d4sI+SwhdIUFpJ8vw1s2XPGr/H/7lepryTFTY4J8KV4RaQ1vMVdz94SzpKVlxsqs9LbRpw01DfqZwpptG7o9GiWdvKOcwQ+nCf1i1MoNnP/lN8bbm4LnlMLWETQCbl3u5t1mYatPH4xOd8ZDmOB1k0Jjqxp4Gv2NKvKvannT+TIVO4+l8KyUa/Yuvw2ENMVhwdhv9u1EMpatreenKbvA9Gw9Vyz/iR6EZOMFLAOe8FIKE3LFg8FSIQn6+hQdaE+i7TDT+FalliwgD3jF2J6dlX8Un8slwr0IMlqep8LuuZ1B2ZQNcbD5KimIjsXvvTGoWsaK1y2XYSXUq/hjysb+hLtgz+IozV53CBsdMbnf1QEOpd3D7TBX9t/gZnJOaif8eCMGylz8ppWQxfjk7EmfpneTknxshcpgqKmfKsG5IEGlJF8MsTytYLChPUV3bwWh4Pof6L8crvfv52pqtoLKS8evMQtpVr0+CE8VBe2AGSScW4O4OEfaxeMhJiq60/40sBZ3fD3sqH8C97yqkp24Mlk4PMWXqLOh89xpVz2wF7WM1+LtlEz3e/YJ+fiwB064+hgXjQV46CZK9NcDK/wYYNAuzWMUwTMsN5IP+ARh9fT1s03YF338SIPM3gxfXKFPcXk2K73LBUYsryTDLnrT32sLFCn2c9i4Q9fzNQDF2Pfa9Xcwa/92gyKFv7979Ea5eFobJ/z5Cv3kMjDG8zQf2MQh8FaILntW4wHYmmX335tsN6awnsQUyLuRweV0jZhY/4NAR46C5UYg3apVx7IeL/O7pNQweb8ATcp/B++V7QHPERxafqAWqXQxLpznTjnPnyc1yLXL6HH56zppqpuXSoyWavCrJGVZ/z4PNVWIQYegPKgumk5UDodf4uzxToYYPBpngluXxKF5cjhlf+8GpQw7GjGpEFxlL7H+zHFWfK+DwBVNRJvcn2VjXYuK/o2D6NgdK92hBCNxG3QADlg1UA7FLU3D3qtE4J3AGJWUroqawMASfawXZJwrw10QcljULoulTU1r56Sz83XuO02V3sP5+wvTlt1j/1lEKuqwIa1yfUf89BRx8qMiVicN56s0gUlgehVtGHGWdQj1SjEnnTQfEYLRgF5f/7qDBz/KQN3cHP5gUByObhUEx6QM2P/zNuRI+dKAX4UReD2/aFMy1MQJktPka0cjt+GauFktpZMHOtmD0VDGjbQ7qoCy9hf49uMH2a+/BDJV96JsyiayXxsCneAkItmhGpxHTYWurJdwJe43VQ2dsVnfA1LsraGRhCg7ra6fsqhL4JuJJfXZ5fKRiOGydtxLk7VXomIYehz1TB7nJe7j58C+QuVuJ8nfOo8GXKBaTVoZO63U0alEv/W+nh3PtWdR6uQ8NhGNpnO8p8lhpRHO0teH+PRP49/wwhRpr81f51ew0YieGVh4ih+vHMcV2FXV2WELdJCtUnW0Hxto2/G/lWNiRAzQqupmuDc+kGtlZ4PLZhjPMdhB/3sWtyjqgXK/FFTE7aNq5fpibVc5zCzfRfL1bNLG7BYvmJXFM3z3+pGIEuxr3o+UvWzCcY8yLeg/wd59VNKcnEs/+esSRHn6QpjMFa+ePhqlvN/KS2x9xQZk6aj4YYvOPhiQwV576pC1Z+uUi2NawCENtzEBHJYoknKLp78IftFimkOYVv8UlgQd5emwi7P10isdoLsQSRV3wSVoPsQ63IbEyFaUvioF1dyH2birixfun05zWRr4k9ZG+WQwDx9BlJHnmNAgumcJdIjMxfmMinXMkvrHWCMf+fskhGRdoc5IIfOm8DjMH4lHMwAhST63DaQcKUXxYKbw83I+cdxK7PmSi/2sz+PjwCHgL7CGlNc/46utG9u4+Tam5WVCsJwcZDdPwt/8Ekj+uBmF/NUDizgcQGNdKranAA94mWHNfhMb860bRQCHcotuK9ToCsE3hJ21444l96rV8aqU7Flx5xmXbknnzWk2i5fK8z+URXy4xgj7pVFLMecdCD/Wxd85xENJTgEqN8XS//SU9W9cDqbOXg7yoMVyw1eKAqR3Ua7KR5hjtQa0rK+jUKgNM+q8a3TZ1c52vB0+OkIETFi784vcC1Pj9mG100sg9SJvVCk7g8GNuXFp1CBY8mQRnBs3g4LxoMLZ7T89ThSHlnymstL8J0/sH0XPiGkpVrKK7uYOg+VoPtAaKSddGkP979IL+cRGO+VdJV3/OpGPeB9g0WBJyVl7EHH9VKDhtxkte2WP2+nmYIDccOvuAQxrPYI/bF4gKGEmB1R20z3I8OGSJUvumXuj8FArZrmGsVV2Lw4rNYLC4hcvOLcGm3z+huHw4OI+qAo2wQ7i1WRl8pz1nmwNRNHj7DP0xKMR7YeUUOt6XzdkQ/IX343nzONj/9BxsqbKEFSu8UdbyL05bW8+5q7/xfh9vWJpoBR/TXkKH4SX0NYrlLru5cKfnLwc6y6O9jiYdFBIcYuhJcCR8HFg9/Yovxhii4pf/+FvIb7i9PheffnmJf1de55nZU7BKKgXvZsjBu+J8bgAv6tsiCh0dIXjebDjvv3MAylUSoKrSkdvS+0AsRxwWvYpD38tJJDl+IqR+s+H8/SsodupvHjM8DC/uq0Ctr8vQUVgIEm/6QbH6HD7UcAaMGsbQv8872Oj4bkhzduN5c+5i2fQy/jhJAlrC9pN+dztclJlJqof+UudjFSjcVo9LDBTo04FsFJiwgHe9HAti0p94eed88pAaAX8du+D946tDeedCuj8VeMTWTpqRIkzK1w1ANjWcJsvK47C9muhW1EIO5tu5XFcGNsb8R4+dxlDx5El4PUgX7n+N4wvr5EhIvpoqAgtI49MUMJiyDpIDqnhS1F7ueZdHg+W6cPaWGWnVthMk3UANnwVQ3+w/5Myj6HdgEp/cspkCDkyBuiaA+sgi+hd8AovClNm+xpVyIr6it10c3siphxMjvfGc23SWviIGKDbINzWVqdk2DWoWtkH8tzjSuHqI4nodSSR/Ndv7Ej/OVgTh5HG8xMcDnX510s88L2pxS6euhbPZbKI4zrNIgUvDj/NRWVtQPiNHnxWfcCCIkeHtAPzT9hGffD4C6QV36delJiwFb655MxHULIspZOYJuLv2Eqq4zMRXfqKQeW0enBsI5kPN5iyYuBOF35tD8RVh9Pc8BFsihtMfq82QckSffb7vgrNrTrCSTS0U5edicYwtmE7KoytzSklhTC+lxfph4diHYBtbxatSllL7u0rQiFZGmqsL4poDqLXSi2Zs0eLrkaNw7PRgXiMaBtrzPehUVwSpjZClXw/0YfttV9gUo802BVvx2qPlEG3eS85aU+ln9zHOKTkNJzvWQJzmaIiPD4PGK5J0xPM3ygbvhA0KV3FV/Dqs0VpM84Si2eeREcQLqoJb/m86WnkWSgLk4dX+5zw97gOTYib3LVOggUpi0Vub4cJLXTiQ3YwT2rP5mtRwnLVkPN979ouWjtxCaYsieIJQARZpB0DiWCXY5LSeLVtm8ymnb+QvlAbFAeNAoPssNHuFUN5xHXzo/omMXpmAqa0/FOmn8ckHRzhjhRmkuW6Cpn5nUHaT4QK9bTjrmSTlNVpB8sXJoByjiTP8QyHC9xYnzFjNZh+68FbmHOy29Ifozfdg3kdpqFunQqkjIrg6yIQmxx1A8HMin8jn2H1UGOz0b+GTzDNgsFkBOpudMN9PBuZkCJG0jgHmThPB6m1CuDfJjMLnCEFRRBt9yDSFWP8/GPAwB5KbMkh+11RutkxDGUM5nrnTk9eddsOfdddJLo/gQE0M/hljT/MV6/mRzRiqrjrM2/Tmwu6EubjkZgf8rjxAynXD4e4rMXCep4jPdVbjj+eW3NVygv48G07vpt6D95ltsPDXGfJQE4E5+cUkPFiDBrk3qNr2PttK52LTxSXYfsyOrhx1RN/Dyjx3pBC8zjGlnR8n8dl3OuRW8J1PLZMiVadBSH9cz75/ZrP9aXUe0aoD9S6+NOqMN6u0x7P1kx+kWxIHX7JKYdfXsTglTorqZhNt/YGgI/ebJqk+gY1XBSkufiRZHK8FsdRXXD7sCIo7h7Lm8hMcFyYHj7a8w0djbvPk/ACY+J8uXTGIhLwNi3ii6kc2VZhC0xs2QvN6K5D09Oefw4LB4GIhb9f7Q0qKy8lW+ADa9ohB6eWDdFbJCb+Os4bLhYexMXfUkGu5Q7buT+70+kfHhU0wpEKbRH7+46Dt2nAwHeCNly344VJS3ggwd2U3SxvZQOO5NZDL29nxnuSQg85ii/emEKeyijHlFNZcryN5MQ8o3qbA1CmJwaWHQCRpMafcX8z9ZxSga9VwKvmui2a7LuG6pXm8JrEHVQs2s+vdGLr+SAhbFtymDfaqsPCcGjuo2dLc4E3YrpZLN2yyMByec3jvRtbrakeN4b/g4mppOKc9glXl5lGD6X08nH8QTsXU8tFKFU4Z9GJRew3cfV+GkzdawduRyTxh6UqudRuAkb1hJPu5EqtlCKP0wvD+lDt4YUwM/tQWg5mlgBcjrmNnUhv++3YUokPvQ/qv7TjMMJ6a4u1okVADWhvJQ0v2BPTLr6GaqCmo4vwV7sWNwTP8mVetucK2VrJgU3oSqnMRRgTZ08O/iRxx/gTL+L/gokmPKOcm8Ne/b3lF8k0WtdLDwYMjYU/eCNpwdCa6Tk8mJf1jmJMoC110gqYX38Spv/Zh7KFc7I4yhR3PZ1GM/CUs8u+E3Q5z4XnvE1K/5glFVa5wLucstokLYXi5IGwyDmJhiWV0fO9aNJycDqeLsyi9JhBu/zAkcRNJauvqBovnOnCgfIin9teymlffUH86QvtiC8LB7aA2vRYemaaC+LUTMOOgEjT1bqCI7gnYeayUDnWmsNMdO/quPQK6xVvx6K4U2PjxIXc81YO563ZSVGcQCpWo0IGGYnx7O5xHNOXgqABXtl6mBbsLHHDaHlM4vt2YHZQ/40Ph4yx9zZEbjq8H1aQhhp8SCC1F3RzWGwnfWR9mmGtQ/+ej6A//kUFqAiz0bqGoBa9RpiKbl2WuRg2HFu7WHgMenxJJpn8quzh95GH2TiS3QAwurt3AwpvewqznjjRixCiSUxCCEZ66YPk6my8lvoepG67Cl9s2MDy4BQQOyuFVqcvYcKGAx8WNg6SRqznWxwlnWYVj9B0BNMp/x4efruHC7TpgOTmFTbJaWPmrMAjOewhGYc/hhtNInHfFnVMPmPCU0aMhs86QigRn4coQDXp3xgSqI37ysPfxNNmtDDuK93NZ8Ej2q2vBRdNiUNhGgvpqj+IHRyP4kSbHUYt+gEJAP7pmPYSctdNxfudJ2j5pEQdkAO0+UUxTK2yg3GIqtoq0wv2Fy/mHRgMs1tcjz503UC8dYZzwdvj08DK27xoLCiOd+PaXNuw9K4/vStNoDc3ida8LoFEsgmPlo8H/TQlUOg4HyVNzaLD1FJfXzOcnYnbULd7GK9NzMTLACxSsZEipy4/DfceBlOUx7BrwBO+UlzD7cTe6GF/D5GNS+OFlMu3QHAerF3XhQyt5eKn9Fs++MQQzH21MF1hIA8WTKXDHGN4yZiFOm/QP3A6L43ZhVXgatQvMlzVB5ovlLF+bQWWWBLOEbnD75mUAeVr4wscZvp8Qgw9ifnxMOJ5Xq7WzTfA5Skx05o1irXR/whzYs1mFivUlONRSFd4IuENHuyfsuvwKCse7kwkU8YRj9lSy4RIbaHWhXqwpno82g6Bba0BGOIhW/7XAgZW6kBTUxaHq84eYfwffDtrJnru3wIQ6e3Df4cSHCwgCig+h+hCzRI69zHoV02FG90wyGdgLVf06OPe7PJxZ4Y/SixfgrbAe8HYUAb9xp/hkyFuyKM3FezkJNNLCgofPs4XixjZQ2euBlan5uG9ePWWevUfy4bMwJdUDng+x/eEZ7RxaSqCWYMquekYwVuMVeDhNwB2NfTRbZiJfGFZNi2u64dNcb8wvUYA3pkNe1XiJzi+5BIcPCZC8hBrfcsnAVK83/DbiMFgHx2FNrRg43fOD4419qLDLGFMPt1AW2ZGIQxfKdweBzRtX0O+VoYdrbODFJDe0ly8n04QeLJh9C//NN8BP3Q1o+mkpDLNMxHnvCmnObobQW9H45LoPREVegduGPdj25ypeLbfhUWaVrJ+QRaPKX/K7GVow+NYJXffeIvvzM9kg/CXnjhmEI+KMcRnrKHfqNtR8947O9UrAkzvDOcOgkx/b7cZgRwOunveYjS0u05WtOmDW9REr0k9htfowOJE7kv7LC2Vf5RrwsN2AJ9c589Sw95D4UhUuzHlLoddvIEQNgx2RZzlHLhWyTp2mop2zcKDZmKy+FVEd7oHhdQ2klrOY2iaMBMtPVzntyANYN5RZeZLtpJJ1goQ3noTJzz1wgdZ5MlMdhrbDpKHF2Ypq8zQgK76WxJRWoq17IGU+Lua1s21IYEwvHjFxogcJprC0bCLotfmCrE8lCDSag4f+K7q+wIYa28fhzqoDFNhylW2+jYNrOpIo5N3Orf9OkfCfYLritJRPVtni8BpT7PAupQ9D96fKxAgUSvo4rUWXt3ouIeeOG2xoepT6bC+Roc9qNn3zCa4kR4FKgTrcKk3D7UI3sLz+F4fY1IFjxgHw6dvO+8ftg+FWa9Dscg2WV1qDT38zLnsbgFFCCnShZT4a3l1GEtk/6ULTYRj/Uw7tohfxt88WMDysC/4cD8T8MCP+b7IjjV9wkRQylXBZ8WTUiF6NZxVewodcO0gR06M/eSL8tMSWIq7Zs9TXYEhSd+WJX1eh941UTHcnmlwlCrobMvDVwAR88sSJHo3zY7v956lM+yaZhcdCxY013G3Ui+Z5IpDg1EC5Ui9h2qLdtPvdbI7aOUiOV8uhMECPVn+OAA83ddprMRaqd+zErcrurHVED7a9MKJdBmfQ3U2ePBL3g6n6RFrTtR+TEsZAfc9H8i+6zE88bnG6mw/3JJZzsuwvLncuoFaBNlz73QtjMxGu2jeDn/NX7t/7FfUtenDx8UhyGW1Dn/ylwPpaP/RdsKXgjwj9w+JA7oI3NUevw6sBllB98x92v50B7rFurPk2ESThOn4p0wT7O28RVwvB4T+R9OBGMeUlabKKwHS6a15FY8QNsTQqHxV0JMCwOYEUlqfDr1YJDBR8DTPOEPvOTONg8ITc3yu5+f5RuOotAI/PvYLrIf2YFSmJPl/NQfVsLpup/Qf7r7TDBJlkcJ72jKO/GoGKrDYGz22CA7J/wSlQmPsOCpHn2Kk4Oy+Jzq/3oHOfmRctUIJRvi9h0w8RLu5J42Wig/j6zgYWyXck5TVROPXvS1rzfClPR2V4tNOC6+vK2XXecczKe4Yz/vRgsmAoi42JIuGIJv5ikEXvw0VhUX8FznCt46zgqTA+xpqeBJmj5ovbtMQpAfs65sFeyZekfWoEmO2OQd9Aewj6mUW1AhGw72gj14Ubc7zfDRi0foIvS37BfA1jqF70jLPcCjlMNQKdjVVRYcxekrqfxuc2T4aaurekL2FA6R8kQWeeyRD3CWKvpD2a4UJ8+zEFZB7HUuRt4OPzDkLK31c09qw4hF7sZx0/saGzTmCfbjP6BG4hdZsy3uQTha/nRvIv4SI+VjQKGiMsecGrDpQtbsfAohdQ8eok9bqnYt3eJyAY+YZfxvfyhp220FE/n6U/u4PX1nbMT/3BFwKWs1rBRlCesR+/Tn/AB6MfkKuZPQgZ9/L2ge+4UUMKvtbEs4HQfTpXe4ea7rpiw0glmrJTHnZLqoHd7QX8ye8y9HzSgSueIpQ8zhpnNsViy8R10B09C7UEvuB3EXsYN6mBam4p0Ni8AbpjbwEuM99xtsVZnNHRj3fj0rnbtB8ODQz5easGrXoghnrvxsNqm0fc5LKP7ji6oWO5KLnctmAv/UtoJDMBUtuFadeInej5KYe/zK7mS2JhfOCWFK8wEeWrBwIwb+J7jFlnDTOStNF/qJal/hfZN8ia8g0scYTSar4htR9ESszQZXMfF7cZwYawc5QxYwwuPfiEuqbUsvk2Q7IsnEEXpC9zd4EhX1quS4Mn9cBeKIk0HReCeGwtomUzLRY6hCsejMH9niu5RK0KF/+2ZLNTcjD9vi7L2U7hyBG74bPwG1Y8LoLrXOXhy+eX5H1vL4bUy1PbPTuod1bmncPvUXLsJWj3lKXL5hk8u7kYRC9OhfTfMvTY7CBrZFtDVdslSpgQBWbdzqgzXoGe6VujZkQaunZG8uVVX6HsfRBUN2sC3DehB8bfMSZ7GXeUvoULjXfQdIEouCqfJIXJLfT42kdKdx963/tQ+HxhNke7HeBph1Zxt8YQxzR2YsG8VtScZkN2Jx+gk5E5FDSqwpfXKvBStZUd7/TAVTlvdhRXhMLr/2DrYX/IF3lPX2JNoMyb0XmlO0s5xvPShA1YLygHZePjOMP0Js37V8ZiMglwX0UJNFdeoJVbDXn8HG14NE0R43KWg533R9ogugYGW2Th8VIXVPutASbNITQwpev/d2YsvRoDQYnzSao3DlW89lDFwvskKTudKr7JwJhZnajc20W3/PoZR41gCUVDzjzxA01EG7An4RrYT0+Dz9PUoSBGl55Pa2JFyQtg/Pw+vVQxpbOj5bh29m20jLyPdq/cIGZovsloWlCOYSSpluziY5nb+VPgXfIqW4/v1C+D/L52ntNriFq3EY6Ft6KS+SR6z7vJau1clpvwjDNy/Ugo8RlueHwCck42g6SkEfjXLWArxx34zSadhzWZ0vjPzfDm/FmOydwI6X7Z/Dn+JV3fNBKO23Xxl0t57G6UQncTy0ig0ID3z4jEc0uC8PD2cWA9splifgiByMPHGNPjhvHuz3il3X7imAcoqLGNTs2NQf9fDvTSZj1/vm0PGSdn0YknqqQuN57yp5+CIGNvuGGvxZmnN+HoP2IYcGUbXSq0hKgrc2lSYDw6TxGClaZfuLi0BHaeqmFP9SKsfBSDkwK2YFCXGWwMGIfLGsagkuM4KNJ5xadN91GJRgzMiYpAmStb8eF3W158SBEat0Xzf/0fycFfhA4XpOOBi9kAM5x53uTR1Fw5CzdfDgJ3JV2or6vDXe9C6FzXInr8LxziDZfQkde/uU/xLdybPIlJ6TSwiDVITXIg873bcIbJJwqyHs+LuteytOtY9HvkB/7NOhy83QnvlViCwI+X3DLnMD83CiXziR7cdGIQzWvCYFNGEG5/0ARL+7NZyQCB2xppYoYFbTSLoCVL3nJ9vhKUXeqA6kf36fQsQ9ww9yqcn2cMWxdPg/dj+iD4nT6I+x4i7fi13FWkxJnvvXG9rxOujLemd1ctwVr/BCXGSLC51She3XMfRG+do/rSI3ytaTf/OFFCD5LsucdIDt64ZVHPQBv49o0H7UeB7Pe0ixR7nkDa81qWmaMBupON4LyDKCRpNfM1X3X6u82ZGwd6cfaJfSgX8pk+jJ0GVhSArnrVpCWmBJcXh6CLx24++LEE4/cdpJa0RHAW2QzrtU9wwWsh/FZ5hk//loGkQA9wPHaQq6wv0TL3oXljFIlt4c8o6nssGrkpUs5cK8IhT3lQf4er1zzjvzrq5DzQCgOK+aRmP45PViwjDvWBYVcf84rvArD+syjGh6pC2PzhuCxADAr29fLwiE000Psbpw84cMS8I3DLCOGcVSHUfBCk8LhsCFh8jYWHbQFYYY7BW/JYvmIad4WKcMDR0WCytJG8VRTpimUiz0p35n3DNGFasRLbKhrS+JyHpJOrQuU/DOHKzDgQjn2MogEPOXLzDhx3ZBEf3r6UXzTm80EtWxwsLORJ6sNhY5Y6xMbW0+3aJ7Q01I7GDpSScuMZUmkYqnuYMY3c8ZOqPwEoj0OYX3IUUrQHcNaJJviTUoDvX7ZRw3ZN2oBmYKasx7bWMjBlgyMbYTm0b56COuXLwXC0F+9bsxekFzqAn9Q8mvynBW6hPMSXmnPbkue4UaiSZ3fsAFExAbIQf0/vdX6g+6p2nPSniBdJmID7YCyFGDiwXtwc1M+OR7ll1ZjSnwcj4r6jl3IZXrAW5iB1azi/OAFUxlqj1+9+TLrjya/m+8K45BkomvkNFn2oIbnlc7DGcgw8yf4Ip1/PZfNuC9gd2MtP3/jAh9mv6efVzShd9AAEy8dC7x5buKkdA06pl/nu9qfw40MDjiw6wZ8yduK+sBAe7diPgu/rcI27Llx2DafYS+U0+YEIp7basEmFM6kunAoenTdAwcgJnSImsc4iaRBMqUf/LGueceQ5JCsy3bbx5smZfRybexj2zPWgpDxz9vqtB5WDZ8knvBK7h+9A6fFmsL33KxT8ksHlWwvhvxBDlhUPIVUxbRBOucQVxmoc+TMXBVu9eHbiV446yWgYEgxhx4dY/pAQbJ1rATOyQ3ipyWOe1deNXWs24kn3AA5vmoQdmcdx67V+vq66iVUqtWBYmxm6j/2PzgquR4u+VTSq/guJq6+hhfeLKG/xDvbQiWIVdzOY5i4M+SWtZH46Bza1foAtLrFQky/DY9eNp19RFvBbtwJGXlAHsWBZeHtIF358dMcrRkqsOcuAJM/fpd87AjhiYiLu1ZoH4WsQtoyLpDUHTlHyqCio/bIWK7YG8+czKWhr9ASyVgny4mEfIDzQHFwvGcL37HIUC33KOjlb8WqvOfmHnKD5mZH4S0aMhHNW88GdmrCj4CY932iJumff8hGRZLri/oVfVVlBxxvgMTejYMToG3jpriEYNXRCeOw6VtvRQ1P+fOYj1rUo9fAldS2WJIfEABL9NR/LX0nDbld/ClbaRxqhZXhY2YUjnf/yHOfz+LbTBuY2u/KvKFO4UzceCpWcKfXucBpBo/DgQCYVbJqPebOng4LpSzqdO0Arhh9Dzdlq0Hd6JMWlVFHaj/8j7ky/any8Nr6HokmlSZpHpTlUUkqZlVAiIiGiSUkDUoZKEhmiEDJUpgYyFQmlCEWRqISSSl+RVAo9/f6K5/15sc86e1/X53PWvdbtw4F2V3jEuL18bH8vf8kcB5OfZQ2x/U102ywGsxqDIGW8J+bWR/PknI8gcd0IzslZU/YxV879OMjZrxqoQU4ZMvoWwuLBTFyJWqDg8YWefyQOEDlBx6ye07K+ejR+acg/7WTgXLcgD8q95Qs/hUCyYTJr9vegwZwDyINjWOCKFK7vSuFfX1RASMOXvki4gdCFRdB95Dz+rOgira8rcN4TXSywu8uxp0eBWb41jDpGUN63CB2zLpOTzmU86bAYA6b7kkJwCH6tKEJN3fPQIT4clN0LcGWsGCWM2ct3UnZA7CwpahrqFY+sWJbXuMbzrhEWfBOEq6PjuKdxAzQ+tiS8asJj2q+AxLNVmBI2F76N0IKKoTz5vmo8fPMz4tKVW6EieQGsOSoAVocz4V7iYnzrZQ9TdJF2xhVDo6MQjJBIgVOzdalgehfl6SbCkykzsegH48HoN2Q/bz+2hcuh9HILuOQeDD2XU8hWQRQuCq4lSYFI7B3mjQd3bOB4Yyt2772B0h0mAN2daOGyBrdPGEsqai9Re/0+yHTMxJeh8Tign0Brro6ikZXj4cvorSz0vo79lujQnLVOLLH6CzjhTuoqvIXyq/NJpl8Zpp8bDVPL/8DUx2PobvNH8o0wJ4dNR2FOG+DxkYb0LvISjN/6H400GgaPvexwVUEcSb+L5MqYX2hhaYzrl7rxx3FVuH2rPNct/USenYYATcrYIbaV0xfpsMCbCfBM2gkfzD0JC1e74g89V3bSzaOJXtJwa9NqXntt6AavX2Tt41vQcc1burruM0/uWQddyZJo4D0V4nuGwfdJi9jqZSl49f4FH1lvdNu7gR9VX8NDK5Kh9FM2dyo10a8sOagcbIEvqfl4PH08ySaZ0NlyV3qbVQt9FwvYQWjnECPc4i9/GH7HI2ZFT+B78xfSFhPmCat6weyqB+uqhfC02lWs5DSWlhdbA76w5uSev6SzQAW5QIcLsurRrf4mKL11pEZHO1bqkuQ1YUowTG0Btz9cA6pjZrKRth+r6/vAjAJ7GPVgHbfFr8QLt0wp19oAtEK+42znbeRSeoLFhz3jMDk1uPvQkJMfR/O2GWWYsPcgr4uxgMM6kRAYcp/SF6TgWHdNeux4hSNa7+CETW6MXr/5W5cN5tyVBLlflnxxFsPr4dYY+ikba7KUQX2GEFRtNEGzf3o0bsIMKk2whIMTtXA56UN+jDk4bUzmRbqPwUlMlBLznoCe61OY+/sWdE2VgeIZ4ZATFcaK1mV4a+kVzpkqhEbOl6FGxoREIl6RYelnXDfCGkLenWOHuWo4X3smTX8RBlyeCyqvs3iX3nOamH6JcjbGk7a3FWDHJrTxvod27zLwr78GTCnPgYzV9bQw4hR9K4uhXH4KEz3MwaywBGR3ZsPFr2pkXfEaO/ZLcLv7cP5Pw4E+zF/At2OFMXGh3P/b+3//7heDPe/ieN1pL1gaE4uVB39zWPIGWHI/kbdb6DK2e2D3EoCQT1587XAIDOxaxvemlOORy+W0pDUO610v0T9NU3pstZ5VuwxB6PEcjrarQl0TAX7ytAauOzzlE58NIOTYI9h1eyfV7cyDPimAgPJN1HDwE4zjTzje6z6drFzBNv6x5LSogbKOGcGMyEbYZq8LESnvSVu+nY/MdqTHCoWY3x5Nuc1voGf+OTDulRrajThoGvq8ltkiCKrRp89bzoP/0iW8a/pt8jtQRNMkp2FMtgodVjKFF83mAC/1yVcojp1lPWj3ts/wdf1t+D7qGXqbLccpovqcOnIvlM2whqbtMuQzPwr/TjPEimAhMIm/QTJVefzQ7T1OK/5JZ7TbaTBnJKzw6aQ/ValwYpozmdcmUPbwFRje3siWO3pR+0kaue/UxaBZ4jDeP4lPfLOgLzv8KaZNno6f2UUu6x1xRuZQ9z3yAtMRPZCRIQAR4W95ss0zuLW2AK3PplL5qmS+V9/P0Sm36L2BOHgcXwvNypKQV7oJrjkvpuFj7qF9qxw989sDtx5PR6uJZ2GT+nr0dxODogoJaFFbCskiM3js/AyYs/kMGo8fzk/FQvCgtAufyB/Esn2FFLnbBKyuP+SLPkvpS+N3+PLLicY+uYnrUjV5YesZ+u2zk06NyGClrUNcXVVPW/oT2PRvNpQqWsG6XQt45SMb2OoTQfZvwqHX4xtHxynCmxOdnPbGGD2H68OUqWPgXoM7H96cgbmyMzCmqQtm/KmjYYY2kLPOgn1XRuKH2E0oEbqVfx/qxV1Ff+Ck4SBozZ9KoXrTebWdMhyc84SEG5lOgzjcKflIuxOfcum6VHYyauZP8y6h0XUzdLppBQF3wmH7amcqW1VId5+U4f0x99hD6SK6Ws7hct+nsDSzBtJ7bUH0lixp3F5KbTP0+MYxZTL3ioZ7B/uGWOMcJD40Zg+tN+w6wgwmdAnTpbkH6OW6r3Ry10140f2IDxpP53NlCrikfh8I1jlB3QMr2CxYCdGTtHhc2jP+Ov4vvQkQJNP6eFzTrQN/pRQxdedF+jVZDi7NkMDaE420xkacpjUWQMlCfbJ9Hkp7982AlNmP8PyXPZSooAbX6lRRdGANSNdFYPawl6hWq48LTujyPWlX8Jgrx1OD7sHwHkMoHTudrxUnMi74RyUbrGirQBFsD8zFMVMJVxwcxKZVujh+ny6IvH7E1hPyWb4kARSmH6Id7+bAWYd6OJqaQwe8wjnb7zcsDwI4aLYCtt+bhQ26d9Gq7SdnC3iB2tzDlNl1lKRGi1HsqwgwKhGC++/cocCgDeIm7aBxIqV4LdYQ3MViOGrKYlZS30Wy36/hpdThQDWB8OPhIVTV84B7ha+5+N5dSpJy4HVf5NCx7CHLrqymvRN0IXWkJm8sqOEoUT9uq3mDjovvsEOlGy/M0eLI9YU4c045fY8fyvFHOZBTeR+v57ayTuF6il8VSJ4CH3hEaAe+n7ONRg2IwNxZauCSMEjdq1ZwzsG3MDKikU4degzV9yVwlIMoJ+gV4EMVZXxvbwF4KZ4t1TXpRfN1mlAyGea8Pk6a5grwM/IRHlEKBrWnM8BqNwGrz6T/SqJB+9cfvO15gFueTKKw2VOw2sEJZwZmUvmFfyzuqQq6BqW861Adal8qIJd2Y64QuIgCSW/Ibr4nPPw9GZ9NrIQ9FYpwPaCPyw5NoK+6Gnj/hQ74OUayV1g3x9zfyVUHFvGG8e+hLkQMauQW4eQlOfijO54r8DOaB1phbpI6B3qa8mFDeSp5+Rh+rDOFtT0HuPLRJBqtoQnNc4aB4vMBKDJQ49g8Fx4+QQj+XhiEG21aIHoQ4V2vADyJ98aT89+CYVgplIMLvn3kDhPOqdLCpp20PM4GHt1zpR9VfdT3TJ+WJbxkaR9d+KsyEl50/Wb/bdE4U2Ey/E1ShHDdFhjhugU8dYbxrnIn/mHcyiXCRqx98gKJihzh7vRkfjteAq5v62fpBS0o6hZAZ++shGedhRxRZ49j87swdaASxyw3QslVE0Hp1TWM+zcOu789w8tCAVwn9wJMlH/yxRhFhpECuDKzl69clodZR7/RqYUVMFlvFfl5zaKg36JkfdELy8/tR7N7Cby1rITHjZkELU5nKP1fFrg5T6bDUIlvL5Swr5IAa/neBLfgGoBiLfaZMRHOPPTGLrVsrlxwHP0eVMLEmX68bGQJ379rS6uO3EJPqyi+Zm0NPqmpbNicCk1zxoHfkNtZXHbBAr8H0HUpE1XsJuOO/EyOQATtG66c8ECPfV7n4eT9piBG7rBsqhSfSXpO/Sbe9FD0EG8QMwb7tGy4de4KZiRcgMy7pyDxSCh9dXyHdXnSgAUvaUWsPAsWC0BlexSGro6ATy8WYNvMqSx4fRoLSU+DiDjgvdMKocnzIm0FbVBfGA5ZA2vRdnonGCc9wkmpBrhSXxIOb76ODjXWvFGvBBeeVID7MpP5YKsChR3V4tPQQVrTN9BekzYY3DEHcxOW0rXv5/B1lD6MWkK4rHs0Np1UwsqNf6ChT4zrj0rxNl956Pr+l/SeX+WvF0fBvMIneDOgnjRqunF0ZgtTWRz+W3Wbf6qdhmNmxA3xRhhcPRaWWobgvN2tIHX8Hfp9UoOW5BB6XB1OPwXW8UCYLKeMmwAbkszghHoSu9UloEBsI31ZNwxPjDqEZlbDIDZIH3fqxUB070KWlVWEgueq9MJ/Fi6c0oh7NRbj6MOBJCFczPP9TcBbfh2Z6cnS1NWyMNLIFIya+9jtVwOfkwoEk2oROrHCkG/sOIuyLyNJNagd4g+pQ9XaAl7SoIcnuyax3kNVKigYg4+7O/j51pEcf9yelX848ECJLcw+9ReVSYgvzt7B7fZ6iA/D6Ep7CO3bdBjVXnzji/HV+NzbEs6IXsFK/TTw/FeH2z1tKTXLFprmaaKorwzVnNQl+Y7XWHjbAubrp3LhXztUKNdBxY40mO/zhHdXtbPp5Uesd+cfRK7NBWHbiaA95ijqjX+N55YOkoHPR67y/wNbFMJ554dfdC3rFXzpTcYfqpqg9KSbn+cFwKZRoZQX0QpFv+rYK/ctLE67DqcuDM0qNZqOturC3inv0KpwiNcefKDRUXHkrXyUA0EUN6dGwpO4IMKpgzh5ghnoSB7gT44jYPT1Psgfjrx5+gxS9B6G8/bpYZOiOHksPkappdow80oB9o8KIO8UM7bo8MRlySUoUSaKR7WMSXr0Nrrc9xmM6gk2tiBtTHkGd15V8er1r3DPE1F+H6BFdVfH4KEIBw6eNED16mPh4csPbOUlgiO29HDTqwvkunwW1VU4UdHOMWS92ZTeWIizYLMOXGtwpTlPRtD+t61ooFiBz7Pj+N+Skdyw7xftW3AXT48dyyduWQEPGrNwcRZlr4nHyD3LQVFDEcOkFehIqSnsbPzA/zl0w6UDgiDcdYtuPjvCLzW+4cYsP7pyIwfOnekG0fV70fLUNfQNqOdp4wGcdU2x5tA/Cn7ly4uEtg2xRiBl+EjTmjIVGJaYhJNWzOdaKU1orZiL9kmr2betA1T2/4CEkOvoZ36NF4ftxBsmN1hsN/LIXGUQ6bfiiNUzsefSAjiWEUttA3pQMFYH1sxbh8XHu3HpHyX4XaQINUZ3MNygG9Xjd5Olry3uU/eAwlI7NGp+wNJtYng+sRTbI5Th+8AZ3JXjxn0ukbTGtJHGb3/CTwZccUoAwk3b7dSXuZqX6wuDi9UxrDO8T5mv/rGQ/D9wuqsDd++1w7wfHlzb+QHk5LaT/A4V+Pv4Gr1wbIFEpXjusLHk4eL2dDLIC82u+lE0u+LJprfks9scPn605TcexTBNvYqCDsyCz1ZDvy0UgO2R6ei6wBNVNm7EvnQViNk7Faw7JfDuxZMwdWkWVH5NZ5MuU3pRugKdwA/+9K/irAZdiM/zAW3bn5CUM5v0Pmvg6RHJPLvCnd7azIQNIrac8imUwhIMQVLtKrxzmMJNTitYYWsLl4XIou48MTY9kY4isaL0T/cU55VJwS5HBYhbPI+nTArEhY+qULFzyOnDhNi/RAk0J1xCtylL4f4xU6gZ4vSN7EKaYlPpudsxSIsaQ38mVLCk2hl85KlFR3euYsuvKhDwJIV+HXuDmRUB8P3pNUoS3QbGqeMgyKmahcI7ccY4QfhTogG36qT5wsjL8GKKAeZ67kXB1c1U9Xwc+K/aDJGzVPjZWX9yEDWBCY8UISlBGXT/K4ILBjrsMiyXQ/ONKXHaB6idOAUnC5bijqkTIUUggT3kDpKH0H4wTtdhbYtMStkwjb0zXMHUoRAFL2vzcjVhGCE3Bh7mXqSBdBMctfMvVU+Ohbe7jvClGAlemzgZIyuSsWm+BNSvSqe6EZFUVvWTbS5Jop9DJPf72HKT+kfOPnMehbRb8KeNEFRo/+P6FRLYXPOHmzWjcP/GKjx+7jseCtqJodOvU+wJG3h43RY25//F1247yKpXBnxwNiou9YRq16l4ZaQ8tsX9hJXSveDx1BgEruZh2Qh5Fj0NlB0UTO1BV0jzv3X0Ov4Q1B7yhH2h3vjT2QiclAK59sYLDlSIgHINcV7v+wI2d40Hrxlj8NlVBWocn8SKsSpg23cKL8k6k9mrFpheXkITl8TzLpHT7F9kwc6F4mR99yX0l+vBvoeZ1KSogorhC7AitQIulSxm1/ftvOeANxl9j0WhtlreXKEE21JHYIFXGQtl7Ub/FzFoPXAW/tN/iGkBdVB/7ASILxoPqpqTIHScF/e4mVLk/Dkw5UM2z5C3Y3uVAHZ78hXP51bjx41KuChpApy/N5eHh1hC3s1sKEs0Jf8p0XB4xGbo+CZAtvO66Hb9SfIeNIQc0x4KqXrDjVGydMR2FY/oiaY3XiEcO/0guxyeDMsLj8K0BzIwQagH746KwGcOxynuf/+DRCL3HFuNv3a58RVxW9AU8eClXuPgwwMtDDK+jl8OnqZTCVfRIO0f6tbOxvdZ5+Hlu12wyMgTnwvqgrWcB6/vHw7jBBaQSUc1vO8JYTGBY6B3qx7zz6mgw9wkNvYRgLn9Zizv3A9VeXr8JVKfPM63cQd/4xXnv4L9WAl80ytM1toTQLjGGSXs7KFdzRke6Q/HUattSG9EM+ckR5B4wgeqLnxL4vrasDI5CoxFNwL2nSVVl7tknvMLRu9/BYNOmrgqoom+SYqgyT0TeHdLFkyDsnH0qkr4d3ELuZv9xlXyofB9iBnx3hp4uXsru68dAf9d3IYKg19AYkoK7XP5wu+udFKa+j96678OR/ubYsT6s7xCQxnsU2fSlJF36NVXGVCe30zVoakwV9ef/n1N4a65/yi7x4b+izCH2JhB3G/Shu/XbyZP+zgaaiHQ8jvDdu3hsOfVT9K6vo9vHNYEgz22pFuOlJpuQ1OX96FM/HSaldfAlU8U2aXVhRLSbvKOIf/QufYZjINFsX/Pd+4tSsP8C70U9fUHvXb9yIntnej2uZTG7FSD1vJ1YFWdiImHsulfoCL2dQZC2kEVupeaBybPK9hn+ye2WjYcRAXukMCDrbjQvYzr5I+R2l5JkJxRTBLGqujht5dGLw3lFhc1ON6dQF8Pf4BlE0bD5bpOqnofQmqSbRD/XBgGBKRBZN52zj5rDRFtSylmby6oLU/HVWKred3adMp+/gldnqliyAQFVMxeCb1eNvDurgSwax1U3M3DnlEnwHTXSFBPDeLjc7dS1pJwTPu7Dt2fqMJlp07UXj6HJ5nKQIUg4XrXYh4h0YAzfwqjvPkdaNhmzi+2aUFVwwWOM9nEryOqWfnPMcqQXcNPfoaz7tdCLLophQbyWuhipgl664LZ/T9gs3351LzOGvwN9uPb91c5ZssXaI9YP8Sihtxgaws9x25TdsNf9O9ZiQbjfNDf24E+ab1CU8+PpLvCjxec+QCvzTXh2agOaMl3BCPlfLLq/8G5fuNJ6vhNlld+RDeH3EvD7jwpvzaCYOPp6LDGAH4pqIPUvhP0rM+Bfwfo04/DmrTwwko+PsIa3VukAV5Z03eDe/TWYh7WyNRweUc0dXjN5P0Kc+ld7Vdo2JuNve3q0HpVFWzex5KYczrUJXbRM2yj6VWP+ZHgbYx4Kkc2LtUcnSEErxXswCHPmaeubqOk79fxxM5luNbyFnDAa9AMXUqLRXJ4qroynLGU5TUpW6FoZCJ4rPIHU3lNyFpgQcNPenP1+ToO2nOct6sIgpOBBdoeOoSzduyDl4cX8MiJcnDzyyM6oHoeRCJmwsUfHdgwzQbeV6rSjtmaeOe/n+zwTgf2F67Ft7u38etjXXghJw1To5/h6YkK8NdwOvjlu8N+H2dqMW6DgTU3SN59Oau9+MG9F0z49Y1f6HtJCxZruvBP6h9yVWFK053Fmo5vseJgAh7Uuwrif7TZY955Hui1gfiSGnpleA+eKW0C5RgRrL+/FVvdO/BgYAIeXiNJP3N20Ja94rDgzXTIEcqgt9BDL7sr4cuwQ/RdJgFiNimzjtdt6Ny4DwXr5GDvjAQM3zKIu4rraNfxavr07B1bXC2nAN+xHDnnGHhcaaUzdwUhPfgQ16h1IIgNsemiNFB3l0SnpHA4GPOY/pT5kLaMKq+ebgGva9+DVf4aLL0WyLkRZ8GyWRVe2mlyeN9WPF8pBTGez5nOqsBcb2dMtrzA/Z7bUe3JcFpstA8vC1rhqCBLTA69BH+srvKOLSaglqHBs9w+sPgcIXq26S4YFM9F290S+FjJji1K6jj4gjn2x2vBoSVDrHZmEzQPmwhOB2RIXnMRPdjURXOdP8I4ixj4nRGJo/MkQEr4Cr2P8qIBjeug3N7GIXPdcWXgb15en0ej03eh+mpN2pUrDKGSi1jzrS+oWAewwphpdN5rCiw9J4Hjd52D3pZY6E0pBF/7ieA5ahUZGF2Dmy3FUJP5k96Wn8LUZKTtIvsBpv1A6/YlONZSD6af82U41g6fG13R81oyJMY5Yfj2Ol535uXQfs/C2Et7oHW5FjRvUqVgZRHY2dVIPb7DIeaTH1t5n8YxRQ9w6TtfuPI3bMjpR4Pgnpms47OLne5H4YFtaVAl78DR84eh3Fz1oV3rItdDJSCuIQzrKg+wi1MhjDkhShH/PcTMJ0Ggo5KIOwKK2MN0Ey0tG0k+50QBVG+R2rgOdtK8wg6HjqCUTjt0fXjLGaVZMG12L725dYaPqliDTIUzjrjWxnFzjvHA88/s7mXJ6on3Gb/uwooZyyjH05569aVhWud+nmGYiO+PS8PuW0v4VakQ6v54jBbHP+G5rqukHz6HP5drwvsdg/hMEGjic+SILwqY7aUJd9zKSeN0L1YuGOA7m7ZT8NNxsOtvItj3HcerFs9Y+pY4bp22HA4pVJHpnECe7X0L3xd2s0nIWIgwU6MX22YwHKrg+1u/cqltMlhb78Nr4VH02GQAbgrtAslsW1CRiQON3f6wSWYbd3/YDxZFqaTa8AbPTdhHWe5ZtJHceV2UOjinNZPb+KEbnbCa+/ktOZZ8hIh5EXTG7BF+UlwHWzyCKEV4OJiujYLDJybzpNoY7Db4gSMWOKCAYR1F2V2CcbeS2bwUMTZdAujEea6dchsUmiehwLI2btWso4zlwXg7cR7cq9GAvSev07YdY6BjTQnIlm1nwd1REFC2nJ4OGwG7Ta5ynsgxPuR9AxXOheCFg3owQr0dCyYbD80qTF91xaDWdhJ4ViWCT6IJ3B9zEctq7+CJCUIw0VEM2s06afTFp3RvWRMtfJADPUefsOJALW5VyqT36Unc/0AUvC+v402SGVSy6Qi5nD1LxQ4/KXydA3CIBXTbNtC2YRdIGSdAy3FFenbrBB2bUwz5F4Yy1SUXloXa8oeICNw+OoEWzCqD8AaC6ublsDrjElaMz+DnZuOgdekH8G5woVUrq3i3WAmnNs3DyO2ykPX0II9pyYATG6S5b+4NkjmkwF0LOviz0AbqST7Kcev9US/OCnrb7FGr/gj90HTmpWqLYfz3TaA5PxM3H7wNWw6eQOH6crJOswTpNR/IZ+JVWLN3gNZ+nElVCcFks0gHbjTq4YXriWQ5f5Aj42VgtLUNJkee5it2xjTwLgtemSDFK6fSij8jMVi4G15aS0HYV2HI8rGnu6ue42/dq7itsBH03n2G3BmBaDajHqW9nPnm2xzYIS8CgZ9aMPfZUdo3zpLD3pnxn4QCrDYoAd3nnyDTYy9HWXez5hJLEO+fzR5r/3LSlT1gOUaau+9KwhbltxzkaYv6f1R4ofAIvmpuCc8MCjlIaRX3Ty+Eu3cbyeNsO4yNbMVtcrtpboAfLOitpC3FkqA5NhJPXrqDT1RbYf/pgzzvWBKHbJfH4f9iYPPkWBav1cd5AiNBO2UCj7zUCean97G9pxEcfiwO3jGKeHbZWnQ+30/5c57j3DsCMC0yllI3+uGX6lY+dXcd/DRYwdKpD9Ey3If31z6nFfabKFVpMuQuvQSnb0vy/Ani9ChCEmabp6GsUTVf1R3HbvE70MnTkIWeycHUPaswbGU/fiURflkRCD/ubcTl2YNYUyrCb7Ju4cp2XxgbYgVNnRtp6/VDOLW9ACKi1eGQ4hWqJAFufpPN1yd3QnR+CHQ4q8IjF204/LCL57jlU6/qVFKYZY/xle040C3O569n4aQgbx5vZgKbI614dfJeEl1xi1R0MujlkRCa0FMAQtOvkckbD7ggfYT/XVGFSMUL0HZFGN4dPM8tPRbwoi8KI58vwcumJvhwthGoiJ2CwUyG9NWzQN7hD8P8/bDBYRluCd4NWaOtecZoc8zxNsF4oUvwfqiDctU2kf1rB3i8axgvVcyB2i15GLm+EZzXdLBBQieIWnji5BOy0HhWksxFT1PUmybyTXmKIVZPScOiAraUrYQPf/zpcb0deZy2gGTXhbhRaieWND4BW4+7FNJaDcL91zHX4QLerlgHXr/ewZTlguCja81Ny7bi8Gt+YFcqRCMFb2HLDqLKwWjIWraYP+VPxBwZazgpO4N/up2F8rpH0Oh/hoMWT+SIW794l0Eo5Nup45uaMrA4JQ6H5AKo5GImDyv0g/GX02jz9Rb4cLWB32cfpofrOjmtgChd3AxqjE6C2lB2/NfxkScejUF5fT/Wt+gEr/4O3NuqgAvUltAieUF4mpvMSw/q8+/lt0jxqAzri53kuLKnkOK2GP406VCN8yyoDZgMOruBqoa63WvTaCrN1cJJ5v7Y17Uef6ds5Kt/xSC7aBIOmzkWLGRLyH/2DniwypHCFtaDpH4x1UR6QarPJah1H0BXvwtgvcoE3IKWU4x+POsvew/NEz9j2PXb1LNtMYZ4qdOy586kp1aJHbliMGl1Fbe/CQLz9n4SXSZCRgb7ea7BZDbx/Ye2Ume48LAcb51gAamHBaCy8jmsSo4F2DMCnGZ0gkmkEB1Jc4SRe2u51S0F58UYwcjT3vj0YDBFyV3DKN8Oui2uwfvNO6nS4w9+UcnEc90hfH27MZzAE1zkkYEC2Xt5WegC/qG+GJdFjKRP+wRxFl+m+FOSXJKoCXNsj8KvFV58y5nwaU4njpily4Hl5/CW931YaOrGFU9CcFOBBjz1y4KTIomU/W46xUxcRH/H7uQbjoLQbXyPj8Xf5fUvb3HJOklwb/+Dg2UeFEC/sbp6Im5cHYW5RoWgc6EAZeSSwPTMaVbbrAvfU8Rgxb799PeiIA/e1gXhbjtwywimhvveNBvHsusSZWoZ0IALv1xgZvJ7mip5girjCO1cIqB8XRPOtlmHm42LONbXih8FWYDhOBU4POMaJkWIs8uw55BrXs2zn/0D+yWB1H/ZnC2zvMG8cTh8yXclOyF/0nV1gLm/wkklQQUaipeCbIsvTdNfiNXptqg6ZSzUttrxkbnJuF77Np45acOmy96QqF0k9z++BisDSvif5lQw6lYAh0ofmnHzHB2+IAEtffPot8t1Ct1nRWFjvRDsk+lWeBu1mBmBmeIonvo1nmuTavDigUXYoh3CDROESCZqHjnctIKpraNJJHc0bH8pgLbVl7H23Sl+WDSRXfc44GHL81C/YA02vphAMLmcb1qJw2RFGxzdrMu/Hm7CD4+XQ86y92iiOoktd4mT0qlEXBq8De+nD4O6E78xzCUUUxIH4WiJK7/8KcyROvU0rYop/UzwkNfMJb95xpBa+IaOedvAPJWteDmnnPeW7ESXCfZcWe6H9x+vhLWnNuDZtdqw/ckeKl4ljiuNdqCj52Y+GbuSDeYL0/sdhBsHlrJ+XBM3/1GBuMSbeFrJCxZ9mQf/ilbDxcerMf3WXcqOfQl+/SHYFtvE77ZbQ5iLKzgEzaCVUjVct+IDPl+/lJf27MQ+AVtsju+DjIgbEHUFIMPKkByHbmDuAS2cr1zC8+f85Q3/BDHJ3I20/glSXnoNnL8tDXLRZ1HmtwcfvutBI4NSUTsqk+8+qufaWlE4/D6DE3N9QGDVJFB9k8g2nxUgd5YrL5g0GtxkFehB8SN+bZHEZtlR+Cy3Gsd6K4EIliIFr0He8BEDn8pC5CtbdPw5BT7MPYnfTItZRE2SHQPM4X7kZ27qnw+xn7JolN1BkqnWpj77l5haEwbBq0byxqVXwOvURNAwnY2Pu69iwvsyyLvTBMlawlzx31toOytK95R1uXvmRXh1QR+cgxJJBnfgsoZE0u/NYFG3A5S1e5Civ9fiDNd5tDuukhPSAC512uJHHS2aIjAGxsaKwWxfD/T9KA5VG8/TwON6/P7wE+fMlwH9lV9hWUUl5F3dxMXhaqg6qpj3+oXy4p1r8VLTe8r3toOCOB2wWjwW9ieX4ZwEaxJSR6w8hzS/op+OFHVSRIkwvK3IxaYDQpDc8Qe+penh2zYTaOjygEDzlzznzFL+Uj3IJ+oWkMXHpzhupxW0TVIkv3FAarKfIGr/Evi5MYQ917pBT/5V+hgzA2ZXbADlLAlQantB6wpO0bClgZis/AX9rihwnKMHv56tDRH3g+hmqCosfCMBBXajMEjxGtulPaO/ew0o8rQhfVpfT9fPD7KRxWs0X60NLRvEIMeyEYoiinFkRxXsUB0ggwBdaLHrI4U7/nD8zQ7OWryNnGrV4LevHKwUT6bQOZ/4+x0xXHBiFs5q8uCmOc/hgmEjJQ3OpsPtQjDuvALOidlOJ0yk2LoS0PDoY3g7yZE0jh/AOXp7ONrZnAILx4PMd3f89WI9V/0cTcGODyBG8gC9jTCCG6JP2K5Ng4rcJrN2ijq83iTJ+lnTKNJwOz3YlYdL/msm+WvH0Tj/JvvkfoOH4oVAKpKwpzoQVd3E6bxOEIzokifdjl24bYU9p2SMh8yTp+Bl5Qdo+CUJPxuW0hnPbeA45OSdwcX8POIYfwp2Rrfvtihi/A/+aFWT2HE9+P1xI9RGx+OX65PxW0YpLXBJ4tSHhnywWg2077VC28wv7GtlCCoJB6DN/iaNONuN/8mWYtvDcqr8K4gZ0a54P+E2Th35GvZFKoDx2RZ45LaZDKPKOCLKk5XqW8hh4BBK5TtiUf9YRonXKCRpCqYm59DVdwgc7OzhxiIPCLNMhjf2olQmbIqeHu9psHU9CTyyhfiny/D0rYvk4ptHcm+6cVZtEwdmSnOsag6uHSjl+2lI+o90IFR1G/R3fQeVN+q03HAS7vZ6zl6mz/nIvIN0zUYVty0ZDUGPDMBS+z9as+IifQ3PgJHaxrD1rSY5afyhpusr8V9sLI/aJwrSdxDm3bkHmyZNhPGn+jnYYB3nfpTFyD0HIaNuIV8QySbtWcFgbmACZv/1wl/jB9yYlkwhP66C7Pqb3J03HtpPfuZZxi34a7Ua3zw+GuI+F5PgvToe4b4do8RS2Z0UeMTD55wn1U5tt0U5flcsuX9XhaNLhcixYhGfrn5Bm6qTufqBNAVvuIAJzqs5JCYRHzo3QO9qQzj/xYQsCy5ChI0rjXkxkmrPy5Ptw1aQj80lT+tgvDp2Hx4crg7uO3W58fJHWjx3L39Zn0ax28LhZ+5Ljvvci+PlkPda98GkYgD1odlrrHYyThUkLeVbpOUZiM5eanyq7TyKd7Wy5MBwsNoiBJ9vPCf1TmHSnnce9kzVh6S0Y7Qlpg1a467A8GdP8fZEbbASEQI72VbuTzMmqZsGtO9mOd0rzOfkSaGYNFUD1Ap2UEHOBuxJEoOTMo382nUL3q5SA8G4QryqH45/dkmyaaIyiZl0wp6wH7iz0hzc3B/AnFHeFLV5HMU4RJPHRR3EohmkMu05hc+3QtW+L0DFAvC5dS37TfaDsHNPQOrBGx7Y8ZvrV2bByItW/OSHKe9fMosVe6ygbEc2xYnF00JJSwrt3kvD+k6w3HY3iO4vgXXPp+IZtSH2KLeCeXUpdF76M+ya5ABqwmN5UCQQ9FW9YHnNcJh5VJ0b0jzJoG0yZFu5sNWbeZQ3IgvmJ67ia9NK0KDOCIUNk7nQXhqSn77G3VOUwHj3cayf6I2WyooA5mXw6OMLaPO/T7/kb5BhWhbFRAfAzkIBEHzZR2blT7n/hRmu1LHDN+ND6d2wh9wQmU71O2JZNzKTTo+Xg0wvfd4rM5tbjpRhi8NqCrMNwteW7hAdK8iOtldByS+Jlc6Ng2XmS6DOxpj+FE7CsGg9eBfvxXmnhrFU6VdOa16JUw8idm4Th6aQIq7RyOPZVolosXgSqz5SRb33DpByzhdypywkjXoCV71JcPn7Qvy+WRbW5TigZPNuXOz2nY5nZGH3+2Yush+FBy44o0LJBDC0D6G0L1soes4L+lK1A3Xm9tOLFWIQLFIG9UFPcb3kNVjQKQY3hnlCrEQmbJJNpO7Lu+FoVSf/GPUEU0YM8qSwKHre0gEeF4xhhL8gj/sszfJf5vJDy+G8f/ZWmNLrj02S6nzglyN5/hhgiw3CsL/jLZ40DyDPjVchJFcId48wgaN3X5JnqSnqtN4l1x5tXLXCBi75B4KB0zE+fvY8bXacS9nHCFb8lGfByY4kvWc4Zto1k3CQMeg1/CJDgyUwqqWcjwUnUafoV7Yc1UczBD156WoR/D3JhyqixgMYBHPHsAR6/BUwSduTtXpW4NMRFTBMahlHq/wDEh7HcF8Rej7FEcsdhd+r98AyFxGQ9TSGTfk+qKh0FUU9rejkr5X4yVQPjhR9xBZrd94lTbR49SGICzPDV3eK4XrMbIg3D+PiFxeo/68QxCyW4w26E9D15XW6GZ7O3zYshJ8Hajnokhyl+erRccswLErQg2+xo3iP4i/ws+2hRPO76F9ylEY+zsOs/z5BmrMv+4U1QMZHAdhgP8BT/h1G9awVYCl2Dt8fs8V+zbe4U7KWGry2cFRVKK6XtYU1GsNgv2wzRZ27gaVjduLUVWV4XvYtWnjdo6b5p7DkQy+cyraGz7Fz8GnANQ7+rsLD71SSh3E3LinwZ4GxSC5NUvxfbyvhK3UwWJ/Do2ccxI7fcyE0bzkselKIg4n2NMr6Be29U0tR961JcDrC3c4c1hjYDeapY3G7QhHq2/jQze3ddGxyKv0NFENsLIBmXWVQbj/A5j+KIHGMGOkWn2Wpwn+8ZkctF4utJ8tZA5yQYU2ddeMh4coUHH8YWb1nHEW5zKOJ9VPo/a4aLnHxB4XUa1RQPBd8LLThg3oxnVcTwhl9Wvw39STP//KDS7Zlwg79i1Q6uwcLch5xQZA8DGwLIIO5W2jBnvM8bVgSmR97inoWFbi1JwxTRydAxNUYaMiyhbxtYtT67TjZrTgBHW3KNIDCmIcCoG1ryA1/KmjStk0w540JjJg0hrWzDCmXpHlehR3Y3u2CyrXEfiNOweGoRjYTleUGI1PQdNJAm/H5WObaxZr1EfD4vwDcVq2MFveGk0Pq0H0LqnCIlSxUuBtzYM5GSnL+x21RafifojEde1bPgQnXMLbmBl+1f44LyzQBL0nQtWEN3OuXw6cfyfDBgA30XewZ2My6hqPCl3Gf+QG+8NsMijSM2TXLCT2kDMj8hR7Nr/0ARan5dO/FMzgpNRpK5xyGfEcJWBgbgiVCXrxLYiJk5xLbymzlN3/y+DwAvz0cy91ne2l6iCqsdjPn3x2j8aJrEH8YGQ4bXmvS4wvT0aDxLy1ebwI3Ag7i4t0T4GW7PMtsaIRpT7zxVNopWpNfRX8Ed6HfEi+coaQCw+SjKEFLF55O6uHPyxLRy8KfB6y28BizKtTdJk7qH9pI8mgmFrSegWO2E2DL+T3k4X+OzEJmUfEJb3IVcQKJqnLcbVQFN1+b0uod/eQ/xQKiK46QVcpkiHz+l9fIK+O/O6PY6bgbFF30hMPLLMFW+CLWXBsFwQ6LMF3XFKNN/Mm5XBrf+87D6avXwquD1yFwxDzaGPaYL94UhuS9+uTocp1DVmex+BozjhPsx6+VnRgbOREHVWbCZN9h6P1nEki92gWn/C9R34oMkg74ixo+BjR79h4aG1qF7h9/gaLxKGjrUoLNv3/Dv43PafZMZZp18iPkGGpQ2VdNTvlPgn/8d4CON6tibaMkbJg/E/JHS7Kr1BKqTp4OclteQ9PWIKqtSefm+lZMGCPKOwOkwR9vcsYEVYzDPzjVSAI+WIjAs92mnFJSTwKHeujzaEtWn2sBjTZaFF6rQquW22HH0UDyXavG7yXmUYd7KqtHTIcxvXJ8JFAKNIzc+e3Wl3zRuxLr4kqhc9pPtHENo6+LvnJK80nscNmFsnLjoXH6WFS9MxzHrL/OXyUKofqAI/P1NYTlu/HdkRJI1jwDX2+Pgkk7DanrgSoeEQ8nMaFYmG0hBY80NtO96F+82bYC89+r0dEBLbgUl4KCOQCbnyhTwjfgH5EbqOmbM4T0fuaOgZG46PorWNyiBUW7h/w58jR/fR2OFnXf0SH6MY1LnUHiPe4QbC4Aaj9nUbi5CJTMv4Vrdu/FXq2n8DTTD3f/AApS0WGyRt69/RPXNQrS8g4rWNhgxlpN92jZe2nK64yFb1gDd75Iw1NXU5prJUHrzIrZ3sAQmqYJ8KVBYfr04h3JdN/A1vRTaG65F7Qtv+FKaRuq+NXB/0xV4IZvANx6tIzyW6vwaPpa1uztgXNqdeil9JQv1rym3nsj6eF4EeizSOGkUlHIs6uH77kfaP9BKa6WPkp/xTrgwC+roZzbz3HCGrBzVjxmLDPBPXrn6fXbELrXOnzIhQ1oa4A3TrWdgS/PHcfPsbpg82Ymr4tK4fnC08D7/mr6bX8Ix5Xk41jL8yzTnMT5VtG4X9cE6jCWsz2iWGaYE7lvW4srfTeyZZMYZYp9B0HuIWG7cpiSoQqbq3fTvZVRZLkwF5Y/FsUkPU8+NyOWxq+1xMZ5rjDyphS4FDOUOL0nAcNSLi3uwoyxx1Fv9TTQ39nCa8uW489lWbzivRO5tVmAoOZiONyyCaICfsBgqhAKWvzjm2HMffl9tNC6jV+98OM/r1UgSqWekrob6d4nf6p0qoPyPScpU6ULF9jOxbhwfWza1wpH7UbC1tY9dD8iluc8MuTGnQG0acpbTPxVxSrVLmTZMBXlFe5DWdVQlnkc5335L+Bl3gZiiaFOND/Pv/oNyfpwPj75eIo0CyrhFsrCjdQlnD6oRLUzrbGsphzOOq+Fab6b4PYVH7SRu02fLwnAtN/DIH3tTNhQ0cp3G97RoY/K5O9qBF/vKoA5pnPVy2L4OPY4JURYQkuzFLxe7wU7r88BetPJyyQVsXqBMq9bs54STAvg3SENqjhgCZdExNH8jw91fKqEv64XuMKdqHDzOTp7QhqWeX6DCR5vufieFjxa7kSRZ+TgcZwaiuYd5aIKYV6rex1+KM6HL16v4EVcDLeukAHTdnuICU/Cv76ZLPdmIttfiMDFga587HAbh0hMolTNXxB/ZgTMKA3kt3m9kLw6G70Pm0K4gCFfNx6PNYX1fKsMKGzTH+h9MBG+33/J6U2FAHN9ecXYMNrQ7kxpC/bArud9NF5PiacumcZ3h6lC8tVRbJB6CS7EGpKU2kbaV3QCfzktILN3D/jEmKNkqpXGRStFIa7QiW5FCZDuZhE0EtWALC0hWrspDV/onebe7CcEeTqs620LPyeJ4LQHarxUWZHWijey6Kd48n7WjNM0b2P1Xne6ofmLFtvawLhAYRib/gdPzr2EfiNV4c3+BNqRvomGu4vB5xQDnL1VH79GjIbtjxxZOfoS7B7qlnkWd6j0tDGsmujC01JaaVOXLA+jBBq+SxpMvVsgLUqQu+7MY1HzKnAsyKBWhVZYLLcI36VehpfBStycbgUqP5i2lRhS9F5NGBeVPpRLmrjwhAhluXXg7VkVtFhUm04NzfArzwWinbbh5WPK1B79DDM+utOp2jckOPwrFtuHw+9hflTH8pBRkgcfzQEXvL5PR688YdsJGzlztBPXu6agwdbNcGXNMHhpPgq8nxXhgyctcGCSC2xd40Ph2QdgbVszP/RRhwlRUfB0YDPoxUnCnBljMHJ7HSrNfEVRhSP5yD1H+NgZzzJK33nhVEnYYR9GHgmjoLx4OacLdpOJzBQMklIi7RNxqDXzCmjoLobG1MMw0246OhdOglNnQkHONBX3FhZw5sep4J9ynRvtJMA2xQOHJfSTwNVAeofaIFZYxE/fJcJKn98kolgC8IdoVNofzrjpRG/VrelmSCC2z5sI+7GatDW7cHj+I5j4nz77ZjojXrhBdq9iuC32Fcm0fIKNbWbQuNeDQnUP8LjmazRp2kVQXGiF+YOKJLF1Ocx6fpLkk61guJoOBKfux7/eJ7nTMQmVtT3Ab0cfXXu5hhZ+MMOnqgjpiitonv1YUG70o32+B8FFrRt8Dg3lW301bp37jHeXPkMd9XPkViONtRWWoF4fhyqTRdnxdDB/ezKVH0UK0DUlR/jR/JSUDhjASRsBCHyiCUa9gSjZ4E3OB7JxhbM8Lel8xBg6Di/1XWHXtVJg5N2DtoXKYBqtSGe6i2jQVJIWjLGEWvPV+POaIpUvvcAjcjqo9GMr/ew2ge1zQvibuArKzemhdc9ceLyMLKd9DoeObbW0w7EJnZrd2U7HGkIXyHGXUyVJj+vGRYOvKHZ7OIC2DKgeuYki0rNJ5bEZ7D1hBZZCy2GuzCiSU1vLN0ca86n7Pny5OJVqZh9HS6lRnBl9GlRDtCGyQhzmtsbD8i9b0fvnU446ZIJi02Lw2zRVsBLcgzbpcTDVRgfK9cKoqNUTH86y5rFf7MhUIZ+OqphD65kuDjrsDvJXOnF6gxjM/G3Ft2sj4FakFsgMs+X9xiNRteUl5Oy8Qs+qbnGWZiho7LMAU6vpuOTrT9IImoaSFpe4aIsSGiyLBDUWhNpzZ7j6VCQ7xuuC64WblBI8CMdMnCFhgif574zj/eVXeeWQ01aXB9CgqiOvEbIB9a9Pcf7nzXBqrRlu4GFYMVsSG7d3QVcY8c3lxCealTCszxiyFvzi3LgkEo/eicafr9JuS2kw95vAfxbF4Y76UMD2b5gdpAN1tll4enQJCIy7TaM93fn042z6UDsReivHov3ALgxI7QGDbRZgOOUU7oiUYzOpGE4ZO4k/ZzYOfWcmE41NrLHMBCaTIisGGkPp57vUVCxDwU+fkbujJ4xeq4Xr11RCzj8TODlzDYf4qNLhGmG4s3ANGyrn4fW1FTghehnUZPfSiKKV5K2QD67bbdgOdak/dQK8GlyIB5ccp2zzAR62oZEy90rRiJe/Mc+tiIteLeBTi9Lw1GeExKDVGCzzg19E98HBfXnYbDOcP7lKw1n7GyBx5x+PPiFJ0U/1oO22NqlfYDz3Sx8eLyvGrfmfWfhfJnffdabD0W9h6trPpD7dAgrK0iAheBuNeZdKsh/10H7POUyePRNTPKNJL7SNVD5fop+HLGHslFrMWHgK0ssiUVVMBKL/zkbxzptcJy+M01e9g50uohzeow+t53RxlsNSKPTQxAvNYbTQ8jd2xJey8nVPXC/xgatKrCnpqjacbPvMs2e4g8gqay68JwHhW0PZffsNWjFQQPtFlahsiQd7SOqAalcfLzj7GlVbX8CaB4/hxcoIbjaygVt1YvQk5QqEbh6LX8cJw9ypoai+5DeP2hUAF7cvZXGFYpi+whwET30kr7UBmFJmhie2joWR2Z9QPUUH7nk+51Crs3zngCG7Ru6A3k/D+PG8MlbfUwhr3LThauVLagtdD/cd7Uh/+W4U7llGNeO34ummfUzNc2lrzHicXSAGi83D4eu6Ntwz8g0eVJvNxeFTqMjxHadnbuYJB2O4q/kSqG8ZD9N1DXGvtiHsUTiExqcduN1KFbVHFA/tSiD16+zGjU1DTrrcArT2r6Nbt3Q5JiCNkl3D4W+jD+V5H+OlPvpofziLL0a14G+JSXBo40yQzFsKW7r/92ypKagn+9FN59Ew9XswaE9258UXyzD7sSq8rE5Ch84X+GmLF6yPeULpMAosrk8Fp4ZgjNt9gB9/9IPBzOGwYY0hCiXZUuLPVMw/U0f71JJ5jrop+ruXkvdNSeh2WIu+piKgox5Bkcte0/Gw4TCqW5bDr/rw0VANXG8/i3Zq25PcxZOQvtEIug6N4tyyQcjVcaUPRgtp/JuTsHlMPm0+9RvPVmjCYJYwfNumDC4lX/nAlkOwUCeX3bxn4EP/UAjZsZvfqOiRSsb/EXfefT3+7+M+ByoqRVqKlIaWkqKBkNDkLSmRliS7NKiEqIQkKiGKlKxSSVFZURElKQ0VympIVkT9+vzuxPcWvB6v63md53Ec/1xPHTJ5Xk07HgpBwVgbUOt2oX131mD0KF8IetACA6Nmg9lm5i0pebRpII02V02CMWYpKBvWStJLNEgxJwh3/ham6b7h1MPjyHNNAD0L3ovjVkpB/QJl2PrwDw8z6sDL12KhO/42HVg5lcPUmrhq0nXcIJwABwUUofPPclaSEILos0e4Y2U/zjlgCHc9Q/DE8nNwRW4i+yYupIEVU+FFtRpvtm5j4dBK7C7YwW5PpHAgThdb/CZy1sKxcMrDBOZ3j4Qb2jtRS7CeL0h1oGKSGk/PloFdmzzIqfYh+DaZk8TJ8RD0fDgUzb6Mp3WdcdWyMRT/VpBH70zhe5Nn4Hz71zgs+Rk99CxA6RXiMFCUTlr5N0izPJpNgn7ymvp9PLehh+WbVHBCVz42/ajHkQJSoDJiFe+68YiGp/pggKc7NpwMoedXPLCKvPlvnjg3qQljxVdduFEXwKdrRWjWj9tQnriHc+9uxmut0Xx5rCZeWvMFg/wK2bZUELL6jtL4ugKacHkbZrrFwkmypoGtpfij/hNFLLan4tYmPh4yDRzOJuHx/nJQCOinvtN/Wfg/a64KyGNF33dwsPAyafnn4EtZDVAY+5Vub6nGKe4veNShYHwZ/wRb7O1RMSUaG3fnov6ZH1jupABboxtofs1kFE9h7HEwh+d1gxArYI0/dG7gxA8XaBu/gSWNglB86wLXFZyhiPhY3nZ5Fi2M18LvMW/xn+ssii3MJrnOfjRVnw7K5sGQPP0l7NgbDkLz56DIo9cc9TkNkzO2ss4wUw6ZK4ca7coQ3R5KicJh9NJ8JfzcJIwrFDrpe5sVK3MHmm/KRbNVi/lXmzqcMdXgD/SCJd8PceRWANff64MW812kEi9EYWVjedYhwq7zwpBUE07mxUrgsH0TaTcE4yYZRxj4cxtL2jZjyeQWVNm2n1xrFOFgySH+HNKNU1ziYfxEDV4wKIvpGIr1boW8POQZZdWuI5ctKuCyXQ25URlfhIvBorDtQ04mBHeTHfGlcw7d3BfPLqptsMpwJKx67o0BsYRABZSQ284busPw9AwHUumvR5sVYTwntZ3e940HSvzMKgLhIH5rPS6f8IRcn/mCpgzBroOa3Pl6Na2VroCqPzog9ziNzAU1wanzC8h1iqDjNhf6sPMJFKgfpp4vSvTf8QFcIWgCi+z7sNr/Ib7bsZ2uDTDMrWul3FfSpL+oA57V9VP7kkjYoqQM66xOY3H/Aly3fgQdn3Oe3C+7YHOHJEWHXuT2B438esIQm0bqweqRitA2KY2kDa1ofVY7HurKpQmj7XjJc3k+GysLt2ZNh7XBw2CTUDgcKDsCxfETYXJXKvf5bAHforMcPCuPpPz0+NaFSuxjI2jZcx6E9wPLFuiRzsUhl7rTBmMvm9Pa4iuQpeCL8fuSWd5TDSY0j0W7w6s59mISLBX3IXWZWZj5xJBDjWvgqtQaeltSihFd0vB2Zh7ee/kZWueu4ryf2RQ4v5R3e2vyaY2XHFI81EmCh3jb/pmw/mM56xk48PHXSigzLhxMHcLgje99OHTWgYfpTWf/v7kQf3AaTGpcBe+z0lFmcjkUqrjzfcF0XFB4kd3Ed9H3qKvkud+FWp8zfJg5ngY+TqWpLnF8MKibkh5r8ZyGvahQksS3dsTjbl8pPvduMnTI+JFC/QZym/6OdSdvpPAIwNUBP+jYvU4+fk+dz2Vk8fkGgn0/tqPz0iv0cMCPjiRk09K/n8Asx5qNfXLpdZ0wagyeoAdlEpB6eixous9mq8XeeCvWja/dO0Ueh5IpSzCVHMNXkzbOgFXK4jAyqxKet5VAkGoMehlvhct+PhTbaEr58WJ8wDcSmkLSMG65KrT8MqX/fTvVPm0VxxRGgVROBB2dBVRZOZpuPKjkhGXtvEB8HIh/6sKKGgXcsvANiyzw5Hswhe27lpBodSJU5Q1nVfdzMGftTNga+RZbBjbAnoOtXOCyA2RGvqKa+BQIuigBtZF3iMdaY6CmDHy0dOMDb9t5ydoyTBHawSorP4HMgV4IareC4CHnerZnCu36rA/dE1K4qV4Z91jJwOa0haR3VAML5m+FTcln8NySUI6bC/C12Qh0DWTRtKYaDCfV0c7HD/lajRzqXRfgywFVdLq8gX3MvWlEqAb86ngPvmJNnFTnwK1P36P2mVoer15BqiQMypnTMPPmE3SZogorcxZjZ9conhMYiS3iQvSmcTML/XjIc7o6Kb5JGYICl9OeoAmwtkGMxs2U4OFtv7nPNoanH6jGd+CDzcvzeKKpM22ufsqWIWJw7Y8eThyWA+OtdUhA0RvsR/XxuFsqkBG0CVKUfUimURj0hhNo/dCh5qmVlNu3jx2Cz5JJwiqavEqUkgUToLgok2rrVPFr6khI0blBBdq+3PR8JXzoPEmxOdt4vrkYvtmXR7Wj48F/uDk5rSXwEEW2vi2D69W3UXGdFJh4edB3yVss9yAHJJe58yNJVUotNoCX83bDSnpLum/O4nqXiRzS+5iCg/pZbncv9kRZ0svUGdzlPw1EfD7wJA0zNjvihFESBmzwKIYj5Zbg5UWduOLWDqxJkwHX5Nkg+ecv//7ZhhVb3+PG19LYVKNDez4+ZDMvLRjrfJrPdTngwVpZ+H4jhmq83/M85/W0Wb8XV6nXQ2D1LNxdvRjXlUtw+6AGtV2cAKOFLnDl3yr48fATD9ssikUjLWnlYkHaGChMhisToDNjES/xVYdj5em08mQ3G5wqZeV5L2mdiSAJisVi10UvLj67Aee4bYLFi3Ug3GQC5xlc5JyT5VTZWYZNJq8pU+88ao8Lxbt2prjE1gRf9EvDwlEeuHi/JhYo5fL6/gT0b9oPK4feOaGKrxRR/R0LnkTxZeEZMO/tRnrZ+BwdOtTQOkAbX4+Ipbma1/HnPAPybV1GT2ae40n7DaHZxo0vHymgL8aKeOf9F3pcUIBxJUM72yADLZbLQJ+uPNqrD4OeBmea2axLKsNNSfXGMvx09DdvU/uMWjL76eV9M3r+Ppt7FqpC+KTVoPKtC6a236X+Pj+ILM/GxV4n+GL7fHRqOwDe1kkcs0UK/kUcxb7WBXT3805ec/AwH4DTmD8+leUW+sHW1/Zs47EZRU4QeOs+wcSh/5p9L4obI+rIfUkQfo+yxkyLDXzi1HbQty2myuN60KutS0Fvt+H7UD9wpImUdek4P+nxo619W+HvfxvQ7fsSstptDHtEj/GyY4HQ2nMBNyQdQDVBwu3V7tz4FuFH/zf2k2+GgmOaYP1Hi2IVzUht7ERsiXrHrzq9IeCSL4nsbgev7k/cfvwxR39S+P8uWbBjPx5/XsUvOndRlfBC2NKViKK/80HTVpfLFF35zzUDkBQfgJ/L/sDaFxMg4UUZrDr/ntun2LD2jzbQr02lnpwGElwyETSTHtCtSyPQw/oHSVbXksyH8yA0fhr/u11EGe2G9DZIEx/ZiEN4ZiYKxoXwu4AtsMz8FvVmScCGGWNAsrkNR4Tt5Wk7VtPXFeNh+8xEeuF+h8TWSKDZnI84b0Y77K/3wjkDzjz900WouViMGwWmQdyBYZBcaIWflp8i6/128ELzAzzb3sBu1mtp3PgmPCkx1JezpoDh3TP4xeUTjY8O4N2OcfSsvY0unfODvkgN1Ji5Bh8YHQfnkcLQW3eKYx8hjNIegMFLQdg64RJGPBukV8mZbLLYjloj5/GoGcowb34F75Lo5NbmnyxjlkT3hWejWYwbC8yUokiNRzjz0krQMdKF4cM9AX3y6eIIcZpVrovDQy5Q1aZbHDBsC5xS9kJJDoKOfmOY3fydLQWzWVIgkRWShhg+8gTVvCMs7stn4alPeUN6Piw7PjTnjgexvfkBhxrWQVn+LJzlx/ArcAqY7gmh5VOKUKynFzWujIK3LuXoeKUT4gQPgtOBbJBt28OjlbzY5JoWe7m6YUiqPxa5iAFpL8WET3Ew4clDHohWgUMnjMhg1w1yvlqEBtrFuDavgComaYL+pdsYfjiOdVvn84KBWGjQnYQua3Zjlbcb73kgg9+vWGJxqAy8WpTApZpldPX1HNB32cL5z96AwPuNrKSjCNnnJuF1yxlcJC0BT42T8cOxRpJZUwsBju9gQogdKSs+JZ+0CBD5EovnTf341XZ52DzsMTxOuAJ5s69hpIANiv65DH9sbsL50j1wRzIR6j2iOfgpQ+v4fax5R50EnVfCxbSzsPSaFIzIdx3yj2J6eugIORcNcPAORdj86SIFb06ChLho8DWZgyHu39hF+jH/N+YOa7yKpP4xK4e6QApyTBeSWwbjgFQsHB+lBvYp6TglbwTFLxmD4dGN1JWyBu5+MYRHO4/hoWUHqb1jKyZs/IVLX6+HkWaP6MsHHfZv14JrAws43J5hm1UeSq56h1faSoGFd7Hu3GuwZn0xCN/dMHTW42CNgBy09Y4HoRPCaGY8CjThGo5LXg/1rqVYKfOFP3Eb33rWwZLd4dw5IAufE0bA4v050FQkgIeyv0Hb5zAWKA+BwGt9dK73BK/4+J4yU8Vh/EgruvpBDnWm/uJJq2NwSedl+vfeGsRc0yCtrBNHpDzHE+8nQ13FQfwYVQ7X5iZD1LppkG3hCnc1vqDz5+24onUtj/vdz5NcxUC3pBLnWz6AxgmNrD5iLxdOzMRWy37M/uOONf1l1HV/39A+k4HgLVKYI2QCjob6pKc9hvouaYHOehmaN+TWN0TS+EhNNFebIEw5NJmENknwW7mhsrs3Ar2sJsC1b5Po6swD6BKSzAO24mT/Uw7k/O6DRmUldPcpQbX5Jpao2MUirybTheX6eHPaT2w2c8Dr/lPhZOUkEH3bSW0vdrLF3QN00FqTNoybBSNPCfOp6FOwz7+YSiz1IanoPG+q/UmzJSzorqIqX2vr4aDEM/w6MJo7yhM540kzbfdRhNfBY+nlxOVsZWlOfycX463r0zjp4gu2HdtHo27kwuFWM3y6VhHw3zPUm60OcWZqtKNjL/5UquQocUnSDjSiVLk7ULC6ndcKKEDoXjMe0xXJ+T/+ouVVWQqdl82t6ac40tMfOTIFW4c6unLod12WCvCo9yNp68mPcLbuLR2KK0DXuPO8u6eYLnt9pC1rZXiLjQiMuT4f3CxWov2Mm7S/25981t7EmapbOeLQT4q/4QxiBp4ovFYafupLwLlRm2lOwTi2ui+HouNyYEKRJz2Qf8QRQqUc8qKf1G0Ynqt+JUcLDTwrdpxWHdnNNZ6DYGBaDP3uO1gpTZ40DQLo08dZsPJUOU5POgWP/zrA3ouGlK0uxi2LGmnmvkQWOHud9h/7gqo1c+CHbAc//3WUp6z8Af/Ss8k5Lo1PpGew2Zd1NFNQHnccnkzFM4Qget1XLBbToMWK8bzCbTpvfnOQ7x+KRwnzUEwaVk9z6vbh1xoB8DzayxM6f2BV1kh+d2M0Pd8cy9UHRFg2bhb/SrvBp55vg9vxatC45QPP920lr3uh2FbbSHcsXSBK7ywNuzQVujJUWEYjiiJaBGDgrAB8f1TIthla5DLyGCf2Habm5+pst3UsC7ycCCNl//CRD3pQ9q8HF/M2mOYbyydWm7LGqc18z3A5bK5KB0GOJFH/ctDrEwY48gZlDPeTjYU3LpmfBA0n7DFs1DLYmrcR1+VtoCUb7mLHRB2wLlGj2zFStGySKBRMjcGNziPQvrIbxRtV8bu7L62uTcVHDsPh9Eo5qLjtSgYqHdg+J5a1F6eBu2UnL/SzgWDhDt42vxcca2SgaH0QVNjo0/afpiRdKjHU4lY8yjseurNPw1PJl5yw5hE+1FeAsvfheCN1Dr/yc2HrjnGQ2m9KJl6rWDX6PjUEl4NNbxLKasvAnc0Pad/IK/yspYgP1gaDfucOfqZ/m27GeOCbO/F4NWEdxdyeAzt37SSfGUqwJVoV1nxZxyMPPQHX3ja62ldLKkpd7C+1mMa8kYUvoSb4LrGIa41yQe+dLTeEvMPGot2kptDJkr2y6DPMHHOfAYio7aP0jMNwVXgVXvW9C6aT3aBojjo8r7qJZ73t4aqsE5eETYPVxZJ03nsV1YQc59woJZxnGUoaFeLoubCP/1z4w3p+cXytRwLORnTB6zjE3jUSVPxyB3s5VtP5Y1fxRVwN/FsuR6MzQlHpmABcXG1OPgNRnG9my5txOV2vCqHNxkeovmAzbbddQq1XR+D5Bh0wbHwMptt7YZmJNOv1qMLrKcmoVdBJFd/8YYbpZeoUnwvdJopQPsKVLXzD6aRjIRaJrKHeSjUKkp6AFVov4fVLhF/92tisowuW97/Q7aH9NbjuHknOtaF84VIO/+sDIjFrWKNuATqUT4P8swZg3noJg4OdWXBODRmpLaLg6jn8N+E59quvJOUR5bBF2gsPSYuDXed8zIxYDKuFheGVVCWsXbyF4+cTbau5TyvqJcknYAd2thBsWRqFAQKCcFhmKc3YyjDO1JpE0rIpStMYRu7YBFmnAsEnTgUMT5iSO14GuL8RHl7fBREbjPhpDcL6r62wc7EJRPkdgnyV6bA7JpiEFs+mu9FObOC9FKy6xsJlFw2em+IOgak6CE3hdPnkdHC8c4WPxRhRsqMnh0TMgHB3DUwVssGiI870qrOMbr4pgAO5kqCt/R+o7ZPgN5LfYbTrbqzbvIamvtrEAlf7efjrL6SjvgOfq8+GxOGZdPPXYjr0XghLVFLg5wxpvJchwcrDwqj/eDNdrRhB9+TFQENiAcQF7sUdc1rB0iIalccb085lc7lQ+ACemSgIiV+XYmTAHLDTLccPdfWwe3MgJZqc4zuaZVBpL0Sqpx9hQuMn1FrRwPOvaYPgKn+MKiyCSu8A9BymhHPdS6ijKgKkrAbwTp0lTPxdgZdOGEGZtxS7e9nCFHV1Eiu4B1/zFnCq31guXLIKn878wWorn7ML6MPL6U5Qnr2BDBca46gGH7DOrsV2uXR46mGAkyfrcEpuHZ4dpQq6UgsoafJ8fCKgS3/Mb9CdkSsw96QLnT8oyr+LTnCzczv3aupAbVYKijvNpF1na8ErV5oSbzpC9ucQzHH5gMcVnfDV4S5SdJoImZv+0o+3zRgRlMamXhfRxHc59ryYgkkHE1hl9QDsyprJmD8FbEJ2seZAO52sEIOLYpk49+1tEOj9Tr4TIvFwqwpMi7pDLqZy0O25Bi2y0uGx/GGeLYgQ8GEXpEV74C/j5TDhZj4HlTfwGzVpKFe4DrHDV7OwRSWGpbjC70tuPOm/bFa2igPLI39w9sM8tqoUg5V++7lpy3fcIhUInaIiFGFsBKvPD8eveBoDPGsxZHspFSkYQVjDNCaXblI5uYQn7Aul30rZ3B1iBV4erSCVmoqThY/T334xiHuvRrLbptO/O6M4pFiVN0/3xXFH39LM6Je0bV4WGfb9x4VuSlDGzfzi7g5a2DMMQnK384IVTvz2dCrHP39J57/+47GxymwprAOxvy9A7LMX/NBvJkwcFoTWq0NY4FQvqj5Yxv+m7cLK3DWUU64PRx6H42EwA5tLoRz/nyzH/ZCH6sNfqKE6kk9bnYRLh614a9MYMHrrSi8jjsFF5+UMK1Lw3wR18GyXwAfz1ahFJJM0pObQJisEO8EgWJMoyRpThtHzESmU6aqHAhoTycKhEv97+h13h0yjiOEKcK5iFrzTDCXhAwr4IWICWZoncfd7QQr3mQtO8sdwZIU9lDjogDA8w4NVW/lv2H0K63kGg3mfuGHMPmj4dApmBc7ljxFB2O9AoGvzhWSyBiA+9ANneJ8hpzwtuvNlqIP9NvApp+tcvkuKF5eqwVf7Clw16zUF5zyBsOo9eFrwBpvd244JS0WYV34gXOKK85+Jw/GBBsjVOsUOR/Jos8J8fH9HnB84b6PV0pNBZsJauqsZw/eXToM8c6ClvxL5o6jX0DNzhF/+Gdi8XZ2y00bhpILRMHuWB+lICgL++AvnvBpp7St/irHqoX6NY1j9Jox8LW7St7BfzNsN6cPTyRCfJ0m9h25weedMLOg+DB7vHmL7t/+oc942Gut3h/U85tDLBi241OaLzy3K2MM1jVz//YETNx7S/+7kvDvEkMTSArzw9z43+BtDwMZp1NmaDe4PtXnuYim8p/udfS6eYlnvtdzQdZHFn3bzrAolEP6dAql5fbxm8STwLXTC0VuQjKoW4cjNe9hfJZSemrdDYLEQDE5NQRmTufRRaj3a7E6EVxoaNC9aCKO/q8GDkRFk9z4UEo1nwpJ9r3nYEE/s7ldj10ZN/O94De65MkgZN00h9tM6nHvaEY8/HQbdFwwo5WIYb8EKdrDYwbkOU+Bo7214J+LDN35lUEJfBWY0j4E/eSvQ9+YFehBmhJZ++3h6+iU6URTPXVtD4a57BrcWTmaf3JFgf2oqhedV0orYICyfOI7HCnnQCjldeF7WRkqfhnwwpJ0eiQrA1A0L+a7WLZTxdAXX9+34QqkUNl0NIaPf1vD3vCQYpjyCcqOZEOAiCW1Pg9lHZsgptmfx5EphmLYCOE/GiVYMd4Tjgs7gPVkb2hQ8OVYpD550HMfv4v5gvugLrZ72F9cvt4KFTUnQpZMLIxYYw14nQbA4OoXPpJWy8pVrXPzTh0J+/ebqf3LQcvQdHPyoxbMnTIWX/53lgRIrPlw5jGaZBWPPVzvcV14Bu20vcFJ9JD6evhR0EseC3d3rYOGyHyutL4GB1xDPW37izmm78Ue6B+89qUZp0xfwBnEN0Lqvg+b2WTyQf4abC0+iZlE3hn1UA8cQfXr/4iuF6qty93wNeBCaAxQ1k1brREDTjCzoKu+n8mJ5LLOcheZpwtAk/h3nSswGV1lhfrVLhC7c1oboa1UU/9yIY0zOYeuME3T2xQ+aVG8GwhoSsFF0BHnubqGYJgX8FCyMT396YYaAGqp2B6GQ4ziSuPYf27YOh8ptFiz3YDMc3bORx49JBG+FHszb9A7z91/lis/11Nt2DpPsVOHxhCU0KBlOYZ6T4c+tj7Aneyy/rZvOoatd+fueA2TiUMq3KjXA2uw4S9w2hpuXv1PWxJUg47EdxWV2g9xlW1Y6PBoddx/C/I9joCg3DxeNl0eBG0Jk7J/LG28E8IOidCpMfUBrs8bB59797N6jDrdG3+VXAe00SzMOpnA4Tp9txK/Tl7KWwT/6tnkJzOg5THujBUFLbzwvnTuOk4Q+8IKDOyDFw4X76jLp99lmWDtsPJ4VWQy5+6Rgha0fHZYMgr6dZ/CCWyM1uElxrY8jnYaVvMu4HiVCllDsCTkInnuFJvdnkZPwUxo+wQSEyYZyVx8F4a968DANiHZ2o+REA9g23ZgDldbg7GVGaBh3jPcsMKAYqbfkei6chrU8wZ7DxbAsUQWSn+zgIO/tHLJ8H1PPP/6oOg4d7jqzyuU3nDh8IS+uiuTordpwTfsu2co2QvKcHL77RAzN/kRxReh7aFDMBeOTQRC78jzfuqwOOeXqkOwgyZnZ0+nR1zY0fp+Po9J+YKhsEznpq1PoxioqnScFVz9oEtttZgn1d/xVLpPLL+6lCVKxMErRmd4+8+Pfpm3wUdwYwoZYKxZ7CnaofgCRJZZ4XyOJzvj9oL7RbVQwajxugVJIrR3yuj1z0DH+GZjKVJGMSSSNUM1l5S4fzDywFaqsKrDDNA+S7kiAaYQhphoY86GbkuRyYg4a/6ijjabrsSdxNavYfeVYYXkqGy4DKjITWM9iKWkICuNEu9k4alESRAjpg92Pp/BZ4y/vzX9NttukwbLFkbeoFmNJTSN6JChwzpKfpKZoh0nlC2F+8nVaQE44f6YhTBCuYOMjqaAxaIxxqWdhZ+RD/BXxGRtDH3OAXjeo7CrE/4LGwLfUq/hoaGY3u/TweqcRXKXZyw5uHqghNADVv15Ba185tVirgmGIOiUfPMdPF1Ww/ItVMFo5B1eufUjlaRqQcqQOrA4LYmK0EWQszMRLvVNI9lUq+H/7y1nVqSjea8WsF87apuugf8cllJMeA/vfKKJsyVj6aGUH/8KJbUvLwDp/Mvv93g87g39j67YprNU6FcY/DCCnKSV4QVMG5Gpc+GviKVbysKc2/el41mAv2wpE8eS/WuC9oIcGrywGe4Uayt+qwQLbkZ+cHI9O/Z9wXOhSdFyvz8qdmlC/MpWUci8xDyrCXhNPFp6sy2YuT/H18w+01u8ZvP/5Gc/fM4Qw75k8dfp6Wi8ohYpSw2GrhgOcaLaCGSOm0O5rx0h/AkNZrhFMfmFAh+IeYuDkcBg1VgH+K92Nyp7r+Jz5LBoln4VxFkNc3js0l2GDfEhqKyQt2QdeYTdAy4JoaV0oX4M9+F90P5herOfva2dAd7oKnFAt4TfnV8GBeCUsPLwVY1pu0KNgKV7+ewx0LTqL0V+N4N6gEdcYa6PmH8Qq5WU4OLaAR2VL0oudfRT8chG9m6tGBoEINxSlWWLvDKhyG81KAQ742DKFXwx1ibdaGGw6ngnv6jUxL0UQCrUy4HTQKny1PAZtZn1FoYg2iLpyBpeOOUWuUSWkUzWd3hqNhwO7f+ODTFesXlnM9y840qLf7lT7egFdOqIGzp+Ij2lGobj+VLBx289mhfu5Mq6K8qcfYg3nXprac4DlO1pwi+UaMNncSwfjDGBX3SS0MakCMzkduu+1BM+Fr+TmWVP4/glVNh9tS79vh5HHNim4/a2KRr48Sqvdf7GC7X848fVPXrNLne3vZ1Dlt3EQObgHnZw04YCaJy+R7SIxPRGUut8J/X/aSeawBcjNu8fCZ1zhevggytvog8FdeV7x6hGWL7SjppZ4jvlTQEnT5ND7Tj2ULHxAA0dE6XHlMNhdNQpO0DGul7MiflCDYe0xeK40hvU0jWDp4CH+GNYFJx3k4N3LY+C9IpknB/rDH4FbOOck0/UrjnzQ/Apb5iyCXZKlWCtoCBIPKlE9n9mzZxZd/HwHi/0FcTBDk1ptp/BH+zDSCHnGy1RmgXLYNFT6tI58nedgh+8FCv0khX4Bf2DjDAHwH/Kd7BRZCFwkD3dMiunDeg3YaOBMS6N1MKHiBH+9eoM9Yp4xRG7iojZv+vFIB8Y1foDgnhF4xmIDH5fPgj+iXXCkZQ8dv7oRPL5fpS0oCFYuOrDxtww3zHkAayqNMLRCiuzEZWDi0+8copiFp3/rgUGtA12yEoJpzwTg7toHKPRwBp0IvwJzohTwzJENWCizCz+b2dMlPzna/VABtFViKKCkkXJ2tdP6vjI0v/aZLqnVsYO0GdvtyaUXw9vQcK8qqB+OovaSw3jumAVz8Gx4d7KTyrXW8tmYCDpw9g39HPKbqQcUQHxEIdsUtbJLojmJ7VOiYW0riMe64/mTHXgoeqhD7pVQ5r1J4HAJuEjvFY6MicNjw0bAmvR+uOL+hBpNX7ODRwW6G/2lB6Ej4eJEH46XDcU41fv06uAM7j6xnw4NppPhT390SNkOc4wk2TBRHJoKlKDl5AkS3rwMrN/9Y2ULW5aV+w9SuyfSBFdRmjrrMNfWzgAFvwCKuXIXumWlUSMsnDcndGNiJIFPXDRsk+rAnORict2jBPeKo3H/ChkIn2qJFsvDSfSLAYWW6mLpynxa4XeApOrSuCJZHDTqqmH/6jkQ2bEQjcJewtCk4x7xSzi6fy/c7jsPRv2SqK6JUPpuPu56LIVLdVpwVGYlfTxsC4tXmfC7CY9o1ctDfFBKlx4pAbhltJPE3eeQvnwK9nw5SK0F7ZQwMYpGnpuOPQFZXLHPnm/bG4GFQAdbrajExX6LqOflP/xP3ARmTijB+PaReE1tJD4teA6j748G2SdKKDEplQXfvObhvQJDZ/OW7uw/BuONI9j6dCbSxnP0fKh7xn7Ow7guFxr1+Dw89g6EQOMDrFm/GbMrR8Kde7mkEqNHu2rHQUBAFnx44I+qWmfgiMlx/quZiOfSYylLRwLWBVSDpOgrcBIRgVCZ0Zh2wxSztE7hvPJIGuxNobenAkA69TQ5jCrGT9a38FeeAJilP8HL08ZSQX01H3n3hq8auuHZE72sB3/hiXwGPxio4/JPIvCobD5/n1IBB9+dxVdqC/iYpx7XVFzF9uhhFDFJnKd/2ASur8XBc3EJiueosITaUjirZUe7Xx2mzzuu4K74dNz5vpF946Ig8sI4MFK6xx/lduMfu3AOO/8PIqI+oaRnH/+oreNoT3G0OCMOx6RkQOTJSZzRYInJnvvo+JCL6NhGUMdPTbpqm07qU8/Rs4Em+B08DjJmFJCV2X7sLaoBkd4NeLDDBzKezKIRGvPoPyNhKD5WiGOspsDBGyLcfMAZY5d+wMCccXy18Cjqfs/GM5I1hGe6WGG5H73QGA+7nthzt/xePGR5m+zG3yTvwVKw3pQO4reOQtjnebx6uD6cV5OERd89OOWLI2S1SrDw25tos1aVNP0yYHOTIPSPFqPVpudwXSVArtICjLe9g+n7zTg0/Bj3dgmTRLkn2q3P4isLy7FtcMhRpCVh2EsGiaM/uGzUdtTPsaLcPyU8c3Abms6P5oablahQIYdni6TA/u0OPL4tBaZ12XDrrSso/q6X/Wav4fj2UaDpehNlzSP49nExOFxtCFv/PkcXx370cBGitaEmVHzoAnYWumDX6/V4/HYzpw0XgppTb0nm8w9e5J1BVJ/PG2pLMUn0LcfZlVLvhDP4+tsgigvKw7esod2h/wcc/Xvwu6w23nUqpr5NolSRJEwDr4ZRhUE3dnyaBqIClVRZ9hjj1thS+MF2CjTTgsM189DuyGqqqdOjU8luVHqOoNqjjDU7r6B+izlYls8kdARMG2KU4+Bi/Pw2DlenyZLKqhFQPnI3HNtwhGUXSqB4URG4b5nHBCWguvEYLlKOxYNRQrz29ER4JvMErcNtYc9cd3boOoqPV3mih/FJjn1yBHZ8LoB5cmuxf1AedlY542/tEFy+MQKkvdRwnZk8KU98yb8+jKMUw2zI2PSFL141gQuhuuAyr44NdPzZt9oCz6oP0tFvBrSzehnL1gjQDOe1dHuILzezj3D4Tmt68vwj/tV7yfmio8AyqIpbzi+Cmf0vMen9N7YJHwvBPw7y96/JMG99IW569BB3BQbADK8E3P5aBweyjmOCxkuUEBsDYip72S1yGtv7iZLPsG+oa+vJxgs38rXbL8A9i9lLbgEnK4+ECV8eY+N9bS6/ZoqZ66Ph3z4Vzp2pzZEJYTj1QSXUlVmgT6YqRF2vgcIZNVCzdzsJHF+LbluWo+GaJ5j0KY38n7xm/SgrvqkmC20FKzggqh96JcbiErFeWu3zCVaPeka3jl7HmF+63CQrDqa5Y+BUnSjK3z5H198gLxXT4If6lTRToIberJ0HGjcbqbNlHrT/MYFhCTNxVNUxvpYQyfomt2F75C7++us3fp+7nrzeRaKtjCIlPpMCG5/ZVPHFDQxubIA9tlJcf+QDLrXURfJzpclq9fR5shcNmSo0LoiG2wEpdFTUm9+8F+ElXY7gPl0GOt/WwOdfS9GpthCLNE3gzkQVelvmho9Lw0hI+Qqec7ZHjdJaNvpQg26qwew2tZ5sDbRhnvFNepz9EGwqCmDtQT2webSYDg/68Jao0ZhankDaQTnY+G0CKFocxeXeS3DSX0l+rbqK47/lsrpoCrZVHMH3EwPZOiyXPj2eBOMmJdFImb1wOTMPzg8Ph9pNuzlnVw//0HVGTfMp+P1IK1UtF4ICzeHUHF7PtZvU6dRJR0jW6WQl2QR2g1vk+FcYr8wrolW3poDtLDs4ZOmJY+/sQ/cIGwz31eBxOIb/WvbAro2qsCNhLk3KV4PYBxaUOFYcVn+To1IPSV6ZlIgqbTfIwnMhHG4K5OE3FfHnVilQkRRgTe3xeKCvnvIsXqO19nzasrMeDBcXc7HnQ3hx4yA96ZIAlwF1LjFfR2/2j+Dd76y58b4wfhHZQGl6XrzuvAIfyzrPeFsd3Cafw1KbTZTZ3Iajax/CxXO6OLsjneIS78MvjSm0/JI3RlwxhBVmtyHr1j52+qZFiW+sUGtqFtYE/KSZX5aCWs1+Hn8sgQY+ykH1gxP42Oc676+rZMf+s9C12Jw/YTWWh0rAUbNomNF5ChqNJgIs34Qn5kzneXJ7YfdmGVJLv8gBzhMpSQbZ7sok/nd3McC7KRDgZsUqxyOpauEu8gz/RYrLXSgqthr/zDNDzTMq0CR1hqXiZ8PBvb2cfPsv7ppgiw7GSqQTexUGzX7SnEt1JNP8H5QmfqTr65RBZONfGB/ijdazXXhw0TQWgH6sXB3Fdg4LCZc3gGx3Mbhq64OX+VsSHltCz8yu0LccN05L3ELD5kmQW409X8w0Jw2pTLTVGANGuvZoaD4LQu3EKU+iApsH9/D7dOCFlwKg7+hzEqgNYvVzU6Dp3dD7iFfweQxR65RxaHd4DV+Kfwsf/B14pVQ2hjqG4ORmhhuNNVx+WBW87obytuXn+czhSAxMLscl/q2wQfk8ao3oA/tcBZhek47OfI6kZ9jCn5oukMEFGDlrJTc9smeDiZ/hqv5CCB8uCGu2fORCjUV8XmUYTW6eyo7zf5LNF0N8s6QMXroYQmF4MMzwUIX5LQ6QLfedR6ZHYOPsO7zU4xD8WRBMZfONaernDPqbfoucTgoCjuug4t8baFLkJTh2PhBEVu7ANxutoWjfemzVW80LPDNYdKsBmNWH074v1fxlxV1YKKiKK40duWP8OD5efwT3OO+g5MImLjMThl8O9rRlqQMuelQAM2ticeIEHdLu28T/TIeOw0CV775poF/ftWBDZBeIjung8dLGpG4ewpq56RxcoYd3kuxhspIpzSldweXSYrBIbzNW9qTSEq/poKg1ng87NUL32H4Mu2ZC03qX4OodY3jTak3Im3mAJKsOk/J14ryQTTC/OhBebLCEjMv/QGlQn96fGYlKxgTvP4hxvUwKSy6vwOV1ArC6LJWbpo6mLeo68Mv2F6r8lwjBa3RBY+ZPNjlVj4LLfNCoLIZaXrwHU1t/PiL5gNzvPYcRjcYodmg0aH07zhcP7aEujcMwp7Echc+8wQXfTqPXVD/4zPfg9K/R9Np1Jjw8W8oL17ehsm0uf0lJwz0N11nxmx5MDgimJsfdMGnnO/j3TQumbQ6DlSJrwKKzD2Y+SUePifUgopDPnpf3c5DvAe7LEYI8RxEIKhpNrb+aIRJ3UnqjKKWMXomuX9JBfnEtzvvVTdmh81F/vD4syX9Gc2WNebzLRxDcPIrTIz5ThkIg7twnBY9KQkgt5Q1HLhODaUq5aOCiwYfEJsHhn9P4h1kQvY9txaM5Z2DquDTYs8qWnvnPgH+xn7n+lTUZistR2bJCnOe5gXuokjUtrsMd6xR+8PQK31iiA2JbZtPgmg4G23UwTUwZDeKSaPhrUfCKn4O33FRB0bsWUl5Jg7ubBG+xEqCe9CyKiVnOPgFB3Lc9Eb/mKNJ8r2SObJ7L81vkQPeZG83cNRxnRPdRrVsnq806BA/kijhBFenovZE4Lno46OrrwZt5Xtiie5V2rj3ACiMOwKn7E1lWKJM+GOmjurglZGp/H9oNRjCw4Arr/N3DBm3tbHdmAV/wkKJfi29xvngCtFRPw1tD3bbvx0S4dOIYzJZsIo1no+j7/A56XDELvL17+fIqS7xhdRE+Ja4l0ccqoF0iiosureAvAj707vMRMk9OIro3wJq6i3nDtaWQIvQI5bNHQPaTz1h4aRH6zHuBk04cplXHx5DV12TS9ZyD5wLq6MPGFnBfqAYLumrAYUs1hi0ypdV9npB1TIA0R3UOMXg4JVxpgjlrgJd+14Qdt2az/DzCYYIZLPfHkHJLwik9bit1hkfR4KN/WDL+KwQKjIWtCS0kPmEEVCua8MsR/+iKeTGILWulph276fp/RXS/5C8mp8mDy9NgEjgbi4MzN2H41dn4Ynk0ukjt4YXOHmjS9A5Lx8RgT4gqXL1EAN8W00CuJPqv+EFp/jsgx8kB/+QzahSGkoLIJbwkYQQ7Pi3kUQK9HGH8G5aL7KbCGyU4604MmqT9wK3tPlDarExOn/UgzyefA502caBNI++1HETrgA7KdhmkdY886WimD/TtMmbhUzOhzXchN3ubcVqpBr558xY0pwuA10orqPnuTpf3J/AWSyF0ejkBJNsPsMCWbP4Z6wALNzThr5eF1GakCrZli8k4djQIV49HSR+C1rqVaCCYSmEbVeB2YC5Ju7iA0xJbuCvwEd/030d9UV8oOw3wMCKZYrwTKHueEJk/WsVpijaUqfsKhI+r4gnDzdS19SO9Xy8AzsI1MCZBi/xLRdBMwRtub1yIksM0sKBWBFd53GCvwJ908f1wSBdVg9VVyTQqbSa2fnkEoZufwU/HSfDipjw27j3MH6K2gZeyIQQ/28+ND3IpTiuLn9505byEEs65McSLjAYUXveJX7rFsXihHDxZLg3t4+by4Zp38POEO0yImsyzjOw4e9JIzOsxAYmnLZR7keFE6S5OPO6PK3Y0UZaCOF5qacZ7K13poc5ivpwsgWoSpWw+1LVuNfGYb5bNw41CWWHRBVz0zxqtk/6Si5sTHxFMgtFyztzgOxsWKpzEu23n0XjjR2yue866uWFsMUMafslK8LAQKz7yqAVtN+pCwthgFFzjhasV7uCloeexcmE8aj8VpZuTPvGFnddxUnUpfrHUAZK8S3ceh1D27S762HABi3SmkcnYvygoMggaqilUUfeQDjXLgK9GML3cX8Xn5HLhwaN35P3HDI0VxDjz13Pe/6IHutx/wDYbAL/n97AnaBEZZHbDFO0jtCf3NzhOS8Mzo0Po5tMUev+7EcfoS8LohhCIsRlyGaep8MZLFH88bsHmK2NwMK0Ib3Vbk2SSDcrZTIFVmTlQeOg9nFubD+m6+bh1pBU363XjNd0pVCYzDw94fMBHcUIgYjuLcl8VwCRlXU7FI3Q2W5Os1xuA88M8+HjUBk40juQvggzR+w+Sxk0LPF89jCMdibbkO8PsI79AbrEY5Ui34u5FIpQgrQhTyuQpVnArySs0ocTzXFbYVoKJV2ZS74YCPBBRgJp+W2n/BS248Hw9d+Rno9jw9ZiULMqzJ+tA+7Jv7PlWE4d98oe+qknwoGwqDGYchYEhtky2U+GS3TZwc+JDqgtSxuLAU9C3Yj1mayjzC1+A6IdZ6GOHFJkdSAoOHuinbku+AZps7CNPdqob+ed1wNJPI2BU+mwWPVrFeUuu0PQT18ChxQV8rcbRuTIl0qpBPF/xBLPXqkF9szmKVzThl6OvaCl/BnWfHk4W+M7VM8NBIe8fvYbvfHylEhQFSfPRN054YpIHHDsciuXT47DV/hhsSy5iPdkWNEpqJa2/EyFkXinbPVNEuyc1mKa4E+MntaPa/MNw0EAeR+Br0jg8G3PCRKBKMJfbI18w/9NDlVcxfEZflRfEevLLYdnc7Xgf9yrWwuh6aTAwfMe73maQ9JpR/LVdEQ67ueDfI1EYIRTFCi4ZFJtujfJvx4CbaQ0t+LESg+MTWDLaBATvzgDzax20pzuFZmeu5PawPlgsqge5v46CvqoFRQ6OItHsAvrQsIZdnXU4xqibw949I6vqXaCmqAfBpMH2OAlcI1yh9d47uv99FY7d+RE/t0dDysY8zD7qR2H3tMFfzHDI9yJxbKEnxT4s5W2vNbE14xAHaW7ho149rD6mAi6/VQAZXQbB9kNQOlubng6U0rqeW6jcUMJK6+zg1ORLuHXPSAqJ0YBK7bvoO+k3NstXs7tJKJX/NAOhNCmwVJkNT1UOsli5BT3aoAIfH4xhmSEPurf9HA+cNIHdGbdpa4UEnE/+j7ozSqH+oBoYNhjCvGc3UXThE3RYd5+iF3RBxEdnWBBfgsXtq9hCYxUWjU6GFC8JmGJ8kzUyfdhG2JfStY4SxwZTpoo53Lbr5wQPDbCQ+YL6J/VgaXIDP/Sx5rW2qUPOvgeP9b6hRZ1nSd/lOPz70gfye73Bdusc6JWxpuRVg9ixvIBsJPPgm+UhSFMqheTKdlb7rMNH9FOHXEMbOrSk2V5iK7ZP2USrqs/j+N3F3O07jARN/KHunCofeZhJj9cJgndiGWpkymORhg4aPqnlLtNzaHklgr1yZfiFcxIvT3fFXg1hmBHjjraNdmD7LRUbp/7htfuXUEv+Q/yjaARhA/vAaLkJXLaQAYPejyyYmUNW7eLgFB2HG/rE4V7yD/oX7EfN7hmgWG+IApWy4FFZhRsmPWV7GwN6k2/NXWXWWPMwnTuuvYCHcks5TKGIFBsmg3vENupw64avfUHwV389/ZdXC3LrmykxXprmferkjj3GJKg/DabmZlIE/aMnjoM0JiyOwXMBPz4XRFqmu6Gh7x36Zj6n0psjoHmFB61iX/R/cojdlTdBied8uHA+HwIfy4NTsSPV7hvHoapjoNKplPvFnSjCtgUtps6gGmVFLjX1JY0r8yF/uDzG3BlNd9cC5GmPodNty+CHsRRn1KyFI4VVIB6yh85drSLBnCvQr/aZNx/VARfRHLhumsq3R+8Fl7+KOJA9D+647uNTUib45GIdbXKvxIQ6dfi22wwdJI+ATZUITIk25TMptvzl+iDG/rkISl0huLe+lM8ZGv6f3f+r8PAoCYj/haUXH9A2xw0YNdYU5f2juHdSIqx7cwOf5AnR94NT4UxMCIq5qXK3xApuOfMUytfth/JrV2BRzC7ISVPGC3+G+PFKHc7+NwXfHVsFUtP20fVcGxC9HsabtkdhgFILFti/oP7d+WxvIAVO4tbsKfkeD1if5nG15qSQ5UUjMuXJvP0L1C3JgdYkUZ60YTR8TA7k+9+SWehuHxudWUZig594wtxEEpryH+/6tYkCL6zFObYCME7fhN2sFrIKeqDataXUlfMcVQwvU9/3vfiyXJvfaK9H72UjYMaxXdBeqEbntVv4TZU0ULUWNHoogv/ILFSxVeRX9/0ocWAMnIiPxJsoSzsLx6HTuwmkEjyZkk8GEB8Vp0d5MtyxJZUMUlRhe9gr8nkjxzEyBRwrMRdLit/ygL8rom0njiQr1pucAue/zoI9qp4Y3mOKos49/MF6A5n95wj37n6nZ22j6IChKrj2r0blMwqgrlRPWf6WIDlLhXZuWk6HZr6n6GhvHFN2h3ZULyDznbn886IGqKYep7S5kZxetByaDtrALUlnjNV4RBZz8rm3T4ueFmtjRuBISHxTgh8sVVF1WQlIfT0IznWykLzEBpb6H4GD16xh/mI58t2lAY3RCpgTfot97QN4b7gXaK1YQ5vflpClRDKf+vSMbGcIgJOxOAT7yODzf01wX70QNgln4CLpZLDJuISBj8rY0jaHjXxuoF2RCMyYTNxj8Zqlnxbz4vrx9LzEHafc8QG1K0fp/IgCutUSCpsMjSHlWD4czH8EuhL3sWvsJ5Cd6o6Xpetx2oXrJPhGgCZbtbGBxDRYP/U6NMj68TXtPIy1y+OJtx7S2+TlFGK8GgQXt6Lzn4nwL2IS1O0LpKDV46D++RTeZzTAM8V0uWy/Lhqo7Ae3qyJU+/gPiK3WgN6bj+i60yDXZ6xhjbgs/PD0PR7a44tzgtRxovcZSFkkjq/sxGCEzwRYKnCTz/t3Q4C1KwhIu0NUbTOs/vGILs/bADal1riuSRR+lyTimanVNELelDdPDSWjFfNZVYJR3mo9aWbF0wkNTR59cxa0LKzgPfcWUdjmEewbMhoPPlPFfwcNePuJNLwt8gbEx+fR2QAROH9XiTokxPh1sx86feqC1KZmrmtuhcB4X5BenY0qJn50ogjhScwPuDvxIo69F8DPvj6F6h9jac9YDxz3aw9P6KpgUa0i3Oo1DtKyqyndPA/2p12C44ofsSRFeKjDL0OJzTpa/+os2y1opw49Zbi38ynX6r2C/V7D2PXHE7h7swmUx67DpHu7eYOeICpHioDeIiO4kL0Kvhv40/g2T5BIvAdH5/5H3hnfOcHsBWhn2TPnNlGQhyHcTouB+MgNJOZ9itd4uEGaSym9Uw3l5CuW2K2ixxFKxynoiwZMP1XK1b0LIWhLLm67d5/rFRh2XVgJDat+w5TCeWBhJ8Hju8TgW0olTRvpDaf2iNCYl86w7ukYXHnKnjM9J/LbsP9HkXm4Y/23Yfge2VsqqyLJFiIhUdrk16ahSGW0KERlRaKB0EBUJKWhRYuykqJUKoQolBIVRVG83v/geT7HdV33eR7fkzQQOm/IxXShzKCQf047hJM8WsFaqBHrxVbR6xMAxhnO4Ls/jCo21pD6US34enI5lj1nyFLwR4fvsZS57xs61J3BunhpNh78wPaZ+9h6kTbYbvajG5KKMCbuNXDtPTao0KGxo1rp5++1qFi9HhM7f5DpVUuYdksZXn52BhKzpFslzaA8+cMQ/38BubAhVnC5iSNcBvFXnR5Y2EdS4Y7V4PEnbMizpuI6qzj+eMmE43vicff4ZXCpu4Qjto0FuTEuIGsnhy+bHGCt32Y0qW4E/VW9jI8zyCR/BM8qcmQZMWNwKdIlcIjltuX7Kat3Hw+UHYHRA8n0cO4O9Bk7hzb3vwf1TQx/L7RQrrQlW626xJ2uphw9zATKdcpIrKSDt3x6j2NfxeHRX2IgsiaRW4/0gOH6Enj/rAXvRJ/kjgwvqGqOwjbpQzDNYx70ZOnCB+8Z3GXRhI+rvEl3dRX3jh2Gnibr8VmOMc6wt4egLBfWcB4LN6dPh7x/FbBn82GS+BsLt5LD8N2vjVS+4Bp2/HZks58PadYFZdhfEo9XYCVX/FfJu1J76ImYHGX56lFfzyNOaF/CBZ8fgmWkABwUl8WMWgFc1beayms88YV1N5f2F+CCUao4/8pTWpm6hVcoSULGj118Ym4fnvxvLXzq+8H1h1zB4ZUpJ+aZUMznQ/TsbhYazDCDDt3FIDV/MqUN+BHOZCp87oh2DstwkfFjqJDwx/O/BtHc3AJUtg3Dyd838SaHdhaQ0iILbub+R3uw3q8JbLYC3/1exstfW8KS/GyIvzOaL73ciLXfz5L+nDD4tOYYTz5rwZbJw/DICjMMKxaEG7r6aHBCFvf9XIRBij5sKXcU9r+8A9sMM0lvyVv47HWU1mnpgZ2LFY49VkBaMydytJo8tl6cz8eVKiljjwFtM3gJhin7uDxFDpqCVsDBEwsp1PgJRbacBmPTPpDY/4fV5I+DxY6L+KNZhVbkD4dkxZeYfPQ82XusZNPnv0jwlxsHH/Hn+rclNL3SCx9f1qdWQYCfe5yhtKMbCnX2wqUSH9yz4Bg8Cu1ENasG2LBhO55qDuHlf4ZD6sUoEnp3m2O1j/DyZyv426k0Tm49DpsHzVm1VobX3bjCP9UNoVu3Bg8df8hvcp7Di99rQD/9H5+JmQCnJr6AppmhGDQ7nrzWGcFjiXXsZeEJ7+aE4bCsZXz8iAc90PMh23RzWh/wDXXOOPKaDxLQfl4Ab65WYAUHX3rdNwMa957GwHJg7RwRnLT1GsqWjsOTMQRjgufDjbHRtP76aNzVvBD+RG+EURU7wf5VNvgYzme5DzvxtM9IuPXiPt2dXc9jpS7wBGcbCrV/xhIn2oFn3cWnTRU0fzCHQ7SkYdnZi2iufgZ1Zm2giWJ6YFL4GdrOCrDlmT/4tECcL/BUfC0vB1/vxVNJ6xsQnCHNtzY+oyqXNtroIcXNHUbo+ziEV1Tv5zVR5rBdyJ3EszLx0Tlb7n0zFY9vHsSnAWYcE7IJkoIkePicAj4yQRCm/m7Dp65TMGjaBhYPMaXZ9wA1V+/Hkv7bjCH6mFpTDt+fqsD8XUcp4Xs907inlGPVwTY6E/naPj1a63qHXvaI8C0zFU50N4NTaUtwDArDDlslPii8g+edTuRx/j3w2WkOFm2fgLNMJoO2iAwsyF/GodE3AS8vQFutn1RrNZ5m/hEitXel4HHaCxXd/5JLBYNMeCNM3x8AL+Ij0Ou8ITgqOENP8UGyea7P9oHjUWanMb8brQ5fRZXxmGseXemuwsmv+lkvIwkm1PeyxcAw0p3xkj/sAVquYA51i5ZycOhvUh5VQ3N6gtBglzUo9l8jvXte7GR+jq4unY55ARrgeX8G7xbSxp7an7xIZwWsubkNj1R3ctvsZI6VSMPGaXIwYKQJS4Y6JOi0EUuS5UBu4l1Y9uwluwg8gHe5D3l74AVY3vULm8LGwiH1a7BYvpIDCkZTei7hKr1gvLtyEp51XgGUnUwLiqdgSdVEOP8qi2X2jMLMwP9on94ylt3zGLIjnpED7QevRdfgmvdHOuY2GbICzFHFSpsPTxTFY2prYLX4XZbLns3hvqtA4sddLjUJ5tvPBGH5qcdQmy0OtmMGeA6cZvGXlvyi/ix/zx/ig5oU0v79ge+3CkHHI284FqrGV9/4cAIcQcXb4iTSYM/RcW2QYZfOfTscKeaOKdTUWJGoQBOcf/GQLqpnAL1bgu5ltmCbG8QPtcNggsoafiM9Burv/mUByaEs3FeBM+P6wOVdP+4uTac7NiPYEXLwwVfG/SkTIUnZk3v/LcR7CzP4jLoGPN7ijBqne0H+rDjOle7j3QfOkwXKw7WRhXx199Ae74qlDbduo/6eSg4L9QG1ZS+prm0pm5ZdIJU7FgCr9Flx7zvakp2LA34TUTNrN0l9reEZrqZYcT8dzp3YAEme6jC/+BhlVKtxtM0W2pckQuF1hWyUYcIJ1fIsmBnP4XcMaPCrDMSU15LTeCHQ3z0K4lvMSGHVDAoKbICL7VchYsEj1rTWgL5jamAqIoRLPnpga/Awflg0gp5dEMfpt27R/Vc99G7nWjh6SQNih+7W8l2XyPr3Q8pxe0I7Hk8lwz5LDJ52j/ctmk1vPydT6oQ2fjVbGTTzPTBrZSrcCrGHceGBIH9oHX1JX8O7a9bjI6te/P4d6JmrEfypHCCLCZng7ZGMkruk0ft0GgSUnsezB2RZ6kohuSccxcO39aB7ZxX4dUjxvGhH/pR4D2yDr/FLNzs08XuCKa+7qGj1MvrWPxImxYji08Fe3n2E6FLwbapsu0c37tyjdc7pbKtnhTfGv+W+eHHY15BKqZlz2fx3ANdVBtHKN5Np+Jt+ND1hSTHHv1KY/Vrc4KQHJ3RbOPavL+Ye9aELFqcoypNJc50pjNgiCf5zTCFN3oaFOmXgtI8YrZQup3nBW0ks+yNobnmCSx2WktDufRg0TpmLpVfQ+P7JMHXvVaqJdAePuKWU8uwLprT+xymeJSAjk0E9btogeWoyXyidAGuzED0utYHvondcZuDPRh/OgWLibfBrHYerK8J4ZLk9mFQoQXnAbrhVLwMGRd64THUj+NtMpPbZtnT3cQ1cJk/wDQym8hdmoPWfFgvHCqHo4zh0iAmD9XH3IP1rOtTP+sLpbTEc/mkzhSmrgaqIPNg+Og/7x17BFWNewpIDV6Dvy222uf4Ejovq0t2iNfjsmQLE2ffzHGtBsBhikH1uX7F/zz10F/+FkcLdKNjpBNV739DiIU7cE7GTfjr+pbTp7mRi5M8iV4ahcY8Ee1qOgkKfXbR6ZTa/yjCCzsvdSLl/scjEC97/2AYr5quj4ukC0O3uAu+Mhdx28CLO/6sJo4N+0c8bdXA5+hFkCV6h3x5vePTNQtiw5Bn6hCXBh4ZlUNChBEdEurCoqWTot4wEDXs7toyVxWnGWjBu9ztcrfSPFZWVOPS6MrQZK0NZfjapFKjxoFAfffNsxKtys3h2vBpqDkbg6Ao99l42ESq7cphzBci9MgYFHyJlFHbRkgO6eLDIE3yqIiFpuzUukNOHFCFF/iH1BDvP3AK3KSvx4NtHcNEplYPbHGDA/wuNKv4NxT8JRC/nkEL6dE5LM6DrB5GOSSfThdJDkJQzlYL2jaLDva/hQYguJH1jnlumDoEtE2mx7QO+kCkK2T97qPpkPgyMCQeBvMm4VcoMojol4YVgPCp7yODantMwc1Qc3vu6mkLPvkL7Y+EgXXIBr56ThbrTC7lqzllq8RSkXX8WMe5ZzEYTvuHP76fpp6cgjrEMI/WXCJFXlUnsWDmu/WTJgpOd6dBtLS4+VceewZFoHbACZwonUN9mQ3g48IaMH7eygoo1PjQZAB3peaC8diNJwiH6mrkFfLeU0JSbBvBx73yam7SG1lYtQ4PuKaS+4TCW+Pwki/X+YBd4gh8656JcJkNfUCZezqrmXO8YnLtGiNyfpkPuy3oYf+w4hsRYwCzWJetCZchanQNSCiFsq6jDIgY76ancRrwZHsKv91binK5EMtNRIcxUh0Ors+Ba5EXWje6l7guzMaflPI29t563ib6BM3q76bGBJ0y/pwqC1Ql0aHUh+1k8QYFxpXh5aSb1PjyODtYn2ffjRL5YMBZ2/DEB90QN+LzICVSyfpDhAS+wWtLOhUqp2PviCKYM8YDt8lE8885wiMgUg7GZV8hnrguViT3AuHVVkLZ4Ex2+rEMfDiyiAw8OwIrhxpDdGAmOk41Iy/IzG5Ql0PiKtdS4p4fWjtOlqHPnOFT9EZ+cawUHG6VAPjkWG/aG4lm/DJTR9QZ+/4jGCf7l2t19fPZtNjnUTwEhqRDcZncLc1+85g/mtTjz4yFYV5JAP003ccL3Jppa2YD6UsIQsusxnqx5zEaFCexK16C//g8sjzfDqx55rHXjPN5IHMvSZsaQdG4Tp5vl06B1PNoFu3KBqTF9n58Pq2dL0yjfDxCuH0b+BcIw73ASfZI2JR5zAbZKaNOwVmvIjJEj0VVeJFu8kxbbOfPkAhEwtzPhFzoJ1LwMqXRCGb51vk3mxpvwRvdzPnb0CZl8WMfnvHRB4PR0uO0wF53eqqOfEZODji0nK6yD2FHjSdrpGU7V/0mTE0Vh1pUZ8EinDY2KZ5KNfz/png7Ae5Nj+fK1Tup4N5fvaknC04VSMMW9hoJuboE/7XUYoBLPbmIF2C9RCvm6bmguXMlJq2tJ2t8MYs6/5f+urQHD3d04skcbdHNawb/RiZt2POOeuPO41yeM9IzHwzurA5gYuBQMyr0oebIMLKkEmLfuKZwbcjD/rFKWeXCWzcw04HW4LA5G3WZbT3WOeBuM4SG5bGI+n8SrxMi/qAFS8jTomuNoMPhUDPcCl2Hvu3h4OmIyCu0QgWDHNyS/JIpgeAhnDJ/NemVGoKRyFw1ke3m8kMsQ828ju/XfsHn0UtrX5MiCz2YjHsgipwIZWBrVDuan8vG1YwEJPwumZLvhdEZyMfk7NULObEf2CdBGK8UJcHpSOjftToS6Uksatvk0Wg3djCDFS+DwrZM/OUUN7X8au62ZApclgiDinwR9940h/u8Kvh2uwNP/2cAwKgff3dUUrjie7vTpwuE+DbwQ3YB7iw9D6e8izuoawKtTO+CdVhknflvMZy9+oGM7VaBxqTcrVMXRrqLNoBY3yLdKRElpMB/WJWwh3cpwPrO0F//8VgbdhcPpweXj2Gh1gG59TaLUweEc/92XH26rIVGfUl7oZgBBP8fD2lHGKFXRjx5XGtln71n01H1CgU8aUbMW8E57MK+9Ys4ZUw3hfGUsxnw4RoemMP1Y/gj3iN8jieJDvOenGkvLzsLzjboQFCcL2hc04LCCPjYOboQ57Uwz8rRQPSuZ8jSieaZNC4rnCMH6EhmIFt8PzgV3uPeILOWIBpBUnShKPa2gYW5tCCvlcbdsASUGi8FP+WLSMo8kP9+rtOi/NJRLVQbc94lHJ6vSlxsxMHK9LSs/mwQPJZfyj+LFFO49jwprptDHgu087mEw/mt3gfDO1cxBeljfJgCxSf/4yKjreLMjgJ/SOzK5H8DB98qgYfpsqlo3jNLe6dDnUkv4HGYOUpVzQeL5fWyyNqHiOGlWfPGLLxxKA/VjTZz4Yhb8qjAD6bMTKL56AKLkD2Dc6pND3nMGe8dP5eD7b3DrwQQObInENZ/FQe1nGYt7anPWqwa899YfUredgouxPhS4cBdGesyi6vxX6Cg0GTzU03Fy70KU1lmMwSpxOOXXODSbPZyX9pSDZdt2iKtJg+z9ivCyYTzWeq2CPdOnQvjntbx342fIyq6FA5aBQ9z8nrz6BLGxTRsMdR7Q4l8rQfZmK/bUrcZ9t+7gqxgrXFBxievsbfmsUS0UVUjAvryRZOxlTV1FZSSnGUZNCUXgniNGfvI5qKa2nw2dA9i8xAzKxQYhY8ReblUeSVe+XaRR6btJ+NA8LDZXx9vG+XQEdVgySRJKkz3oieFlfvRdgGwN61l5xwdybKjHiTPlKGX/ObKX0uWn6+The4g2SV/YRPujn8DjmEkYcsydujW1ITroEp1vP0uW04dT5icjEEmRA7FJR8hTbxBePV6LoTNmwKVWHd5sWA5uZrW0ftld8EuVg9pvfjhpRAt8fGZBXtNc2SZtPi6JXk63RGW5OeoF7+//hGcTVcB+ewL7LCiD65LRXBt4GMyGmENfaDqXvtNlzy0VoCVUhB+PisPwcZvg3bEG+P1RBW6JmfGji36EnmPwXtsoXn7IhDTk16HJFQvIOuXM+xwf8PqjdaS84w4KLzxCv+VmwSmTYfB2uTlsePaO5902hj11z7hq9nYuHj4L30va86mwBTQx7AVg4WFScJoN9lnZXPTdEs4GvaOBK7d5zQFNnHJ/LRaEj6TZb7fir7lL6PjNYJwgIk8ZM6Wh+W4Qd1/Q4cWf7eib/DhUsN/Nc4KKYeITItH+e7xWuJ9rBI3BO68SYyOOYsJnMT5m4gTvE9pAQe0pRokOgEWnHiSME+bnayZDrZch6FT9Qd+yDt7RVIQWr4O5pXM/2mWdw01zzPFWwXEotFCBQxrd/C4+Ea+ISA254lTM3LodL+rvxDDBqqFNCKJJJvIk8UMBlB89oLaxo9HD6TxNLk5gx1F66Bj3nfSX7IXXVfKwXywW17VMAGHYja6Dq1HwaxvJ682h59cbKeLbNVilg5Q+p4g9HGfwmSuKMKfkG8zaYT7kkeEwYDcDBdqqIPCqEGT+SwHNcR9BfcklOLlTGyTMavBaRiRHxN+AvhWDOOXCQRwb4c6dFVnoe2wTf7RdSMd1JsHTmSthwXFXHpPUgH1hatDY9pefHNVkO91AHtM+nAeDjZitRCGo8za/bj0OrVvPsttGRSiwFGOTtGb6m36MIyYokpOUMcbkCcCBuS3YoFqN7bMW0K9H2bxJfBw/9l1DIJQD6QIWKCbjyvkeliC8pg0LM2bhiJFuENIXwuNLuujNxmYwlGnEEx+2ovmwVl6wUAni3rSz1HxRvl/oBb7Lf+CSmJ80T0ILJllIsvKHBaTZ+gm9g1Ug9EESb9ZezI42GjzXKQ1udP5i64cxdDElnZq+9fDYEZsoS1EH7O54AJ7pAN/zK8lPKYakJCw4zqkJtOVc8YXNezBfdZQqQsXANVOO/cKDIVd4Fj/TDmT9DVpckX2Wmo6Px+1laeQ2uQi9y41hIO80fplfxqYNoex93R23yB1FkTcF6DXSBX94HUXXqia44WUAlmtMMSynGf4oCoKIcSvYDusgq4P7YZRyLZrla0PDaEdKiRaBBVG5IN9jCg3J/Sh93oOmrZoLxoUBpJouCmpLl2DTpWisf2QCpWYTUdroLr5aexbqSixIfoY2O/QbonH/Vky3LKdTz/fSmrcKILz5JcT0z4MHKkch9P4nFjDyArP5C3DMqUhcvWoZu3Xso+SGETAj25ZkVU3QRe0WfXpfgbxUDp+2r4eti3woqcOA/ZL/8PjX4hDiqMk6ed3oVxYOiQ1xoFn7kzdcj4F8mwoKz9gHeX2r+GaLJfRJ/GSpJYhjzyZhr/RxUlc3A7/4g6gh/JPfC1hCi2E0r7quDakus8DslCoH9URyV/AtktnbyyFDHTlV2cqWD+rJssoe3z6fCqt2zMGbJ87BgxJLOvF9I5il3ULp7LesPEySDz42h1PnFOHBEytIN1aDG1a5vG2TPzenTYUFK6JhyQg9cnbSwOp64pftQ7m+Jg3/1Qhi04apYFMiTttfZnPHxWL+obGFzm85R8v8G8nBMxfmlwgPbdd1WPv9GBp8WQyH69/iorzF4BEsjmGrlfldrD0PKhfwRUtj6MHV+OJoMl4LsuaHLR10YvEDlF/7CzdFDvD0wt0oKqME2npaIG/wnEMnZcDJwUR8pRlEESeHYdPNBXxT4S+/WRoCSXu7odfLHOa7e0Phufd4y6YX71f18WrDYMxdnI3DNO3o99j3lO+uTBNVjWG6VxjsVOoguwPuZKOH4DJ1AstseYyB5yZATEU12Ob7UGWjAvRt+oAXo2dQx0UdGH94DqquOsC3jT6wfVQTq69pRLk3xNGlavD+4yiqnhCK8WuZE/RLEVRiSDnZmxQOv+fjDZ6sevcNdVjKQcTcjVh1dBf1f53J2yvP8N55LhBd5In3FsVyUsZpcFk6hTU0RsIh3SKQ4gW8tecSes7YjWXf99F/8n/Ief17nLVwHYsIumPIm2lwrWs15P8M52OjLcl9uxrvcnCgWqu7tLsvD2dGWePXIgl46j8NRKscKX/9dfC3z2Kh35dx/J6jJG72FuPauzEtxx87zVxBywtB3/A7P1J7SGnN9zkh0p8rTK9xj8hwDpPZQOUv3nC0wix6Ym8Elm5h7D9dhhaaZ1J1VAibhnfhshE7aUr2bz74nyfnv6lmTZFRcFr6FHrVn4ZRzV8pU2o9R74cTtY3VGneRTV8pL4e6NUtGrZGAK7NtWT5ZbFodWE/dIdfRRP/YLLIVmIRoesYfbMF3CYZUNB2GVA8kMPPhghMzsmWZ6wbgKMfpvFczwfspnqJFvxRxoI5p/FHkQqEjFwDk+q9WGS/ARhsGMuD98M57ONGTNqhxBFxErypdi5NfawKW8JS0TV8NZ4JfgL/TieDjGETh8kGQtj+SMDR8kN1zsBVMAp2Cjdzb3kI6rtsZnX7BzDWYZDim8t5kZYRxvQoMky3hlwNhG3eJ+F18GQUH6VL03OTUdBgOwRozuDXKUmgsrwQPM5lUXH2MDisKEsDN2ZQXGDP0H8cMeTmvbTFXJE2ScnTyfKXnPiykca+04FuezGIPHYNWxft4+0FAfAl3pPbzj1jryeW+OSPD71YlkUyx9VBoLmdzHZe4kAdbd61spmjoiyxSX49nTN/SVvGMh0ps+DTz3Xgi7QS1x7ThJ69RqS4IxUP/DwKrZ7dFLjiM8kH3QD3xe40L1EVul7vhtruK3T0RwtPSKuGArVtVG/qh6ILd8Hc9f/Br31JuN9QHDY9bSKrz00ss/MpHctu59o3AXjd/AJrFW2gMQv0oD93Osh0iUPTq2H4Y14xBM7soKP3BUmzltGuy4Y+u88koxXdNG10DnyvQqiI3U5loQfBbt1pGLlsN6UYCMHJDIYp81TworoE688fZKfpOnB4z3o+NzKGN61aQIYiLuB+250n2XfC33dukFXC9OaiI6UJIJx+U86+v+NI+uZ0CG3dTqHRJnjY9BdMnelGy872g6LBSMj6KgzJUmL4+HMTtt03x4e/LtL0tiN0PkUKla3+suKtWLI92UaSD+VAPKKU0o3f8oSTmvSuJ59fXyc8Vz4L9VX72StGlZ6aVlPsKQuINfxHak4fcevPPNDctBjm9YahjXURLBZZyRl8lKWtbPhU8Xi4XP+Q4rZuolWBYRQy8Qq8tJgOK5ctoqW7Ksi0VxJuRunR5x2GkP+6ku90/uHlc7fDO5YgE907FHR3GurmzaHqXWfoSoABbAYZyNDX4qdZypy5VRLXXrfDtnR1/jndnwsebmP7432ofXIDdt2WArMn2dRxPAU1/kThmIgnrGh/C0Nb3uPuiHK6s+E8Hu2YizFqgrCFxHhfdQTfH3+Hk61d2dxtNi9QKIXvUtcw0DMIahyl6XmpJLitz8c5t5bTKz11UryUjd/uV+DN9tUw2f8Qy9e10NdLsvjAwQj8vZTQYowJFLEbTNqaBWPDstixIp5vz1WG/qI6PvzjCQoXSsOZjz088rEWF+74RM5WiMcapvG2zRvAPBlRszQXHs7eCV2HJkLqAluuVi2mt4oB8MNgMUY8/AyqRyLpw/Nsatn9ifvDFXDmTE3QTrWBWRcWwwybxWietgUXLvgHR08W49aSTNJpqcObaSNATkse1N0DwMB2Ho58CrjcDEDUdA+4StiyW9AGzJkhQ2J3TuDl7SPhku8QM6q5ctchIZpy8BzNeXeNL0e8xtNfkrn1VTWrq6rjqAJDKLwtz2dH6HNl+Dn0+6SDlxatJCreSfFbRvEO01OUIxyBI9JHQ4nuGVztXQ2plY543VATar6645gWfRglYA5jiivI33gjaVQKwumtK1gfXsKxk8tRY9UznmX9jJJkuvlMzDJKO5sMi7NHoKyAKDQrV4KxmTjOujfkK8qJZPjvHMxN/Y9dpe/Q36wYkP+1ltQCR4G61TH+NOkaPvSay58Sm3D2nzH4qGU7X7oaxjJ6F3CM5R4OGxwG8oeKcbHNEkjzfQTDZ6dS1dXtcCrAl5bJpUL0u3Wkp/USbB1N4VvvCAq17Yboq72wZ5os7n6+DOJKfTBg+HLwjNsEXWIq1K9uAD1lCuj84TBtPCs5xJnhcN91KaVP/Q607SCrdoaCUW0XDb6eABIHj5LcoTzO+GpNRvtSWGphGeRdiqcN4a74pc4aux47sE6PABzJaQF51VyaUSsM96vCODFjDSolBGNB1Cd4sVaCNWqnDvVdEYp2vcYvf35z5NfDuH3eNm5W+chboxLofsNwzrrQTHp9TvBLBuGAYjmvuWSL5TlFfOlNIz3RGEe+UMmnrihTYO5yvPrJn5cPnwrxj2vRWHQlLB02ihv31nLChxccfGE91/c+4Rk/69C9eCLa7BCBnafe8tGGFvgrOo5f6r4H6yv6NOjwl/4TDGb3HepUmz0DjIqkQffeAlaiJsrfN42/qCSzVdJ7OvvCGipPF2PwuC04dlU6/a0fDzvlLvF0TGTZSBf0WqpF4S5KkDkhBdRf7GIf62dcBlJw0tMAXMJf08GZg3jufRCnTuzGys5duNriP5Z8HAemJTZ8/vYDFhYYBguK/oBX0Bcsbo2k2Rufsu3rmbAlUYw2/R4OuV0TQClrMeY2q8CG33JcOkmE4r2VSVBlHd6SfYMxypPYiWQhWecSNy1bh57nERT+fOSdu63Y2lYUTCbMpIJUF74U3E5uW/7DFPEqnHpYmB9fk4G8rjlQIlkED0X7MaY/mQuWd+Oila70pzmdstWN6LKFBy3JEYO0T2dQ32sAXMI2cs+dNcBn6ihdywnXCgmymlgIeR04Tp4Zw6HmhiqWhn+DqyM12StsCga1W3BKgi08NiukhgcvyOT5Op4wRg9yv+5B++M3sb3KGndYiKKb7GQ+LD+PdRp3ke0cBdrRL8GKY4zAbcZ+NnU6D7P0i6kw0RCeZE3kwUxJPKJTwznOxpQzYioEZ1vCcfdvNG+rCv11K8P/UmQxSlKbNEIfoqTOW2wLr4B3yh0caSIO5ypqYdA/Eh2v5YFq1EKUrPsGM7x+gWzySZ605ThYOJzCsS8nwavhw+hD3H7IC9GjUhVDDqxsgktd9WQVFUKV8j2Mr3TBV1UQfou8IIun1nzpTzPMUviIgxlFVGrRxHtlAiHw52Ms1t8KJgfV4MsdVUrKcsUDG67QmtC/nBknDRPkOyhV4Tm90RQikdTvJJaDcMN+AmyTNoQ1VQ+ofqoIzRbpgpkBuVyy8jG1wWROueuAGC0Nzm/38SojD3xuWA8yetMwaOIUjPmZDuMPjqWINSIo+mopPTg/Bu55LOR7rt/5uIoEjE/yYLnMF2Tp+5lznbfzlyYBdvgvCUdeGQflutdZuW85fRrdSnVvbPl24QBWnl4J4fEzsV/fFoUejIX9K03gKujQNqddsGRuNGr80MLD+be4otEM59735q1t9vBuSiVe9JSENxbuoK8cheuXpPDOml7epGkBjRXmELq1mssuStGuvjMQNkwFotx6SejbLFg7r4RTfH+jUOcEeCYgA2erjfjP8K+YK74K19RYgm7nM1hUMZojsqIpIy8RHC6P4EozN/qw8zUnNkvToZS9/OC16NA2HufXax9DS+kIPm8xDp3qRGBC4w+caf8N7+NbcJA5SBt1pcHj2G9ScnDCmacmk9+4bzCm+RO/9Vak1Y5i7BPgyCqRCEbGY+CQ1ny+k5rAqyem4vD0d2y+4Bvox/+j86s8OfaKLSccFQKOlgCJxI00o+wF703ZiUm0iA9YRECS1SzK9alnrYFSmt8pRy+y1KEncgKmJacxP1DFiwFB5KpkAMue2UCkcDj40BV+qLGWn33Xhgvz5Hlhzw26vtKNrRcMdX/AFg51G0N/bAwWj2zDJLcNGP7YCFwMSqFDq4pjRxijeI8hjbRaQHXe++ltnAwcfryb8x3n8NdFerA05AonP/DFA5a3YfqKlbDxSw9tS/HkqwNvIKc+h9KMu8Hmninc677Jsz8PQLLMVvi724JfepjSxr+MBjqpeEvQH3+/V6IKkgbh0iwwc/KFJrdFFCx9GYu/vKB/edH4aWArrNcwort1E/BXgAJk+d+jIMkdFCxoj/NrlGmw7z03uv6EXL1RcGq0EHxrRdr5aTSILsugCNUe/mQQh6naLTTqfRI1tMyhjd6n+Gu5FydeEuSSUQjbxeN40/s/pO22EL5eFOY1O7bCxKsH4UXvP968/yEoFVxF85E6sGK+DInu0+ad2/Tg06wzsK9lBPPvExyoDTA95yS47jclE7txMG73eVw/GE3TrjvQvdWO1JidgAJ1fnQuXJ5ePTjPtVLvIOvINHDS+MnKPyMwsukftzeLgNKFATrRlslrV0VStcZV2vvoPN45ZgZiJYHYfyIIrcQV+IWLDvXxUBq6Nbl8jD39CHlA9zRPsgIy8NY46s7z4WsGH/Hf22PUUDKPnL4l8tfrzbhmUipaz11LKY9kQOKzCzkXD1Ku9WWu2FmLrRWtuPfZZDKuaYB/Fy5A04lNnP8cYdy/Y2hrs5qC2AyScAOkXs+E5phjkP7rF03uN6VT0mWYsk0QCo6shxtRchy+uAJDap7CqyNjOMrrJpu47ySxj9W8ROM+5SsJQKLINVo++jjeNC6CUTq65Bk4ir2TNMCvcCJ+/vEQdriZ0+PDOlClpALazhI8y3YZP/F7yteql/Lt+e2YO9ELVstXkDmvQLtyZdi5sRbiHlnRutWX0fFoMY2SmIIvTt2nrspyKP07B7fVXga/FXqgMXEqqK0KRRuJTjK0WctvkzJopAlh+V9v7nRZAKfLF8P2B8Mh48gn/PDhGImJCdDv0XH0X+4IWjb8ElwqzAfJgAVwwKkYpllNAZ2pA3jtdBLvzNFG5ehPtK/DjkJFR5DxrTi+8aKDXBK68N43DQjt00Fx+xI2LVeFxv6LrHEmhw22vec/Vetw3PcRqNHSD6GlmvAquhgrI4Jp98S/lPhKg870uWHh9S04S7IfFWsQbk2Q4dAeURDb/p4vSW1Ck4Bx1NFeje0HksHzP1G6MO0cd098wBEvzlDOPimYM+QZp+f4UVvoPQwZ/wOuf0/FNr/fvMHfE+cckCfhsr34JnoayKQ6YmZ7Ov5a38lFiVMxafkWtrX6wd6u4WAjNx6uxxfAzfNisC7OmqdeBZ5Ul81eqyvYbNJ1VJHbgok3Y0n51HYUGQyBxLnC8OqLORT2LCEZ9zw4/OM3PoqdhbqHb1FsowZfMNBDRcXN+PToFHgpsBCjulQYnm5irePT6UTMfnx7wYjttjVz3atq6tr4DGDxMMhcNAo0TknyzEkr+KPQNF560I8e758ON25boNiFYJj44CkM09GFi1ej4HLTafRx3gcx9in4/29p0yZs41XT0qDeso68D6Vi6QlpcHiyBFdkReH3pwK0uv0dHTV7Bb7fsrl6wXos3afABbI3ufMvwwivJ7ApYzb2Z1nQdaphbI/HOvsfcNJgLjYKDyONiFJYVKgHd+W/wDO9Y7jxlS2OeVkHv20bcaOKD3l8NOW/seWQlPoapmRqw71hx/HsmmtQPn8Bl3WdpQNxOahaKMQyHjb8plYJ7osdR9WblmDeeQzO3c2mjf9aQUY8iWKiXKjTKoefZwtT4ABy+KAR3HUyh+5XjZBzW5TklLfBifWJuNJwH2w3Po3TKkag8rOTIHljEqcYi4Loz0QK67nBs4dNJyuLo2y3KJtLI2UopfsyLK9ZTHJnL5OK0hRY9zgKi56do5shW1i4XAIvdmxjVTU5iNtAcCytlcJzM+HuJ214t1iIfatM8J11GkaNEeboN39gW/oY9k3zhuzK7ZSnaQCC3xB+qVdzYUgOVYuPwk369+HCOCOyzl/F18oa8KdjHPc87ESdkNFgJWkCm9cfwu23ftAFGXeeb/kZ2/PL+YCAEy7yrAODMzEQMVYd2jREaEl2Dfj894ErK2TYMfcsKcxy5Yzos7z3lDM3O9firFMycNksnk0TXtC0gXI8l7QVUzuFePXvKTxs4D9KWerAP6VLeO8YdbAzfw1XXBqpOkEB1xz4BIJvf5CW5maSqDflz3rV8OHZUtjeYwyKct/57aKVMCluL4gGjIZfkcALEqTY3bUQ1t4+C63Bd3msKcPdGdUsqaaJamP/4aRMFzra0Ig7JPVJ+Hkt7jJvp6M1irjDUQSm6jfjFIUBTuzajn4tnawVZYCnX3bwhchMyJcyhrLsY2A2ayqYq8dTSW4rdyp8YddV2qhVsohTDxIEnBElFZdBCu9/Aik1ujDR3h8lvo/BgBHf4JNWEI5JfMn1v65ipclHEvF4QAJ+kSQprgauvI8tKhRgkqgI6s234Q//vccpludR/dp+qtv8Ezf4b2XpicNBZF0q9TuF49WXf6ChQoP3fA2BEse3OH6lJH0FC7zbPRJ3malD2eMasPQrgdqcerzWo458KJJFzTdTccZ7CmvYg1qR91j1lSHoHk2DzTYzwWjcQRq9ZgkJnygF+bq78J+NOB3UfUYRv2LxE0+Ei8u9uDSjBhsnHKC3AbPo2KgqjvAvxPSxU2H2eEtsN/6KIwR0oHydB/8uFeBt7WU05pAzPviyCfSdV1O0nhE7nvrLMQX72c5HBBwKT/FjpcV0MKoOL6/oo93bC/CfoxR32YxHqYIKnD63l31hPFQ6EU1dNxXcHfXZIWQHzOvwwdnzpWDA4Ta9FFjMJ+kwRGkaQ0qiLFWXfsXKMbvx79svqLDvKIn0HET97x/5V98RmB42G9fNIvjk+Z4avIZBp8c8LEzr5RcnrnPJ2ADaMMELMkLDaX15N5qNGQZbXtnw/Dn+MNsvAaJvv0KHpvV0WcGXRo66zGo/knHz96PwRU8Nimte0qmd/fQrYTsOdHui8AttyPPrZfgVRYvMfPhNpTfPGLSAvPhIPOimhxUxk7jp7w041h3Kyx8vwMING0nuxULS3n+TP7logahOGMTfXcGP5tTwm/JZoHJ5BLTbWfLb6/tIdUU4JGkXQuA5Uzhx5TY0yzHe7/2EARc+QIbgHHq38TR96toFqfcKcEB1NGz+DaCb4A+/AjvJR8eUxp2/BpEUyDsX9kNejy6chV3009qVpmzXhNlSJ2meywoKltyNpxaa4Ee/ROrJquJJrusw3qwXX0WJkMFwPbCRqsTuvRdhReQA7zmwjj/1VPHy9wqQL+dNe3p+gu2ub3DloBlUzv5GU9aNxTt7AJVPBePbExL4+GYCS5/IoeiPI9hB0hZeB+iD7XNnnlF5l9MNL8OOhBNoJ0k07sMB4BlxdK5pB0XsbccX/gSHxLuxdlEU+o3z5kC9fnha/JQGA1rAZQ6TXt1oXlN6mhpmDjGebQRvuG/Ci46/p9bhL9lh4V/22feGkt+d4KWe86lY+BFuXKAFYccSWXTwEUSvdeZh023xP2rgwQV7YOSRahJ4GcK6A6vx8301SA5yZslSZ1ilbIEPNjuxVZwgV/odADvPDhj73AINzjzBnYbjYPjjEViUKoylhko8M/bTEMM00Z3+s7hWexPOyMrltohMuJlrBteHOQzdxTG0dzAKvtoJwnWR9/inSw16TubQhIxwPL3+KuqqaoHUxzr6pDcXLbNaqUFzK2vLu9H7hwPsq6NKFU88ebTGIhitqgp/dzaQtF0XSX/4iA8HZtNT2IMu3+u4troT/n1xBQGBXbihXgRyzvpxTOdFVLseASdlisjpyTeoO3Qc0pVu04iqdVyzpptmRUyGkFuT2LrACVqHm8IyJxfSa7mKpVejeaptI/UZV/DJB4o85/VYiGm5D7E7bpK7jz0Gb5zHrS7WOP3Ua4wJO08e8a7cHx5H40LEofW8Ay4qyoGQJGM+83o8bMpxQ9XSIKIpN/BxpzdkRmaj6jkT6E/3wXUvsineYjPm6o5gEeP5lOdkDTeGlZLrmb/w8c5R0rKShMRhv8F9+QAcHb2Vl6SIUGVNLN513o/27Upody8bzR+2IpM+dC1OpTzhh2QvFU/3uuNQVXADSkv7sbllM158489jGurwqpoJpD0v4YyLGthm5sUxq/eQq0wdTWg/xjKx42D8HQu8JB+Etz8rwC1+isNsbrFVUBmFVu5AFfkwHD9vM1k5OtDWvyHcrnkD/1wRh1fj/mLXBmtYS7foRssNWnEwD0z79uDy4mK2yrsPA3u30O9UdRAeE0nWy23xz5LbfNf0PgfPHYApydU8Z/ZiyA9OppDb7iDjOx5cLj6jOpk7+Lc3A0xEX9OUkDlomXOSPNT3wkk7WUpTTYLm4yNBIikI8zd/570CLVCp0zPEq3Kw504/bpHVwzMfJWmMkjEPWgLEab3F57HToSxxKhzY8xJSd8ykL9l+NNbICWv/ZsDMhgSwHCcP1wX66dvpsXRN/Bk++F5HtenxnN5cj3eqm0hm5x+scDpMrwcEQP9tB1Q0B3BOnjGtsRdmUfFqXHVOhg33OeP+IkMM967BT3esYN3TufBLYSfd+zoCy9WO4yGtKvwnl8AXD7jg/YUbEX9K0S0hfdgoq0cc9JxHdCXAK9WtuPa3NItYG9ETKzlU79kADfLl4H0W4dIxR1S/MoCyby9jw9twMJy/hpf5SsIrJV0efycYPD7rwcwcUVC/NA5nTrkL2RoSoBkgC71THEiGd8GwQy004H2X1XcQ/daWh1vV5yi9/Dc7XXZn00p/vF4vBpukC+Hvks3s6mcCoWt38ff5srDEDPFmyAY2b6/iuc4L+f4DFxj/eh5Pm2POLYXbuXSSP29WHgFBVju4sHYh6ey3I027v3BdegFvvrERr6lU4DozYWy8FQzj7eRhi4sEr9Ivwm+T/OHR9vFsYr6YLzbbc+HhADaVkKa3l7x5vIIl1AnF8gjX13BgySEoUOng0/XlqO/eA/N0X2Doogiq2piO37rEIXuDPfRNc6P945kWfAgB4XM5MNv2FCyePRqUFKro06YWWOtuDMF5abBF+wpGXs7jgJHn0MP/LNm717LK6UZ6WFcITd8Pk91WhoPWYlj2Jgm/DDHV7zVNLB2bxu90BLHO1gEbpd7iwXvvOLNXDmY/Pgr1KyeS15I/6NyZwfK8gW1KDnC9eSY98Y2EXX8DEQelIXyuIgon+EFtSDvKPXelXtcGXNKRB7+2baM0pU+0ous9xXWNgt96aynyvAbN0H3ERgH/4fxZbvTpTycHa7+HJvF8SBaOZZ9v2lC0+id21RdBl9AdePijkxIrBCnHdhvPPz6W9kQ9xIlTXMh0HMPJWYIsyt8xak4lfYiYCjk/akn2309KGyNJKQlRLPljNlX7acGejGQyTrbgji+iKHVIDJ+cewtnbt9gx04nutK+lGUtm8hkvQFUDd9Ip4uUoCj+Nh6YuZAzXUXZlIrhx7F7fM5XGL6WbaENMUN76mMNBb038POXP/y+5iMd8rgEBscPUsQid0xNkwWhF1dQOt8Q5qtu5hwHQ55R4YmTilMhatNdElC6CZqvn1L8eWE+v96Y67ZLwtgpp3Fj/Tq8bLGdH9+uxkltvdCXbIN/4kdCcuYFKuuV5Jd7jUDtjikFTQvHX6FnQUBQAYV+T+TZngfZt84XZ1fMp56GYlq6zBiKRo/Bu996QXuiOD9qdkehZy6wwPkDlfks4QfRB7HXToIdNHThR+xxSlmfwz4zXoLvp4lYsGclbM21B//7IyAh/zvH74+gCReHfPTCDX44xDRdHSo4siWLM65YgpZ5HfWYy6Hz1jPsu7iZzokowNTr0fhq+HD4UfmOkz9e5NES98kj6A3/neDJKzI2UPmvXHx3ncCsexpbvwtDeb0NRB23MXP3CQ4abkpy4MQ64X+hL/Y/EJEZB0aKChD1QJkDhY7g+ge5NPWCN5jUXYDM/J08PtodrbpXwjopKbBVfQJqc9qp1ek77CyaPpQZNRbyXg039WRhENNhqrsRtY1ShX9L2yF6yKvnCU0D+ywPoOvn6c5kG/reco9G73HBp6P2wUIrebA0rsKeJQM4aH4aTRSek0iaPnnLv+b/Tt2DZa9VQaZcl4PyjWHWNweM2mACwVIr+JTDHO4SNqRZHwXBTXMi9J6dDlOMSwjOT4BD6T9wmtBQLnTWQN7IYvh6/hEpN1zEhugidIwJglUm+9F5shK8kvuInnedoWP4ekya4smFRXGw18QMHTy60EBlEWYIFHNKnRKsfIjU4rANRu9tpNZllSz0oZmCdtVg5JRusvOVROkAO/RPkYGJy5ShZ143e0ev4iXG+vQsdj3t3B0OvjdnQ4zEFLgmt40mSSmAv4AXOXRdhssqY9HOfRaJakawb2ExxKxtxV0PU+jAyGUk8WsCfK5eBFEVdzBv7Aa6bZmCzreUqOlABiYs8uXFWbNwtFsV1zwygGU7I9H1Zh5Y6iVSx+5GLH3xG697HMbzty5DZsFetMkcT5L7GRZq99ES63IWGWZA12dfgTN2ORhq04V7BQ7B590vofl+Hx77MwV8D0lwn9g1dPj4Ef3C/UH28WK6dV6TzrpWkZ5kCQ6rLKG2KoAzGjNAdt1vKBWzgY6mP9AaZYrlWo1w/9YZUpqxCaJv7uXQnZIw49wYfO0ih9p7jqB74yhavkUG65fms+MXEYxfORtb70Xi5e8SIB36DZq9DtCPb4vpQ6gIaB3PB/73m7KuiKGXSRkGnyvmhjsyMKb+IfeOGk5tA6NJTaEWnEe40df+UbBlsywta59I3hl7cZvjOPDLG4e1UUls/rwTQ/+uwbq8eDTs2IvL1gtTnt01euQzgb0Cx8C05eps1bkZppd24mrL9+gdmIvXT7hwbehxWL/9Oj8q6Kb/WoaB1Ak7rv6zD3avySEZc0esDylimasfoLevAyKe36EeR2244aQIs9W+gI+QFrw9nEY3dtTAU+Fo7nCIhX/PlGgwWAhjDddwzZPRkPmnBF97ddOpikqa83ECVC0egb5fRSlgnSd5tyrwdKHnfMZcBfqcq3mg8jE5D9+LedvrQNozFYpa9rGbkBq/CtuNkcu/0lgdMeC2OViUn8va+eF04GgmZ0T/pfSEGXxO6CRnJCxBv+ADKGEkCw9E9aFDxg7Ha7yCD6unwtxSY3xkPI+mB6ziv10a+DAuhL+OFYPDHw/TyD1nqGx/ASuVrMF0l/N8TeMr7zI8DM+bUklG8Dktea8Obn2XQFk8AnTXaIDHuwmsvPoCqL3+C+M2l+Mu3QJMSbTkeVlmkKakxD32m3ChTDXUR8jAMilFPjO6Bkt+EpuHlPH4tfkUvlAWjpol0+dLv8jvlSPti/GjYe02kOh3jnQFRvDbTSdRaEwc5W8Qhpm7A9Hu+AmKKU/Cpw2VaCSbg6VLzkLamUAunraEmpNeYvUGMfDvPkvRUqtg5bIv6H1iD3WdWQJtIS0skbGRfrr6wNLms1Q/RwnujdzL13dakmroIfiauZzCB51xQ+JuFF3ejO0i9jwjcCeoXpQDjjVHudJBPGl5g25aFrJX4xkUflKPeS//QMCGyVyLwli0aCS0lQvDug+/WHDCPxi+TwgOplijvc8e2Am9qCF7Excub2WOFAAFa1+IGjiO1nH7UdVzO0w4eoqeDyTzD71lHOt0Hk7GPICdJ9Th6/NmsD3pgAlf1FGkPwtzv79mt9J6vDgzDy8NMXrB4h1o164MQR3r+IzsF3YUquIZGY4Ymh0OEqWHyGGYB1od3ENS+0qw5Yg5KA29udYtK4rTyebDku8pIN2DFzuM5AVCgtjt7UEKlvtofp8qKA4zRfmhN9ZvWcgZW61psZMmL80PIitlGXwvIsBTys9zSoAY/LmXhab2gZgr9ANnS4Zj6bMZsGSxM6ht+o3zMi6RopYXrNhhBXX/I+4830L+/j/+Gu2pKGlIqUQ7DUUSRQiFrMpuh09G0rCSULJTMipaKkRIKqKkQkkZRQolhRahol+/v+J7831d73Ouc67r9RyPW6fmNF2668ZJH5LYvjOGdHWOQYvqCQh+YQ5ZviHQ5d1PlVLj4LXVVLxWaQbzpK3w7VYZumf5k73GJZCeoiBEGatg4KJIjk03hNP3B6i9Sprcr5mipHA713Z207/gJHzyWABd166n+9p95HQDIF7LF8eeEMN9m19SafkeOpO4gY6UOkLCjCGmCZeC05+jeNK3UWBwyIYXC67n7AMteG7mMLg1V4eiG3bThY1JJGhrDx2uy6ltvwQU4E8OOW8CxpNOwp4b50nh/U2IWrSQXE5/GOrTpyjcSgE6M81h2hJj7l5SBYlOO+lRXT1UPRtg08SxWFzzFCObHrB9nwF2XLQGNalEXLA8i7RXecGsCGKrvKl46YISSTaZoK1rFZyL9WKDmuGgKa6IHz79ZIueeD5Qr0mfCo9wVl4z9X//y9N86lE/z59YCSGrTpeSXW1x3LssKHBsBFV1RwzqfYIax6bCh4VV7KmdwO8jpOCNwACkPvwDYZmCnJDxlk7nHcLuM5acnSTMM68eBtXehxwZNBFu+RrxkX9TWfKIOj6ZPeQVs4Xx2sJ0XDCzjDJlYyHwnAYXCwz1EdoLb55k4RElW15y3Z7PaCpz1Npp7OPlA+ej8sDQOwKODRB0VS+CfI1L9HBBIKo7bsL3P+ZQj68dpMr9IM9pb8FYNwwPqupC8aJTuHysEJ8/9B2HFwZC78zjFO0XjusS51L/nZ/0W7yc/uaJg4PZZn7Q5QOZH1vw4LSx1LTtJ7atWgXinzSxYl8kn/FyoA2G+pDlLI2uGfZ4p/oI1+u34Mt4dZi3M5VtP6RDencOJWyy5tS9mhB85DgUfFHlxvw4EthqDwoTeiCmOxbKzdJItBhpdXs6W4SrQc7tMfh3/g+eJtZKWcF/wftDFWwr3EDyZ+/Djz/a1LZeBsPvjAaJcmGEXBvUDPWAMsV9vO3ScPqhfI/cvq1i30W6uLdPFcaaj4NP67oJoj9irp0KRL6yAClXd7b2WoQVEhfx/JnN6NUwEl8LaMGkI0f5VXwkbjX5hXOy/Tj0qTH/qrGil6rB1GcagDePPMdDuXoQUv8FB5wv8mK/AXp8tIMc1QzA9JotK6ISNGbKw5QfrXz5pjQsbdjLikWCXJzwEHr9XHBawnK4ZfyCC4pmwGe5c/RsmDrM1VOAvQoLcFNJLndf2MX1C45AXsonzPqQQrtsRvGDBac53ns+5dYLwVd3Mbj+0RQEp//GhYo3+f3kX2wQE4zGBWow2akd03/Z45rVJtBJ2hQkuYbWOEkB31tIHnrCfO2BJJv2bsI5keEwtiiQHx4Wgu1qvnT6lgPPv36GUrJGs9CyQl729iQq7BEi99kf2ahcG5ePnwSLfwBqYgOvWvEWDo/ogCeCOZTX68Ent4vw947r4GTxhJ4XakBJ1mMS7e3DuKg1pLbWmB9s80Wf0uX0ccwuOPhhGK0aMx16vo+EnldPSUinBWKl7clpZzHlCWWhj1kWnpHTB9OCqzz2pgD5T1YHhcgjaB7Tz+lD551YLooTshLQyPIQjgqXouTf31g5djXm2zE0HzLHNx+8aKlUJ82MEuOJZbfwwEhpSlzRjMKTFCHyQy32OspDhS1Tp1wGNEdXUk/wOrQsaOW5KkVw4G8A118whYi35/l+gB7UpXyC4hFCXDfbEJweimDDJjEYPD6H9DurISplLiie6YPEPi3oyTmCxQrCbOMfSV+NiyH2cw4VggW/S59CnvZpoGWiiBtvScFzo2CStkjB3SZF8MDpNtYei2TF/Zug9tYXmuDsAtqCwnTinhxsSzuPyOfRe+R8qtTfTqUjbWHvhCje2rMeKg46kIikAokqTYZ/Aw5YerOSb2WeBvfNP6DDLQxNzlvTmHwXlH/SwkmfPElmtSXcfhxDU+dewEM3m3nBqzP4ySwTX06+DEsvz8GBHY/A6L0LH100HoLv3sS9yonwo/IXeqor8v7NdyF6zRiMCA/AVPkg3i8vCMF1BuB9dgPoCDbxj1m/8dTQPc029uE+vWyQ3PsETqS5wvBftegirQM58r9oY8UCOvuwgn4pS5PNSR+qtvCi0gdmdMzTF8R09oB3P4OXoyW8uuCBy7YbYMZmfRqssoOmBZfJ/7Y768x7Cbuefye5Mj24LJPCHiXp+PONFdvrNcBUWyfQ9noGy53eY8bFDIqb8QLnjlQBPWk7fj93EShsnQ0+Nj/polkGHXT9hHbXzSFlrQGnbd4I95Yowuz6EIiauYeuKXTQydmLIE58Ew1IveH2HkvaWmiHjdtK6dtOafhgLsw69utY6j9zmhOD9Hh5IT3fI8et8fVgd9ER/T3FoXenAuQtlOGwaYGoN8+cjuX409OsCuT7cbhv9w5+P6qNp5zYj5bbJGHMrim46+ZczsnbwyYLmNX+pVLN2Ey2i3mBb+5nULf/Y8yPAfCKXQxa8xq4aKE6vtpsg7K5KWRlchW8jz2FaIEt0Pf2LOvJSsDB1xOoayfjragAvh7oTLrLJPHFLlGIrXnH412O4+WjteDvMBqeLJAj619HOW5HHawYK4xJK6ZijfV9jh7miHHH5sLxfeq0TFYG7NY8xEeSrrBP7h8E7BviVf0Ist/mxdniTTxn6hq6aTAJRap1QXxECCv/aQCrjXI41XMn+Q/7iwkjX0OfbiXoFZyh2HzRIf2YQPbrufjqcgrJvZxD1FLHHYmp1HzUHnKinsD2S5r47spC/rNWGU42hfO9J8f4foQdKDj3gbC1KFVOfwWL6qfBUttats9WhS9bdKGu1Z9dvW/RhHhtvJ6fibneA2g6LRlUva3B9nAZhDw9iB1mZrDg3nJW3z0GO2RmkF3OQ6Lfd7jXoYhOvjwJW7tWgeyVGWAxFuFu3kUw1llJ+3aMorStgrRP/h+ZKi2j1X+fQvzD9ZDxsYPKFuvD77oNsOvgdrI7IQzSCzZwj+scajIZ0mutFi7wX0tjjgzDOCmCo5ptsEVAgPq1eik/XJcNrzyCRx8FYHLzGL6QUM9nomR529mxkOZRxtsnzYTPs1biE6uPFG4ezb+j2mBt4GO+G3WD2mLm83xnDXg/8wAVafZgQzWDYdoiDNRuILvtKrA2Yxm3/Y3ARx3C8LTDAsSOvONXmwxgZPsFlCvwIPdRKiwfuI7fe/+g11aWcMdMAgXb1GGmkz3P3FED4mKlnNAYQMdkcuDCgxyKPrKfyhP/4/kSNRDTLw9BscW0w6MYJL8mwhxvdT4Vm4NXL8mhclwNGRWH4dVMJRx/dRxsDuuis+ZS9MAyiTUabtGJ2suEdtrsWjbIfY1SWMGrofemHkgFdMDs8GHQr1kEUf0HqE1uIrT/jOOj94mUUqwxdtkjVrwzFaZbfoWSYe/p9pMsuiV/kctX5/MpgUvo+XsixfR+QcMR6rDx4SR4v+YHfRgbBovkk8D40HhecbCKPdy/cYWIOYxOtQBXyxqMjxIHX2E7avMnmBc1hX5oddO3OEd6UTQf7r13AZldYSi8bBncGAR4nS8Muhtl4dJsC46/epTr/tsPb7dYs2bwAbiQb4irpCRpWK04ZJe7Q51YADjN2E+WgmL4ZYwvX7fVgA+67Xxe0hImpOzl9WesoHWMGF49NgGPP+0DV9X11JMkRGfqujlheC44TC2k2mM3IN/FAuRnrMMxayVo0ThvciuxhKchWZR3xAZVUyOg5MgYvvH5JrjcNoerNX5oufY2+fz9QrVl/0HV1Rm85twEnBCTyGMUb4JfjAdaSoiC/+EFPG5pE+nlbOL+rX28UcsJn84r5ReliWjz5z7NMDsKTxpUodnKit/On8WzPoTx/rxoml78YKgbpIGscyQ7/y7FhjpV8BoYDkvXzISOQ5IYduchBr315a2JWmySs4K6UvUoDTM5e2UaTbyoBX0Tj2H8sc24IO4my3fns9bkLH49whnMnIQx9UIQVf6bTpKJlpCz1YGE9e3Jes15tHZoglJzd1wdIcRX27QoJmIiNfZNZ/sOJVii1AU3zBbT3Io28G56BtfefOK+hMdwg0pwDIZz8/c2+LlpLOyPuoZj6zRZpu0zejcUo0GnDPmU7IHLLjdIvlmR92XZ4KF14+FywxUQS3GCXaq+cCbTjlYrbuTBVbNhR89YjN73Fd+LudOfSeOhfVogr4z5DmkBX/hKYT1O+a+ZH6rEo9uORTjpSww3de3gjF5FeOsxB+HiWUy4WYYhiY7wVbMTY3bkwtJDVUO5lkWWj47Sj35h8Be5Q+O+N+HS/gzyf2nL3RM98cSuT7BITwslQ8I5R30qyGkIgrW+IUYLfMINpuGcrlBN860vQe7Xr9D6ezj+zb9OW5/vIoXZQpDlMgE7V76hkg3msLn+GYs/mEzTfIIxbkQqdJ4R4lqzH3BuwBK23VsHR1/JU/zXk5C3+B4nbx/KHL/J8PCuPFycUM3S9nPgBKnC5aoO/qEqDXZhKaR8NQONw8ah++0drEfRmJjfybv7L/D8ImFY+uQ2/BnpR9faNcijS4D0Exbj7g3bQSbOjXbFKkLOhQPc1zsVIgtK4NS6XN5vdQGDStxxlI4HhOz6wOSwEPYeWIdNe//DdYsEIGnKbvjdWg4ZDxW5oEqUWUkSjTb0s/nSSRwjsZJkpRbAniAFWGX4B0LFVtBql12UFPYTOx49opvjj/C9E5PBR64P6Pdq2G8uDDsVJtA/h0JqavpGyT+fwpZjk/nDlW+QeMwbL425DC+c76J+pD4YWOxEQYePNHVVAC2860s/szV4yWItXLhQgdvlskFdzYhXbheDFq2VcEeoFyLEVpNK5UTevfknXAlTwbQd9pzWZ4ETIuSwd89wWGk7joInL4MySyc+n/sYnnvI0+nWG6RqZ0enNB2529eWFd5NhW23PPmvdT9eegv87VAxbDn7B4XflbDJpNu8SdICh5+YAC6durDmdwjkDYrQ9oAsbJOfQYPXs3iijilsCZLFpBIjZuFruPYLgajyG5juUAKyuUfht/QYjBU8BpurP+B1oTOoIHCJL01Io6UGMiBISjQpIpArJsRxR2kVz4wrhYLso2BxtQy8B19SiII6f1XRAqvJadxaW8QDDb+h3tAaG5/4UciZT3jtVxnMa64DmTk2eHedLPw2D6MlNzJ4XW0vpvd9h/VfGGQ0HXic8TU0DG0iNSrDpmHjQP+gE/yw387D21bQozOeWN5RTtLyX2iVuz6OcWuFk0/2k0cFQ87Mw+S9R5ifFudgrG0DXnK6BA1HrPlTzCBZNHnAo1UttCtaHNz2lGCycw2M8V3DeVfrwcBRlqTjJ9Ha4mpM/KsEbxqK+Oc6IfCOV4LVLfsgQnAKhZlGoF5eCa/bBWATPhd3r1zGM3zcyLJVFYreb+Jt8sGEJ9ehzboRBLsXktsSdVwzWYgqxl7mD4+ng3i7HiyxFoTwxcBeocswckoV1r5KxnuX+7DEyp5vbtCAk89HQeQ3SShVA45dbkY2oZfIq2QT7I33pn0hDXhxeQ+aW77it7eV6O58KfAOmUu1Ko64ZNM60i3xYdCowV+Duqg1TwXbXX/hkovXYYTNcKifoEWe1aOo3rOT9zb64eBkJSqM64X1kUi7h90gw8SvNHGWAKRM18F4vkkeqTLwfZQmWW7ooBtVFfzl7x8OaXtHH39X8cmNRiCTIw1HHcTZq/IULFmXRHZiF9BJ3x2Hfz0BhzJWYPe/ejwUN8Tn/dVsmD0X+rw6SGNrMM2SW8HaZRk4wkQFp07xoHXWg+xtbA2ivIsDHSRBQu4l9ceYYeyCZnwzTwWyR08k8W9VnHPUC9eHKMFM3zq6lt0Jv2ru053Ni3jkof9QxNYBWvTvcrqePpT7/MBaSyPQ9JJCIde9VJg4BX0bhZj/O0RbA40hV2Mypbjl09LgFbxqEcJAbTTIHzeib8F7qEBkDRxYHkT2Z3+RWKAK78srhdwCOdZTkgDPph6WNn1NCRNfgGxjEw30nKVzY/pIMVEJBtuSYbeqMviROqjIPYDAcjcMDXoJV14d4faEQcqctAWDkq6weWAuKZ8cxG3jCFpj6qlv+D4YfdoWFo83oc1vLmGq2HBsNN/B/iWx8Nx/I+lVyIFItiOl6DmRa1EGdu4rgORRltCNDiRnLYEJA8ZsWeFM+1aPgKBryjytuYhc2+1x2uGz3HNlCW9ceQvCDrTh+Ctnefq7Xv66QhaOQhIX+f4Hcy1kaaupPhxf8Q1/xCzlmtoTLP8xAk1C35NplgksSf5F6QuQwy88x8cRc6gsdyOMnC/JS0ekUc/fcxDrVMmu5+Vhxlp5mNNaRVtLdqLOg8lwkZ0xrOkCvwwOpMWdH3lruxScjDcDU9FWkqTtFH5pGwjmK/Gb5bvZ5tBqNipNhniFZ+h6aw2/WqEBa30b4a3RAPTki9Ka56/Z7OJbfHtlLQ4raQTdZfMoaZsybvLRARnBFv42PhvHOV1C+whFWqbzGWckMc8NlqQ3gr/xnVAo3D6kDmFPU7HvmiU8PpjJASNbcea0KjpaF8Et18xwS+xzPtC0BHvuSYLS4QA45liHK8SP4dU/Ibhl8BJOVHjM82++ZcWmfyS3axXOipeDna2VKH3cESvlVPhffgk/Vs/A0Y2D9PiKDD5IOMoObSPx2gsNyMoowZC4VXRh4UWO36hHww3XwZ6KY9h3sRHWHIzFS/u306oyFYhZthR1ezPBY547zL2+GZYqAQwPn8GPK0/xuKcn0X7BOzTeZAjvpxzgkZ+VCUMfU8XJZKjUX8W3259jXX8p+j2cDZpLjans1lTInnoOJ2r9Quff2zCseBMum5YBgTeuk+6NTFp1og+XFiwGPRULmP3mKb6MnU5POkXwt54kzEpOpQ/nxHm5ymc8O06KMjRPocgfXVgv9IPW5hlw9/p7eHu5O70InUi1omdZNM2Qy8dkwxT5n9y/Zjgs+bCba67thjDbnVha48zSBw3o5UEhRr+PNOyAJTome8FoexUo0azHw62t7JsdBlr72+Bggwy7teay7iRJ2PHnNiQV7KSiNA04bSCFIpbKcCK8gGeVZ9Mz0KGGEGVIs22n6/fGY0nYV3qlpQiPzObzsePBPNXkDzw5HApOvysh6+MUqDp1khzdzVFPogO1vARhzoOZXPIxF9a8zqMZSHzKpJ0exCux3taprJZajPv9hWijvCkoiJxHjSvBEJ5Ti9u7b+HbPZ64uGY/bxSOos9F7XTy6gYePsUK3ALd8ObeLnK99hcH7fTBLeI1mtrEUc3wVlJPa0IXq6UQVWgJVsplbPXfHRjBWzhg9yyS9jgJvY80+db6AA479BY1prii4BhxqPPdRzItGzD15ixY+0GVfsQVce9lXzBr2U+bgt/SfLVpPKrKABwdisDymDjMlnvPahknaNhKO7y5xpkn+liBz53LeEWgHme3S4C53xe4IZbOzm4r4fefZTzFeBSN3V5JszzNSW1BIIbsOQWX/knDa6P32KWxiGoEV/KdCXIgkDqO8lr8cYz2YrIJX8HlIbM4O9QcVO9fxM/R5jxKyJlmbipHpb5nnPusAf+Ofse6if5Qvf8TRyZpgm9bB3k1FzB/c+GPpscoXy2ZxTc8QzUPe0K/fH694zXut1OFrnPGEOvfBOMm3me99RoU+7ABJezaaMLIAQhzf433BHaA26mpMOXOSVg3WAcSmkGYvnk5mFrbY2FYO3t4zuHEl6doxU83uiJqAWdOPsUK8xpK1wzm1T8NoGHfApLtN4NPu0uhLUmN79XZYNUKawi5E0Ll66VhnI4qBeaJQeOoeMiwlQd55Sm88d9c7FS0BqV+hPXGIfwi8SEb4EicrRcAzjLZ/GmDO4n3L8A9Xm3g9qkThytrwLZeBcizusUT363i96kf2XHcXzwlEwS2JR0sX6iD1X5dVPIMIPeDGjSWStKcJQ/ww7BWts5wxfDobJT+PJRNe2binxkr6TaJwexhgVhsPZt2CVmA4nI3XnTVFU9o9cNZuTWw5LYS7nNZRf1jDWHqjzukMrcfhVgaS+oJPzzYxcr7dHl+ly8mSz+Cw6LmiBZikFRuz+/3m4HIDhtc2eRGcdwCVvnlpKizHeb7HqdhPirUvdoEDA36yV9yOvTlCcCVmEPsYB3Aoc8Wg5LiHY7+8obSLtbwjAA1EGj9R4rKJ/l1khWmaSnBg8mD1HpUh4QffoDt3zJhQ6Q7Pt4uAypeFugq7gf+JrpUEPoUsvV9yKZdhaOteocypB3U/WajjIQsRPZMYM8bDzDcrIkflrXAk+vaNEVHkUKNSnHI/PHQnByafF8MTnxejXrLfoLZ7RbWvJ8KS27sYLugJ1TvNQ0qInPp/KFYzktRArXhT+DK4H8cppZG0wuGmK17Pj/kDDQgHaod20y9qvPx5BOBof0uwfP0RdgblkPXtM9x+YUuvGdaDEbG30E1ppkb52+nnstjQCNAgVxNirFzZhhVL2uErXXqUFR/AzS0jkGKqRzOlyknofH6sKLyCe+MeDDETWXsURnPkx45w/AzESz8xBdeH+vAhXerUFpVCkxv9kJh+TqMfCdAY/86UdnUWtL5ZMH3IiXxkvs1uOvsia2FKiDpUkl7e6Q56Go/BL34TiELAN60t6HgPHXecHUqNF0PYK23oyD48yq2ep7PY8xP8rf1P3HX6houWGbO659W4IY5BKNcn8IGEV2YFp1M9XEBaL5/PHUqNkP9ss347NFNXKwgjFdKdSEkKxMyqyTAKvMJpcq/BqeQIph6H9j42hx6Os2aE3/HwgnnddAsc5G+VI2BaHcdXH6zE1Zo6VPY9JG4edUSCF3qylsK0qnyRzdan1xD674A3FKvQfEb5jwlNBktfn3mxpYSUjXUhB3XTUHqkRsqzWiFd38sQDdjGG4DDXIYmQ5hqweo4moLackEs75SCG/pC6HY47rcPMIQIKOPj2htBcu4JthsHAJRLEBrD53m5upmlr0TyParTuPGlhHwfvQ3ysgsQ8lTr/HjVn/47tcP9aHTcaebOdVJDNLqo6d50wtZ8Encx9owk8taD+PDcC0+dS+VQrerYut1onN4g9UbbGBXlTRcTFjDBQvP8Tv8B+8O+VH1sUDuiPdBt8xZVLfMEA+EnqdxOBncpKM4eO1/EKcjN/TfSFAKaUSf88cgwl2f3kYGcrxFPnRsMwFNqzvwcOEZtIFqUFp8AZKSgmndnhVQGLMEQiYsAP26WuZT4qB1YDpGfQ3H9VEJ/LnuPO+4MYs/57zkautJ3HPblA0uvIQ/JcKQ/LGY/HQ/Yu/WC5h+/zjtXDObG454QXjfY45w+gtVgxk0KKsOqXPjSXNYOS89OZefFl0BFR1RvG69gFrLJfiemyeb9H+HrDyFIZ7RxDcL7bjqYCtIOeiAiMgjMCooooNnrpGHtQdUGtWShLcubLwpRbeKlGhQypMEhvK5c/t/bD8+mPMrnEhhfxPM3LOKz5nIgWvrbdBP+gIKiZ/AVPI7nt7XhE1fQqm9wIt6wo1B3z6HYvW1wGF6Pm3a4UT79Jez0KhYlO7VYB23DOwLHMV71vjCRyEjthnQAoWo31g79iAKp6nByeyrlPnwHl17LIt36yVpxKtI8O1chrPtlKBzsya3R+liuMMUfOTdChrR8mBV+AuHT1cF182P2F1pABccUYKb7+ZjWGMDzT1UzsEpnfBZypakRjSSUnoldweF8289D/KOFIZ450J2r/tCFSJBmD3nI7552UB3nWQhZZIBWq/VpPogPdwvJwT7N38A7Ymx1O39Dj8NStPInvEUNHk2rW8Yxvcd74CtmQIuFZGAaWMW82XXm3R00lRQbEyny24zUd3iJEm2p1GCx3u+ckUNhm8ShL6chzCQZA9VhhsI9l5D26nvSF5qCrTiOGwUPQFoJ0v1Z8fAhI0f4FfqLVa2J5po+JeaVSRgR0MAzdgYjfN9zChlUjZ7frECG7NZUBa4Fi7PH8anJ+0ij7+XaOExe/xv30Yu1S6AhQvLwMFUGbSy78P2bh/I3VHO+0vy8ffAbpC4+4fv/8mGj4WtIB6ozE9HyUH4YD0+pjRu8NnB7pql9Mw5GZU9GiF6WS8WH66FTe+noVC6Lmx9JkzXBU/hbPcF9O9eBWb/tuaPBRNZZVYVPgo5AoKxjyDu0SiYpr2cknzFeKBlOz/LHET5Y8x4+BHFimShkcFSPBe3Ex/rWENq2Vz6MHwJihjZUEywAAWBOTiuNebCGWn4LUWGrS8zFTgaQPH746Ay7Au5+kfh9T4DDDZSx3j/dvoN17E15Q9JmnfgQIQYJMy7xSMvtvKMnTkkfu4UjvorQVEPTUh+qMtIsiFmzBCEQXcBGBRcQwqvjmPQx9t86N0C8ldu4t2PXeCO3Hd+IGwABTvn87KdDKv/fARHSSkwslNBi31JNDbWl3U3S4JetD9+af3Kho8jIN1zJPTs+8NzRx9iiT+eaJwZTMfVRSD7RBMb3F0IKy8soo+jvClhihn0yTSy//dpIJdzlO9KTqPriVE03HI/Ob5/jzc8FDimrQJi/gpCywxnHjHyEp3xk0Tvek8ICtlNEzNOo9QLCaxIf4NrXVVoh8hkeCE8lcq/f8HX8X8w9Es9HAt9xS13pcAOi8hZbi4u8vkKqQPW0CETx1qQRutHRcHeNgnMfeDIaoYr2XC7I2DXWDgnLcObbjK8uOGLS7IP4rNvk/DsVX1mpWqI83zEtlI2vHqIJUMj4zmuVBriqoLAfl0v58Zex6WZ2rSmsZONPC6wiXosXtCaAr35CpjxWQr8936DokFtbD9ziiM194DXJn/wnN/PjQU6/NlRnDYpqmLcTT2oeVuHas5+qCfbCAKvqqDsoBWV7zxPumYiVLB1CrUu0EKJQ4Kguvgt3Trbxin9/vhcMYa9+67RhQv+mF2wH6/N/AbnPhTg78Mj4Ur0LKrscGbn2uVssGUzVDrtwe/h8pj1bCSaJ82BcffS2Pa6ORT2t/Pa87lot+k8j/8XCc92abD9+ii+Ue9HWfqt4BL8CW7/MYVHfsGQLt3CkrOO4ue6Zlh1NxdHGMhw/voXIFJ/mu1t55PFHjM4vzycpuy4jy8zJvPCkOW04dln0nhcSUouCzFlmQNGrT8AelFjoFLzMWj4VfH+pVcp2saOshbcJqWCUajzWYFDrUo5wPQHyP5SAirWApvTx2m+/AF4MqcFNjs/BJ031VBvdpnnHtkJ00Wnot1+Q6jIVAGD5wPwU9YPr12OYMuCDXih8ARd/jOMGgN8ONO2mk2+WoDQx2Fo7xyIe2afxikRoxCHG8Kew+aYDZYYtZpQdeYNtvuF4LJKgJ90vYBuOEUmiafhlnEqzJ7hSpN0N7DPx/34Vi6Rjd4hjPVxYd1fBdSnfxECLq7AycO30KL72XjCKgo2beyimNbJONJLCewvGvODbm2SHHAG8S5nPJEQiofuRaJR6nVaWqSBTt0BOPKkCGg8mYEV36pgSuc3vF/yjz/278LH5+7TYKM7Bf8opTd+prh9pQyktOvR2scGsOZRClSVPuG+95NobFI/Fldaw7qIVPy0LA98HRngw1uY/tsSd185w4v4CDgnF5NY5RZOWShK2Qdv040v5zCyQhD6Y8WwRX4ud68uxskXhzz/eTV/NjpMO45m4iVdQVr4ajGNX2sB7Y9nk/jm+TTB+ykfm5NGBk2PyfJPF2mHvMaTd7RommQSnnO3gLVRM1HqlBot/vSV6i/74ZflxeQp2oEpuV0k8X4VdG6s593DTGENz+EEwRY6EjkNPXqfg+mLpWyq0U4NZy6D9NhR+ExvDYU8F4fhy6XpYlI5K2+NgV8Lw2hX+T2erpWIJd77ICBTg7Yv/QWPCpXBfWs/Vxcr4IkXh1FVpQgVj2Zg/tJxkCS0HmYs3AYnr+bi/J+yUDFRnBqURKHCxYueHzgCd3YmkZ5/PiXImbPCqAJqWSBPbzymgshbAay7/Znj/fahxsBW3Dw6FGsqj8BgoRZ4tsqiYO4k2HhfAW47aoBb7xvorb/ECaEXsFtyPq70OsM5/BU9bgx1j+Q6rN0yCkCqCoTH6dI84U4Qqs4jSbjMSjX9HCGtiYVjB4f0Yoj3HoqAXHIQRIg6UH6sOUREbwUzp162behhbZdB2LPnAqlm/ca492Jw5O55sms5Q2ID+1BpryO75FrwohQnrt445IBPGihW8hVMi7eEkxfKedKrMTihOYtNjRaRa3YpG9kd57NhyrTyWTVfmFaAN80FYK1wBXveuQMnP8bx/NMNODBWlmznfMLI7D+8UrkRhgwe74iqwAPeSo5C+UNaWcJhe/fw6SoVOJn6ng6lh2LZA2Ma1JqFs/eMhJDFnjjn03uc2LaCOkf7sarJLRhuZsPpn7Nh1KIqvrtsHR/JGg/fd+fRf3/+cFrQOP40ogOE9urwD/GlOGKjJi1pvoBBd/4jxzIDEP2mCzoH3kJg2ij4awsoXb0FFqzqo5HGWfTVaTnNe3qbls7Vhs6uLvTf4scZLyX4cLAT7+1uYTXXqzzDy5HznZ5winU+yZWZwAfRJPY8KIcbXQZYzeQwbl1QgLtMTLG+NxferK7EtRmNPMvIAiB7Avy6JYCPzs3mSzlpXK/+F5P2ncZtK23AdII8bP7xHST3WUFQayJOG67PGk9W8a2enzRwJh4X750Gi24Y4nhdUUpSEqYUJzO476wFRjMLOL77Hfu/l8fsY9GQvOEnrIgu4jofK3QVfEE7DIRBNE2JwtWLYIZdERZbCFJ58xu66PEBzK7GYvLgONYfsxhrcAIsP3saNY9W0nT/U+g46wleHzuaYwqP8Rfh73BpzknwHBEILcuMYdjqXq7a8IlSrjdjvkEMbSx+D//+pEPukvXQ/NYGfhbbcqMlw+OAH3RtkTdLa4uB0w03ropzolLjbl5bfQGbZv5gI+tAXqipAE1h82ilzhdcuoNR7uQqmC29mT8+34r5np70SjsJ91QJwPnQMRA4PRtKjJRxIOUPq2ycyov2V1GqCqCbhDab3NaB+28b0SBGEtyWhOH0NymwL06UG+9b0M5UZ9AjZ+ZhNngpppD3ryrnWV1yIFrnx9W13RR+ZyU9F93B+9fbY5JcKN2vFWCnWaFoHivJsutM4fy/CBKKlANNm8kgcMAc5i14x3o712P4NW3aJPsU4tSGg4XZCHi4IQa2j/+NvXPWo1SDLn8/UQ1SCoXkEJ2ArU1daHZmF4clTIHi1XtQW308VPwejTteyfLZKDVK/vSbr30Spo9JP+CP1H0syJKBK7cz4NSkPSyrMxcPLReG1gufKMiyg4f5HcIT0wzh9LNwuKo4Eib6RnF4DaLYESmYV2NEecIlcFbKgX3Wvac9Bv+Rjtxtkl0jAVHe1Rwodgv8H6jittpMXtk3HlzWD2DLo1Io05MErZh9qB4rCtOvdoBqZxPdsciCE5s18a/0fzy9uAL3CxNuS42ic5Y9sD5aBnbfioE+1xKQMj2Kf25/oqOdFZjQJEHtYRbYIvGJu707Ue2nIly3v4ki/c3o9PYM23gp4LHto/jBnCWk/7oE94s9oNKjc1GlXBee7xoDTgoDHK6xhi9b68Lu2HzY1DMX43MWcmf0M8rceJEOVIyBjh/psKpyFkntXAfud9RBUUqCt9gshWVHXzOIB6NwdAe0D2HyxmVCsL5MnZuczg6x7gs47lkAahfz+VxPB9+rfsruDuehfLUE9Iy3ImvzKCysycKUd/mw2XUXT38aieUli1D59FYqnCHOt9aoQe1QbkjpzeD0+1Hg9nkcDFa6QEyXIZg5eGKr1G+KbSlkrwYdeN5txtPcc2kwp4leR8eSUfJP/O/7KpQVRhpedoB4ujec3T4R/GQLIWLdJdAa4g3TFym8uf4HKqQ2w7Llz/DU6N3o+eAmJBgqQ/6CPth6QRfqACmkaTHWu6ejWG4BzrU4RNq2tnBC1hoVV6tB1npLbL4VQdOzGyDY4ik4JbXy1BF3qOmCFB5S2UTiBcfw40pFmFuSSvOsFrPAikk0+Dmabp9ey7MKDqJK9nIww1TwDHmPC2drQYbFDBL94AUW43SIizbgH9/r8K5IiPo6ztKvi87w5uNu3G9KsEU8B970N/LIia48efFfKPumDPJP7ZCPX6cZa+xY0P0l54tZwEnvE1josYrevIrH3M3bMNh7Aq1IC6X/JK5Td/Uj2u06nub8NYbw43shIP84WK7bA2pxk3CHuhpaVFqzyYRSfmpizD9KLtO302PhgVQ7l4TLQlbtHspQr4IjN9tghbkb2d/UQNWXgXSkTIxfPTOE4mNXwXLyG7IqzuNNSZEockaA98T4Y5NKG54vuwG5B/7gv9mK8EXIFBR9BkFbRR3CvlaCaFAoeM+LpT6tZSiTNoONDmihXtAEuOVoiV7uf0mlqwAmtBjwPs8syP7SAgMnVHmkphBVOVxir2868KlLhNbs9aH4qjLI1c0DwfUauMu+GwphOT1fU0rDVwxwzZaJ8DKrHu8MzUHjzUzosJhEe03Hc4WJH9ptNubpVi9p36fv7JAtC28DnFh9qil7bxn6tsuhoOTL7LUkkQTKc/CoYxWd012BN9vFoESgmXbfXkhCq0Qxj1vgfNs5MBrnBecf5FHP8GT2SU0Du9UM5nv/g0jRaFbY/pYsfTL5SNovKHv+GH7/LcXelZGYaeYI/86MhrHPlWGOx3ecdtAO1aoFsK3gLGVtducZHRKcmt5Moxz3g4+iAVz0KOJhjSOhuUyEttp0cefju8g/k8lodyXZFwtRbJwOHXuuCWdnpJDRGmluqelBT09L0BZdjSvNrOCauwHeWFnNU1X+Q7lKfVg8YSmNeCuKo6+9BNsnnvBn1giaq6bLMsvnUGs8cpyAOlctGg59Vw/j84F7/FS6jDKttXDckR9kKYPcGvodtz3zokP6vlxnaAHJaQGw5Ko9L21dQWNfA+j8eIFPs5rgZZoHLjSOZf3OaTDBXRIWM/Ar9680tVMQex1q6IbCGnD4sZNvN18FW0VEwZ/j0P3keDh/fBL85xDNCXWp/K0hjj4M+eynokxyqLuGiX9W0rHU7/Be1hDm26yHiLgBHqPjwzG4BAZvBYD/iUhYcJxocK02jSjrwCIbWVB73whLM0+gi4sbHne8inelG/D4ugZIFJVmjN6NR6SPoO9lZRh27Ceff5aJT9Zq86NX7+mvmBRt2xoC2o3+0P7/fT2hBNeBCNScOwI58jvp438ptGDUap774CP6X0uG8ZoV4OC6hEYd1ASzwNHwZnIC784NBEGD9xhy5T2ecNXEUSsW0AaPbnz79Sjc/vWce8yFoTLAFv82ZuAlhYeoNZpofPs8kqtbhcIZNrja6CKEn/WBVBFN2OF3Gqwn1ZJrnzaUJU6CeYKjqXbjJdJRFCHbzZqQP0yCyv5qAV+aBn99D/OurFVDLDCML/o8oJE503h+ehCusLtAy0Re4JaLDMN+pfFOiXT8ems8uq25ReLeK/iJ2mjK7vkO2bpd0INjQWmMLLgHeGHRTj9Y3/aV8gZc0fdXBHfUpoFUCtHGzTvY0mgbpyJD0jHCgcUCPLrbDfdGtbLOr5f49dVB+L1lNXcpfaObo56w13cFiE04j5qnSujOVR8utxRHdVhDJ/XKOfjiHCzcmwRJlb3gOVsTtv8O5ZnDvMlUK49jJk2hd4dyQFhsATu6PEf5S/nU4tLDxXHG/7P3f6Xd1FHiv0XQWzIdTqQA+26Wg6sN0Xjp5zCcEaYB+7Kl2D9zBFSmZnNklC6/vBpNYW89qH9nJXxfosN3pt+A2qhBTNlhzr9GKMLjxjy60jqWTh/PIZH0azQ10BXPOa1EK1E78Gq8hlrFh/HnaX2wNsnEbOtN3Gh3HW6oTOIDqxr4XvlBvkKr6ZGxO/NQd+8TRpCKns09xYJsadqOsllGlHhID1Z+vM39lQV8zLIRjjZsY9oqA9kLj6PXw0YwcTOktYMFmNg9juQHX5Of/1rcVnSDJO6Gglq5JDS8HUmSN9tooM6dHCKGo/riLjjzoRxGdNrDjyYd1jnpTHvfCoCXoh/0tT1glQdfceXwv6hpVQlW9+eT1YSJVGLjhIdefYZNGeOgMHQlbJm/DteNeUvOe4e0dVYGv4S/Zss5hhhY0MqxctI0sWM8vHWV4jUPwignzR5edCuQnoE4pmAS79pUxO8i91G/nRQvNBIGZ5EzJG86Bd9lzudOldXYpvqCrpitwQPLijgv5RnOLp+COtfN4IRUJo8r1cevP2rRtMqMz8+WINwsR48nnuM9Pm6o5BJOE7QU4f3VUFxmVw9jpI+RVHIiJHbLsfnJIHjYK8WDx8dR9fl08K2QgSDbJjK69xhXxzxE/psJKVN200pHF5j2+QDPGz2efirasdIjIZDTGEEyUp8p/1cdCGTYgXZ2Aq2P2cnadXG4Z24YxU2KwlJ1gLBzzmR/q5TjLv5B0+t/oPtDPR9THY1h8f/wlfxuFPyoD8M6DeGpwxV8JC+PHQ9Hs/QtBVjo/5ddpztx52gLqmj7gsWPtlCWkgK0HvuAo6rv0utn3vD2rA1ITPABv5IavpdczA2R9+nbgSk47b4iqETvxPPp+RjV9pKG3ZuD8V5pMAPW4tZoGWo8OgPyjqTC9KVKYLLyGaivuMHyjYYYVutGAhqtFHjBAo7alcAt8QA+fwdgw7gpoNiehm+vLqXS43Kg43WbikYswwcmutyKCeT9VZDM8u/Ts2kj4b3jYTjkNIWvXImBYquDGLLoLvdsdeF3utW4zlcTUlVNePU4E0hMdYFze8VRYoUcFM88TMojDchyby3H5IbjF+0l+D3PC5sXicLEuBFwxioA/NZdg68+BrCQdvIuZwdo21IJS18/gfEB2XDk+Xh4cfE4Ok8aZKGVMpiydz4oLXHF5w8WQ/KB2fR7+gz2DUzBfWAOhX3hNLpEEB1aMmjR5D4cVHThOxtFaJaLGDp83sdvLO+zyYAJzL9tQYvdTkPMhTI2uqDKCrd9yPtiOWxNfwZ1K6/AjFptzHqpCzvFOmj/+XPY/MONlhjvp1YbffS41gEmggM8eqsPz9s7D78eVgOntJWk6WnKs/7rwur5VdQzrBzGZ7ZwkH4QLl7+FJsNNsGhXH1wmedFhzt7eXRINAUf7aP4sSZ4xmc/hLUcpEIbRVqVrgG667RB1NmbVmecBv/DNnRg/0mi+AbaNDUJn9n+419LbfH43kLqfTIWyv960rpjEvRYMRdyZkyCazZd8EQnnKLNuyHFOZW6ry3nV4t1YLLLD3y87yM3GQnTw615MGGWLboIB9JPTx9e4WNLwse6SM7DEIabeaPcixAoa7eBR74LcGZ01hCPdmOAzBIwPHeGCs8GwNIwc1Bo+sqnMsbSwMPFVPAmiCAnGwy69hIOEyW3J9p8UH8lvOyeCEIf09jo/EQ28v9EMxSTQHi5MgnJy2Kb8HbYYmZMtSMcyEXKGK7Y/YPxJfLI95XpcfXQfGifgdC/8+j7x240mRmBP7cb0xc3fRi5I5Bn/FWlb1O8OP9GLXvfU0ObXzt5SepYOHUqhV51NZHWJgvoNfJAiS2ncO/hWWg70Qc/PZ1I75JmU3qXP9SIx6JszQG2vDgavOTiOUIqEY46bMPN31uh9HkiLK4i7PmbjEXe6rjbJ2FI+9oQeEsTAysm8rygneg9rIKf1YXg5L5MuKP2HdO22MGu4K0kMk8F3mh9ZqmXydjV1Qepp/MwJmE7yDuJocKfQk74dY20l+XCg6Lh4Fd9HGT79KEstQhly4NIcHUvPJ/wDr+fa+bCbeYUXalJ8kYjYPqFdSh+KY601Du50VgWjedIo7hIBG+7GYme1v6U8jgczulNBY2Rw0kk34UD911GO+ks1PiyEqKD43jnfW+eqKkOB7MX80gQgqeGjPI5Arwkxm3IC0eAmuNC2nRlFI1d20WtXjMg7Gk22x5Vhps7V5LN5+uoFxtJZycUkXjyCbjb8AjYsx7HHHyICYVXeCBSBYw/3aXZzRNQRe8e5odZUP/Uu9R0rxYX+TnywlE3OOmsDN+qmQyjLELB6vRyDu0yoxcJWxinXcEXOR/owb0Z0Le4nVz6OshedRjEKIygCks/2pxtAXp2N9En+SWWLkqHmUeb4Li+J4rI9lNmqwZY3m+lHZ+3wKxVGnBx7z+cFq1IPsqHIK+mHDTGyFDD3CxaXCIGkbkW7JQUT/eWbyDNt8HkOGYfJkS+wJdnSqkUalDlP3+41KgOsru1QfWKMa2wlIL4qzXYe+oyu8a3gHJ4EQ9c1qHbdx14/Nkp0Bdsyz3XpenK+T5yDBhAsS1hJJkUxA9801lhVwH8TajHswdkoCoklIcfV2LfvWtwwvqpKCgRAKfH1kP/TC9yqn8IY7qqaMxzPbjbc4g/WcexV8pGrOl7Bavtd/Ft+UuYKa4E2xZ8w0SeA/YoBxvkSog7N6LNkXvY+y+CGmXX8BQJLz658iRKuU+Gp0mW+N9uC4iflwO2637y8+1b+cuAOQjdXs9ukX95b1U/7hKMwoU2iyGzXRI+ho2n3+PqaUk2cfP2rySaUA2Hr4WSY3I5V3oEUP3SWyCrpAanf3zEaUEn2fXZIewSa+OGyuk8cm8SZ2xfy3v0jCGoZRX6rjMGZ/Ml1BkST9PciHXVSnnHjSdw1FQFR3Q7o7rCM1owspdPKY6HSZKeYFWUx7NGfwXr9j6e6lXNbniONcQWcVG2Ax+Z7YqDW6VBLUkPR3TZw6K5PlAstxlbLo1gw45DZLr/MkqOuMLqSy6Tyu7hIDZMF/ve9JF1TyCZyJ3lka5DGthUTFm2J6B7+mmOS99BwuUCsPHnblLy+4aLXpijsIILGwalUnPuTHh4ThpnBhTyXLcxVLJeH0J0JkDH9fGQcuENds9R47oR0vyoS4fLPWwxu0OAko9H4JqzWvByjDCufvYTlAfOscCMZDq+bi451NRzX7QiOoSJc6HvZ7pjYwVx+gHUNuc2gvlkqq/uoktL6rDtw0SOxlg4fzmX5g2bB/u+6sGOUAWK/RoKizaGsmHXZ/ohb0yrfoeB7tOZEPpLHV6M+o93vRgF7iUh8DX/LXrOHQkF6VNZcNh0XiFrD9FTaqBudSmIVZjy6w+GMGOYLTm0j8XkKUmc+m4zn/t0Fzvv+kBYhjluVZXAnJLP8FddFOI+9LNQ8C78nvyLwr/+pJenTXGE0xhO2F6CXyY00PLXYpSlKgu7nT/j9fpQjP01FVJ9E+lxcyb905bhzOwI7P5eC7aeo3j0PxPo+dMKAgdfg85YR06uuU27zsWw8tRYULl5iMzm36DT7THUdUoUngaUYfeWQZw8WQISxU9QfugeuHVyEdrHD8cFuY/pu+4ndqqZCAZbItBwsjVPNJLg7hXpIJ9bzPlWlyAwLgo6xJZx63RnXFQmC4Iq16n5SCRdvt8MCUbz8f7NVzy72Q6lvA9C/6nZsPfiXXggqw5v5hnA4IE9WOMewbHx7hSu5sI234I5QnAirhZYwpdrrFknXws2HidcXf2VCtb5w79MaZriIUjPixTBRDyZy8CDM2YK4S6QgzN2D/iWnj/+jHuDfTcUcVy6CGb+nYsjPKeBTmUFfvN5RZrZEqB3M4sNP4SBxopK/k95LVZeO8IHRtSC+MLv6PAliW7mzAL10ZoQ5xvNnWf0oLdYEUu2/KaJOmbwPkqUyoZfRpn9YtzX4YGmNXIwd7kH7gj/QIdHvKBTnSNY87cwxIjEcp6jCBlvfMi3bouA3nYFMPilTsvy5Dn4SgGKmRuS8eNePjqxApOfjSBrp/nQcieJbmyThCNXEEaePwyH9eP57rk29rtgwsMWLkfP1mkgrzsIz0pfcspBMzhzPwGXifpCFz/GK28DKbrxKD/abQIuDQd5snQN6DysJbX5euDs+IG+Ha2BPmVTuN4YRG8fefKno7soQS4AZYQiIWumCPeMUYXEO378RMYPsiYFgPaAOa45sh5D/LdC9dIeuNCRiRsfnMeSfeqgOcGDJuQIgKjaZbq+5D0NLBhak/6bLJRbaEp8LCRWKuKzoS4p+wFx4uNRcHtmL9uJdrBe5RReJVmA8UPenDssiNnZkgaGT4Kpq6rx/yg473cg3zaMX8MuJJKizJBNosxKVKISikgKFUlJRkmiXWigUvpKZDWIFg2aolJpKEqFjJCoSCmv9w94juc+rvu4zvPz+eUufWSH364cJv8xuyjQ6wAf773Hrsqz6cCjxQDBCAZrhmbo9p1uSFljpn0zbYu9TiidCcejzeDp5/lY6XATQ4vc6KyaGsj+Osnv9UTByd4ejtrPoCgbeTh6N5Z9vbIoKcqOfoYawtJwhG0B52FDfTC4P3WBt+ujKal+KRduvE4mCyWpvOgWOy67wTa/BWGu5DFQLarF5zs/gEZbPc1suMnLz+4nA/k//FBiAq4SXc5XlxK0rbvJ7vHJpC7dhXF+7yDxTx9Jn1oDesvm4j2Vz7DWaJAuZSiB89cpFPexGG0HJWnKRx16IzISLi3cQUGTL+M77Uf0Z9o6CLIfCUqX96CH/AoW9RhNwxK30lRpMzIYYUYxpeMxfmAjp5eG84HHUhDf3AbNnR9pc5UuavhWgWRoFZgmnUShmSEY/9MXHHsdcZP9FEgUykS9vCOYG7UTDgs4kdOTKBg8cIjFrRZR+6IjtGSaBXgPiZRd3iMuHjUZk2bJo1euKsjcWEox2UrYo/yMJza+p8M5NpQQZQZ2MYOU9W8bGLZv5+qIBD7nKY07VqxjI58BEj2ylSLdH9MDTwVoTDbndcs3c2JQKLa17sbW4GZ+mnITTO/8YdX4o/Aw4g6m9I8FGYUkfqy7ix40NVJAzmmMTXrKhUWGaDjvO35qPQxdX1I4/J8sXAwOglyZAeg9/RH2WF9lsWpt/OuqiXffPICN/35TirIdin0cBjPve1JA5E6OPvmDLRpz4eY0PxrhLUnqeSLww+syzRuxC/Xs1UBN8gr6R1pia5YASMwI4Lce3dQy8jtfviXLjd9DSc7pJLcemwymDp60dPUhdiyNhblnVGCmZiBf/XQNP2+Owynr0vHyamcwzlaBuUFR8HruW147aMLPwifi+L51vM51DBbPfgBC/ctg/Mla7FCRhboJ/XBznBycf98A5v2JsC0smnIyo9G+7gJ1fapAccUbOFPeFGRctnPQUhFQ0t+CP118oWJ+LHVKV5D9kXi2UwpGk5EtNCbQBC68W82HtJ+ze6YvHHuyhfraD1HeZDfcHduGY782oIvzJ+6dOB4m3QihFecd2cMV4VboTrSdXo9bOjN4pPtOfuyaiA0/XfHRYhFY7q8PSc8U8cFa5gNRFtSyXAGLxmiir2QoL6kZ4GqledT1ciSIROpQSb4Z2K5dhlZpprxU9C7sGh8PbV370XqgFR8HtrDJGG2YF/yYEu4mkeTABx62RQtL2kxI/LEuB2r7YfxTH1C49YOWeVmA5vA7REKvoHrlAKUJ3KG9419C/VHgle07+PCKfK6FfXilBWDZfQOQPWxL2wID6fDCVzwEZ3Dk5yQMG+cEsRMFaELiIeorUoPT6zsoROIPnb0gxirnl/DKwnIScf+HHorjeEqwA/cEXgObTgIFn3JY13gDNYZmeOjITPhmGUoGK59hwZ7r7FByi7Tdj3L2SWEoKLMBiZ/n2XSmKZf4BtCHxXUQXHgDXudM40X2pfgs/jkeaBAG6cZtkHF7OQkuV4fZvt68JKgLn/mnwuKOPijtWExq5auxQUoZZIs7YGZML3lkPaOZIUK8JwD5r9BivjPalgZGmrDY5vuUfRTgyJlYvjHMjf9OjYfY25dR2jkRet+o4agmb1y8QIKC2sLQepcWmOzUILMHnqxlpc/+Pdt4zRpNSp2jyxMWWLLYXH+MPrSC8taKwVH3PC5AWe7t1yMjWQf821aGBmtWcei323QMH4FYRCS0TteGloFv3GkfTR3hwNHjVoGH7lOMzR6L25u3w0K9DlxdrU9NOpPhh7U9eL4cid2T4uDeM3tql03Fjn8Z7DXmN52ZGY4PSn3oaj9Ac9wzrnf5D3f/rsdZfyZSx9B3mx+nUeZkQ/K+YEhR8iFcvksFlj+cxOcia7nYJBtO1pfD8ZJrOBifS2VGuhx1Shjsxl1Cr/PG4PpWHClQhATmbESNnp/c02qK5rnbgL4cxe7cGN48UgZrt46DKz6hdFzuJJk9Gg7Lz7/GvEf72SQ0BVB1gKdZx5OSqwb79FlDV/dB8mruhdDI1XRWvgVfl1ty/QFJHN9SD8/842jEAXHQclCAkjFINTpnaDB8Fc5odwDtD3kYfOguzBQ1hJsVj6Ek2ZV7KoWh9+l9cJhkDsX+vbT79DWY4GuGJxwvwD7HK2R+ahdEyAyy6CkzWGh3Fh2TCuiaWjcmr5rOh+4Y0eU6PZZtbcMTwfE8IFOCc+aYwcr4SsqIdwC5LjG8138Kpjoi9em7oUwI8ZODXzh692xeOtkQHpoHIz79jSmPcqHB9yZmS8vBQhEbbN8ZBDrFbfTt33SeaDEcjk5xxdlbTOGgpS6sWYgcu34ELfE4S8G7mdNvuMKK5g784DcVYvx2ctXrbxg43YLdnZwg/pI03P0VivozEObsOwUW+orQljcJ9s1M5WCzBDyy8jQMllpjwdHV7IQC5HHiNS/6a0WPjCdTwM8poBflxTBnDZ+UuAO3tiOufrIUfFYmU9kVQ/B4EkF/gw3haqocKA1Xwx/tJXDaYxM9zDGhHTpB7L71O9Gyt+hmvpkCBGeAg5IcvPM4wT2p06Ex1gQMThD/nW7LpgEn8ZlWAMpproWrPbmgc8gCYpfcILe5s/nKkQo6uVoNX1iUselzS/gwEElm1VchfrMlpo03BpuCdry9IZdVsnbjic52Uvinz6PmxfAu/0t8+HMgf/qyEV1/64Dh71SOrJ5NaacP4uwZUuz2ZTEptAxAuYkNvGAplHDJoIG3yhCltA3C/l3BaWJVuGjeFVgbns4h/YJ0q+c/OmEoDWEzs1C3cjj0zkumiIB8Up+xkbPNdoPcL3+ueNkD7zaWwjfVB1C/9irWJ6vA34I+lG9fTsdvM5n9WwSXmmxoaog0nNHOAZi2ja48bmCxlklQ90qO5NctgP+q15PfHx9aGWVJ93/lQ90bEbbJm8Q7KY42tkhD/ScVrnZsJiu+wtu/CNOOrwaw5YsOOE1byNGjjdD2sh7pzZoEtzxTqFY1nKtkKvivRDfedq9BnfPVGLkqBa/2IW1ZMAYVNFShbH0bT/EuxaS5U2j77sMkPVaFV+/qoTJXFSi9kUR99+1gzu1RsPecOY9qtQGlrM0wQy8ZbSo0SXXXYXQKkuH2fAtYfOY3RIZZg9f2Fs5XsAS17DheMuUQbBb8iSr1zlyz/zxPXMV40ViZlwzx7+O/zyDEM5o0NMLgRuFMVm28iUdEclDV7ADJnR0N18TNsKNyHKgoNaDWNG9+Kn0Ya27rcGeaNFwc6UrChlk4q6gGm5166d/jceD+ZwtsflaMV6zKYLvPbV7dtxUlD/rwsRdPqeqNEKQMOfVjn2EAHUqYZFmDWf3CbNe6kPcXyrKmYhy5JZTQvph+OPu9FibnCoBuwgiqPDkMTo9P4aK0M9CRLkSzPU5SdKQKD/AyKJ8UDIaXx4H8na8wXkueP95fg0pnQilx5HB64JBAE4cYT9fHkazepONvO2v4oxnCoROH+gdEWFfEn872SIL4N18KvHQKq57Ks9+aOD5WYQW+Wx9zwIc2Pr7HnS7UhpOOdixdLJ+F/wm/gdbFQ70zJodi1gjAuXtLUS/EEhO6hcF88BAqPM+lzQuWkcpBd0gMmwuxA1bo528AFYvToSXzNPw8NgxXD1uBYXZN3GChSOe/yYB1/0cINf5IFbMBlCwfQfF9DTovco0LtHxB/PVZTI0b5Et4DbRNzvFokR6ydrYGg+4hd1t4kNdoJFLYhRlct8mMdYMiYH+aM2fvM8KEo+LAslawLykVLHZOxQe+XvByuBKxegk1xuhi9i5dOhY+1AuPF3HGdAsICLyGJy13oH7TcxTM0YTGN4aQlr2fsh7OoKai9zCt+Bt4vRSAO2NPQe6jlfjRTZh0PkrCn7wwmHPQDhJfb8H43l64HRcNWsdlQXjFQzgOhyHrYjB3tt+A5wUHcfQOV96v9xV7HqVRal8LR3mYwoajHiScvQjUd7uQkeQbNjwXAV4TpuLbNZM56J4MlbyRoXkfAT6J7YLjRROgJXAllcS7k1B3C19f34I1QVup58cDdj58AJJBHaQtXfGg1ik+VC+Hp0S+0e67XvBrTSTbOQxy5nQbsJJXA88uLVBR+wICTS1YVPof/D44HhffzyIXZyHuVvYio7ix7KN6gR4FSYJo90bsEF5EEh/KWf/jLJDVzIdG8VIMi97KL6flw/bC+Zh5UhWcLSXgnaEq/LrrwMP9x0Ke5AQqXHATwuKNwPncXrqnEYdNpuNh8IwrX7GbxRrBNaRYvZpHRS9BW6UfmD8wGrsrtMHJM4Xn3DYA4c8bcGr5Mgp/64JNjtnoKO6AbUsLcaXSJ1wjPQwrAwf5+jojoPzpNPxRD4X7veY1nW705eECGndPk1/1LmMvdSc45xxOO5rHwLjYa9gjPJxiZT7xVPFlfOiqKf/+nQiXymbD7YLNrCE7j5u1x4OkcDZQwULWV/ehuPAtENc8nitO/MCOVSEY1fIObBXyuezNRFDTteEpb4fjj9oErqqMxge7M+H20jUQMPYKae2zQTepIzyvTAiqBq2xyKwVi2MlQcF/IuloJtDAn/e8ym0fvP9ygF6Z+qDTkNNF1//kNV/lCCwt4MZxW5AYkOQxqvt4wJZRd7QVPjxmyfc/jIf3do70Y94p6J/YScPbZsLyEQXwcu5X3Lk9A2c5J/NSkQQo3T4RAoMUqDDCkTtrW/Ag9HOwbB3XLBemN+cnUsDpED5c+ZJTTEfCp/P2dOrPMKgW8IP1Iw/RDMcmXut3GfJeXeAqOR+as8YPKksRSns9wPH7K7LcuwhMV2uTce4U7Kh6iumqMlwqJMIl5bvhua8yvFAaxYn3arGoeQnO0+6nf5eMWMksgD9ebaNjaQaw9UU0XdyiDZLe6Wz28R44C5eSSIAcSim78WxtV371wgkqt+2lvnM+2FVvAKnTd0CoQi0JhgqBzeBqlIxRYp37AbDNxxgnP7PC56N1QPusEcj8U8JkCmPDFxfRY7w8Nwb2wutXB/FJXSLrHO5GNYPfdHORGTS89IdqhRu0eNV3vJCqQ1nNdVgUUQTGgTb4rVyT581owANyxqCc/YBlR1XBPIGrnAFdVPHiCbR63IRHn3s5zl2Rk05Xg+d9KZinoozauYZQOrAJRpZd5hqnAhz/6CJt/mEJJb8Kga714+LlImC9KQZO3/9Fe/+bxc+9NmBbhhn8nLsX360XBNvyOaD8qwwnCBrD9fcrMDtgIe4ufksPitdC5LvTPFvaGKV8ojCszR7zJ3TBgSIesppBvlL0Gt8XDuC6vL9YIbYHCg+dgaO5mhxZVk/f48RZQF0TxlRpUYlWAdp3HiFZj7t48NQKltmRzx/mboJ/d//CvEk/SGOou03TE8j2thq02efy3Vf/SPFuIP/+tAq8E/eTzBUAjelZWDRWAprkpOjAcGW6X7mbVyzdymZiFYy2KnzSahecifiKWdPrsERBDKTbJ6OCnQj7npkBsfdD2Cp2Fuu9qkfpc/N51LN7/G6tDr1dPwnC5g2D8LCX7PdpLHZ8PwObX7/nZ5W/4WPGAPntHiCj9v18q0cEzunPoPCqMzD5ymiSs1DHwDY7dPb3ZDXNJqo+K43HTxZi6RRD6PgURLXFm7FCaSY7BuWw08NG6j3hhI3TiyC+14vUPbfAtzRLmJidx+fzO1BpmRc2Jrqw6p5mnFJaSOf2jSa/M+V4+qI729wluD3PkA+n5aHL5vF8UWw5tD3cyhvcbaDqyl6ocfWjkmRtcHukAwe9zrDcgVHomW2Fu3cmo/q1i/irMpXt4wtp/CgLCI1yxfyp0jAxLpLdLDfyvstX0G3fP5BwMODtz9uoMDGUN+sJ0433JylQUxR8LZdx/7uveGLNWZpR8hmyv8qAfkcaTl7GeOvjRcqYrwfdAYYgsXQWS3yYD2R7FE44T8bG9hL0fBHJpRNncOGfCLhteQHVLxjABnlduHoxGfX/GdFh+esoCZPZTO0+HJ3+kAxTMlBFN4dsc9VhzzcL2OE7l6OSm2mm+Q+CxTvxVoUZpjfWwNTTWVhlFAzRZwXhyWcPtlyhyA/92rgpdj/5v0gggwykql9S+PtPMneNfAadT5Th0M6ruCDajGKsyzi92gk93VppifkaSIgQ5XKvmczOx/jT2qnwIrYb3X6+xsqM33A2ZyPa1uXyHrMCdv1+nt44IU5f3oqvTA2gR+kyfvN8DKs9InB2gwQbi53AWdIP2f2WFK12uAp3h6vAktFyEHD/Fy84J8FBcQn467I5XhwbyCsyptO44Ep2SLKFuvBTbHVDHxT1xpPD43qkyBY2qPKFaTV2eGaNNE8KzaLY+ZehZsIYXNsrAYWud8jzbSAa327HywEHuH9OIC6/V8WpPIHNfoTQ0zPpXDGUUe+dNqP+0jBwcDEE68RbaJ+hRRq/TaB9N1P/vJ3U0dTBa85pQrx9Of+yfAiZleoA/rXo1G0LpmCKL2/5Uv0VC37kWQvGmuJweL8P14r4wn8KA/BNTpE+a88npfrFfEDjBfk9uUBVLnWk5DMRem434LV2Db4Tr0Cnxh2g+t7JLHhvFVdnGMCRyf8otuwNeMgZQuMYIbDLNyW9cQV4eGI1qQbO4DlXGWmpGibrv8f5kR95ykVhUH4sxbcNG1G2sA39Ai6wbt1utnu2h5tzM+F6UTrbqtTRy1JtyF3vhMo9pvBf2Wl4ZHEY9ff64vYxxhhZsQ4c/ibx+sPDcIWaMdxeYM0GX1SG+k+X8l/sgjFrDWBPXRQ75qvjlGgNuGweA4MOgtASHQm37wrhJvVZtHZZNjkduAAC+6r4tKEvD54LoOm+PXRcfBhYbi7B3nMbsWvxVXzrkMxScZ/5dGY5nw1ZBV0/nKDg0hPyXSANWTuvssq+9TBFaCM+u/+Nlut8wZA5aeB68whJbBbD6V3zaEnlJPh1wJwcA86SRO9eULYQR/tiW0ovs+A1xk8xoWIc6Sve5tQHo+CuhBIt/CjGCRVKENjygcZWp5FbwwF6nvgAVyaOYpdpp/HeyylQknMcvjytozmfRlLB0mr4kBFMa3ECJgxzRdxyDzsSPuO7LCEomiNA8n5z8VTSQYw8GgfJwWPA8dABTF8vDbaJkbS/phajlExhaWs6/JvSyArio3D4QBW7bXlLxg6/gHaJwukxsVxg+YjTqqRA97kERN5+BAmyRbD//CZSlsxlCVFr0r+6n/ee+E22ip/55L/hUJL/D01fbUHd6cFQqAPYVjQfhNtieWqPBcuEZpNl0mpebToZtLcO7Y68NTy6r8mjHfdjpcsgH4lbRR8W9fFR93mgVa/MF/vlQCBel4/ISxP8sKPcJi3+m7ybOjuzuCBqGb4HYXJwTKIv5wXhU2waDV6ahB/HVkBRx0uq+fyaJY100WnzMvY42QgXrP/BsLEToPSuHq5fZotT8w/B5MVFePBDCR47rs5iNT4we+1a3NaYziY7JsGRCFNy3vabfq6VAUvNG7jR3YCiu5JJPVaVD3tIDbm1DfoEqsL1Gz6cKQAsGLEJju3S4gtjL8EivxP0d7QTmsakwl/RGPhipgI/PgqQ1NcJNLCul5pqNWnGNWN85VxC0b/9eM3Yd1gU/4uCIseC9+xFcGTfJxwxuxVavYSo9NQO9t5Szctkd4NE5na8mzeIl72MoKTwL4p8RNjbFQBz7g7w4ZgT9KRTB355G/PWP4Xw+e4tWDfOBKbbldLhxgKwHt6MjXctQfuDE+oVbsKHlcPoV1glrm0xowl9E+Cbywg+EnmQjnvX4+oXPhQhbMfz/m3nUHEP2LfvJUWlPsDVq9RgW7My18Tp0s2qLNJ6K8mTj+yDC42eGN+TADkS4uDyspznS6rBXuF4DFb3ggvFjSyRWcx6iiM58lQ0nPKdQf/p3AClykm4450ZdLxewKcWVOOgjyl/GwnsO3E7iZQuoBtx0lA55zMXP3+J3ab6cHJdF8u8XUSOAi58y/0z9jep0YfhrrxVowgX2vhh+e0R6LZ/Crzw/D3EaWbwJPQ7PPE/zWMNW1FRdSQ92PiUWv7zh33FYdDyRQpWaTXSadfV+P2SIh8QGomF4dZEau3Q5O3OZz5L0obOnzC/1xy+zlHFjKWGfFJzKk1tOEgbEo3pS/IoSPqbzwZyYfhR5S8JCgpCpp0LjfAPh687p1PZmq/sWdtBMULW+ODTfnYZOQlv8lgsb9KAzR5VWDtsAZ+ABzxFIZsNDmSClWUmpqz/gEtVa1ilpZPqXqlC6cz1NGAwApe4r2HLgFuocS+UV8ta0bAP79nryXigjL1YP2ocuIvV0fFfy6nkkv1QNktCWUATZHxs5bj0rZjQqsJydkmsOMSxk3M0gEeuxr66i1ATIoR31JbQs+wDBJ8Xw7VmOe6oug7vX8iAqug1nuVqBymKC/C+8naes+YzaqmNos84Axad2Y4KtiuhW1MDzny5ACXOKvA+qQ4UJy3gLcHLuNlpAjuvH8Fz1y2h8SOuwLIpItCdmgqfx80kp582eFTWmdzmOODuphOk0l4Jlzr/cWraVErWGTWU07fZ7lYeUuJJqrB2gYtmBjRz7gEI7n/H54+uxO8jHTBOawRInBfB8YJX0fv8ddRbUksJ2UIgGNwE/WUriNwMSPFWCEqv0gOHiWLo6zMBzzlaYs9+Bfy+JxHbxiZy66nrmLNXlFdN3cqLVgmBaL8VrLm8hmsNR8KLQwLwPe0tH3vWxChWwvN6ovH5pQysviMIHh3pWKzZyQYaeihi3MiXheTpxNPtNBhzHwZc8mm1Tzx+SjACzSNW9Eo8gxesA0oZNgul3HNIrmQ8ta70okeNV6Eu7AV33NQAeyMpGDVREVQ3tlKjsxJOUq/HJc7HofzjcxhPm2lz+VDmT5kAS2/V0cVjJnDrhTucX5CFFh7B2C0/kpZVykBz6H7yyxTgtkIRGP6fBpUOW8kZDLQ9cRFLRhP/xt0YYK5NQSlifOpjG/53aTykjzoBQV9mw7yQSfDp1S7ccuQZCGV5wq+yLB6r5cJa+dH4bqsCpFmcoc7oyfDv2mvY9zCCp07dSAn7ZtK1mTfx++OpfJP10VNdEDqlCulX7Fea2j2TviuKs/fpnfizb3AoE6R5yqaXPH1zP5pfFICkwi08KjQRbmplosw9Hbiwp5JsfixAT7ld9DzMgnfafKJlzQpgNobIZWwdrzJwRNvMWThdbYBmf3RlMJHku10hoFeSTut36cH4g9M4Z9cZENb+CL1vXmDqgXoKPSSBqa5j8ckVP/xtO5L7x+hBA8pCztlCdFu4iQ7/HoeqDvr0p+oWDVg0sNnww7CmN4MP5wvA7PO+9FQ+Bb4uJBT4rI114R6U4O2IqlKuGFYvS+8uKtLZACMwHhyO23syQS+KYbGZGawvPIAPrhdSV541a2yqQnYTID1TUfjlqI5H5f5iu/N8ztnnDxmDA5jqfxb7fujgtsVy8HXFcICJonC+vJN8da5A2GctOratgN4/PANZI++zaByD+GobvN5ehJBnBGoNRQADizlj2lM4krwQJwjU4ec6a3ZIWAO26do0vuk5pD5j+Ng8EQouVsCWdwsxQzKddx5LBn7cz6UZ8/Gv+UzI9S6DuRIjIEznEVnmR5FFoTTMeemPgSH5rOn8FeOl19CnBefw3snlnLlGDFbvHA0/dhxiyU/LePoDY5J3HY8btdogKKAQY3bNwO7qYFxbJwrixR0cbzWbb+Q3sty5euxUeEx1dSfAYKswlh1zpIzzk3iVmzBEVlXQhOMt1PeijJt2PQfnosu4tuYbaPEvmjvxA/Stegk37UTghk4MHA7Iw2nqf0i4fheG+LWiUIgULrnUxYVTNfnyxhwI/iINpfUlONFAG99p1sLO3hf42VaT9Owuo2yTPXX0vwKRZ4uwc7oKzHlTDeL/qqjZ/zaslYmHxdnClHw9gWQnCuHKSdsg7NNJ5lBj8JDo5/bSMkqKvoHFDVassluPCwLzMWd0Ojn/6QT32Co2+qMBuftd0O6TOC73u8QzpM+D64/t/HK/G5+/KIHbqq7AuMdnyWbLaLh/exOHH49in0oTLty+gN0CJEhhbi/8/vkKTzzMwlMXbrCYiwKM2XeCKv/eAvvTY/lP137UtZ0ECjeiecf7+bRvIIVdnS6R8zxJeGddy2nrrWGrfi1vfRiPf9Rs6WqrISj8CuK5H5yxU3E0aeirgtnUaHyf4w831Nfi1J7VkLbYGLceqKTcSDWwHNYCL/ONcF+rFNwe3EBVd06AeZ4ojpefRfp3BnCR6QS++i4KjmtKQNjG3eS6zQLOnMsDH7REddMmPjDhF1vfX4ibFL/D1qQ2Nlm7BLY9DcZJ4RYwq0qAqz7XwVOXbJTu9YOAt1vI/cgZaHrURCEDOZg7Qxz22gjCQ+nROHu3Py7YmQypOY+oZN8e6rP/ijNe9YHY4YlsbVhD11LHgP6SfHY7Z4arQA4jj4VzfyfD3rvrYdoSD5Iz1aFUGxvWcpeD7eN8WUZtAXoP7KQ0z/UkkuTGSZtHsJ1NHrYueAi2C3y5tNkSYsr80L3RmeUL1OhfYjI0vJLDx5dHYYPgWHK0+8DjDQ3JX3QY2EzbRt+W34K5lkr4+dZFFNqSQlGPi0FKfTm8DZMFE/UPpHdKDRIu9lP6hUKyfd5EQsF1tEbZisr6XGD9rkhe+XcLvVfr4WU7FOD261FwI/cV5+h/xbCzWvSuYTE3rbpA9gKhaJh1k1cc68P0g5Og2vbgUJ55UPbXkXjc4i8L9r2AAd2Z/MTXGH942aKs0h7G4lHwa70gXot7jO/ENGi88l54cDGclO7psNpOB6CXemRbqQwv1MaC1esB0Kltp9jTH7Dysza4nlLAEMGf/MKXWf/2IbritQQPvTcAleZlWHApHPVuH6DHBY3Y7/YcO2ff46ddxfDw4yvMsL/FE98rQkFMK1asOQSPFeXx3Kw0Ev9xg8qac8jk/mSe/WEA88ZO4HOgAhXRr6ihWYbHFKXi+oU7MbsrhA7qSrLxNV+2ef0HSxxvU8xnaRjTKw9ewll85NgsEn1Si7sVm0DUdiIdz1iIy/pGwCnRYzy4TxlefrOjTZPm4F1XH0z/Tx2vLNbmn4UV8HNUOGiWHcbtkcGUED8Wsu5fgLigFzDaZjePWGYKN1JCaXuaARtPPkQus4S487YvXY/XBM8ZsbhBSAYC13qCSPUtCrsYRBMOLaHVD2fRIuU0WL7Fj3ZaScCTLqSLCybSgem+PF9lFpztMaa+8BiON9WGFr//uOSiLqkmaUOa3ni42lPOcdJfwSBhLiUlhuO/hX/hfp4cLG9fhP+sruJTbT1Y+igWvqemoPKGFfAHSvGBuz3/PrWWx8tXQ3qENzXbvBjaPSEY2/6Jp3VGgJ6MDQpsU2Pf3EocnjINxKom8UHJsVATnDPkKAhO9X5UfigF1Oc8hFtWj/BUgzatzJmOPhqiZP28kjfNrcCmzUJQpd5AS29d52QHU3yS4IZhA91wXtYIw/Nu4vRj/TRMBOl56zCoVFqNjzRaaYx/PFYl+WDH643w9flW2FNajs3v6zh8zE4+UWEFiTsmoI6/GYS3zgDvyU38cY0E+sYPnU+kiGULfTDuiwLOlxoP+C6av0iLUUSfK4UL+eExFXl6NdUeA7Y8h6ZVHej0rByOxplCVWYytXrvp7FOGrTIphceHlfHkbM2U7pvL86X28i1tQPgMlwAFuudouaMXDy+OZorNFW4cPIevH8hAh0mSmPDuGGUt1OHZEerwyLRAgq7sQwCXhziBRGX6XymC35pdWD/m5foc7osrCpYDvopgnBPMZnmjIzn9d8NcHTpeTi17TBO/dBCu/+m4+vICpzx6CLWek+CzD8FIHYzku7ureTH2ms5RLiDRkdlg2WzF99ZQ+hb9pqFvA0hvD2dJoZpQU2sI3rt3M2Lxpby9pd/+PmJQVD8fI7y7Uzp221pSN/wCqTkH/Or09dZ74w8/tqZB42vNDlvTio9EPOi1ObfPMJpyAMmVYO16gw+4XOIYhfWQeq1YzzK0goCDPeR0bXvQDW3yK3NAJrk+sBILYisJMr4aIkSvH+qTTl3rKAmRRRe2atDo2cY5a2VhOxvE7BeyJ02tLhwfFEh7xOOwz3lrrR0URZrfRnNi04W8FJLRVBRVMDkeZd42DlDKrvwj0VbujA/bi6L20wjgYhxpCm2A+6JMBxb+AW2O4zBkoULIOrTTfh0Uwu7Ow1ph48inJl8FB51tuP0OFHIXekGcZHvuL22jjuFbVBLwoj0lVNgedwd8j+CfMzpF+fONgXF5UdxvNwGspBZAl+Sj0HDnW4e1z0JN+yYAiVXY+jzHWnsSx0Jg5caoM9wMa20OU12yebUFFINad7e1FG6goy++2OMlSCvHa8BJblVVBXZA3EaYnSz140Tq5UxYa8H7315GMcVh6KUajke0RWCnOBf9DpuCUvNE0EB7Xrw/aXKopeSKVS4DmcbxePdscc5xEUI+mS0ONXSkLVO2INapDYfey4C0b8M+PIqW5jU6knaLS9hiq0mHAhJ4LrJoSzULQ+aSkmcEvERZNdFIa4xIeECPRKsz8c58iOHsiuX9rkowRj3HljvJIo1W7pIy/I2TXjoxke6rdHoghsG5g8Hoz9JmPZ4IWid/EPatd5ckC4Gm8MtyXvbHFq87RGHRsXT+9/iELP6NbQuHuCrgbKwMPE2N9h5cFPFAVhZqAmOPSE8IiUJLY7KwR1dDep5eh7/EzfnoqUWXBH3iiZv/4UGFdn4t+oVRYjb8JkPw4Ejp4Ge9W0+3RpDbjJX+cGAE328vx1eCU3DrMfh2LEwmzJEp8LioXuU/iZKFmMKuevxCHQK98N/gkIcWvWdn7dIoOqFS+h5QAe8b5dB04QZ3PTzDdeM/AnKtevQ2F6Vn+uq0or50RjW2AAFmeMhcr4oH/nyAasz3rDT5HK+xS/43TA9XJJyDj++noo3ztXB3KNGcF9aF/qSKkA51RCf7jfj0dmP2exhJ3nt24Tqq//BJYHnJHN2HFBRH2CtFfTdMMIp717D2WsaWLxIFvQEVlBnzzD8+/gG+r2Sholbn8NMtQxYml8CSl/ucMq7hVAwegSZH7Di1dJBZP4wGa/MJnB2yoEnDnGUMEMRXVIC6c6/f/xy+R481zDUwalKpKlzhzt6dSFlnRf8XNND2VEFHPT1KKdK53GudQfOyGrmkMFj1NyzG3bT0H+7tvD9qHxSzV6HdeezoeHgTpJQ/o3e72zJc2sF18bNp+Lr+pA0MY+HZ49mwU8feMXGYsz+t5f0FAX4of8lVPPwxmez59A/A2O4v/MFa37NZtMfY2iGykrs22CCubWRdF5YmkQHXGjRoeW0oF8OSiAK9ugzBitsopyReRypYwOzfM/gn6RaVl5hCQ23JFHRwQLMD0XBsfIWWtTWCvP+nSCb2gLeE7SDlcct5uh/EvD85wiAfHUw4fVgi3Lw1PsSef06SkmmlWCQqEIpd8ThYWs7v926l3LKZGCpsitO3ryaDPKmg88eE4zWe8ESuTc55eM8njdiAhxM2gqzevVgj00o6bq+Q0M5HXytcwMuvHmGdscf89GDwqwYKciL3J/gf46akPNtAK2knDlpvRHN33gTqz1eQfSUJ1jqdRn6xrvC4nu38PsQn/qcEYR+x4VwdlgXV4ueoJEzBDFq3F0K6B6JDt0iPEwuDvQdEeYrp6Fvujl4XIqmQFtJXrvAllWrjkL04gy++l87RuRfJR9UAtUuK36+aTL+lqnlaesM2eVWEk183o1yP9diUEomhuzfDVM8TEB+jg33Z4jT1aOx5HR/MZtfW8cd5texdO9X1thrAi4XxLDL1QQG1Gew4s9b6HA0HY2fnIaymJWQWPGC5sw4R/XO5ST3YIAuO1uDyNN+ej2QAyuPdfLmc6WYWvwAYrtsaWGIAE6oSue0FZ9460uxoc7yY2fXy1Dukwv5T+aTyKwm9M6NgdOOsZBTfxBnjrwCdQv1IEG/mBtdtfibQBF+qhvEPz9X8AuvcVzVb8bJuJqTZ+4h3YsENV0BqNqRzR9vCRH2PMcrY/xg8d8E3Hp8JbfnJ5Na5CtWviAIC2KC4UOdBmi55JCoyFaSFXWhMasiKNBVkbyLx6LBxuMY+lIborxd4LCqMxyyHXKvd5G8cVo+pKYuobaDiK7JBjSx3YuLTk+CwI9f6LSaFL2FfD6ExrBavBAMMnVhyvKH9PrIYdq6ahdLCk2GlWLrKd5ZgFE0CN4Kd3FMw3m4+iYbb92UhArTZOxdWw27HfSgqfgm1xdsISnRU7jGcAWtv/keufExVo19gDLLd8CCglG4I9McZph/xP2bzFn64SGet/AJfbP+C0lB6Xi5IRa8/Q6T6zh7/n6MwWPCZZaqSUJ36XYcVZjLVyVu0uPtQfx6qxO1e6dC/zd54PWT4KT8D96c5cuPr+nwvvWVaFL9AZ57ZPDcqP/4YFsRmOw8QLv9dKFr12c+d3IfnBX7SDd3uVBiiSYV7xjOqssP4OLWNGzbNpPHzLOAx/8k0cB0N1rtagPhhcjl8xejVsdokNZPhvAnV1F/Sib4/zGGvl3bYMUfCRgjdh393/vRRuMy7ByVyzaTR7JX5nHQ+TuD434Kw0D3HfJeoU3V9jtZnL/hk/EvaUxZH8Y/duVpmUa81PkJVmWOAbT9jhO/PoXiJgsYHSmPMTm3+FloGQe8/Q8mbVtLYUftYYWCFphrPADJR5V4p9eRwhzbyXTOJoBYYTgVvhOeOh4B0RPJENs5FhYam+EMfzOekKOCEy1uoFbJUsg9WsohLxog9ZcrutgxpwaaQr+mM0pI/wATh2swu+I+eT49CJwgxRUBBdCqFIfvG3JgWagc6H8vgzfZM3BtazbBhKf8c+Io9gzfxt80X7By8Cw4daOdu4ynwqNDT3hVwhaUnWRJFQsvkuvre2Bn/B/M0Y5gs72VOPq4EZgpDvGa8ir0HG4B7SkPUMnOnIvnLiMQSuC8sE+Qr1rPmYvt2TfSHBIvvqUmqXFYJSaHL76IgkiNOk/JKIb2jdkc0/IFX7stgJi90iAsWIQrRP6jwdOjcLpHNz8Z9oIX/CghO539YL/IkKRn/aaZEy3h060AThsbiKZba2FPTTxOM9sA+4R+8JLa4VDrlMHHxNZx1GxJ6By2lfaN6eYIuUUQ1nUfU3THoeaeYuhLzoeB65vgx0AQyC8QBDmfKnr28y2aH/8JT26W8v0xHdxdvAuVPqfhC/s22j1hIdZnWYLWj1N80SadrLa506Mdk5BbI8An0QoXRUVg/INPmCsbRYtqBKDvmQJKjDej+EsKZLJqOpT5l/CG5DaMnObLbZvnwMfJkbDZSw08V0qy05azeO/bU/7zehaMvfWC0+u20JUT8XzOXR1PylWhkJ86lPT64aCaEZrc2kXFHoHY0vcFDlyVRYcj1hyhEI+XBJZg8Q5Z8JBy52MxvSzyeiHKPUvCB2PysVZxNj1aFADZHas5YYUszXU2hMvHH8JtkZV4QdYOE5Yuw9179kKI00m89b2WuuykQCl0FB0vVYEwk6W49HwBNJzPJBvlanCqykG5PDv+I2xIK8QGUbviKEK3MvRH+HCZgy2ZjNsFvdJCdKDhIDcXLOQzxeshRAngkHgDHTzPUMyf+MdcU/wdV4n3GhZh386rIG7gT98jtvG0tZ9wy/FCFJhrCkmZffTPawAk34nDgPI7uq5uAl6DoWQSfAdXd8nDTdXXaDVcHOKOOXCr41V23xPO9btMIK5tPGc83TzEtY2w8e0Nthf7S1fea4D8u7n8wvUTabxs4Zk1K1hXfQfF7MghuY4MjB6mxsMkhOCmvjbEjYjib607uLBEEveIX4aeVzVDPiuLwlP0afY3DYLG3aDYqwCrLpYSX1LB8EXS8PD+Kxpd1UR2tf9/yyYbE0/k0ZKZYnxl6QhYl5hE128Gw6d5Mhh6oJk/RPixa8sf2msvAtLjcljaW56lEtVhbVkWtHaGQGlnHBlf8sW4Ga+oclMSV4mFo2F9H7m3+kP1MjFQNHnPKd2GkKKujj8vClNazix23vUFBFv+sbWaB63vtKcpvuZQl1hGa8OK4cs2K7j5ZASe9Kwhu7t+KN/L+FvdmQt72nFG00hYXdlGJm0ynKa0D6PlVVl1qwFdmf4CpqSl07LPm/B+7120dpaF3/8Fs37Tb+6x3kK/pePho8VwOj1sBbbwQUgb4wq/puvQk39DeZp1H2RTI+FtsQZGXB3GH16WUbky4bPUavSKDOAStzqY1o1QuKAJvFq6IOLBW7p4LIVV1LTIOmM5dqsc4bvHytmraxm1rh3qX7ViPNQymVOChfDzlbloNPw/vPXoDSZO96df377AveQe+F0nCpXepnxhy34utZ1AiXbBNO4/RF+NGzhrtwPe6L3LwftcOERUDb5Gp5DClLsUHmcFbyvfgsnk0eA89zukZaTikT5BPv5kKvfKaMHondLU1jKXR9/fxd4qx7E8PxsN8mbxfAiijh3LMSHxE08SITg64MgBbhrgrytDEbMf8Y6HN9BRR4Jcag7w/gVHCBe2Y+9lIahQFAC2XgsZEQ7gLBGGX5aexMDjW/DRqWMsE9SAZ2UW4WCMAuj0JOIPr1X4J1iRA5QOkvaxfpw7rge1Uz7gTEFB2lNXAjWCFiD5aTFWj1mN/aZv8MrDvZB+T5GGGa3gMzUnqfdiMIzzsKNyVWVIft2EM/cGcqVPIl3RM6TNzdvo2YazeDCtC/ePmAy+gqvBfbgCfO1dR3s8rWC98RLM7hHHMc9zIChVEc32jgPcUoVnJM1ZdkAHirESRYf1oFFlEBFqgqXuV1ipPpWP5mqSmWc+hkvawvJPYvDd4QCaHZwBig+0MC2sEVacu0v+NB1SI4CW3i5k8a8OVBdtDdE1Zbi1PIZmVQvCgOU5nO2dD44Hr2LmSB3wCDTmqS9votkeA9hR+R3Wyk8GN50iTLpdQmNbA1BmjgGcKl0Fu0TyWMs9AVUspSB4ryxvHv6KcuAgrBD9y1nSDqA2cAZU/k3GGc4xMLGskkOPIeR+eoenzy+jwc3vSPrONBgKNrogPAJPeMWxU5cPG98ywDJZBLcFLtyTpYnfVH3oTXEyq2wD/NZrz8OqvrC9Xyz3nZ6PeruNwbzqC5mYelC76SksCl1Oe8d7gk/MHDrnL0WZgaXYIHeLBddaQOV4dVq68x/2KH4CTfNfKOSrAh2BBtjm+QTas7xQXTAeF8npw8ZX2pCrqEGXX0+i4ODjXCO9Hab8Oolnr50AmdzRqDD/Lm3qVQEYJoP3MpPBfPtFVrGYRW59D2nF7DRIkduAblukEI/k09eT5lA6+jL2Lh8Lho9ewcWcTHq3zhPeT7AltTMbSayqDwXVxpHMKwKpIXYYv2k9BKw24vIlXuCl8hDEF6jCjmeeFFOcxGrKm6AoWAAW/Z0KQQ/e4NieUtBfdxei12eRUM8nWhetjG807PCgxiBs2CoHozqf0a8MMzgyfDYplxRSlpgH7ZbdgalGdyhX1wtPZ99h0QOm4K3wHqepdmBPdQiculBAjfmLIFV+BWrLTaNOEzW4Kb+djxyTgODZi7hJOpAq5NbT5bvnwPvOV/oTaMAbdnRRVLUZ5Z3cgZ8mWcB0CsGIj1fh+9FNHPC+Dw9N/I7mn2T44IhSaP9vOZy4ZQdHqkRhx0V9vHJMBAw3LAEtBzeyHmyElPjDpK+Vj1OmPgfLqZZQPUIJdForoUTzAAtLb4KxxvqQsbMbhYL+YGXMB36rDSSbKAaO96fCsRw5DEx2wcN/MkAn24X2m8bC55Xx7K4ZhF1/xrGDiBvfqbKEo5HNVKk9hXUXZXGG89CemP6GOUmLUSYiH64crmT3D/X08L4SWCSHUv7Dddjpr0tRtgtIeVor7W/aRNGds2ixtxZUXpvE0R814JVmIUJ6ByV/cOL57SKQ71ZAG688g7duJpiuvZcljlpBUJcYiEYgfDXIgeZDi3CWXBZoiRiSxvll8MA9iKKi1uCUmh3wPsgC4ixccJnUPnANjITGiEG2LvHheau+wz3rU7BxUz1uun+A+wfk4OidCFriV03BOto45rAFjrwjDxe/rEadwXIMua5MGxsa0WOJKrSUbYXbt3VYY4QoL35nyoI6u9hKwgie2AzH+SfnYscuAzL3sYSdjqmwwa6PZhvvwfnbxVHdMxy8T9wBmaar8IEukPm06VD/bSz4JhBamXiR1tZ52OF/BTJ3dFL3gkRYlzkbM1erc4PbdNzgMgn+OxwIofwVTHW2Y86hCVyyPA3DLu+ErIxvjALL8HLMMGodxxAWEUy4aR9kHpHi3PhSfPLsDeet8cbL0ydwjU4hxJRKYoKNMuzaCKC6q4a0wsL48Gc/njK3AR9O+Qe/7i7nuROFcVPaDzL4OwIkr2WSz8NkcGl7CvG55ThOaBT0e1wBw8FMdnVNhzV/91PTVxMINOuAJWH9oFl7GNqUY6hcwYkvhIlw1IrftDpnO9UFxnL/zckgf6cPBPIEMKtlElavWAre07/D+5Tl1H2eIC3/BDRt+4Hl+0bAzgIBvBe7HJ+qBqJ7ZCM5CurQOPN39DPXFms1p9EK7R+838Mc9scfIQHjV7z2fTyJ5P2AHBF3ssj1IfA5CKnZjOaFEby8yQhcpiwGidghhi2xwZGikyHA9T7/CQiCB2FWeEE1BW6/SGXDRiM46xVIq4ZLQsidBDqhuBauHCKqkLdjoyUpnGfQj32ls7AhSQPm32hj+3tVtCXbnbz+yeBfSROqulrIIzemA97zpHZ//SHnUYdru5YS2efxo3uDaPVyOLcUroarBRkoNuCPKnnvMWF4N2y5Mhl+WR3hQtd5bJ7VgrKT32H1eSm4lO7PH17P4B1TwlE9VA+8t+tCZFk+vv7tis+le1i8u4jMbhjiudwxZLr2LL98bEp1Nh78daQalIm+4tcG7nQ3qhobokJAZuHxIaZ9hnV1krzxcCzcWJfLgvumwoags/D2ylzIj5tO8FgFvbU/cd5AF+iLN/P+FDHyP/OAhH8aQ+4DG4i97IX7HrSA+bdGPLj4KLaMXc7xU/pR5fVZuG83F7NMZGBZZh4o/F6KiZajKPOpK70f+5KD5hzm190nKe2FK4d82UJ1m/TAq90Gan9bk5/aVDzhsAFqzp7FswaP6Vx8PXSOVoNsfRF4cVkK7r77Q/ekOmFN1nfyensGSpKrQPrCejp7NQJvSx8Et2NSvNNEGVIrjOncszJu3ryRXUNGQlBdP/zO7oOH1snY7fieX24ZzuE3pWBRnBidG3eGTnkvptP3AtAnXxjjGs6QoI01GozzxOLkQTD0UIAnuukYq1nH8fNWQ+1MP5q97QPZH1TEsPIiFJr2k58q7sGdy4yg//BXGLb9Op5y/sBif8fy39YdeE5PEI1e76eRL+ayhttyFh9FcPpNNUN+EBQ5jmMR1U04LuUMf3laiezTAMvnufL0xBG4VVYaJmpZY2t5J8kovIeddibQfr0DJ5y5zP+KnoKCrzMbX51KLKQKU5wF2bf4JQsUvOCFz+0hNdqVqpGg05NI+48DdZgXs48xgP2vK9w9sgZ+px2hZt39+K1cD45+6KaAogTUqbfg02dDcJasJURe/4yr9iuArsU8HuixZ68Rd0jR9wHv2L4bg+/ehi33msl4UAzc9unRSc+tSE06eDRGnEvNr6CjwDy+ec2aNtV2kPM6Dc69NxVC8wTgV4MTPhl8BXLXV1KLkQU5xX7G2iIdzNjcSZH5djQkU7BBpo/vJvRBtd5XTPCUpPyxOXDz3nXwbliBB0ZehiVfM9CmSxaeGJjhcZN6vGDiDGo5CMc61OhLlCkNNPSz62tEzRZRxOnaEDbtFxcZCOCem/PoeEozGDox1G5QIKmIxZx2ug5m+ARSdJou/DlyljasV4G/WYfom4AE7VfdwftrmqGxTgm90Zj/tuuyma0alKcVsPgHVRSPTeO7L9UxdsJ+ihBaCecz+vmb2D6e6lhKsQ8nwM8LI0jO/Tkr/o+483wL8X/f+DUqSaWpkLZKQwlFNAhJQ5QkhDIKUZERWUUZnwqRhi0lFUkkQgOF0KIpI0WatFTy6/tX/B7ez973/b7O13mex3Efx/XEG4prw8mQbGh2528+nloC/WJxIOp/AOXrACIbXQADX9EB2ft45GMZRv3upXLz67D7nDOfvjmXw+QGQDFJHkKHZ6LtwutguHMYLpF4TB3y2+GjcRyG3xLG2w+28TR7ZRp5dCro/63iV55daFCoSo2ZGqxgZo3uyYu4MFWONq2UhkFRYwpfPxGWvFgEqyZ1YzlocfXp93A46TyM2FCGvvvC6NafQ9yyqQ4bE83A0eINLM6fTdNtZ8GXgFyelPMWJj32x/TXzqjsWAi3PUqhu08dOsdOBA//cK5YdASrw8VZuW4lJj7QZoUNHvDJdgAjFzTB/NLh0DuoQhX5wyAqNodd3vbBnvBLHDf8Eh3dtwMUAgtJlLMh8ON0mHDrA267X0Rlnk/xgLsC3ouI5Y5bbnxkmyNOyyqG0VZ7aIS7Bly0E6adneF47L42RT8wxMVtZeDTsRYyNtzkE46+VHzKBTc6TQOJzVl0tfQDJu77w3elztHPl8vg0tKT2FBUyu8Hp9CM6W40+AFg3kgvjo+bAiJvrtAqnW30x74Tar4ps3fMNvjT8RtCD8eiWaEefO56htlddlRcbQqps+Lx7I/JeGSxLUm8zkSh5U2s+8qIT1/Rh3+HRVm7wpIrbb5R6WMN1CqL4OPn0zhhxy38kBsPcfX3YN9+M8jYNgdMFuZDxPNivpSnx0peAyj+ShpnBtqz7swJ2FAhAqm5MrAAhlHepV20JHkS1Qa3gtjpNlhy6gi8ExAB0XGHaHcCwbv4mXA2az74BWngBf0pZHjWFxZZbeN+sSDq/FTO0ZFDd/CoGRdWKEHNLF8Wi5YGb/MgZndBjixZS87FK+Dyy0HwGHeeBUSWwyNPQWgQdsaJGiNhUYgExyW7cveZLLj4ZwI3tRfw+YK55CSViP/OT4QfRxpZPXQ+H5XJYJcjKSx8UBGF55WQtMJ0+jLqHFYe8WW168qQsFoMEk1twSNHjeSKlHF7Yw2teHuTk550oeN7UVBZK8j7EuWgSvgO5MVc4FXpl3hGhTy6PkyDc+0a6GcfR/AyCC93p9PVAFFQnVNLZiEzODY0c+jMWqA/VQmTOyLJTc0MLXoqSe2kNv4zGMqnz5rg+4U0OKxvgqa34/Ecb6J4LQ8+uuchXR+/Ey7NOEu6jZNBBo3pkF8dxoTn46s1h7j+tCLVDzfmN+ZrcJZeDL+sKAb5FDHYb+VOOj1tFHMjmd4IRGDylb+8zEKOVm4fRbPf6uGJhARMJzNYs3oyyS44jBd2F1L9kHYnGztQgWwGqYT/pCdfa8Fu9RhUqReBh2XxfN2tGybVnmQfA8ZA9Sj+/E0D28xPAr3tpEwwx/mzxWFTRDWJ7xRAEP8y5H2KvMfnNG45nEH7JHbhlEvDQK3oF4euHgVs0c3ntS3wg8p9jGiPgdSoqWT23yxYclUD59z7Ra8WBpL1+LGwb0QeybVPRL2QRpw3cRTJZEZz9D4jLki34ciUW7jF6ADe+KsA3RaRqJigCwkVoWTjMooe5lWBto0bzfs7hSITU6DQIAutFGVASCUb4oeZw71v4vjkhT4Ub0vBPJ0GMGtpZL9PD9jhgyf1tk6G7iPn4crLaCgavY+eHQ+AQR8HPvQ0jfPsdPlhw0+Wzj5Kf8yMoC79AZdcDkS941pQeLSLr9hshWevUzkl9z6qnBOhb9k7QdVCFj4dMIcNQ96ZofGTGnMtuVUon/Z0nmbZ+a58wuob+Qlto8BdkjBD0p7fcSRuk58L1kuc4EpcCZHNXIw88p11DzkgjdsN3g4K8GYgCtZPuoBOqma0BK/BQppGYXt3wq5x96lj63tcZHiDJ78Wg2nRYzhQPB0DwoPZTc8a1q1UpKpsQ455F873j13mvWN7ME1lGOweJclrrhnDv5ROtNy4GLQqF2OPZC8XDEjxessTuN9sHW1qMoJJC77D4Jh0XFehgIunH+RQ0UGaucoTszIzYdnDGzQ7mnj/7JHgvrgS7Wet5493AiDhSxmFl8yGSfFusFMY8NXCx0M5p5mNLMRh+N05GD43k19HK9DKg5GQPO8rZLzbD6EfdkMmx/Oril68Z6oCqyK3ss6OoTNLWfPjV0Rqe7azeK4pOu9N5WNnZ8GdoH9DLBaDVsED9M3ehILa+2Fs5gmYOuMKD1aMYNvx+9DO+C41mrZD8SpBWF2wkn+GP6e65xGcrzaLbDXsqd83jA6fX8Be6w7wiPKlPN5BGMrmnYUQuan08HMCZNUwnrglTpUBa+ms+gvUPDYeA09pY22HIfz4tAMs9wvC0uQUjJhkgRtnjKCsk6vQP/8ffXeNpAlHC1DuqzyIBbnw8tMz4MBCQMESS0xT7ISVgWq8tbyeji9aB4ej//DOYSNBPEId6rUfwL0MxvkhPnhuyQpO7leiw/aW9GrZDWwvvA1uurIQV1DA25Wl8fB2hDnN3bTffiMctU3iT6UtrPJMC15zOHy4NwZeJnZCVvQivG6oBX2PDuPdaYexd1c6b4s2wa5FTTTy1R9Ok5QHz58f6HT4HXLv3wTPktLIY10AO6Wn0tYFzrhZ6zm8OjKHSuPUIXGXG/Ktv6w5V40ftXTAR/eNHGRaw6oyz1GlbhIrhYyEkSwD8W03uPCjLhrWHIIYTyEYXZwCfpJLcbzwf+An/pv23dwCv8zGgPNuWb787jhnv9uD9h71LHDvEBn01HCY/k+S3d2Kku7J4GZjADOurISfExZAW81PjGqTp40uizHjjSrN8zkIlV/MqX+wmVbPGA+HgjuG+lYpm8tX89NNIrDfKZXj6gHF79rzskN3yVMkilRbxsAEt3iWXAac3vMOoiqW0KemPBq+twOXNuiifPMFTqoUAM/bGvCsyJBFZesg1/AsOeV4QUrjAVxTlQn6GnroazSZkoVnoIfmdJii8gQ/zrmGZ/8dhfkFjnxOqR2Y9qPCL1+y8vRl5RkGnPdJCY6dk4GEj648v6KEfKqbeVy1Iz6QuM6eJ7rBtSEOdPcHQZyzGsSZ27FD9GdWziumxUIH+Onift7wYg6IzbBlDWmCccH6kKYtDO9iUjlKsB3n57bC6FWpcLE6Ce3erUA5i5tk9OMRJT4PJnIfC/huN2uqq6KIpQO21o6A+vCLYPT8NR3fm0ha34vIs7KFhSJlQUuzGzP/yrCH7HDcWXqQTmgKw1l9T9B8IQ4PUny52mc+3PouBvrLy+HRQQP62r2D994LQyHzh3xY2ZAMvoujVmwM+NgW8u01InBgShGl1SyB4N3y4Cv8lMyzTVm2LA2/DNTg0c9aNHfvJe7yEYTlsoLsZL0S0//qo8cVU7R2Sueprp/A8MuQ/lz+wt9agNrd4jDf8weNVsiBGosHFKYnDwM9AVwd4I/qa7fQ3t/O8MesAaeYjAO4W4FWj3Tp96QFoGN1i5UdBfGlTzIUfZ2B1nfe0aiz5rhFUxDOSezkT3/WDWl+K34Pe8kfz79gjZCzZHMwAdfH5dKqys/QpikNWwuEWK4xnbXWBvF3pceg8lgAF+8FSD5SRHYHOsAn4B9YDkqB+tkNuGxHNgZlNbPowxzkkEpeEvuUHP4qcV1mLCx2f4yyMdNBaGEzvt8QiQfcvLGmup9OrLeHr28jUWv2enZrygWBRjF646sHU7o6ec2VevgufIkTk05yzLgKkB82Hs9EZOKZsKUcZtSNZZayUBB0Ah9c2ws7R0wG0S+B6Ne8jmaWToVdYy/hihIv3FahiA0PzKEvaRzqPBtNLquSQK/9GWmN8oWrPIfHm9jATH031rUUY+XlelBROo+qco4ynpqAjolfqSIlhW3nOPCu1hXwoG8rkVUEmMJkWNEvQuntg/DNcyZ2ztThhKXzQfdaIdw0doX+AzKUljdiqFMPh2/rs3Cr3liwzR6D5wv7IDTBmqw+92L943n45YM9qJ3NRkkHPXh4eigfJ11D9+1V0CqGXH3zLiW+3cUBB1yZZW5x/pcjODbLBHK7y6lgsRb+rTHDynviZOd7m526h9FYiUpcY3qQBj3Ok+dmTZj73IU+jh6Ar/dMqHH2OPB52g2aitaA7rV8P6IM6jXcyHJQETS2jsAgiR9kQDqkLloCE00+07pcE4ipGIvT5G14Q/g+nOthDmfvTQL/wGqWkmuGZydLSGRGPs26EIaaK/0gTnQXvj18FDJNzUH5vATPLZLmPepXQVNOkZq2LuM8dSsuDZpDV9tL+HCqNJ7oM4eMRQvxw0NH+BLcgqs6WnHwyWcWrDOHUD8X/OrcRGvv1A0xesi3JnnAH/V41i9vxeozKbRvKL9X2d6lP7VHwfSpKC58Ng2O3h0FV+utaFfzfDyQ7cF+U8yocbs8mu9OpIdZB2FglQZmHwtBDpoIRQs+0UW7VGgJVYB9sm44qHCYrd3GsczNHFLx0EBL4VweryYA1v6zQOb1OsrYYMLD8vfxuRJgF29flo0WYxEdRT4f2Qy9iVOgcUUrtvxYz3biOSCbqgtHNxTBrIAskCp9QyohduRjSxjtKQo9+3TpWu1zmqOnxtoSD+GwZxsOW2TJv6dkUHlgJGTUvQB/L31QN0/kvKon0KEpR09di/mG5X+8vtSQlvmPRas+Ubq9RnloJk1AInI9v501Ab7fXMiWS9UoPqWYBWKtYEqIMrnDVRij9RAExRjWBVymvNNC4P3yMr1bbwPZK7tI6n4TX1jlze7+g3TVSR/uXRAFLveii01O+NZvKuU8q8Pw11oUe/47P3qxlTvzlWCTtB8J1pmAZ1EaRq0R4E90C/psKrFvmDhGxJ3DizdvQYroQlpwfB2eb1OGS1EbYclaPdJKSOV06yT84YkYmPYbDA4vhtm+02jggwkKnBOBmY7K1P3DCvfoToKuAkto9LRmq70f+WnjV96SfpvI0JJCTRVAQ24uywysx52uVWR8UJSu+DTQ6cE/ZDjqCDctU8JzC/pI4JY2RPSu5j6xfqhZoYHG6MwRyWNAIFmSA+eNQ6XrlnzZP5kE4lRBPPo4HtXMwsHNWdDaG0DrJK/xDM80LHviwZOlPmD9jk9YZqgDt5878Mxv+6iqbxZZZb3Bj48q4IZaFPS0u/JUpz6wmBGIT51U4Mk+M0YFMZrj6AwBHfnsL30JbuQ/5B3x+jTz3xrcv38JH5tgCPPj5DB/wyXI0ckkodIKfjUxFgzz20DbMgTfzdsA70Rd4ZSmNuD4o7xxSKcXNFthm8AYgEN3eOS6U1ietxStc3s471ko3LqrBDJFb+hi2AL6MXE57xOMw3zFB7zsjtNQbrzG/+wSecoEVYj5iDCx5gw5Di/EpMOH6I+MNEueD0KTjCmcvuEJlNwQwl/Xg2G1sBrM3WQCA+ntOCZIhj/qRpOTSQy+vubNn9uH84SfSPpRqkA54jBDxoX8FV+h6dHt8HpyNubn3YW09ipQuJ7Hy8wkMX6ODj/eKgIimqXQeuwWi28Won8Gj3jdUz8aHLeafR32sWNSHPXmH6XcEjEwnyUAf9aeBLfpEaihF8yLV/0Dv4BG/nQlBHRkE+DzwVP4d5cKHM2ZOKSvxag34zBfX2XBimsZg/b78VuTWBpPNTizzpY2N2uDb6IevJSVo4/3S6jLU4ir47eQ9ZRQzogx4BnHy3HNGXt4PqACNgOaLPdLDR39knCWVyLoHjxJB650gIrVWhaWNqafhuWk16YKqn35kBAyhh2vCMI9Aw+edTuFd7XlUeoJfzw89yJvz7DHenVhWCYVCA3eKRCWE4pVYSXsaCpLEZ46+EbLFS6dmIgRr63ggOwYkGpFtG88xOsXZLJZWTT3XygA6y+PofNrPbjiWPx2xZYPJqhCxZO1rNdUiEH/HtCu/cNo+Ik9nPA1g/OVGrntoAltaAgB78sy8N7xDfouVqevG8Jg+1pRuvusnOdPzIGIHU+49lIEZMTegF5lIzDcogD3fC7wqSl3YGZYLN3qrsHUtzlUPpRRF9m/p8Uh2dQrYQieX55hiIYUOKzOoYlnj2J9jS77tfRBYPcprPctIv2eY7RlpzIcONKOS/puce2SLNAqzKYk0UmwKHs5nUqP4CyvItwvUwI+dQDnqhfyjXRlmDizEN0OR8GVR3doXtJVSEtYC3o3EqnSaCt7gh6M01xME/UvQ21EA23wDsK9/ns5fK4EdTydy6r/ybLkOWkqXCQPRZO0OKN3Pq+x2IeL4/TwjOwIsPO+gH2316DHQwEYW3QWWnUkwWf1UlgmdpSPmbjC4eqDGHkKsVM4Gj91aIOGSw5zgQldHspXgsfnQUdxO76sdcXo1rW07sdl3vOhhWblaZFurCjfKD2HFq0TQbbTkqf8M6UIRXG4ev0JtNSL4eMpb+BWpDuejUYMFltDa3fJgq7mQjxRu5hdB+w5u+8oBvRvhf9MnvOXYg2+XCOAQl63aH3CKFBS/IDNRRt4vlkkTi/ZD0v8/eBe1D/UOuIPxzZtp7e/vUleQwIqx7tw1egjLFa+bWjeBGhjuTil5ouz3r1rsLu5mH0VFXGaCsFUn6vcZKzKluOugLz6f9zd9xDctGtg3nVxSvi7HPvHlfJhO4SpDRdx3YFa/Ny3DloK9lBNRibdL/eCFx3vaWDifJbWbeHhpmogO8afj8QqUu7rPSRZdoE+K8WjqvEzDqgo4NUp0li8To9WVaiCs58ctUqcB7XjQSAYfJmlqYdtakbRLRNnqAsYCQURv3mClCx8/m0OPq/OAOs8g0lW0XCpcieVFReS4/V2+o5n+X3FAZwvNRzCK7uwUciZtWteQPfbv+Qr8R7vJFXR65SX2P+7DKw+BICRtx4E2YVhsN0PCJryiaSqfHDxw3LoufgP1SaOoNGCy6hAyA96jVShbNtzvHGxES+s9eFRTcux2Xo/nxE6iVOXBHNDZi9mPh9ENQMDOD2iHI8JDVDfsgrKPXqVJNIy+a7kCawq0mDj22lwTP4sRI6fAoOJUWh4SJu2Hc7lnO316JSrB2kdMhjaFEWb7jDvTK8k9/eqEPvaBe5oPMVQgzRUmtnP9guvwzQrOdr7dDN8VnnND/6TJV9xFbjWwGzyOg51lsoDJ6zFjWcn4JyKriHN6nCseAsLm8xkiUSEIiMxjDw+hZMid0Nj8i56mBNK7Wr2OCfcFwOtWlHt+HiKMJkJ3ceD8Vp2K8+8yHS09RS5FxciBB2CSY1SXD0rmCa5yGOAgAFYvRWD1zPrcJGdPe26XAAfFXKBIvfTxBkeEN2uxYceaVJz+BjQ77GFRaaIXyRNeMGeRDLLWwWmvhvYRfwCjkqIIXUFQb4rMA1y5K7hON3VZLJlEc2+oU+Hfh6kVw57sbAvhMP7X8KV3oNYP1oXNEWe8zwTSQhdVAtv9RNRWfU+mqzTQhsvaX60+hOH1Q7HO6vM4UryeNzl+Z1tfhvTkoB8zor3wnAjJXwYP509ApPIJDOezH4owYPkWMpyFSTxY8qcFnYUl9y8gzN9f+Fahzl85eor8EgsxCv/mcDP7T7w7tp3uPiP+IqMLVc9PoRWi5XQ3JSpTDMMeixiMLxdDhY/aYPWiQ4w/6s/bS//QMNNNdBhohBImrWymOZaON8txQpzFaC32pQ+7BHlNy2HeEJNNd+9cpQ3FP6BclUHNogKgb13amDCViEoOrqFVUyGQUf3C/QdVcz9dxfRKK+JcPHCB9g40wDrCw+jwj5V8DpXAKbBr3hL+E/y6qvijVfzSP1lCdT9iiCP2woA8lvwyXoA34Y6+lx/Fpuve+MM9sZTWi6U//kWFp8ypZ0bxpKQtB2mZo6ElebSqG+wkuef6uAXH1Lpkaw7BjRep1Nd2Zg6cBh1hIbz+l8mIPxcF0LuPkZhg0A6XTIGri/PwlHB8bzn5CCl1GzhvHmpWJWkC/7xn9G+ZhE6m43DbWpxKDxrOcaZt/BJL0M+p74EUyVVwGmlCYz5do2tNg9Q23AbcE7K5CnrJtDZf+lw+OsiHK2ymd4brqHQz1JwcfJ0vLIsHe+7vqDG4jowNJ4B5QKjOHVOD9X9VuOUNW1gkG4EP71eUsV+aRp9KRo1p8nwplolEDKU4OgN/li+ci4kT87mFVkioJVdRO9cJvGtEA1as9IWnl8xhAfjF/KZjR3wM3Uthg7lFuczErDQ7C4v3DSTJietoayLs8E+JB/L57xDl5rtKPjfAF25acFpFxTAQ9sBh5l/R6W6TKpzj4fM+N9ouLsRjsccoGEjFcDZfCW4bZMB18QVWB2WzkGqSfg1djUEOKui6oMKTIk+AIlxb8F25E5sS50J7tNHoOs6XYqxU4Kod848skKU8s6PIv0x7vxhRhRnPpoFCcUTQCU5AL2PzYEL116DXe4knm76jz71NNEZlxqomzUZo+Pvw2DfcNi/6y8IyIVR1yDj8jIZPBjjjYpicVzw7RxV388k6YRrXFekC3Iiu1E45SGHL3Ag0bRN7DOpAl7fXsiTDzxDy59i0Gyozi4wCZbZL+C5miok3FtAvh6bKPxnEd7ZupiNTG3gTddHdviWgX4rRUFl0IhvaN/hqaYp2Brexp+j36LYu4PcO/MPNFz5h02ZJ1DbVxrWySbDknxNsvE5hmdueuNkJrpZ5Ya/q6vxc7MtW9f+hmcGajDW0R6vPDmJMjYveErnd/r0agMovd5G5lt/oum/FHR5ew1FJghC1s+RuDRpHq9RvERqryJZXrWKK8mRmhoXQMWHJew0/RhsNhgJLxp76eu26+gerABG03qpt3cilz+p5rV3T0LUwwrMGEiCSTtHQJvqRbqtkUsHFrzCpzsdsfHPDpgfaUEO57tgcv0dfJrhBWPPGEC7wVNMW6nOp8P9SDZ8Kwx41JDaW3PYeWMhyHcOwiSnSfiwWxd8st7jl4R13DnvJi3xTqIMNx+U+eqMzVZufKU3C5XuvsW9k5Vh9oeH6PBeisKqn1FeoBNt+mCKKzbIkrOILo9KuQrP/Dzx9pWRMEEjlDfJ3caBadaoIV3DGZbHYdHgYiz42olXhwVgVtcC7mkXBKEzi9nrkQvMdHYgrzcisPtbKrrGzIQvKadYsv4qNlhE4lqb6aB0TQ/2HvZlfd9fNC+2ArWuNrKKqjPM3e0FytpHaYpaPKyJV4DmKW/x7wYhqLsjRufVvtG0hgJoSCXaufgWSArlQe6Mn3jriTY8v1kI63dZk3djOh+4aQGthVvpU/ED+DpWlnrG9/GTMe3g1aEC3qMe4OR34XhpbCgferaSNP4q0/L6HbjrsDTZhTwGuhYLwba6sM2uiF7rL+TlXxtw3q0kSI/cSwrrF5LmyMOwrPETXXnZDEFXlSH/1jLUnGlCGT/sYeD6Aq7+MZoCt+6COrVvXF76BcX+1MA6t2HQ3GONtvd1wOlrGxn8PMKW6tlQMNeTfPfeJcFpD1mnsoKaNukMvWc/3IpeBBGVV3DN44P4fHI9eBl3wqXHl6j1Zzmczt6FYw7KDn2DmVgtf4p9l8vQFlxFq3IWwjXrR5TaoY6thT+4snYGLfEaB08+faeFl27z8QuJIHPaB8x72ikvK5xtlO5R5s8d5LOml9QOKUGkkDWeneNA+7+/gxASwz5lTRquEQaHot6RQJcbrB2RSPdHAAhN7oO2HFOyXXsaR5p9oC9PVKDOVRftrl+BnU4O/HlxDAbUy4L+nqX86tVWNpeogNWDqtjlNJ4aRoxn56KJUP/Lj094hUKSPkHl8QCcbaKMawR7KHWLA5ppi2J2vCqukNKlCzZSfDmsnVafGwM5l+1olbY3OPz+jx2uDvX2pef5tJ4Pyu/O52XbpzEY1uHdZmmY/SuaRl4V5xQtLapy0Eado0spv/ACfc32I9PDdtRUa0QqL3Whd1se2v6ai7vklkDynRr6ktPF8jeHgs1oL7Y4so2P61vicTlZ2L3TF3caaEHbxk+4et0gD066hJPn52DQmm8wdmQoxUm6c+0JPXhfmYmCZ9dSelEHi7keBFvFRxTxYYDXNezhEWvusMQmMQ4+KwnlNQ84OnU06KfMxKOpbtgUEMLVlhL4eeNd9hCq4nPv7MFqmiws85RChYm/CE/Lc6nCLhI1t+Xvc5ZDyENPmvysk1f4BFKRqz78awiHsU9L2XnAl6erN8CCkQux+rgcT3i7knbFAJUpCtG5AQCLqMc8fE026Ng7oFfLV+q06EPfMkMSmOAEKp6y1CzvD9dBBIyfqcGHvCYeN8IHuuIi+VrdNnDuSma77nh8GnUFPrq+xKP6ohAi64+zCqVB76cNB0yt4DgjafyhrQWCLRFY+NmZ0+5ehq/NAjDwnzuNvWyCj1Vv81V9G9AJSeaE2MW4fGcFmmlk05i/zWxYowWfvKxx87uh+7h/ip/M9qOLr3Poh3kRXb8tAmN32NPbv4fI8JwKLLusTe7PGtEjTx6n33iOfcUb6MvcOKy/3Qn1wkI07Ko2vzyhCHtuDHHXoQpWR02H63ey+MKBB9TW9BEHHZ15nuMl+s91Mr1UkgODZ0Chey2oa7cplHhJ8fcwKdr9ZA8UbD5OU602kHxZLoTlKoLQspPQWKiOqrbG8GVRLV3LuMmYt4Mr9krx/pBhtKAW8MR/ijBcsR9RQRUDVJ7QGL1y+gGLcM3NJ/jKewsEy75gI90rsPWGBOzb5MRi408DV7yA11WVmPrVFl6UzmGXjCReyy8oK8WfG/4Ywd8iQQ5zSODuP9+pJewe6OR/p5T2HfBuri6v1P/OtWerQVfdDD5N8Mdn8kJ0SyiP/5YEU/EpCVS12EKJuA3ad19A3Q2H8Y70FIiZOIJdTzti0y8NKPs4hhtrNlPzzxyS/lyH0cau+CRlJJzIFYOGwouc4R9FpQo9NLbDgn1iBiFsYAqZzFKC69VlNHg2m1MTTOHEvjSK/WHPeYbDsOLpbAz99BAq5URpfvdCnHbmLrxSe4J/uwncHK5wdNx/OG3jFbrZF0SVs47g0+3NcHV/GJ0qD8N9xY8hJE4EHoeIY7DxFQ6sbMJJZk54Y4wBzHZRYOdHfdDoJMd7xOZhjr4C0I8qWuRTRmLLjOFX3lvMF26DuJf9WPCsh/tPz6YPh5Wh8JgmPAhNJEGfCBocvh63mdjx0hk2UOU5i16ED3E86yQdFvmPbzSIwTuxR+CmsZ7eyFmQqfQefiR8Fn2el+HPSYy78+Lx5KQqzMwRg5wHKVz57QieEttGj6J0qWrUJHg3ZwGXh8nQg3u6NH1vLc49IQ2/495QW/cV7nUez/oKirxP5gforL+JYr8rOGhsHuz1C4cM0YlQfHs8JGrrwoj8PH76wR7Gv/jAN2//gZJJsRggxCBouxpya6fAQ3MjKJ57hMcWNpG6YBq/z0jkM+9/g3fMd6o89xRbvYajk6UeNH0txWdSLjjwJ4XVfC7zNO2RLHncHOI7hOnW9GTsnncC/BXV4JZbEqfJ/qXDV/2g/HQTy19aiz/1z6JnpwSrxwnT99fTeIaDEgiKi1KKQh5v+xcHhUs92eLbEOt359Hi9Q0srzEMFqiq4JKXY2Fywm9eG7eBpIWjyKNYjRwcWtg0xB2ffwkAwfNVdPGkK7q8MIS1y6fBLClVyBpniRudn6Kq5ioYWPkAZ9fY4weDVBaeMBEnKs4AL00T/PFxNl30WMDB6d5gZBxFfuo5sDOiB3p3h7FxcS3mlOjB2xUHOe7USBY6X0iXr70nwUAvErNbjd0BmSzfUYeBrqvwao4G8LkKdiv6TGmT94P5u+Po6POEjH99gdWrq/HYWlmOFnalwH+aEDpySCtrJUlL/jtfPrqRD1UhGbRbY6n9Ir61zAqXWiyHHh9xWC4zgXdPGERzk7Pk3JsFjbYHKWrFLjp8+yGKjHtLke238Ye/HrgvaeQ7QY/oS0MeuMvm8JFoVxj2xAZWhHrSopZONIozhjJjgOjgaaSbmw9P5uRSrYAP9reVwFrR5VSiFQBxUnN56UZ1FlCQgm0oxM9FJenfHSuKeCAPm0KnsYV8B0XeqyOpDWpwO1eAjxerw9Sw/+jmqDJWPnUHHCZ3wIDhTdySMgBdB1xAWEIF2lOT6UDmWLh8aSEWRbXSGK9Q/Nx9mv3nipPXlwyc3viFUvv+cfttd7b1VoIdW79i2o8BPN7/BW+ol3DPbSt+XjmfZm1qAYE/0iiyv5q1hjS3ZrgDauND0HicyS/tEmnPsTryvzcVNl1S4EdrzpCihTnqLNYAtfsvaddtGVh9fSM4iL6igo8vuP3hfZ5cPo2752VhkDfzZLmxsGneS9CJ/kBbbc1gUcNKDHFfQLWGXTR543n2qPuCYDkX44MnwsF7xnzmgAb3BC2C18/CWOe1PVe1FvOz4iRctEoYv8/NgcqI0XDsggivq/0PynRm44wsfcg4akszMs+SUKcop11+A+kRu8B5uCyMKjhNe9tN6c/gSZB7JwfBr6/SsTFRbJzUT48vP+Ewq934JmUMTJAzAO83dbAjQQpTAgagSquSK0uGwd03gXBbwgE+G3Th16MT4FNHI/vbfmZc2cB1XaPY6/lf9mtZAalfE+GM8FIqsuhCtYBhUPLPnQ9/uoAafrmwN7ERFs1/T7ZbOtm3PgyW7e7g5cvM8d9eEVjjt4AmW9zHmlUHAaWrOMn+EPW4/uNZ40N4r6oZrXqAdNdXGBrUFfC1732Y8q4AAj79woAH7vjlqi1+3E/80jsbT1pVk0CmEFREmcKqkwUg4GWE+xIawOh3E/6MnUW3O6VJN6KcRWbko3WwOTTWH8GP+2JpXudIuPWmm8sX7mabtBNUZGhMTeNl4dQ/ZdruKwCDFTWsIyfMQqJfYK4hg+Wce3x/niQERmykqoHZ9L3Wlvfg/9v6X/hl30J9mkfxbbQlsZ87jQ9Ih2s7nNj66EK8JKeCg3+/YluPNhi+e8IpOVpcUmYP11pFMae/gkQVb+BOBVd2eX8J/nUvQDVTKdg1dzYcVJrJbfMuwSN7KfjoL8sH/CJ5+sqZoH1zO/98sgs3akuD27w3zItegig5gLrGCrh7WRI3mY/igL9F1HI5DLLn7CBLq6mgfeI9ZqrvhDULxHFCpiCk+Qnx7BkHSXJWG26hHRhXNp3uixD4d23BI3v+8vP6vVx66DQ3ymlw1fALXHW5n1TfpsOxY79wxQEVsIk4CgfuitJM1TnQXLgVP6kW8/3Gu3A8NZJv6EzGbcsNaM8oZSioS+N6szbwnb6WY98GgeyeFfQ+MRuOG2wgh8XrqenjdmhsNIZozGdXveswGB+D11wGyPnpWXz0cxvlLXHhqA4NmDL5M3r3S0G0RgRZuoXQyD2VAJM7cIt4Ke/648g2jSqg0X6ZIwJK4MuBCVA534OksZOCU2z58bscWHk1BCX/FXDgk9OQM+hHvsoaJOJgDI+9X7H6xhW478RmunHtGKsUuLLZyFzYkhsIck/CodH3IFg4qkJTiyYL71hF9zfdIfVL7iAYbE4nJE6A2ZtjqKgyGUTdvuG9Id+NPsCQhLnke3wv+xgtQjen17xsVTpOunUQxxbFwI3qUfRF1AB2jhiGRyWuwD2n27BKshMaRx4Y4vtFvHHTmx9dmoFb1E6DRZUSbO56CN5+I+hjxkt++HQWxAjP5YBlz/nNhLt86pEyD3s1iLVr9UEVR1D1tAOs0v8XquTmU7OTIO14rwFZD8ZA0aSF8PeCF+05ZwSXz0jzFVEzWrw1lrrST0KZHpHM8veQ+rOa2zzzafjRlfirYTpYNHew74vFNExDgfSNpdDE1oRyT+ny6dTnPKw6FiLWyFKmjRqkzY7G4HOeYO/9CUhnBKw7rg95XiYUKTIVngUakHJ9GxxSFIf+Y+qkWVaLNXs/4qpNipS2JIXrPNag+J4j9HN9KLzaPAXLpwyH9HG5PG7ab/7kNx+e9mRznksVdqmvoe5P7hhl8ZpWWtRgv6QxFLrf4YstTzgt6g9qvXsDTyM0SN/6O32M2k4CquvQ+ZEmfhYwhws3l+Iy/X3oshx4zrRvMCptJ8VYXYbV5nZkWHuaLbKbIUFGF2KcYsDP9iTFKv7k0PMruXiyHYf662HwZWG4KdbLGvLC7OQyHKrz7fCTpDgt6WjjNe/y6WloAu0My4K9T2+jjpUNWfe+Ql+50aCYl0L6Ib+GngXQumcde+w05fwD2yDiugw3/H4LucXZkLrBGHRVpWG06C/sO1uFI/vt6eGyNrywq44+L78IydTFnurioFioBJd8j6DV8VX88UYFPHkyhXeknabnlZ5ksbQSTCPtuHn7lv/tzAEv71qqSDfl9Bofil8qS8lYA5dWXsPeX1H82z8UVswOxOVKJiAbPB9UzYq5bWAzvTgbAIa/ASyD3tCRmapctW8ujs1fzoMmArDv5VeYfJ1w0+hF3PtrOFqFNOL9vEL8XZnKdycMR7s9+nTYfSb8PVsMHb++4PjSV3R6dAx9F1NBR/+3PHbgLz3bKEBWXR0okioNUubzOXaiBdWsdqRJsauG9LUQ9cok0f1zP+wqFcS2pvmoZjADAk1s6PuANpW5R3Cu9ggWen8E6sddpYqqpeCzdhK7zfVDqXHjoPC2Ks1KDSbLbAFKu7Yc/76dDBIpllTYXcXm/nrUevMR36iUh4y1O0E/egK8/9BDnjIXOBC/8KuOEK4/9Y/SShN45ZfvtExSAzolKrF5XT/0nTuPz0/8w+UHJvK7Ei0IV9TBv3eaMEpCF51i9OB36A/oqSrGp3UL+Xr6CBxhlAc/X02i/qurUNQiE5P3dfKW8cZQN1yGJ9lZse/iLpgksBSlR/4h4zut0FWYy1WZ5ThfbRMZhBrD9pcZqBYpj9Hb7wNPmYZzlJbiyhNH4PHsJJy3+SM2mNyEey9UQGnmBczLuEAzO5fy2ohnDIpnIMFmB0/1PMBWxS28IuMVjiFl2C80ApefkcXmOwpQWibEjS13acJmOdh9eRmtT1Em04RSyFYaC9OtJfBAXTDd8ZlO/u36OM3qJfsWL4a9kzT5gKwrPVlYQ/F7VeDghbeYVehPm0r6sDPZFH12faLmKDX62a/DdSsvcJlHD6nXmkP5isuw9n4G7WhxoDn5x0BZ5zVcnjCV47IKsJcEefwLI0ownwiRf+ZCSMlpDPiInPtBkBKGJ6PuREesvboS/1thCRXH+jl4jiy8UXOG3Ped3FJzibo3/MGjDsmcPjid83STSazpKGsulYLujwag2l7Pr3qt6Wl1LT98sJgDBz7TlfcWPNxcklvM/uH5hXIkc0gLBP6zZrnzN0F3RzHf899NAY8PcdWCj7jCv5+t54aAlvdWftonBI4fXNlnSi8Xnh5G68dKY+rhRyT7xgIbL66GMP1EdJ91jRdomcNp3TDOWDABjvdsx6YHVSh414VPxAhg6m4tnGOphbHLM3iH0wg4skcGSu16IM7MFIusvTkWVGmF9H1a/28Nw1ukrsVFsNB+HLzZqgYmf3rZ5VQUeceuRPOqdai9WIk/D54Co7hUrpK9BTuX6sH524HcqPGW8xR7hpikTf0aU8kveA54rlWDMIcDtOPtAsjuFYLMUb5QrClIjtdFwEOyBF7sXQBGn8fQ9yJT3MPH8VXHCrI5Ox3G7imG1Yd1eLBzK88b8vr/DgKvd7AYmotroDfPC2St19A0VwFIN7Qj6SOJQ93hHcdKzmLDq/N4pcQ23K8/CfqiD4Fo9Gy0kjcBz6BVFLSvG3auWsfjapfC2AADHL3LE1/eeYjBC3/j1u5GXO+tD8b9YpBVr86SlbtBY7IObU5Sp58X3TD8pitW+3zizV+tIPftCBCYHQvq58byZe3bXL8wFZ99SMHe9e5sWV4K9aczIOTZPN5VIAJweSr8nV0P5l1GvKWileulxMg40AcTNeLAqswLHyxbTQ6tMrDXuAFVjvxHTk5J6Otxlh8ExEPlkWIqDBeHP5X3YE0JYFEdgZ21EioUl0FfkTT3PtkL9XeX8tmsX5h1YiyN+DSRIvY7ktxyOajNDyKROm8uzZcEYdGl/OOpNR4aUQK6Q1453/chng+Xoqz9BtB/WpULHmyGkH130doiGI+LF5Fl2xlqzvhIYy5lUNPWa6jhaAb5UbdYecUdDL7aCZvrL/I7kZf8u+8ESr45w6OejSO+cwnGz5SAUf/8WHR8/pBHaJF6uQCcGXBFmUUVfK80GBdPN+S2jd0QpT0NHr8czmcDo/HR/QngMO4BfPqZzsM6V/GGO42ksyMVP+fb0jOP0aCU3UTqLkc4+cUH3vRDDmYPC8WDzzrhwH0liHbQx6S/opwoaAD399VSf9xsNr7pTiybQJ92xnL+1O9UbPmVNh2p5Ng5faQbZAQ503rBZOoDunrBnz+XVVNQihWMqyXMDI9kc+kX9M/JgDqGD4fhJ8rwntU6Pm8wCgYi9/Fv5V7yTVcf8ugVOF/Xhm7+RVz+cjToTXdD0t8I609q4pPsKt7cNYMu7jlFsnfy6O+LEfxHcia6e0yAzNFaJFU7juO3JuFs7yO49M8m2m7ewyPCAeSebqHtjv1c9U0Dgrb5srvXDFq+/TuNTuxFOhWKmSemYMZFLWi//R7/lm4DjxIR+FK7BF3a/6PUF4403lICnaVVYczn4zgu9AEeW6gL49zWsOYPEbCtYTxj145GBxdxteYCKtueQ7s2f4TvQ/x1XF9Ai8M72ersKEjefIM0g87jtUcuJLovmG9G9xA3HYOETGOYP28+58fY88dHw+BU6FLeP9TloToVpgnUU+eqX5gwzYMEz93hqUdcMNLiHI921AIzt2RIyIqiprxwDhaL54Y5rtB6rofTVoaAyihheuW7EdXLdCB3QRDmHrvO0wdmwtP9M7Bqwxa869KJ05atxobadq7/8Jy+nR8OF23SmOIJZ8RKYmTfcPrr6AiBI94D6uzHCcZWmBpjj4evm8HEQ4yFtXfwkMhpUIQbkKq3lC7rp0Hy+6n839Ji1ngjwe2/5cHo62iKuTwOxspU8fFMNxjGH3DOWAmWafnG/quy+cL7YD792wCeba2l0sESdsu25JUPfXix+AdoqbAlra48Lp3yiER3mnPQHxUo1RXAgYjjNPrzMdozNgtXrr1J175dhtmDzjA9R48PbrejksdaMPLsUo6vP4fXOqQoZMEMclwXAFcuMir+W8/eH5tpzGstii8AmNMlSzhOF/JjorAlPBgth29AiSIN3tb5h6R9siD87iQq/i4Hge7PqfVCL+RNnQer54bjp1mW0OVbj5c/nMKtaZ04ZeM2CDeShSdB+0gt/g0/WwRssMmJtl68CM2yC8jhRwilHS8gA4NWnP9GFDTUX/DNw850fkk8C3Y8wt+3p8OvZDl4ci+JFyxcCvc/TiHJqmHw6Okv6qqopwmzR5Jfxwhe9nw0dNm/Z4v972BF0zsuV/mPfzyShebF9uiuoEevwiU4fYcyVAS3ESwswoSlBG4DB2HunlqYfncK1AzYcoigLUitCgFBJTWOTciEhGITlkiXBbfo01Ts0AqH5qmDU4EnjglPpH9a1fjooB8GXBTG1+NWw8qTkcD2czHp4z0WGmK4g8kK3p9SzelFu0j1mDku6GTs8t4EdXNu4OXYJFTbtpM0BZRB8X0t/VjrSGuv/4E7J9N47+cs3utaydbbJnCP9yX+c38hp6gqQmhvEC13OsHSIifxy/nfNHarD95yuQftwkt4bd9Y9pn6k6s+ToeJcX9Qoec2Cd6MoiTPSChaOhlNlr3i59JSkC63n2bUD8Mnu5Th5ItyujFqJCvGV5C2iSPIfp/DYefdqHf3VQ71WAWlXReocokpND38Sbk6z1hB1ptb97Sxa7g3fFYRoBSpKjy22g9ubEyGG74iYDx3FeffDYEO5/14r2sQRh0c6hQCl2hR7RUMEB5Hmdv0wTt/JsRd0sPySY/hqbMNlMUp0pq8g7g7w45c/plx9ZzJ5FmhzCNW64C7yzmyWTOXVk3JJK86R3hXp0U7JgazzjppmDvvDOj2aUH2//5xsx9HXrMHcX9UP9t6Z/LykzagmHAMru/YTStnDecnn//RzJ+TwGgn4z2hGKx0VqQA60gKqgjGOhJCicxNsKl1iGnYBLdjtGBbsTGbzlLB+xdvg6v8XXjjeYiOLuym2l9r4HrxIjxRHkIyXyaBQrc0yLbs5/M9YVRc8heaB+U5ca0h7cyOQmHrNHjqdIuWJCFkKJZS4Y0t8FzTiHUNz8Ci7938PN8T/O9tZjuBE7z3gR37eI+HC74ZkBSQjBPsVCBL1p1tWtzRymkeT0iWxVyBJeD7dBit1deHOlkJaBk1G6zVHpC4WS3tcLShh8PtyCfElccPa8JRESvowFIhsLrTTAYnM8FsZhtp++5Ax5rlKKV+DR976UGP2x2I8biI59zNoHn1RIiJ8YPTiiNJIuYFlKy/hL3u21Drpifdsh+GS0xn0KIjRjBNQ5x+BJTRX47CU70fYdmhfXj1iyz/0EyBi9Mm8ZeKn3zQbgpYv2yCiLmJEKywCt6X9qHnoybw2LyVXmxeQZ3BL2HJEh+OHOKeDVzDz4G1KD3CgOcuOQbGgpMhdXEqt2TvgjOT92GHxWE2KpSHFQMDNGP0KV42/QonLZ9PW4b6Da5LoMxpapQVW47fdI/xb0sRmHTjO6kpTaNhxmI84vdevv/ZmJJ2R0JEZSSnLZqLui/9UG2sFnRvfwm3zG+hmJAM1xsdhHH306A7NZz9r+3mCa+cOWKbMqzTFoCvzzKxNUUNXBRXYfzOWLrcaAdbE+1YrOwjN4yfDZ6VgZjbYgCb4kqppW0q6omHY0XeJbpGd+morDUn34nikpcNMEajFD0MRsA786/oP3wCWwuIc/eKLSD7oQ6EVyRTcs5H/DNyPFQVZSD1jYFLYSqcOvsmtp0xYPnxerjIx5yXV2ajnsM6FhwQZZnTY6jpkSioDGX3V5LJ3PRrJ2iLKIDtxhg+tmc6Fg0/TUXv7aAw6wnOvDEZNCcsQ7OaGxibkY1wfR0oWpZR6j457NqkgJ3nLdDfpAFWa4hB8JJp3KZ0AB7duw071Ya6+rFbUJ5SAFfybCD8TyE57X/Bi8MIdufvhZHhy6Gmrp6mzyyA+SGtXOxwlV0HFFDGyIYPfm9DuTPC8HVfMzV9+cN66/9A9IA3aDhrUrLPeW6c8o0vZLzgKWnzMTpUH961rcOUnBasPPeLLaeehIUD9rzyWA0YF7wCH41YkHlWBvtyzeBwiRFEPZ2Aj0cF0sUWI3Y0COADPZIo/htYbOZ87Av6AG9Xj4FNWnowrn4ipSwspRUl7dS+dweOyw9mxTYxKDB+zuHOuyj8xnAYmDmeCsuuw5hPb3nl1Wa+GOpHrXdzMGv9axC/eJ4frF6OLqFKMM34PezcrcGhGU/I9D8hetxQz64KB3H97YPQsbIYXXvdIGb5OJAoj4RiB0VSElnIJ21P8PHXw+ilsTyWWVTzmNF7sEVgKtp/lYSlbnNRMr4XbKqeg47ufYzq6YKLVYfIQ+cj57xqYek0wpKy0dCStYTsy7Wg6aYA6gT1cugCK3C6eItsb/RT6qJW9PIypQ8e5tDxWAc61thirocjRA5p+7tyMpc+HwMT378kp8dyuCaphsO/6MOWgRVsUPgSbD6t4WvHzvG9/UM9QuovTK57Dq3NW/jVPyu+8G04THl1EXIFLsDbQ68papMolhoewQYXQC9DFaxd7cMn0kVIc95I+Fn8A8t3+9CMe73YcncUby24Dyc+huAf11ToFtgC3z938MuPorB/8CUtnZNBNzW8aLTBRMje9YZHfo/kq0Lf4KrzVNA9tJcOyilCw4vb+KBBCr+us4UwJ1n2nEYsfOwNXbi4i232nULlaz/ptLU5iC9cROPiJ+B5/QuU1DakH9d0XmYVgldrD2N923qOj91PDkuNoE38G2iV7eVu137OjduP5YH5HHr9EKyufk4rNE9RXvRa+D1ZFv79us9Ri3TBy/kN6AwLY8mL42GflAH8C9fmBNdqehT3imp+yILFaU8IGXiIWcmO9OhCGYnE5rD4ihBsq/JHrYPD6I+kMEfulQCWroclt/bSvYvK1CUihoHjNEGs/QV7jktA2vAPhAUa8bnGaGgrCObubzNwDnVDSkkiq9RkcNCcmXArtQb2zerAmtjjcPCzNjg0HkfNtLOoWSYCg5vsWZcqcNXfbXCiazq/PuOJwadGg9j/cXTe/0C+bxs/h6Qo2bJCRBQyK1mpJEVpkVKUFZFEi9IuRZIiGj5KSZTSskKUVCLJLBGioSUJxdP3+ROu63Wc5/F+3z/c1+SxMDdbiYLzLoOmxUrazYux/FczCH6XwOS4IFo23g2StBVwjaA8aITlU1CoA6wf+45jHraAaiBxzebndGa7Fh0dtxpWeA+gk6o+pAzEQ1VaJb4yY5qyt4jqPqyD4ATmuiejoNrfjqR/JuL+WYowaKnBBcHF6NsjT+5rgCOSDuN/AYfoj/pM9s2w4pSH6/jVq2kw9DYVzEwOUd3SAzRBcRsZrMjH7uxtZPI3lIMzzXnbY3Ua66sKv06F8O1QSUwb2gkbPjbg/pgGTD5SzS76uzDbO4mHxS0i8y4A+03XOKzsDrwZqUe5Mm74y6WYI6KfcYDdKjjDq2hAdgj2jzeAs9+SWPPicyoRXgRLgxHinOex/IN2IsVvFKPdR1rLF+GEbk14s+YaOI+ZSreOu5K8+nTMljpFe14s41sjl8OpdBkWF03llnl6sNY8H8XHT8Q/AifJvzOG70pdYgOT6fxnD9KazlzILXOGjPzxsFXnBC16+gEXnxgGvpONSTPTAlYcyMI5U0JxjkQd5k/5hgrzzGERLqf4rSIY/dQOdretB8tlh+lpfj4EZ4Xi4nODpG1SSFp9aqBXuIH+m7QJ75j/gOEX3HjHinIs9LOHesslcDQhlZ6zPcb5K8NQrhkEB10EgeXjMcyoncJXNPPNY0/w4wNXljf8Qq3XTdkoSxUwcwxoCdrDnkDLf53oyz1D77D5pQWvnefCT24pUO9fP4z/NAMu351HYzu/Ua/0OXp8Kx26vs7AsSqeuPGwHBTkaOKSyJV4YIcQjJv2iw6ZRHHCSFNeOM6VAs4AGV6bTWVvNqKrwEhonaLJz14JwtwSbeq4mYYd10u4+mohXh5hix15EWh3V5GWfnZjvWXX+FyXLph/PoLKdTp080sgNMkUcXW6BLsaNLPrVyF4vmM/TRAJZddyIZBwf0Z3EoPJ6E4wfjlUBY7j/OGV7VWInKxJYvu18bjBC9S2MoHD7ul4fWAynu25wHMc2lD9/mt444E4JiENhY4M8tfuNlJt0Ae/2X2UXH0WKu+34d74JSSnc5PPB7ri5kYbUlj5Fb1PLqbyxdPAWvgplaxRQyfLHHxl60RTH08nkagtKJy9mXau72DRmsNs904AypaJUeOQCFyzPsb8RAkPKV2Eg081uDf4IxWFHefTW/PY5JkZnDFupanve3jZWT+0PumCXSHzwG2LJp4/QyAUbUGjP8jjIiUN6PMQgw9zW8DshyVXjJyPW+YYUoaTIIUnW2GUWAZsje/CJ8nq0P93Hxx6NYkSnllwUXUk7NQvxBVXpWlGmxBV/ZwPy40Xwy1/QRgbK4yCw+OwPXQkjG4IR59T71B6nBTnFkZyx2AFjtNL54YaPXhTtYPHRTnj3vGDeKByN8ZGOnCufjEVfboFD7OnwZhp6/jM+Cmwpn0LLLr3iZJa38Mk5+9wJ/QI/xxWTKMO5UN21HIyfT+fbPX0YMatSfhS7SweuvcaNOWEuWK4Cp0YaQ3hiV/p6sdR/Hz3REo6RtBQOJdkTuXyfd1ObtsjRVnqy+lmwmmKuHmV1uwRw3PpX/i0kQVEek/jiPSD1PBEB3ddqKMSkuemNwUMTV3gZAYw0+AWuuwZA4kT0/mT9RW+AjVQnruIj5mowcaXyrxsmTUY/v6B6V/l8eVwAoWmd7BE8iZkjF7Pi81zYfWufJbV2INPNS/gk3em9PPcHcrUF4WEfl2Y+ewyR488D4G3wijeq5nW3paiGc9aOXLMGVLMrYWVR6dDRmMc5P0pxGY3Y2p36QPztGdkvHUfLNihjFME5mCtsBknvB0GVtk3oVremHP+mlOPQx7tlcgkg9QeNhnvAp2OH8lYdT4pS2uBZ1QySeUt5tDN6+lh1F7es1oWpq2xpOb+27x/0iH6VRBCLzJVoFx+Eo95eZPDigRI038QJlwVo6NWNvDR6jDUvNoHPNeMdrpOhf3TP+Ght0E867MLtR7tZvOz0fRiTh1oVClB4WpnHndGnYYPTgIL0bE87epPaNL4Qp++2nLF6Fd8y+QwTZuvwpy5EjR7r3PYflGYKt9PU/d30heDpRCWmQCj+sJY+9AnWuB5BBO+tIHkzxZqq58IuiIdoPTBBp6kd/G4tsmc8WcedfQM4xX/6WC31SWommHLm+/owlj8QKLVp+mb9khCzbO8vsIQhCTsqcViLKsr56KadyYFL7OA5MoC+iO9GONjLOBXzFV+6BXKdOYjexz8g7Z3BumF5wd8pzwKglyF8MfTN3Dtjzh/do3CoHebOUClHy89EWGXhi2s4lBLChuV4Jp4EY56NYCLvv6mHarhIFE3jNSVX+GP1OXkf8OFRaZ48AIPYdhb6YPmR45QcVAhLz3xH1eRKeesfgWBNc40PjcHPCZPZOHD6jBh4zmMuC/ESveH05GySRgy9Q5p3bnGOzyF8aeqEl412ovt0wQhYrQN8mwLPnVqNhscfQRJi7z4+PRcNPpzAES1MjBH+z251gnCTv9FJKDpBeLh9+jemiC+DAeob5oaR9Qexpz9aWwZco/fnxOC65tuQcPVIrzxpw38XgZylt59sJr5mxy85UlLwx1Ph9Sjer8RZK31hYwbdtDl3Uzr/Ixp8kpDrHmuDSp8BQODvOGMTQplzNIDrZWz8LmNNWaWT+LN5vt5XbswCvis4D2dmqyWfAnFM52pwE0MhmWs4Kwno8jDxZByJk3B3MaDND9OHrfX58DVSevJr82CV0kZg29oPU3ivWj6wYl0NwTA2O1psE/sKH/L8IDVwT8JR6dzyDQBeDLKCRfe/wXPhY9Sfr4rbLO7i5cEzGhZwgR8mqdLZVJxHGYwESQKPHkE1pNxVQaKRT/ielFTrpnbhhQlzOWbu6BK9ji2ntKHkPoUjHDeQRMXZOGC65eo6qoe/wg6wTE+vmBkHAqNWl8p9KEmJD29wHKXhoPWLKQdgw9ItucIWNW9ZEF5Dzr4qIj2tNfC7L1joV43kXUC6nH+zjA6+uIE7et3YXCZxlbnvKlg63BScu+BwcumkNw7i/aWrkIb30CcYHcf5bJroeHLTFSvnMW5R8TA+r0DfzEUBq9rB+hb0hDZf9mB/SrS/MJPhjJe17KtmAtWlXSApIwPzDszES5HNHFX3xnyOCrGn18dZOeqdpIdLEffhffhZcYwVP1PBXeHKoCHoiCYtYrTWbMalB7pgwfmh8ERSVHIDfKkdpMc+LzQEz3CROD6Qx/0/juVlwm1Q2PTFlAUfk/hTemobdwA0cKx8FbmOn2VFQefnnqQbQxHvTVbwelLHpiOMcZ4lQQYXr0eesuysF74NB7T0gMDjZv82fs9ezZN4XfH7HjhBiH68MCPuwL6+HsFw+vVpnRrtyLMWHyDh4ISuS76Ajyr7YOzheWc8DEMf006Qe07ykg8YRnPK1WFnNwe/JxTRKqZBVw3t50//JUlj4OPuWx7Nmd/1aQ1knOIF46Eu18qqWS3GPb//sie223g+ZIe3PHDBjdNysMgW306enAmhn+Y8c8/huGtv2KgM7II+kKfgJjnXBJ1q8OSZEU62f2EWzxkIDdcCsQKdUDh7SveaB3Mn58dRwjbiqVuV2Fx/CEucVbgK6tt4Om54TCzrIx/NuZj4F91zFhVghsDV/OhtXIQLLmOVu3Yy2onAqhoQAwuVzmQ5cNYClk6jEY8HwNlQY5U/SSOTI+KYOzWx7i5T5F+tYqCYdJ62PE9kz0VWmnam04Il9KhxBm5sMJWHTe134Bxe1dzjioC7WHklItQkmXKdMqFlMo1IPLzA9b9Jg6CRshfBWagipYITJ2uhKs+inKlaB40ukRCZstzUv4uj71QyE9b6tjX9ADM3KwL949vw2sTVblovSGdU/Dn+4K7SHH3V/C2/87V8y15fUwgX7LVhtFjj6CeyUzU9k2B1qseKPc8Hpdor4U0vWY8taSB5VRSeLgJgdV7VSxoOIw/H65Ayz5ZCPI4xJKzZnNR/yesbfkF5/eOopVWIqBvNY8PTdfmUvdetFsUibWLQ1FLxBC9xtdT3Sk7tqmYgKKpwiDQqPDPZ2bA6Jsd+KlxPevZeEC4rR+tTaqCi1v96OXpUA4UGw27l1sDSlrx6B124DxDHlPklEg2+wZotslxm186us4eQzcWysDjEcPh/JhiyN+VTM+Ux3BZQDmpLNnELrMO4sFqYZIIc8DaCAt4NlAI9rbFHDojG2/X1dIut6+kb/SAXl6zhpTqxzSjdyUcVzEAe7U3oLk9nBdP/cFGTsn4+a8PGZ9wAHMTC2oVf0uJs4W4PHw0ZJz6gXYPV7O0qyq/KFjP0a93kERjBf3Mmo0Sy7NQc3A33FzKsFT6PN1YeY8UPA1hYrA59wfU4vf2+WQ8/xFO5l2UOEIXPe2NYOF0YbL1fkoGr6VQbt1+pg05vOf9JBQzCsduV0eGWQUc5zMc7v4IhxdOx+mIqClND0uFR7EysOVkJXgYBlGl3b8+PnuHVH4agNYILdgZMg3OZAeDfW0Je16/gqtTi9lh4iNMXR4P5wWM2Pf6GJi4zpiXJO6EefOEcFHULpTr+I3Pb5aCZ9d+3P+PTz/MOsqjf5vAcplsSP8zDTQenIahQ68hLnQfhVa8gt0eGbCtRJaHS48jxxhR8HqEVHPnJ+ChN3A+ZRP/1yyJnvmb4URMN1SGWJFLkATbLzcHyednWV6hFz++VYSxXzvp2JMf7LAhlfsX1IMEy6HG/Jdo06QA8ybvB7CJxWb6Cp6igdDasI1Ojye+ljyXlaefheeOznywezIo9Xqw2zhnVE5RoWPiR9GzWxS+JalD8IR4TpPMoKCsMDTQEYQz6uX8R8QHfe4Mx0Wivrxevg00sk+DmMII0Blq5I95UdQ9UxnOGDizu3kgj9kzFkIUz/LyF4fRps0SdD48hMwfxTjIj/i73kjYGqYBX4yP42dZW3j3/Cp4XpWFTocOPHmih7Zfy8DlM/xwwRlRMJ06lcKL6tjI9gvfHlpPx7X7cYq1H344FQl51Zsp1vAoRMZOB0w5zLm/4zniUyta8CdOnmXFhY+3g/FUPcwtL4Bu8zf0q2oM2Mm8YqffQ3D7rhbvtBtkHcsAfK1dSYopzbzBbzHE1dtgTJMaTBWT5QDfZjKtZX7mcxZUiq9w85YMSn6QBtYmM8gtp4RGzxwDW7q82d/wP3Af/RqdM3w5MG8jSnzSwWqBrXxx3Bh6M7COetqFYL1jPx90ygTzzh98vTMH7lV/4VL921RonYD2V52gtz0LnJQVYXb9IZgh2Im9vvX49pgcGhf58MVPSXR6/UWY8LYYnwQP0NIYc5j+5ShYGm/mLS5d7LmsBqO3DUBNsih9931Cop8e086cPZBeoQnrn4XT05lucKLNGY47p8J5vb0Q/eYHxmTXs9xKfWoeH4yGj6VgdmE3Gm1wgriZYgx5IRSf7w+fu+Zjwr3HvD1CF9SrPem8pg7YPFtDyTkaqFYZy3WC2+HHPsYP7X685mQRfTOawB9m36ftsUrweORqCsktpvMxtUAjL/NNnaVwLvUcTh70ZV3bSnIpCuELJjoQu8wLPW6v4p0+DXzHWJCal/Rzk9x8vh1YyooyORAydA7GpmrD7q+bcUDLEY+fCOTnxl85IvESzModoI22jlBSNBmrq1eAQLEW7Lo5Gz71HKcFdn4U0ttLzeTFhzZVorJgGsXeyQBp2fVw48Y4yNsTjbVmE7nx8QD47zsB7W65JFYgyoWb+/lY2m8sG2ONgoOiED77Ai6sbuRvM4bBzJQR7Ff9krYdk+MR++zQdtQ5GnjXQ2N0lABfjefLrYKoN2MRFyp9Q+ufz1hDtZ19ttVw6CV9Xu6xlapVGdBuOmZ8tSVpk1v4+nA8v1LbirEjltC1I8IgXqFFc3JXsf27iVDidBcPOC7gJNdt/N/bQb70oBIOxzayq3QqOPZWwpQntVB9bAbkyJTyKp6JTQNirJLTxJFHPhGvW8eX3JpQTrwSpg8vI5ucSVD+z2czhZfibrOlOKshjDjNEDYad/Nja1GeqXCUUpquoLilFOxIFMEvpMNyy5bjFLcE6pceoo4PRhy7qpTWL17+v+881DwgC96fRaG9ZyWlvzqEOlezqNBGF4/KtvKPLS/AvWQJ58SaY7LJFBhTd4Oul/9gj3naWF52kURm10NT+AHwqDjFqWMc0HJBBBuESIOwrRmOqjrPpcLp2BYoyoYvvDBgxQRY2rKbj+WsINNbfiR6cwI43UtFmc+JJHdYCVdoDMABo/v8fn4hCexfTaeyz5C92jVaaGoOpbl9+LbvEs7eZPdvN99Ho7ZfNGX6BFRJDcVNGgU09I5QdkgJ2s3EcO/qGPI7lAelQu9w+91IGj0kRlH2NSwzPBVd/xpTZLQRbHv6BTcLFlD3x0D+1VuKmuOFsKNFDcYt/YmbNSIgufocRXzUhapp0vjgVwHMaFPlZ63B2D40hw/MH2BthXXg8KKd34o5M/zjr0xxTQz/LvCP36xZQOw5ZV+w+Gfq9SB92ZzscQH+3T0XN+gIQHbZLvC4U8MLxr6klzY+EOH0FWYFr8SdmwgsnmWxp8kjejxeH37dM6fh0WL06+1lntLvAK64G3btrqaBhankv9yMDfaO4+4Ohm1eIdC4YiM2NPSBxVVh+Pj1NwtK+1BQ5wv+PTiRTITm8/zOKRA16QXNCXfib3JDZDrGBbZJ28H49Y2YdccD133KxcXXxNDBSxqWGY2GcasekGNNIL/PmopFVxZQnFk3hKSUQ87LEDB1GGKvGClIV3TApphXkHapkY69r8AktWJ47ZfK005WserbSNKefZ0aMszB3zsPj6zKoWtqTTRs/Qoe1VwAZ+sDeN7yRtQ8bk4FRcLQ6DkMYpOCofFcPvm8OsAbvS6jrJY9x6bvxWSz2Xj/6ghOfF+MSafHQHPNTvIx3YNfl5bDurlxaNmzHFu2zae0CZ3kMK0Fdux5TQmd48FTdhUnep8C+7RNPDZCHW/5fue8kh847kYkZFQGcsEZFxipIwU97hvggtMI9DI3w8GdN3D5xzH8d4sG3dIbDdtcrOBmjjDoS0mCVUASepM0ii325oQPrjTeJh6UAyNA9Z0q2ZSa8sr0aXB3lBA0ZtiCsEURb31/kf5zfkyarQXoF/iWl74QwWLfDiy//ov6rivAyROFdKJKALbK68C6lRtZ7mgYWX1wwRGPy7EpczE+FU7CYzOmQvvxPDg05RGvtlvAjyAYTZdfw9ioZajx4CS3oD8ePXwbriVLg2FEK11oNkIzZVE6+8EIdgjeZ6X8yyDo6gYXlkvTqIWN6OdqBLJVvei5QJ4fTBDBuEZtfp6XS6tub0bzlDvUN2QFWSMPY9NjfUgua4HIlX95r2UmP8opguBJV7liyl++dVUGWnx24uqpytD12vSfK/3rp8U7qDnoKJySysfSiy/5zfapWPX2PCjseASHl+3HBsERsDx5NPZFfMCH/A3aZi2kmn0neHbVcTp3dDVVy3mg1FAYOriOhKtSZbDvv2Q2Kv4MYoNKvG1mDtoNX0rTfF7g8vVNIDVPm07/77yLndAy/Cg9tDCh2Au5LFF3C7Uf9dJOVWfOyXeAvmABrncdD1fjguBGRxPlH3Qji+Dt9PzbaFro2AFHG5Ng/r1CUFn4ip4IAvwcIQqTfh0BYEP4plXHIfqJEH3WCqukOnFt931+4PoHnF0kIF70EkT8d41u7jbBhpY8EmqvIPWaLbS92AbiYoQQtKPZVU4LfhXsY12/ZigZ6Qs/bi5HQ8GF/ya4Gxz3CFN67xG8GFmGdQUK0GYZSus9Yrnq7Hl+627G78pOgHphC06K6ifn78/wtfozMj5lCFvme9Orwxb8If3fTnRZSzqKY0C8PouvJwWiv6MmPs/aibqhhpAY9Y0bHE1JojeItP7Lo7LrirBiqRYp7u2nloADuM9wiNQdtMHg8SI2UOrja5fUYZ7QPszRrIZ76b9p5MxJbLH+C4QJN9CIzknwzGUFB4aexvyXwTDzjheLV3fhn5X3+NpGZ4q2XwEhOon8UkcLXj3YCPfVAvB4uDEJjrnEkkkLocnTCH2PWpPkmhAq1X+Nu8JF4XdOJu+/Fs6GAk9p3KJLNGVXBb5ddQd2PPjJqRujKW6uPJfnikD2pw7K0DUnQbtcdBd6CC2f0lg6SB6Wpeyh4pfbGSpNOMpNGC7K3kbBjMk8eqIILYvtx7rULMrN2A46R8/yvcgjVO03hjc+0wfhDTthYFsXOyurwe6GDIp91cY7opfBH3dxqs2/CNe3joP4pwKgFJGHdm2ufC1BCOpaY0FsWjvHi/my/oT9/P75MP5qIoGPgmXBvNEILzt/4V+5wvTgjwqeqTMnNakPXBywAMXebeMzd9XgW4M8nEm1JoEjHTjndDN/sjxGz28vBS3TH/R3ThC071oApyTH41NbM3huF8Ytz3w5ZqcHTNB5htMn6OFOxTweey8SZj7cj+WP/FAoZzhMznjCzZ2lPKibA8Nf7IXFy5ayTe5VmuGmjOtJlb0e/sMFLQSuGMD+oVus+P4H/26vo4+BIylw/Rn+e6+Hn7uJkbelGOgoTYDqpRn/fKOfvY/84uCqEuq83k0T01TpgsoqVEtRwCORBpQSy3AyOYovcRRXhjbATiMX1Bz7lgu9XXFK2E00u/gfrf0zn7xuMljZW9IsJ1GQ1emAxwvmgeDDDJp5IopM1qRzxvdg/ispjPbiarBF5QGYlVrSCTNT8o16CzmxT8H4sTD1ernj3h4RCvPrJflZsiCqNBWjq1vpYY0QrHz+k1p8p7IqDcdrix7BrxHtcKjOCV3SpOFHxDl0+J5G62QmoFz5I9bb2EPu/5w0P6ILR4k6Um+HNqvKEjw68x1KWxpw5JKN/DSwgO63rse4yWW84Io/7+kWgvMrArnlDsPiwBN44oQD77oxF165JYKkxHvo9B0i4f0fefP7fpzjK4F6WmIw10eGDyw/wzO+W8NxC0P88W0pXB02m76LboTLPJETZf/Q1qLhUK1WwuPXuOOstgnss/ExheI8mjQjj3sCToL0dDWW9cyAp3snwOVnKRwerUpHHP/SvHwXrmv7CnIJdyF+XTSE6P0h6Zp96D3WDNTdo7H6jDFOWdEPHSM+8CYvD5q18zs61Ydw3oEl8L78LQVWInx74Q9X05NALaaUPzy2BOUQIRK+p42Pt0njmnGrOPagCX9aqgopWdo8Q+QPNSvspDEKnjhrMJsij96gv53bwbHJENd+loRdm7Xh1d9erCoY4N1xDuDZcA03f7jKievd+ci1b3BQxQA/bDjFu0sQaIIPihVc4eG6sXQ46RNOEvPgm0LS7B56CThmM30emEgf7orCW9E+Vsqzpnh1L9avK2SrsuVwzy4OfUeOJPfQZTCtIAsnTp4GnY9HgddoOfK5nc+bORQ/bJTnyRYOOGK+O8htrgSRH5uo8xbD1OrbOL6nnc+ki8OBrD3gOms073gdzAeqJ5BU3XBKztAAF3dxEN0ixREJ++D1UDqOiHTACrPrYJF1DxYqK+MWzx88ua+bypIFYHCxJiS5zaXQsC58NNuTrA8PgOf8MrY5GgtXZm2DOV7vqfKnGBgPtOO9chXIe20N+lcduP5OLOVOVya5e9/R3XEYZx8+SkLu2jDhyixob58MhvvDWK5eBXd4+ePm7f+UKssfJLW8cObXDXRq0AzC3npjl89CTn/pDanZp3CHtCvr2d9kLd8IPBZ8gouyzfB19ySYbl7Fizb3glDcPTYy/gsP+xmaz6+kc6vS6MPuIj7Xp0O9+YJwTSGfEw8Uc+OhJhJInc6KuzNQ/HQw+Q/roK3f5XCTSyd4TteDNakyaFk6GeQlV/PjMB/It4rgpKobUPc6HmyXb4WGrWP5j7A53H34hS7snQ6DIft5hsUCXB1+gw9PdEcfk0yQMHuI61cEorSdIChKB9O9FiOoLupkq6bpNPpeMeT/WgDLNVpJ6nEipZ/ezV9l1UDj4WxKWjmEngqxMP7Wf5AxQYsPZidj4vPfdDH1Kn1esZz31Y2G2mG/wbCulsQdilh2ySAvsNHBmX2tLHY5n82S1tHlpnDe/tgU6h0zYeZ/5+C2QAOmubrSglkWyKSL3bOO0gvVG5xtsYTHC4qCXOIE+nrBin9u7aDjN9fD7BBXWvtWkW6L6LKOtCQqWThQaKoebIy3RUVvU6i5uwYu6J6gPsPJmGgijJN1b8O+G9N4Y5czK2sqwRmZPnbbOZFHvDUjDc89NCvJCiyjA7l4YdU/9v5DfQ1T4YkMQ73dFdZZEo034ifiBalLKJ9ch31rn/Oe3EckkS2KW5uHYHrrdMg/8QKSUyZRgOos8EiXhK/bYmFu0zTYW6lNbukSKLypgpI0RGDTLks4ceUGLEuYhu3vUjB/by8oPgXID7qCtwtssG5FEj5LFgL+dAOmXb+Cr2gEB300wt3LByFuRDw79xeBf7A1rlQ9SEUzjMDYcAlH9U3i+dbnwFb8Derf+EZrDWRx3zEVTPshS3Hz/9CuFwKwsKmZFh3bwdYda2DNvH3ktiESDesKMU6iGYJXqPDjs2vp1UQdWHZDE0QiyulvYzOl8w20DT+CyQqGlJ4bze8mJcJS3z50Godg4t7NkoqtHLWdeb/KY0jKmIkuI+3QRMQPNN/owateb7w8UxReXR/FqXdSWc/sGg/+2UE2s+7SQumXvLNTEUeun0nfm3dAyyMTuGgdhrlK6hz76Rx4L54IaxUiOf5qDemfq2crp2zwjT7Ovi3jYXhgODg8ABg65oP6jYl4eJU+HhayJIV9l5An7uLBSRrwt0kb1G0MsVc3Guu+eWFx+yu8MuE8j+nOo3cS3/C93WrQ63vHg3WyIBxzgkOVH5Os3hKebVfCzcIv0UanGEnhAg+P2UGd2X/JSng67D+hwU8ue4HlhatsvfYA/zXuoKPhX0Cz1QjFW77Cyp/FbLtuGKwNMcdznfZ8TyKHfvZIcujxYdjdkQMzLURphmUBFG97QwFqE+Hlsr/ofHEYjxawJMeESSyfPo7MixZjm8JN6FnyBRcZLf3Xi9qQNGcOrYzfApkbXsPhtBm8KXoVG8+JQL+dw+nMF23q90mhHbWC4LG4h6T9hVH6/kceZnqCug2UcOTzazxCTZH7Xy3juCUXKXmLKHyv1Gah9Vtow4P7UBcuRusytrPAdRVOehgHXSOK+NEfDX4gNQUK4RHZ9O6iB5V+nN2cCm9umuHslh/YtWUeyDVqw5vsdHR5awF5/Vu5tG0EuN/exsNVtpPuy0h2CLlDLcse0MOIb3Tp8SHKvzsK+goDKMEhEUJqivHFJxvePW4eNig9gJbxfrByXhQfW/KG1EJN4b7MYrg8eSELp4nw+X5tSJmVyPonP9MRiwO0WvoPXjdxwE8uBhD6jdigMJ7PqzhyeWgKKjRVsNURpE9Fc3FC1ms482sdpQYwnGY3lPKfS2NcDuCzs7dINtyHvx6YxLNCvdCq4wSNuFKLIt6j4LpHJiU6huHFLlu0/dxPxw7E88KARJztEQFFGa7gamqBlicEQba4nhIEFnGB2mfctqsQwz9/ALcdA4CrXsLPKUX4KuYOjf40Bto3DaNYpVa0838O+7Ykwu3psnC0fIinLK3jS9kV+KJyHPf8m993WRcBKx0x5bwnlWkL4hd/R8gx6ofALT58RDcS1qa8obM7CIY+74Tjbn9J76sL7XMVYO/tV9CzZRcotsZgy7t6zhcfSz/vSMFBBwE+8Gs1mk15ged2XqHZ5lPogxXyOZcwOlwzH95pKGPDylFQ/2+X/X6pilXnhqB09RWwSTyN6SwBncnC8MrDGByk5kBQhxgcajbm2r393JLZAS8n3QeV53pcvncUiKoW4wXP0/SMPMDf0wKKs115lFI/3dYfxjm7T2DoG3UKWikAsdPfg4vWKDC364V3xROh+3sTWVbv4uUhjmCjIENLVy5D08xUjqxfgTWb9TlzxSsI0tGBlBh9XLPpGAR7epKXqxHOu4h46O9EetExHLefMYINP214hIw0JAQEwiP3GD4TYEsVHq38/vw/bjvuSZuvb+bUCkGoUm6Bh1pT4ajuYb59W4U79ymRyBFR1OiWh+8jovDDs36SG7cPk/YtwqgCKfDdOsir/NtYU8OAVdM/Y931EKiV9uCWqaW0puQeyiiZYVy9APwuyKLYn8jNM++B+pFOiAnL4rw5IpiVloC146bBhiUSmNEmB7ouZSBSrMFt68aSZFA2PXYRIDv/LyQfU0F78oO5V7CZzz1SgtdPxtCEU3tJihR51+5CjNTJQWF3O/z9ZQNuuejL6m0R9O7TKFi58AXIdEWyvdc5Gn1BEs8/rcaoQGPomfKQX3qfwPFZPXi7VAm0Mh3gp3I7KTsnYipF83uHTvL5KwS9qj/JQjaRN8t5Y0GJCQR/kCfBl870VH8GbS7JhlfRqWiXuo/36S2C5IIPvC/r307fZgzb3qlR3q10uNB+jAq+B+A5EVV+WGxKo4SdSbK5jB8vV+UQ0oBWWwdeMT4E5zyZSR0v9VDGRpdvF0izzvXrfHC1JhygOygarg0mx/r4xcUH3O30iPvMyiE8tJG/v8zEPcuC8PDvsxBQvAqqa8aC78F63lNzhao2JZOPRiDc171PTs1x9GxoCI0+LwO/sAHKuiYL/x1r4ajlH2G24T9mSj2D3s1beJd2Kd7rMoTu2oswS7YQYqxGg26NJaY7FoHTGim2/V1FPS+KcNvU27Qo3wtCzTvAveogqcwcByrt83iNRTacEPnDpzctRn5nRsP/u4ALzJr5oMc8ql1cgU2WCEVHbuLJu0pspafEA70NfG5PHZ27lg7b/GU4u9iA37cmQIevEYidvM6Decsp/YUXN66Ng+2i1/B71Q6uN46k+T+2k7VBHndPGgWXWoq57V+G7s7ThuqHrTjW6zAYfL6HY4yPwdynMXCrRRkVWgXhWc542rS/lsybm2D3nDAy1/rLAbMWkHb7BF7VcZrLW2zZrXsUnL6TwJaxotD9cQF3XAmDY/cOcdM9Q1qSOQomRAlQc7wD7bCUgvaWpfgtJZDrFMQgYY0wapYtISUzY1R4NB/fqJ8jEcVnfKZBEWpff/mXrcuUvyCBA4RMwO+IGZmobeZrftPgo4g3K8t+p48Bo0Bz2i54tFwPQfsENDtK039pYpDy7B3XPQrnAdsNJCfuwe9s5OC43Xhu/RIJs8yToLlsJmcb17Nz6WtOqL2MnGvGNDgTKxIYLrlVwcN161h8Yg5rWpwnjTVLOe6aOG+dMRvXzk/kmrBFcLlRFtaL38Pa3w/4qfUR8P6X2T7LQGhep4NPW0dh1bokuJL1AOmRBjjqbef5owLxwk43nKOlTiNao2jh9BaaOvU6qnvO4qsm4eCVpgb1VmNY7O5Nfh4bACdrF6NwmAn5D4ih89opPKUokDaeuosBI8fDs19GWLn+AMQlN8PICfvQa149nBp2i6UiF3N29kieeX8IRkpbQPmpOHILX4Kq1tq09psMNo+XIbuhRjj+NYKrTTNhyt55NHqOGFwxdsKZb5x5mlkDZY97iO0mC+CK3XCYdqAZrZe84ADT3WA/TwskZTuou6gLpOwnw/wRfrB92zzao5fGaqm6LCyiQ+eujMZ6RWM4aj2FYpzk0ebPQeofiySp4YEy9mbYpxDFymqb0KLPjMKnW8AvX0mevOcVhSx0pQ0rBLn/mBOVagaxY9R5VC7MgTHeWzhpqSYo3LQHz882OCu8i+a+u0yrDknzyCgjFAyq58sjDuEx572Q4iwBbRsGoMn/I3U9vYSF0+v/OeZBsn76Dpt+i5OOz0cyv5eOPduU4eKmw/w7RQhepB5F7ch7xLvyIeD2Qpz8tpNNd6fy+ideWKijD2K50hxa8RvrvLbQrklTaU7bV7rbVkClc+bSF7/HeN99N1jPlYU39vFg6hnI7/M3g5G6GglI6NDSo++gN2wWcth4bvxbB9GLZOCTigksUQ/FiLifPLf/AQadUkT7+U/40Os9WC64k6vqkilJ1Rg2zHrIdds1eddVYT62OQh2bOlgyzn+HNM+gBHxF/nPSScYlz8FNmgaQdP0PrZZMQJMnK+Akl8j/DI7TfmRRqhisIb1jYFMS1Sh/nQRzBm+h5Z42fMaeWey+XkSbD9pUoi6JXuIr8RTB77ipu1aYBSrT/a2CyhuQhTbThGDEDHE/yznwmuXxTBZy5m01Hvoyg8d8Bztjt1+obRiWC1MLT7KToLb8cLrlXTafxR+GuYAwV1q2O77j9c0R/FZQxda1noZ2u8iP/lrDiOG7abX6S/x9bAlcHbQDyOELAA2vKTNJp9x5tUL8P34Q0hJWgF6cBDLfI1w/AQ7FB5MgdgUQZhh/pQNCuJAdasdThuwIZFYCz7z7jPsvFlGxsOAVgTqsJWcLDTFVNPWdwkwQj+SX3f84YTIz/RNdwGLyl6iYS3reGDMXJzUYwiFWy+gk1wxHM91x+SsiRAXtAvtd3rgsg8dqDlTlSdlr6W5VtJwcoMtrDtQi07QBpqnV6CN92PSkJgFBpse8ISg0XB8IJeCvlrAobxOFi2JwewhPwhfX8BNRVHcfesJug0m8LtfG/C520TKzlGCk9vOcYP8ehap+MfrY15DwsaxXL0rgMqMxrH58Vwmd0+O0teDsakysCTIDuT/ueLS4adBxPM+TQnp4hlHIkh1ywhW7Y5Bnwo9uF6mi81uG0li9wFK3ZsOdR3BMNZxLuRuPoCVfaVo8HsB9DYBXGB5UBKyovgIRyyukwHDEg+Kf2qJgxevQ9emMGg2tePeRTNAdrEyNL6KgMO2Y/lJxVKOnNtDR+fnsu7DGhxxRZJLV53itT7DYPH+QHgem40Dgduwd00cpLkL8szyU2zg8Ryz1iwBN40AmKKgAFJ3JyEIDsCxh6MgwaOdzbsbUFzQiTdhJc6VSIOZpou5erQhTLxegV23PmBhVRsYeTvA3N31ePHIRtgl6gtLXgSBV1gltfxzxpMZjbBAdw9Pa1nPC9sMkMS7efq0GhIPSaNxQk7IVsew4c4MKP+4Bd4uFSDLux3QOHUC30peCZa1D0il7x6F5vuz/XWmkx4K0LmtGNdM8CRRmYf8VcIIFaf/ohDcwCrh+wB8O7ncbD9se64BHcpJOG/cXuC5X8jmjd//v7lY/ewx6x9I4tFrqsg2/j3I3FQBV28RbuAq/jRYR+vaFPjGawU8XrsN57p2of/hs/DpwFZeFSoFP4UPkqfjJniM08FooJIvu6/GHuFweJz+kLBrDKmdseeoNhnYfeMHLBe9hfYf43jLjHjueh0Fsr9qsHZ7KOHPIVggsBe+WY6E0udLKUP4LrvZfKODJyTplkUJib61Ytuqwzz/SCsYfY7nXikJqOl3oEaZNdxb8gGsmv9CkfUt9M0JZ42A/6BQpBj6ZH7gOxMjmClznufFi6Pvu1/gPPsHrrH34zDpU5TZeoLdG5fQ0/f/+PKyNmjLtcPpcZvJf0MY3pTJ4Xfm79BR7hmEnphHH96JQOaLFWC33wheS+yiXSOO0VvOAVuRPCpVi8Qxdutw7MFx9Fn7P1KrnMyP/MTg7/dELEd/uiEoiPWlBWCwSoMiOrNhvsdT7hWajipeDpi42gJa91+m6E0bSPGKNOT376Lqu//8QLKfCn/VsMgSYVQo8KcfutJQtOEWppfqkeWdiTxJdi0cWNrICQaJqFblxRskxNiq4CcP6slBoUo3p63+AT0VAzgyP4ZkNu/DY9mLOE45g57+eAROfct4yw45ONN2AUeqXOJ5BiG4McoVyrPW0cDBXfwuYhHmNB2Ea0kHwPKuKEikDfIGm07cYxhIxQsvoWNIBdfv38PfPK6R6sLhPP6yBsgNDYfRMgvBTVUaf4n+xLWHpCml8QzoK75FoUVvYeykSAoP/YveHpowjhwp+XUl1VsowD1jB0qtLYWui+fQy9OJyxOtWL2mlxJDFCD4bhHl3RiFh+w7KXFKN57u88X9+rnc7EIotnEBV1wOxJ/aupD9wJq3TnBF4VxFaKjTo/bCr3BX0hvmHJhL334tRbJeDI0loyAi6DBdU3tPXzTvg6HMSaguvgz6bXdYgLWhJt4HXe/sogXvJsFOZQF8lKBNKa/86bHYfszWaQV5p1xwkKgGifvLMN/9LAbki4H/zXq6dHwupQ3v5c/f97KTxTVMyZXlmGprEhURhfrMqTTVUQNyd5+GY1N8yLbED/vkBnj+8wFMPWILX01NobRLhZ3dNDF2rgH81frDm0yvgGncbHDaz5zZasbtQfvYa6sHGq2pQN/PQ3j3pRB4a+eBxfkitubblO/+gBdSCI39FotnT73gZV2KcGp7EH7qHw9X9ibwcjczvHPyCn2sOka3T6dw7Plo8LpfizOPT6FVSaEAK5XA/dlVHFEZifHSFSSd9obsOj9x0q5B2Jp0ChSya+CAgj1YFQyHFQZ3eWLxYxzInYltBTXknDsPhR1+05miMdCxU5JTOxbyWxtNCE13psCP/uQm9pv0h5vwS6sy/NzSzsUlljjz0mL4JavB4b4ykDVyP61MqKZOGQ1KTazEUQZqIOuUgG3yV1gwexONvD2Xt9YKgNyuUs55MIP/d+7GMVv/sdRjdshKwY3af9i0kCnd+wJmTSeoPwSk6zSSHm3XwuKz1jx3SxpXH7Dn2MJXMN4xGOaEXoWJbdKwYtll+nZHHx/OFqem/xTZODefn216SF3R+nTjaCaeiZpMs9KHQeLtJn58L548nxzi/dXG+P6JDGt7CqBTTRjtG9EEm2v8YU6ZDvz9FgV3JiqTsMkGUPscxbnPpvGcn8o0tamb3QqUaKbtOVp5QwyiLn1mg5BiPPA+FDVj9EksTBUT3v7k4fEToePVVO68rkyu1gjiuWmgVa2Kd/+agG5MJPb5C8CH+fOpPWA37DZvA8esqSSoLQyrSkR5pGE0zvG9hsOiVoHNlDuUtMYPoi6oo+3+//0j8i9L7BwBBrYzcWrTX5z8cCJa+UnhmGfxUFs4ioRjrHm4qBS2blcn69Em0DHnEcv2WfNO8x9cU3gdfsxtxa6K/zgIdEnyHFLjxtvQ1D4cnilogcCjPJr16gP16yTy89GtGJM1Dsujn7LaK3uyn1SK9TVaYKiZBYtkcqji7k2aP0uHxkmU4IsJufCjcDaojNbgOTqJcLt3BgwtTcaLax+hmLU5LI7Phl//SfDDsXI4tjuQxRf/ZPEZ1uS1XBk2Rg9S3LTzlCl5nitELcn6rDmXh0egJSjgmi+OdHrWYtrfKADpHw3IT+YJbJifxkvfpmCh6FzYt7wPp1vl86BMMx5fn4FNgxPgRVkPBl9x5j0f5kDKj9ts+3Yyqstvxdla3+H2pnyMCFsD8iPEIC9ZHqbtSYFir8lQftcNuq6LY0hlODVtVCG7wP9AvPYYxOwdDSWRd3DCkVEg9PQNDCSbkNilXbjzgyhVjh7E4Ht/0fbxPgqVGgfPywJhyEGfbG5qQnFHNBVHRFJOwyn+3XiLG/4egn1vD5HTRF3onf/vrm4IUkGAGiv9owyVjincHb2dTjac5NdtCpSktx4sNwqCUXobRLxQJRVrHTKOdcI/YaYsuEmShsm9oz7ZLMhjITgqqwYphwtBvf4Fmtp/woZcd1CpS+PDf9WhujUJd7a/hZ5tT3CvkTqkDYtkRckSunxcGQ8V5ZL2ZXn+eGEyHxQ9g2t2HaAjtxxJp8sC5quX8eola2Ge3i9QvfSNYdQvVHs0HEwVx//LkjpOTJoKUaO1oe2PGkQfl4BFavv4/tejtKNHghT6e9BnsSdJvTPHCwErqTNOEtwO7qIT/W/JY+ozFhJYzlVHpSHePowDddpZyNUBik3SIEhqPCQt60SpGR346dYA1SWV0/av+8H223iyF0qGhNpSynwdjL7VonA37C2J16wgt/ylmPFci6plvOFl8S7emp2GYl4/KaciGL5FjINEZRlY7NzCuu97yCl1B+V1xcHuf9l+e2oRBaQdQPuftqg/TwmmPNCmpCXLOMsmgNdr+ILYQAJMrvgJ59IO8a2iZAws/gHTuiUhLGk3bZv7mLIeanACN3P/Z3cYstsO9kvE8WzRKG6RnEMZr4xgfkAUC0dth/eutnjncyhq/LoNPgu3Qt7bQdysdQJK1dpxa+kEiPV5SB6TW3FtpAY2KIbBveWT6MOFJ9BvIkMy/QepzscSzv67Y6pSYFGjTWA9XYfLj5Vz09lyeJP/C8xsPuFBFVM+f9+HCidMghhVJ75nXELP2txg8TN/6Ik+gZKK1+DI94/cU7GKHLe9hObMkXDt+Q/cvmMyX92QBp6m7fh7ZSiaNJeC3jdHLunqxMuVXyi2aBg0jlxKT9quk0JfAEsOb6CrLfmop1mDQp/CcfSpQTjBrvjccwz0eiuT7/RD9F47A8dPbMHS2gDMthiClPpJfKhYniMTn8CPMcNAZcEQxp4rgX0Z8rTx90KMG34Y+lrM4aWHJ/X4fIef46TxQbs+dP/YgQuex4Cx3Tzq/7QBKxPFcOy0bRxv94Il2g/i795jJKLDsDVHk+1+O6DqngbYEbaDRi7cyEccvMm12wTO/7hOCy8YgcpwLXAXus9/kjai9yU31jkYClPzG2ibw378lrGKSnTHU0vTRbzbIQJvtWz5KAwDMakxlFlyDeUWX4fjZmogv9uYy9YY8M6ynaCwfTI4iW2Bs1W6tM72A/3ZvxOm1cZj2+UerLPZC+/fKbLyUmPYdkQYvoxdAJ/ei+JVy7+YlO0M6glPwfqfXxwSfgPuX7M5YrAPVw2OgxP3pUDW5S8pK4+mhYYAQ6+AA7b6wFr7MzD0tZM7zfayebQxBG4LZNNhjRyf0Elua6/xgMgZ1g9bxXabNoDemUegWbaUnetHgWXXQhrzegnV7T+FX04cxJeXQyFFsYdyS9tAp0QCYkRE+YiGKZg/XUdry5bAhG4tbhUtgzoHT86sHIGFhu2o23Cbn59diUEu4uA6SQWaTbZAZfphPGSYAfaiG/nBij2s9GuAQza7on7yGe61UQK8sh5PxjXBjoir3FYdhn9cRP5xdRYnxAWDRK8JPLO9zDKzp4Hr9wp8l1UCZUsmoultCfR0XIubo8/RfxIddMymkmIebeVKT104VbkfpsXrgZy7L98fCxx7Uxa2KZ+kxLYosBNXxwCja+B9cRJUq8jDk2PqMDWaKFBvDY1wOYm1Th2gd7SUWxJ3oZP7aFxfJwKLc6bgragElrlyGn/+3kaTN1RBVbEgVo/6iUNSDzFD8S4ofpeF5r1irGK4hB67fME+t2x0/88PeovXQmLNN4jeexZrVgmQ0ORRMDJEnj6uuc/bNCKo4GkrS5z0hxla72GcxFZuSlfkg6udaNMHMdA56gmXH9zlnaXXqNZiNAe5qMAL8aUwpWI9uN0ZCycOJEN3AMHaTx7cN90BU/+ewuPRk2H412hqr/kOswpCMW9LDhs5OqAhMjRZHqLZkqUU9eYLZQcF05a12qhd8R59fBWpaX8nHSN3XjWoAVYLzoC/mRU+jdzGeZXyGP8kgA4nTcTMG6K0fZgjzcoUxt3EcKTMH3M9p+OOmEqS0TjCYXly5CInAbPWK5NDyS0Q+vEAX1ppwMX/JGlfrQudtpxK169v4R1jS7AzsAD35nlCb1w7G8QY8Nw5wuCceR+yAwxoZYkFtEzShsOxmfipdzmled3jL7MDKF0iCt8YjoZ8CXfa3hdM7k5nscsmk462XGSz4/Hwc7Uibp92nZKOzeXof7O8QGczPnGUo0eZV/FZoxK1FO3D5zvHkvfNazCYMA5GVizmxTeHgWmYCvr/3AVu+6rJTn4yN/QL0Ns5I1hgpgIPyHfRzSpBPFMgB2knvnHsVzMeOS2BpldcpeBicQx4fw6ivx5BqWGPeY6UBM6rnACRwpeZ3FbjFUlPEN9xkCXuWGLXGXdw02d4lpuApeqjyDFrBAgLeVOg72oQnWzH+cuc4PQKccrcKozJ9ytw7pG9JCtwEvstx0He3CksqlqLKx+UgOrvLbipjGmvhh36Gc7ltaNX4g+DJzy/ywhq8Rc7/B9xZ/ZP5ff//fdA5qlCZR6TKGQWKg0kKqGBopGkFCkVKVRSSCiKioYPoVEoDUoaUKFI0UQoKhqQJLfvf3Cf/c72yfVYe6+93q/X8/m4Dpa8Ms53X0SGp/xJUk+erGElSrQs5Uo5AsG/cdDTqQ2yASrgMiWJnb4YcoyeFvuuiIelJZKU/VcYb84xgcrvx7hWfyL4nDLG6vUxNFNmCsm+uj7knqdodZkGWT/QgKm72/mZph+sGdpH3QQ7Kgu6Qnu6HsO1AiEob9UHtSJvlD4SOOSUOfSkOIC09ihCfqsNWL2w4SanRlbVqKTPX2/jCVyMJdMCqF1JjiK/W0LKsYkQHPaSTpSIQtfeqXD8RBAbS9WStqcU1Ww4BHvu56Kj2HkcdUkMpnxfTyue/ACRS5p8NkOUl7ycQn1SofRggg6tSQvlQeUDVPFGBKYVN8Aag3c0OWQ8/+i8T2/bplJl6B/qf3aKKtqDeWqGI9vvHQWq59Shw96BE1ocKP1HOb56+wJKLZTJ3Oo87FZ7hUdiNvBDXx1wLJxLD6ZG0dsWH5o77CLveBSIUYYH6PyzK1RdEI5L1fRoOo+CxYnr8I/70Hd8XU8HF2xhv9M1tPXrIfrTlwBfynxYYHUsLwqVBiFWwdhcU1T+7UgDxd/QR3g/twzqgGjMKtbMXY626Aj/9mtB044eOPJ5PN6vKyJhXUfqWaSM6WnPUPaoJEeL1sOrC2vB65I8BFVeY+FoZ7Dbuo/g2m38/tUXsorH8uiM7WRgeJabxOrJMk0LJhqEDe3JPuwe6rxEwXFwoXoleC4NAkV1aZbt3E4+3TtBTtgGMqfPBHHZAi7f+Q68NilRQm88CsvvgZdlkvBw+ygo9qlhcZSG3TcmkPrmel55oJcMI9vR4bIC3hjci1WvV8OlRYIkzdFcojgSxu5zg+vmtvjmngo5HS3idxdF+f7THRQgM5NyZ2nT1N+ulN2uC8+aHqJQUi9s7L8B04J30bjOo+B0yYe+TvKgxzUSMPnqd4yI1IAJG3/x2dD5pHNUFjPv/QbdHWc59FUN+Vv7YVN1Hpd8c+HT44fB5dJhLOYlScHCpyFU/C8cfqfJ982nw8gt9rw6UAjen6vDe4maMHeCBSyaMQrN77/nQLsitBMPJNUlT3HA4QUJv1s35MuJZOjNMPf2cTh1pQz3lWjwt6goFn6nDsILBLH+uCLNnBWLiTddeLW5BuxZdpNaX+rBq+75dHR7MKf6dbKSbzu7tkpA1kR/mGR4gxrWmUDsyjd0RWUOpsZtw665z/ha7Dj07fqFxr+86cGuMNRvEUR/DSl4VyHLL6emsrDKMbY7tR5V2uxxycSxeKiohnTWfASR0hy6cmM4DJ7vhCO7p/Pgw9u84Ps80FvyBMq3D+L+GyVUYWGHkWl93JiqAhcDnrLnkSB+98GRYyx/csfr3RhZvhlEO5Lp/Olo2Ha0BPaCBbhr34cbkXLoMzuZ6gRk4HISkVvSD+6QbWRPqRB8OHUevS4SgwNzrvNvieM8afh7UC+KAwtvQez3TqTbBvf40LaJtFzjPTmNlIM/T6spd7oZ96o9wcvXZuD9dD+8UdWIL4bbc+zUAkr+HMOaUSPg+bgyks+Lwbac9WCXa8vTrVqh3seFdfgK7R3vicudROhHkjKoFi/iRQGDUBraQjOfOUB6jDIvWcFkrejML16n8+Xp/0h6xWiYtXwMn1klhYZvj5NyrgzsVpeF57liGPkllw/fmc92vlOoukEJpj/QBTlXAXo1+xNkrNnLf3qf8tkHbfSh34Bla9zRX76Hf+QA/HR4xEs3aPDdp0849pYoD8jPZ4+52TRrrjX9jH0Fi3xe4qCALfQbfUYDj1mce24ZT25dCG1210DpURjNdl1D2RL+qPxhIyz9KwVv+npw9TUZcii4hSr/tUGyoDR8bN0G6SdkacKWSJ4t/w8tvupDr8t41hKI5ddL/4M7JypQsOssLZb8xkHXjpLMjUgUeRYEW+o1obahdGjvOkl0zCS+U6xNerMDODfRl06G7eMMu2YsybXA1nwzsJ+eSEffN3D7Z0+qlFLGth9HaVj+PB5x3J2vZKXwcDdl2m8oBy0Pf6BdcgM9bJ0DH3I20VFHQxC/JsXO54qpc8VuUJiqBM5mwpA3sQH0j4uTTfYx9HPu5oDTU3hzexbH3VKn+pvBqHK6GWx+moLxpt1oHLyAG97uxmC5ZRyVIY2x5tagODKGFq38gO3DAFdflYEwfUmYgnswqyge89vUqf/yARivuoIStjdhzbcpGKrpQgrvFIc61oNeGI9mrapIUnUt5jcjN0OYbiUqcBar3l1PquWO1HfaGA5O+II5o4WhxyuMxIetB80bn2mr/BS+u7EeatWk8f4zO1o4QXGIDx7BWEEH+HiujKZkBYFJVTDL1s+iXLNB9LIczW9H6YN5kxBM/NFE1YZvyMTsApVe6KHVtyeR1c418HbCa9ok+5iX7nqOo5uM4OG26ST5bANMKDTh61Nvg/ThEfxZxB08E6/R1cmG/CD8CCwvVQB/9VM0Q1cND6zUQsvaiZyskQKdEcPJUF2Hm7aGsmjj0JkUHgavbH/TU9lFJBD8jBwOtqJd1TV2fvWQXAukWbJfFZuiptKhDilIKB8Aa39ljrYvJYXGLIrot8JzNsaY8lwLVyW1sPy0F+BRKgVteuY011qUdi2zojCnRDq88C51bXoAjbbrWCQii8zXGYBR3WhwPP8GLHdGU7hqHaWblEGEwgYyEzzIer6n6VfUQejbcxIC9omC1J5e+uEQTDelG3D78y5+f+ExfX51kWstArnm+QvyP3cPOsVF4eK4IC5Inwc3nZ6SXqgqhpa2UcHt83yhLgwebv5OBn890CIBQDFkPdrHCdAWu49wdvhW2vfff/hybyWsbjgIYtce4vDTI2G951joWPgNr9gu4eeTZaA/SxfMcvV4Xekx1PwngrmbX1KwWjJfO2EJZ3PewaG30ZhdqUJ3PFbAiON14LUuhHY8eYXH+qXwrW0EVQYJwoRtK+HGEJeuyVbjbXYz6InBbX41RYPfjs+HcgEtOm1QhKr3LGHtHVWcmLgdnp5UAMO2GiiXFceVVk14tUwZBQ4cxst+q6Dljg1EnOhijgiiqkB5SDR/AsI7/VnRKYWr1TbyhDsl/FMylLpypODrvAHIQSeyOlvPjvNncXpgDlZlLMWA5v00XCqB0n3dYY/jOBD3HuDMe5/Aqaedq60j0VTKmpTcq+CV+27e3u/NG386sUiaLbwarUxaG45BkWYNdew6RqWhq8jh0RWu3qZA/sMyefzVB/xYVgICmpwp4pAnB1p6DeXtINyZo0i2eV/wXn8V+wk4w7LHV2DNEOccdP/A8UqmsGHDYyLfCOg3OUcz59riystT+FZRAd8TkKKrdwTg7v04Slc4ToGxY2jihlq+OWU5JA6Px+XBe1mv1hObKmrgiK8e2Kka0d7753jnqGDsMZMG3TNDXLBvAWnoiFPy334QcC6F5906EPWxEGaI/oW2vdnYE9UHaUudOOqlPlSBLZ030uZRMiOhpdMSSmbu5APLlDnItZtj91SxzgYjmHDlBiv9iaXd2+TQIcIYqi3k4cWaQpxgsg4uza6gbNNWUvPuI89iI5D2FOKRdxbguM7JVH1zONiffQnur3/BZ19HmHc+CFY9u0xyUT952YMgPjEshcyKvKgveSQsmCJOr/648y2Lr2h74CQJn+9jWxaE65cbUVcsm/QrXHjyEkUYV3OLr83Yj9s9d9Cmm2WY2P0KD29rh7GvnuEy+0C4kN0EAhcQBLs2o8y1dppzPpI8EzO4/JMn+x8rwqvRwpgnI8MX577AZ9ONwMpqE2rJMjZlH6BhW5eiysKDFCF0lp3nW+CRjzd5s/UnKF+kAwt+jsBT15bxJJ1b2DMpAvYVrePsMWUQmHQT9yzdz18d90Gikgn4WYqT8/XvGF2/DcOvqVCh+jCo/ynCs7XdcesWYZzZOAgNxxBCTNxZu0gbzyWmsxP+QFG9TMhbiuQvdYbiywNQTOIT9osIQXKcGVctKKHaunVkn30Tagsb4NLei7x40gt4d3wD+cu8o/r9EyF/7Du0+SaIUJlDnf0a1Pk1iTXqvMnY6CSw6wzStNyJr78Mh161jyRn8ozc37/BhyckIO9uOc7R0mGLuVfAo0OQcgQWsI2SBczVn0UWQ2vkZw/SKc3fvP3zKJo5xGY3o1/hGfnzYDfDhtTqDYG8EZMSJ1Li2FK4dvQIhM6aSPu6FoC4sxwudjPjIOcRNPOyBMQJbKXnwsWgoHeMVt63wTPO70E4bBhar+4mDasa5oMfcbGDBZRkpVCo7ycYbjgKDruHgniEG/39u38o/7fTj/3bEaMfUfwxBfBuMcY3SYH4ZXQBv/3wF8SWtvCipBI4FSiPB+/n0NwrxnTKZDyQXCyofT8M2Vv1uObZDpoxqQCWBFbS2rhzfM7nB3zW280LpspBwMh6qu+q45VfKikl6CyH77Dn7mkBML2qFZeLFcOe2AvU8GwyNKRn4l9vJxq1+holzbpD2vVXYWWiOdyevYp7nU+Crpkg5lZZgv77pZj9NwIGVu5DgUtvcU7cBRghup3XHJrP69sng0zzCa7ZpgU9Yy7DPiF3NnPPAZuuRFQ5toQkNa5zWfBGupc4xDIrAnHiLBHYf3g6jRf9BuGZkZy6Lp4btQcoKLUc/gzTwylKs2HblhR+p60DJVor8OP0v+jdKAiwXoNrD07Bd0+Rn6YiRgzNvu6gIcUflgG/0+v5csggNjRlUOy9FPTXewCFpqc4ZPw4Cr1mAyovBMi5RBK8q7ei6rZ1WNK1idz2viF5yQAIt71OxfO60V7tOkePTOB7bZNBa18tHbtqR6AYiXnDG/Hw/GN0p62I2+w7IPV9KVnWlFFzkSTMLlqFNZZt4PLVBYUyRfCUgSzobBDmqiFPK/Kvw1ejM2iuMcAJDTW227Ydbc4J0diuXTywPhqMsyZxQ2czFrut4onjfnBPgBRsVeqhTeatBKOd2UYrHgM7NyKPn8itV8VoZqY6qVq3kvsYGVj6LRvT87pxMP0A3dv0Gsa9cMOr9/7yg/lJ+Ez7IAqYPcLoHhMoG56PV/NTuCN3K7+vGYF2zVG8RO87vF3zjP5sjEAX38kgJz4CtqW+oe6aeRhefpFOOQjAhAnfyXT2HniYL0VxeSK0Mv0xfAuyhrK493zOpR5PBLmyUvZKDslpAY1SIy5r02Tr5nAsr1rF6cly4LfvD32Z6MonTV9TyZaT+PC2E4zY+JZ/QQsc1H4A9qaBtMt4FIy2WgxfRv7g7ghEH+shtoMC2JvyCcvTdvJoj194b5ct3t0rCD+f9vOJiiTsHbWQprTcpD9ranhNTSV8eiPLF1M+0AMX4C0PdGBCXx4c7hOD4sM7QO9cLnJcB9WYn+DRAZOpamwKevqfwc+n1UD80jo4t0sH7H0i6at1PA8L6YDWgnTquVsCB3RzyLjuGxtMMoQA62vwKWMaF1X0kWaZJR7dm4R6OJG73j7jnrEZaHOqnmMeI3ilJ6KIcQ5dq1CmTvFNXHhRhJZ4zKLanLO4aeoPXBb0ErV2WsOECAGeqBIHwyfMwIPpO9nF/Aq8XTWIs2k/js2KhKCKUPqZogtfrPTwWXQ4f43NgpQgWXgToM4W6jo4esg9xjtMZjOLbowZLgL68ZEwNXs6/BERweDbe9FtuAo8nGAP15fr0fz94iBmPwa9j1nD1vmu6JFpx4K6ojTr3wKarf2AfXZ7o25UG09TPoEX384k2Uvj/pf5+F3+KoX4ZmN4wSrQfe5OXtmPacIFN6woduQ7jeGcWqkD12at4EadsyyYNpyGB5dghfEi0g1cDxuUbuAxb1uSI1HICFaDX6IfuN/qCQrtL6Zfd2/D5HWMU7Lj4aiZOD7Vy+LKqVJo826oUy4kUsZNIRA4bAhzBB+DxG9vOnhGHGN3l1NSoRj4/ZpAgmAJGzcEwezjLSD7Jgga7n+Bqwt8iXqL+e10H5yyspWqnu/mI1G2cPaKDDa2Z0L+kwV076UIPDs0l+0ihrH26FDYlXuNXt2XIcMkcRj/uIdWTo3Bczlp/GjeX1r95Sj95z4Gi1e60Ktvh+EuBrHHVwuQTCkkJVBhtfS1/PRtFHU13+ZFBUx5h2y4oGs9qbw9jVN8lWBVAlD8o9fwMr8CqkzVoFFgKZYv8cfRa5tgdXMShnYqwJZ18pA/xPvGboewMV5xKKvqIeTMV9rwuhVWJG/BTQuuAh7dx+1HtEAibTjKqR/Ho97X0eq0L1bV2UP6Wgns0B4GmoXJIK58BksaFaF9wyXYl7ac20NEQNj1NUbOnExJM7WBAsuwbQuSm8VMKr5uABldsqTwVpjMTUJAVzkE9/f/w+hWS7LVOYljnjhi8rxdFOciDwOLS2HPJjN0GXuOe8Ne0XrbrySRk09C3/zh7DVfOrrgJCcLqEDrWgeMFXZka6MTVO/US9tbV6Oj+G/8W9fInwqiYYauMyYGjAb7bf/g7+XhbOovRqF6cvCuxRS/za6iAttnHPVZEQ6eiCUBc0XwGrmTpp+PxYQHzZxfXUnVmX8gruI26R+NhsSIL+Ta38LHpkvDzfdReOdENMSIpeMrlbf02PkwLz6nx6cKVpKJaBk/vWaEYnNEgJS+cahtFk1T8sRb+v6oGm4LWisEIOBoADht9oamAFOqFUMwvquEwxRuga9EOBz5eIEOjDakLzGVuGfyGtS5HcZthRV8XtUA9pz4Ce4xV6nIUZ0DvwVTZeNTmvC0FXX+awS9f7Ys/UOemhIU4fWloUyYI4EunRm4lqo4efk4GJHbiDPmLwFXTQkc2RSO957owOUnhlzZP5JU4ubj3bLZZPckGR6HVYGfAkNuVBYn6xpTWQjB9BAliF+Xxt8fqUFocg4W5/VyRa4YLL+iDbVOlrxpfT32iWnCO0cPrnh5HFXtsklC9QiIRV6hd+fvksuVH7TRKg4byzdxda0e5H0f4NQWffhibUHhD3dC13srCpirRZv3P6a22iguvRBPo1MYamPi+JvGIBvvieKPbhew5qol1UQ7otbcZ2g4+y69eVrARuHyUNYhCCstt2LauEoQXqVCYv3dIOp2HE4Ur8NJD/7xtQVCnBshAv7jNVjJei3crnUlpyOlbLHZjna86GbN5emcun0qSK2IJUPLId8arYQnC3fzR1AjF0NX+tiSBduv3+ZZt7Xosv8pOu1VSOa3lSB2xEcQPWjEG38LwIV6W/6RvxFfbGuha+4xKGdVh5KH/amyUAueqM6D1eqTuOZRIGTVpeDDvZ5kIqXNvZfVyKPDGVTTVfFTqQQc1ngKUcm7IDN1CSb0DsBtq6u4TqYOlzzswoQsOfz38zdWzxeGurBUTv5jxT8eeJCPigBoD+wAzXeHedbaqeybeBlWLQwF9SxR+NFXhnM8ZPBwtTLoS1Sx77lNjBl69Kn5KLiMbWex9GXU5qQP/6abcubDQ/DLPYsGl01mGvEdIpb5Q0TaKwg5YIkfXmdzZpkRBLc+pgGPdJ62UQW3Jk2mvSv2wOQMGXb8pYFP/rtO6dJNOP6YDLxRnkFajX6wb5k6/jg+l76qnKcfG63YfL8YfPxlCFMeTeNzOwgufimEkZ+i8ObNcLgusw+8npnDD0cp3Pswh6OK6tFy9//e46tChsU7zv2vDy+VJJG6ZBTK33aAnU5XSSyrgHUSKmhv10YcmGQL9tE38NPXNyh/9jUprnvO/Wu28k1Hf1T8dY/3/WuAN3ckoLhTCML2SsEgf4H1tVdhuFwaeRyZiHVDnTDzdg3vjb4HAXsAwruMoFR9MSr1KOCCoHIWWYtQ/UYSi5raMTdBGNZ86eT/6iU5M2wkXLq+CNb4udKNhS2Uf+4SJS8bR/1PrfnLq0KuXXgRjHwOwdkeFZB8koR1VmuprPsvzfb5SosVLsPBWXlgKjiOdx6dgnWv3+PZKGX4vPoeNsE8aNqeRo3f/1JofjDcsfkNu41V4fLN61x9cyRljRGFX3qVPLLIlmePKKRN6wbo1swIPloeDQmj9/LrtyF0W3QUybXYwulL72He7tMsVPOFNs0aTefX2PPdIWd2lAmhR16vqVPdkUr0bYA7GBseKOG8GhOYdnUGNV+IZvnro9g/oZLSH0lR0INUBgcr2OziywvTR5D8wBo6o5HHL4LuoY1XOmje9KDx8h280DsXIp8YQPycHngj4wPf0j6TY0Yac3EKHTzax31PYuijnw8dXvyGP1eMAAWdInIKr4W5CXow/McHstHdA0tm+JFTTj/kv9gOmm4f2G9gMuhJDfLlqHqQk4zhzH1Z4PI6Hx66OcFjlXj4HLEPUvXPwcP5ehAV7cnjSZvOyBqQWtUYvvpXjD+fFMDPfnm8+9BwtLhuTrLX5UBipSpfnidIyRK6+Myrh4+9aePhIWnUOfCCs9tOwXlne5pSogEjUkTxw5t8MgzvIQ3xegi/KgyB14htltbRfM3t5CE9mUT/M4RDpZNxxbvN6HRoPbxtt0W3d2YsK7Ae31UkcZGxPs20OQ0vA7XghN1IehM81HEZVZz6txNqrsqRo+omemisDC6jNvDT/jwsVlWGL72+FBcgSOExjVx7ZhFtO+NIq3xO8D2hw+AolYjzQj+ytbwhRO8V5Zzm/byrOZn26jmCscMYnHa2H/YqzWOJUjmWvu/KH+4IgZtJCLca+UJ8hQndWvyFDj+/BleH3GF0xjNQiH4FBvLHYVBcHZSTBiB620oMVgzGc1ti4ObuTlp/NBfFUgfx1MsNsGfPYejwkYDgD2K45LQwf591iLNG7sDvepYct/Egucom44uxWhyonohwXBA27pzDDxYLUunuKhCJuYE7Dthhq9ZXlnx5AjQyxsBwc0kM3moMX0Sm0grNATpk5wZTxrzFK+0HUeJoLIU7PgcHn2joe9PAxe+NwWHOCZ4oPZMs9Ew5pG0rFJvVY0nJfvouEM6Fksa0RLeC5zXrg72wIZ37Ohb2LLnMJfuH5t7xFgrtqiad0A0cWY3w/MMfDrCSAHzRDPsMvmJqUjxM212Ga+cXg/TWLZD0xoOm9i9FY+mzOHyLNMhaLmVQUaYx/m2UfWSQpP5K4SnRP7TGIwziJUZRU/5csjCXgKppztwaVoS8MAFmh07CLByPN32XQ76JCzXOc6CfZhp8304Scqbb0amcp/TwqC1n9VfQ+0eOJGRzgUtjJ6L0hTFUFLsAzz7Wht+liAIT1kNnsSFGCu6HvVVf6a2JGfa8luTmUdlYpObAL14OZZKZHs8PXUeq0YO881ssbEyphVt/x+OX3M946sUp3FlrAl/uC4Nj9gNM3XCHveRncEBJKQuIxpCUxGKaeSmdumrGYckyewj9qQLPoh+ykOR9ODHRCdvXecBnP3M6nGuOd8/JgvzncC7dMgOnFMpCecMi/jx7NNzpq4WZ51MoNvkBfNkVT5+NGgBsmmDOwX9sliYMnY4vKdhoC9PgAF5xc8NF/9To439rMUzRk6o7TkKd/Gi6/kkdXg35/51CIzTSX4PzHl6BSP9+/pZym8cGhJE+SGL1/Zv4On00rHoSiJLieTh/3y62t7SDz9FddOxCK+WXxcCMP3M4+asvFTRZgWn6HHCwDWF1eReUdB0FVl2eHPx6JTbHtKC2SAYvWZZOb/KMYFzhZ3jRfwJCdI9hwfY0GLNxDcx4akKPfvlyf/Ak9qh/wj9+mUFdoC+apbuTwuimIedVI+maXJj4SJFctxhD6umZEL4siD7nasAm9Sv08WgS7UiQ4qrRHlS2kXFX5ivqSt4PDbvaaSDmKt+fYQxqFQFUeG44rf42nTW6JehtkQf9a9PB698uU/NVSRod1oChqsZwtcUe3zTcQy3PkyyzMwBMVuXz69jdnJiUTbPDEFPGvgOrKAnwfviXd93JosTy6yigOp1ye25B8z4ZeqT4mvO65tGony54ePe4/7P7f1Pkf1OZ+yk4mRxL5oX+/Pc48d17Gew5bhi5X/5GjX07KTVAGYpeSPM/jV94P3Uqyh5Tx3z5AdCdFsUld+bSlmQZPq29lQokh8P/71XG9y6uZj0ZRKVterTwdT9Hxxdg7ZZ2rrYbhXs37uMsZQFwnKECDRV5PHGxJv3bYwvO/r9h5R07qjGtZ8edA3jrjQbrdTuA+xlZ2JitRgOzPnH0pEjSNZ5BvhP/oGuUMO8OPwlfdTVoltM3WK+kCarL1SHeZDvelojGaLnF/MGshyYLN+P8M3ZYN7+Dr91tZclscXh96BvlXhiL6qvvwry6fxDqYYsL5XL5getfFrlxHhvFLvHfa8NAq9gU3UyaSYzGYe9wJw4X3c8tbeu5bqoTDiopoY28OYapicCwtnPUabQJP/rkwTsHGQ4Jc6RkvVos91hJW7OP8/JcDzzQoQ3Lhpw5XOYcXUn6iBG9s0htRyfkVchw3Yt2jOlkrv42C9/bSIDL1NUUFpOJduVfeSIIsNF0I+zekAubP86HL48rYN3KGvz62ADsWYi0SorYas93sqh8x8cjAmBA4RE/2ZOHF3sn0nv/RnIzUIfQuRVg/HjoV4yywozdO3l9syfsGvWPyrd8orUGs0gvxRSWJAGoCS+FiJAHvDRRCn4vYLC2DeIbqEHfk5y5W1GCUtszOKRSA/zF1aA76jiEi3tjX+NK/lr3gk7Mvwz2JR44qj8HUtbZwOc7NjDaaxabCJzH+qUBYDGphwaKVUFdvBZ2dVtAmdQcxGe/IM1NC6xr77Kv43WsvyCFkxsS0Mg/lf3fPELNtOs08+ZZXl6zjEfkyMJzmxt8cmodbd+4FM+c3wNT9Ruwe/ZO9p5bzCE6unSzKhWNugXhgGsJvfApoObiBTxNWw9lbByoqnk/9Zpb8nf5efB0nDy8UBWD/x69wTvtnmwxVh/+DM3/6iItTHt3mwe2V1HbrYdoN9aHXYR1oO/8UQj9+Jvrg9Owc38YLbUNoLXOE+D12iBM/RSNUR6tGN4jBAJbGR/9YLLdPIyU/VLx5/iLeO9PIBhd+sd9FcG0acQ9CH2uD61VTH8+7KOFy+ezlck57mp7SU9xArcuL8O4jghKPxNH+afEoM+daIpNKp6zVIJTWdso+Jw0rbLTx5sdq3iRzFTeIRlK7ZGScDqsGaSPhoJb6k8uDfgN3zQjKHzHfv7qNZUOh5wj/xuaZJIvD50DXvRroxWlR5ygXZrGoHsiBh1fJNNVmxj49lQRxkhf5yZrMZCI/0UutRdgBUsQa2yH4rQMyrh7hJOKC2hfmie7zK3h7MYRoGZfhKrrq1DTYCeOsQ6Afd2yNP96JEnvfsRjVdK47J48BJwdCQ2r59HJFTd5Xk4sVnb0cJnVOcgPBVqiagdNSofA3u0fvtk4CTa+6Mc/fsJs3RKKj59vxzXpd2DGvx1wi2PQ+8VBFI38CRdmC8CUqWtxxGdnqKMjkBenS79cg+FIaA9o691BL6FZbKz/j8wkx4LwjQlgP9cIjpst4cUuH9lw/TtoLtRCnzmX0d1rBxS/vcWP1kiCXpoPBZ6+T/m6/bggfAy6aKVQ+Ugv/GHpzjUmDhjWpwABT/TA6c58lE5YD00ep7DolgNeCtOi0Emx4NPYyX+cnSA4ZA0e/qsMBgdi8bTbEyxac5ml2obB/cAoDFYew78VPsPzsfV49OFNQHtJcDuoSRuf1OPj85ewxvIg3Rrmhr1vFOFqzX50ChbHWtlILvebCAF3CqHbrJfcm+zQUi+VjK37UfbK0L/zcg4qJ6nCj19X4fi0cfDRO4zHlp/nt25z8cPaVxg+8yuYjvgA1e9XU7afF3SEPmWPSBu4tOkrCiWJ8NmxlyE9IhNFDYLZYqk9O033oKp/3Vj7PA4FP6tCrGMCNnuu4VHR3bzjiCLeuWZN+uUHyKNyGAveC6HV3+PoRIcC3Pv3Ah+d3EFeHWGUu76R/n3fgVPeL4Y803+YI/QB4kdcIitZgr4rBVx62IRjlpSjuP4sPNkrwdedqnDXJDWSnb0Qvs4eQ8HXxEDMUhP1Pr4jsSkqKPnuJFZ3zYDM225gt34V2uZ/4fsaC1HWzgQMO/7BsjVPMKCuHyrvdtGc48O58KwVqD/bSaW3CQ6f9oZ9m5VBafFtSNE7hP8C/uK1UcNATEQHB44Y8aeG2aDaIEp7NmqzeZo25HxwBNtjgeSx6QOo57hDzZ1JZLvpGyywfQ3vdP/QlwoXWLdYBApHiEJvpRvneiyGxQNJ7DFVGCUDTFh4yRgQTX7Oy5KWQ6b1eEhcuYdq223IRl2bR+uVUdypVCrLLOOXHy5Rr807thJ6z8dkjGGgq4YPeN4gY4UESBsvRJ6+PvCu3Au+56uiglsx/UyzBMtaaVi+SoYkVS+xc+d2En+eQ/9EblOylzl/UPwDmzrDwCh7OwwLVACp7kCeX+UJMxW0cUXEQ+h+LQoPVKQ50kAXJswF1p+ti282D4OsLRfpn9wLrLzQS0GVK9Dyz2fe2HiIPKeuoYRdl3Bi3xQMzlWGXnwHN6YdQ5t6AWqoTKWU7Hvs+d4GReUng8igFIquL8BdEuPh49gCHnH3E8Wr1nCaaRSNMsjk4fpL4La3NchubIb5qyahnchw6DhsDpeP+NPxmnooKXmMO5wYrwjtoZrmQOqRec67BkOxKVsUHJed5TQnf9JZ4IH75PfBhqheTFm3GLyyb0PM3A3op/cUOkcqw5gkO2o/0c+RwftpsdwZeKrkAe6FigCGuyE0cjlMWhBKVSMng3LNCjKemQkiPZU4RncKpG1vwy9RkrC1ciz8WNTCZ5Y9A+sKY9hy+i59d53D9yftoPAcCSr1n4JxKwRZCryh908zegv5YFeoKhimfaXCtbGQIORMOiWGeMZnBe14Es4C46tpWvwPNkl9hPkiCjA2+yM9UTPE0jZrKI3aA9PLSznVrBXXxV/lYpOzjNLCfDtCFepEZ+E0sRwsXzEGZw8fgSWbDcj9UiBVT9CAdS0fWFn6EtYbCkBTuQNtPrwC931eiJkBzPWqJzioj/jgi0JuMJCFMQPacHenJqwafp42bZrJ3ceE0XJjBB9XHo2P6pahavImblHvZ42cEahx0gDud0qCZ3gydpVdxIsWS1h+Vw/rvFqLh7+sJumRBTj9bN4Qf6jAssRalJilgS1LZHCz1jo2eD2ff79wJYEWATy0qQTHdk2n6hANOL/sG1QI94HUrBm4TOgXu9Ym8gU5SWo6o8BvC17A3xgjXDVLDWQUz/CNEEl2nmrFK+M2YM/lpSyaawRK0y/h+PR0OPnnAwmmDIPErzNhTlcrVqS9RtMDXiSWf50mSP1HBW27kPaG84yuSIjSkAED6WaQ6lvJFh0CoKn5FPXrE8jfSpgGMuT5dL46PbVezTo6AqC2+C0bZATQzApB3q1lgr/c/fDRvSa2aTvDHbl1EDLWks4MGsCgtBf45GWiq/Z0CjsYx6lPb3Hg2ckUM2kz/Sm9zAaVP1hKXh1W+e3hXQ7lPH93F/+QaYKMnwfx6eT3PMmiHf288sE47wnvCZoIwsMfDnXPVBC/dACc2hx4zaV3nN/cTWEOw2jUxoUcVuBAMMQbCjsOo2ueDV08sAQdDy/l7JiPfMf5HwYELWEppcPMbY+5s3QEFMwZhZ4y6TBX9z9W32pE01Z9At96V86FFhhTVkDKJsP4Z/xk0Nu5FsuOKLHcjuNw3nM+WN/azxYlfaB0cx9cvXgAz8/Qgz0tylD7+hWcMq+GS0tEwfyPKLeN3UO/1U2xsucA/TqTBO+kttP4G7LwIfsWns1bBHr5P8n0czPmRj5Bm4I6TLk+mwJUXBCl3CleRAqKt6mAi9xRnHemC46l3ue7BgL03+5r/MArCtIma1HwrGHcqDYMnqw+QDorXtCImIf8bZwFLM2Kp5f+rnhgbiPKHEjhC4+fkVjkUB4cmo0dp2Zi/vb1rKzqwIG5Izlziisrdyby6g+bsdh/HTk9koG91sPpiHk0rQ5ZTmk+zni14ix8F29lk7BJsERdlQ/6BFLCPgOQivvC4gVytHuwh6Wji/nptuVsETsCPexluM3mK23OnMC7F5jA2pHbeO7XvfjC7x+925qM8UHD4GyGOEw4kAaGnuF8xXg0y8+3AKuStVR76xDnLsjmGS90sFJAkLYPBuLWxi/c+Pgsmb46A6dDrODxEmWKbh4PGwyFQEXoBuv572cRXEu+wmNRdaQ6n/wrgS5JyjA/V4RE30+EVqkWShqaFzO37SC0aRkUNV9lv81+rLxmJdcOmICX8yCPdlyL8sdb+OfgQpxnKkrxQ55y6LAmbpL7CwP7X+NCeVW4c7KeHZxO8T3Zdr49UETjpXLxYqUK7Xu8HB4VhNDijWkg0K0DcXMWgnJ0MvZ41ULrzI0MDdXc/WghZD/ZjmtjDWFlwRM0PisBtl/1eNa7NsrK7MCGkdaYNXAQwned46s7//Gooc+j97fjurWW8PnZdB4/8xIKFauBi74lTXK8Sa3jOuiT224OEd4Mw3X2UUzgcBj58gcn76/FZS9d0CFoDapcvASL8kVh1NZJsD+ecL5fFI75BKDz1R0sYntw38Mht5yYwa0yMjzZuAjzQmXhe3AzVyYmAP6bBJdL73JpbhRkrDqHq2JjeJVeN95q/QyHz2lj7xh33JQxHlN6jSD1hyD9Xp5JRYcCqbzzBO0dV4v2pu30PsSF7nyyxsKC1fxuizi8NXJCP4k1rFQoD3v75tFWhf8wQKqLHEe3c9aWDXB8fjPRCj1IFQWmDBXqWS4ATjEa8LEwjE0er6aI2DXYXF7FxfFJsE3TAIRE8sF88WZUmHGSZ/ZGc9C9QzD10RHaEHEHryiMoS2aIfTfYwbDSRd5nNIKWJhhQveniqFjYDfLF2iz39oS0jEwROm3wdBtpwXbThzktvgE9hz2i4LuZ/CW/XkoMd8Q1X26eMe8/awx+IfnmEuC1VgzfIx5+GRlAL5/W8vNP2Lhk0MTyO58id6DN2CHUC35eArC15cXoKMpHpYHKHLQumf4I04Fv5k8wNma1ay++CCczX9FOGMCpCSLw7P+63T4rAurXqrGKX5NNNc5jS80pKLMmCN4Kt+bK+6rQOhDwMgeeZyqso/LJorRSL8tbDvmFy/RKIbtVSPhy6oOErmqD0f3Z3N9/w7cdyuKi5SO4SZTOYzKNCX9zVWo5eKP0xPa4HWdPEw3+4S3nO7wXTMXTm0x5IvluvhtrBEt6f9Nhk0HacuSX+gOCFpKWeh2tJfHZ63H/7rGc1fud9o7bD2MKqmHj+ObwaXxDdZkToYXIYvxVMN5yOjRohqNJRxutIhmcB6uvNaN90urceGwcNrgrgqiJ+ei+fFq1voXOMSrLvjDNJf+3EVoPjsK3P5MoV9K9WQtoAvVRQ/xd9wiNnjqg+YaFiw2aIUG5i5419IV5529hQ2LJrOzjQxIJ24i7Y5fEHl+EW2JbMRmhYdkm7oB96qE0HVRexRIaoHEPSIwPuskSpbb8ubHIkOemEwp4Ukc+ohI/FY2yV0Kp2nvZ7F8pSLodi/E9A357Pm9jqJ/m0HJxTN4ouUaTf9VykdiE6D5XAH2N+jDxZUqNPEQ86vTi3DqZU9yaoumvwH2UOE9inwd2qljsATPvxUHqw1bINnzHTlWIJXrG/HA+G4UX50CuiNaOXbOCnxXfBRWHRkFJgfGo0PrFn5/vQW3VFnDZ9kL5PzfMJhiGkOlPsWc6veVYs5bgcGP7VzzqQcOSQ+Hx3Ex0OG7iVripeCKQRa7xvljicAyWp06AWa8SaLuu2fIddpCMlObQVGyrpz86SqPUhDi/a5W0DktBuWajWCuTQdqNG+mU0KKWNglTao5hqB76Syq3ZQacgF/jjhRSa9+S8L2wDYWb/IlPZ9P9OSaNwZeF8SbW8phsKIQTqcLQp/5GV4oKw0LqxbAMWkDCruQDP2PiPPqZ4Kv+j2+2BeKlx9Npfdh6dh63Gwou6fwoych1Cc0k0f7fgLHIFtctfkpb3k6jbJtJWnPQ3UaPn84ZGe58NvyBH6mE4IfVqVjfFon/Xf+CCd2WfGS5HRoENhETztF4EifNmQ8b+I4g+90sPolbDcR5t6aaaQ8aEWHJ22Bh85OONWF4HuZM6tbyMCdUTns0loKE2+Xg0jreTh2awQ/iiI+kq8AC/IFQdtEDf5N1UZlm2NQL9vHZQbBOPZ4IY5jZbCM90aZeXe4xm40XG7IxMcJAlic6YepM/QpxNmP7S5kUGbVPNjiN4+a7j/B3DsysO+3Gs2NF+VP7X5wusGez34fS6P1t9Nk65FcumIJ/qeWRH9VrKGz9zQ3j/KmDq0t4BEkRZUlY9BWRAgUZUai7BwPaMvzwl+7hsEytXXwu1cBG7+MIFUtWWw2+8TWCbrQcO8imJ68yNFug9i0eTTof3LFhqQAEppvi1vrZXHk0mI+PEuZCme0QcKSGDZcM8AGMsPAsL2LBzsyOb3+Ini/VmbTtGJQr1NE/7qZ7DJOmzbMes4PLYdD0ObpOH1vEVXrzeS4xEN4fF0fV6zPBnMrX/Sdq8b/5s5k2a26sPTceKr0kgPBv1O4+qYP+fueBtveXHzy9w7+bRPE8Tvd+csCeYi/ugFe2mhT5YJufKqxkNWOLucDxzPY/c9Wcu5yoWbNU7Qt3wYiQgWpLO86xi34h3EzR3OYtgdnPoyhfQcv89WnV/FA4hbUXSwIdTt+kLjAGDAWH0RVQUv8q6JDwT/rcEWPChv1buaZHyLJwt0GTHKOsKB1Kx7+5Im7L/TCzZf15Ku8AFctP0LvZ4XAmD/W7PpdHoQbmBPoJIhG5MCEF9OoOv0npTUVQkjVIB+fFIFrDiygrgO6cCNFCBdoRZMKB+OU2nD+3X4XFNv9aYqnClRvHMB+1xJqWy0H4oNq9MBsDP/YpYnLRijAofR2ShTvIbMjY2inRg2iWB3ulBSC/aNng6blc7QUG8Mr/VQhc18VcHgg5ETVc17TAM34+4hXxBlC2pm3XNM7h0dGdMH7nTkgE7MLp1MqyCnq4+S+OfzFvpuVbwrC/TwfLqttYH1+RKqb26m09i5tTbrDaquv4i5zBZy6rQvUEkQBhezJpmg3+PUPYO8dXXI2/IyDX8S4U/Ei/vrnz7sbL3L1aBtotJ5FBTuKIDd9G70zeIDFpke41nI71Yy6g93r98LfqjLQMJCAkikzMGv9FOjt/U4XLsXh/Ye/+O7FNEpfIsx5X7RgVlI57ZhsBvt8M/HnzfdoqCsDIvNkMUi3aOjZIjit2IJxOzeCaPlIcD2iB4cWI/y8p0jHhj/ClJGx8KpzDJakGYC8yxswzdHn3cdbYGKfGLi5mrOCWSDOUZiHKt1NqCjdQ38a1tB/sc0gFDQa5TqTYMqAJCx7pQz5YfGwZvMfPP9GDb8vfQSKdUd57I6xPCuMQEPAnBJrCeRfD6fs9ePwlowtLb0UDvqKv2DSwaGztEIbP31UhFSpexhwHIEO2FHeNXlYs0sb/Uef4SStHFK/Ngi3eTjcWLEXMtamQcH5SdAV+57sd21hRYX7MOgkxFnmgTygc5mdzpwna82/PPOaC/TmmkDsIYCq3eFsN2c5dZiZ4e60O1i22RQF56bSzyGvvLhIHm5HmUJ8egP4f9fBkWPcIKLUD1/Od4DLhRtY0vsvfdIWQOGMTbxSZRTkv1nC072raN7ABwTh5fBg8yE+56BJVbUrMRh7KDs6AV5FCkHx/RTwOXKRntvYc46RN0VtkAb3bS4UcjMFNse+pXlXXCgvUAkmPzXGitJwdFggRTfktqBX5Upqy1jMBXO3wuz2Vei0NwLTNVXBNrKBkp1GYPXtU/jG5QDO1M2mGd4ItcWf6Lx8E7qP+slyv21h+WAF3QvzhUP/zuBbtTyY+OA5SBxeTJk2jdidc5cya6eS9S4dSMkRZJtPEhjSYYszVmTyfwfvw9yP76Eq8czQOhcwTkaIv4kYQcrpeWxcVgGHXA/Qfs0XtMh/Jo0uqYD/glNIJ0aU8wMr4ZS3Pvgdi0Qpmz1ksCaZw2sFoanclNZdEkOHc4boJeVPgg830rG9amDP6vTqbCh8fegItxd7UOnpGPhz9w30JRXwxC/TKGXvbWrzmwwXiwLp3ZgxdNloOeycpk2Bi+dQ9KtestpsiDnXn8Mc79mY+RUgOTEP3WP06Z1fB/V0/uZWm8/Yte4x1q5AbF+Vz5tFPoLLTlMwOniQ0t8m0LegUnKwVocga23sCv2OwfMDUTNKG1paJCny9igw+vUArasVcOVmQSpcFEGR4Qe519wKxvlO48TotTRDtpp0DXTBSLiQvvqcIb9jq6jHXID53tBzztdRbacqpmr8Y+ETBljdYgb/db/B5bum8JmBX7z6VQ4prfzENRYqEKxxHtcfCOU3tnHgoWgMjWOlOMi7C9cPPwan94yA7RZSXJhQDXrVacz/XGC6G3PhTTFI8+3BD3ERuPTaBIoe40fnhnxwHd/mcpdSUjlnQON6S0l7lgyMrT5BxykFj0WagoD/SVY48oyE3n+GrJKrNL3mCpQ4O2Jepw7oLNyJ+34LQecyIW48+Y8eDbHMUQ83dkir47ths/HVgiAQ0B0O+v3ZHOJngNvDd+LuiSX4/dxmmuNfR/sbT/LquD7e86QdviwwBy+zBlr68josOeXLJ1QiaVfPIMzRrKDnJzvI7tUeXBujyjTdCCIl5sBr03p89OIrPaw5gaIPxOF00Ta+UDad7p+Q4Ys3p/GOywyxc/+B8MEveL95D4gp68Lc2X9BRuMnTDacRY1Tl+I6BSVuT7aBCc5CqLR6IbvtlYdTOXXQlJ/PSr0B3DZnPwje7uZKXQfweywB8uvz8LFpJv+94gvtic4c/ecQrXizlRP8BUBLq51HZlynzC5RaI2qRvMd13Hph2AaMejAm3YdgevTz/I0wRVIo0JB75I3WGhqw5cPd6m64QxNtT/Jn3PV4MS1T3RqkTgv9VpEhxI0aUR3HnxhAAuPSAqQk+HTO3bBigtP4fvH+ey5fj2t8rIC1W1z+U2pHfd0mkKGQApf0dOCgD1n0PnvLygT9qMeVU+MLD3Lb51aIexmKFTaG0D47SnoMk4NNI6sohYbDZj3xAQtdmjBgFsN+Zhrgqf5JKyWswWJnyLUP+02aUr2sGakCerbX4dnMw5wyMaTaK+0EZ7oiEFTnxHkbMniDnsJaJr+iJVCHvAE20RoHOrP+IRAXvIrCRdtLOFxiw3BNqGXL3e8Bel4L/QtKafPhx3RqDsLi3esgaMjd8HUbevhwX4rSK8+Qj889NEo8wqZe9jy3PNOcGNmMO6w0GTnS+qodfEri8iOhbBvtZx0oAK7yo9xv/ll7C2t4dzdG6H1bD97N7+m/14e462yI2Gc0C2WumEJ7uEvWfpEF3RGTcWt8uk0vXE5SZscJQs+xTMuyED7US8YfckD2kfcg7Z9KjB7rQoV6gXAtJMJ6Cy/hhLLLvDASTlIWdlJtmsXsufFRjT1mQCfD00m75lzwa3PksdvvUYnH61F7/RR4M0LMdGzEl7nPOPUSVoYH7qbEkYlw975ptD3cybK33iP+tJKgIeKeHeuK+/OkqENLdPxS2oIrRl2Hvq6r5LnEQuK+v4afVr14e6PAPBddhMTNhTAsnmveKBuHbWN+wE7/p2gQa9PlLj5At3ssoJPMfNxwvtyGrG9D1fbXoQFdZ0YmTV3aE5OskbYRrAudyMhMxvwL3Ajy4ByvhpkRgqRu6huIBeHlUnRrZenaPJZL6g4OY/erFKHC14S+Nqqhv5edMZrvj4wuVAbjkfocFHwctA5NgemPFsKnTKGsHmcHl2W6afZuetB50oqJZRdxpxFT/DgoauQg3ug+mMP3ds2HhR/n8GkTRfofJs8vjf8Ts3/HUSf3660zn0nxEpuIK1xM+mKlggMjvIjVy9BdH07Dre+ziSDcZ9Q+NwfKow6hk5pdSBwa8gxf00EufG7+ChM5otXkb5NdOKGtddIx2oX6Zgfo4UNS3lz+0uoUx4LheP0YIXVMaz36kat4mosn3oL3uWmUt5ZF7p4NxQeyauArqsSnHdzARsZK76Q8g7HKfXjfytFePenFF4dFA0+su2wQMaVupeYAc7YxNq5jaQ/uYf6PxqgdpwQwr85NBi7ki3n5QGbhuL3Y5NBNHMaj1kojOP2PeaizXk88r8sahWI4gsTJdBkURRbzYoCQZH/R8F5xgP1tnH8GspeJZJEFNkrsoq2aJKWFJkNkVBUGippiDRRCOWfohBFJSstCSUZpYyGqIwmeTzvzudz3tznPtf9+32/58UxBU+ZhxS36xE2rR2NDpeKyNtSCYKmDODmY6XY1F0AYQJZLL7EAiIc3XmukwCnPevBsmAV9jU6BZsnraFFeeW07f/f2BwDSXXecIi1lqD+Bffx8m47khn/kKZOSqHdQ8/0+d84VkU9kM8Swy2jAXJFQvCT3gbalfoZsn5sws9Fc+DtFgN+9rkJM0wbQTNtiEElpeFB7RU46plCwXOfg+ktb8iYKEUt0d4kYGkGA1MUoCp0gDfOGg1mokFgm1oGxjMGeaDyP3J9sBlcbSVhbkkiWO29Qs2tf0GpVBo66oDe7IhgysmkbbeDIXOkBVJKFcTv+Aoys2yg7Z4NFI3WAgubddD1xwTd/Sqoak4mPMp3g/2PT6DgDKLzfcdg2Rc/UhCZBk8Gm+CcgR2KrfxKU9zW0qdHCPu8stH4uzA8yynjx1vK0K1UBvbb6+Dcb+PghZgUve7/BBcseunqcxc8mLN7yAnX0J+Pa2Dfai34BhoQmuVLBz494LXXM2BmkAX4rDUl/Ye6IBfnxs+v/0d+vcNBy7YZpy29z/+KJ4FkeRKFmH0B9znT4MHVGho0qkbzke/Q3WcKtPkFwwY9Q846oMuZQp2cImoIaRAPYUu66UV4EnXu9aKAB7JwQ3MGjfJZgR5LnaAnLI/O5Nnh1YQkVLwnxmMfFWLE0zeQb6cEG82kac+RPzQYM4nF7OeQRaozq1yMwLSvg/zhnT8FlQuRsIglTOms4F/q62lndBDqOshD7rZKqlz+Ejcm/uYCiQfwxneQPS1NYP1AE+RZOoD0PzV8U1jNKUOsdMtdkzIOt6PrFE2K/PQSry0f2r8+P+5UfM/D/Y7ysaSvdNX5LFqeFuHGjf0k8HAzObMLRQ2TgIC9rylbcBDmLTmBYyQjqcTXnRft0aZ5BxTxh9c5cDrnCz6zpSHngRT+aWmnCZ/24C7jxZz7PoFfbJ5HX3r8QfCKNn55kU+vkydAsXsECWZ341aTqewv40uGb0twkd9jaJv9AJzjT0OqtBtB0AgY/NLENqbrOPHhbcjbvxhDd46GhUNu+8jtL694WsGJ0elwUHMUdB46wB+n5UGntT2NjFnFF2ptuMg/nHZp23CQ8SMef+sbTG2XgdEz/iPPA6fhe0IGbH77BFz8EtHcfS+Jp06DtKHuCDd8gpe9J8LDT394lt83So8dxbdV/VC6vY8S85fTwfZUrIqZwYc2P0ePi5YwWxlBa0AOdGXPsKnsfbQOK6VMyURUG60HXPgTRL+8wDPxmjB9fT72COwG02grLvcToFNeGZBTvpWlNdfQs76z9N3DCP45GINOdiaPPNiBgpV3oLVDgoKkTWkw+THOkRMgo/UzyDB6iHvtlGGvx0++dbkJT7yX4qdls3D750w877OclRwFuOxJL1RoxWKohyb0vV8POkK/Se1YLWza4UYXZpphxamX+FXPCHzyt4D3nme09juBUEkrTgpdh7oZCNf2XQTtS5IY9WwGeYhkoa28GL0cvR2i8s1A90kPm3VGgoyDNV6rP8yFj+VYO8ecLqyT5bJmXaq3kAfpcml4fqoXor+1k/6qMBTbGcl6d4fcML+N40Z/QcuIxyymMRHmDBsJh+Yv4ZeZEmDcf5cXX0mhlR9XYvzPcTS5fjdVOY3F7v2veO7PobN7vBIDF2eSlck/+tCfAcHrXNFH+i/k7hjEmD5DUBeXBkM9hqUXJ+HKwN2Eil4kE3wOlc/40qvXwyjB5jCe79SjlgoVqPNQh55fbiQnfZ7GSjyBgWXnuK6lkIrXZeDMB/+x3q0CVj/2HCN2jYUy2wq2vexKy1omsucjIdy7diYLKs3n6FeCFNGTQe7S5fh7oxi8j5GGTfKvwKFOkd8tFYDTUXEY+N6Z1sY64r2TVpD825HuXBMA5y8O1HDZm2WXJ/Ljxqcsv3Ela9ZegPzFSVDclc2hL5S4vFYZ9p1VxSOjZGjc4jewb85myBhrCFY+9yi6TRWsQuPp/av9/G+vFlxN3A/SNR2wX8EA6r89gO2DNVQZ8ZlcBrroyHxjkHIKwa4l0nDF/RueGfEbbVMWcfTTP6h18yroXD3BP+8rYceas2BTkklJXaMgOW06XTpmygMcRScDf9PbnNlk+eIBqgaag8ridzjuXA8XGpnC9WZ9Dm72p+C6bLi1+QYPe32Ktq9KgyUJn1FR4wsIn9rLocMF4ObUR9R2Lp4aHM/i4zuifOFNCE3eeYfmwFcejLfkKeqbsD5GFR6lzqSVm/zoYLM6eji+ZIddbVzdL0JRMrr8ruETKp3YzR9nTQa5JZ5gpNVI4x9HkDxtpb6b6rhwpjTPb2nC5e/f8mUTPUi/KQw79b3QsV+SDruuhacrPLiqPQ6G9f7hmhcNUGv8EZ62G2Fv3AQ41NkAAwM2KLFIj8VnLeEvAkvQxT2GjPzPs0VhE3l7DAOpPjm4Cw0w985T2qZfAItsDFB58Dzvk7mLKXs6cbJvKwlaePHWy+Iw/44lLFCVwbUNMTC4uY3v9z3muipf6vhojv5rn2KU9hOOq9CCkFV3sPIZcO3JZ/xffiu2DhPG+iuGsPrIfpzq94t1Dp3E/p+yMGaEPGy/M8RqVfI4Lk6Rlw3bSpXK02jk7X80/Pxy2OmjBuLDCN6P/8wzmjTY74grPeg6glGZGqD13YwzdJxoidVivGF6nIKGerovaQUMd7pIGzetQ1edPXBy40MSn7EVAudG0quH8fhsUTaUz5WD+XIneYaNElnJjIadY5UottaaBMw0mV91UFHwMNoW0w479pjAqjBvWNoyQL5TN2DlnLcYGbkCF5V9R+MltRiwzp5sUxMoqdMYan8XwxQbO2if+xNXL9Lgt1bdpFSiBN29jbB39nNoslgOXcrjQXhWJ+cU/Uflg2rs2rcGa5WKodYuEZVMmnjWnHLUvtjEnk6WcKl4A9xz0yHIs2YZV31u3vwGZcPS6GVyASbNM2PrZUrc1T4C9B5XwdKSJTj4/TfkxIWQp6c6y0xwonslsRAe4Q+vVl3kxVkjYK7HXcp9VYjOVR64Vz0U3du1MeruNry1vpc1bxygvgOp2JQuBgYfX6KLWzi6NATA/Zf/YYHIQ0g6kA17Juvxr2MTwfa+JL88ogrfDmTxBPUk/nDtGwlPDCbpmHfkptBNw1+a0Ji3D8h+rg5dPGQIP8ZkwqyTR6FFJwG/tY/mcw4yvO5FCEbLlfK5uYow7Jg7+LQZwJrODjziEI12dtNg99k+nBzwE1UOf6UltmmsvyMTNF06IKZSFfY4qKLsKEFYtW0GDPTIwQ7ro9A2XgtdQ5Jpwm09fH70F9cUCMOYVSYo2GLFBtJ7aaLoKjwmJQABv8PYyVWFv7p44B+wxZFoBqKjpkPayFU0+/R2XqF9ml5q1HJpaC269wO+aD1B2ZfPsoSrOmwRvUOVpb9hcvdxNi6dhEnCVdygKQ7SC+/g5lJXuNt4ln+OMYBBrWI+dHaIS3VPwPmHH+D6MX3yb5VgMScvvhTpAhe6PCgOpEByehI018rSOVdZCE5r4u1zdLitLJlmjrkOsd+auUyjk7xsTeDTnPuU278EjVWOc9wUWWzULWONK+LwrzsAVLobaIXnJLpWIwM//bNp3rBCav/Pkn8MjEZxxYdkeDKUoq5d5YxcPS5KdsCQlWZwwMaWY+ML6UeyEU3Y3IS9S+LZ0OsW9+7JJWfDdl79KIEEXorCg/QzkCwlx+E+Knz9swydmFtEuOskJ67cBHfHJ8GJHW/A+6MFlASUgYhbCvTp3iK+oMt/hjrBtawFdnSvoZzJt9j0ohNNfKwKp04dg1FpaSCpdYdHFLWjdGMuaCv8JGvb2eCuHEQ2x3r4fbwalNaYkVL3Qzh+bBXvuXQYsnrtQedJKLkEdqFD7i1IHd9LXRn6kKK4CIJPuWOBwScsFt1Jkn157BhVh3fvXSJDh1ZMdzmHu1gdJNX/wJT0Jfx6py82pyaj6FxrfJ1hh+E5ITCsYw+knh1HKGABe+bsQO/88eQRswXX99iR1qIgvDrlF2g/24YXv8yH0T1mtKJoGMg9O0zyKdvoU3c2jR5cgEv0BNlwfxW2SG7FdV99YJykD6+OnQwuAreoLOg1PntTyGf9F6DhxVpurkgEo4l76cENZZ62djtG50+G94K18ON2Dn8/+AZbel/hdKNUUBqjCr88icqDveB3tiLUFo4GleLNbClaz2IHErA06D5HXz9Hj9YW4tZZGvyrwJolvnqg1VwR2LHiCZ5ZpEBPFf7AqF3yFHteERrVtVm92QFmGX9Gt251EjtsAV7Vu6j8wxz2Pr4OIlZdYqdzweRduBMl+tMoafwvMr6zFPC+MGTmbMMLqoReD75w7Jl2UMjt464t9fDJu5ld6hdylZ4fSM0dDkFH99H5J2lg/hQ5e/3eoT2y4q65Evjq23u+PdiDifFlvM7AEjLOP4fzz2LI0tuAclTD0TtvGVVkHYItRy7gj4/P+YldOdk+UgC0+8S+r66Aaawehr0Np/QTygzJ9RizMQJVXE5TcMd1ju9SANc5drTx5FpQunKXRHc20L2Pw9k7qoROWxah/ZRGeriyGcUmSIJh1wI41eAMqxQPcMnJH6xnfZQ+hlzD4cN0sDvTiFRe2OGNeQBLIhL52joVOnr7Gwi8lMKT8oEkUqxOta0aGNHIlPi9i/WkpeGEoxa7CBG9qlVlQ9EXnNj8iur0npP02z/QOWkEZP09y+UHZCGlqgOSVMZDX+MxzgzfSGXVzbD65RZKfTmZdUSEqf3ISPw6RhoEPwVRWPdSErFrQo+BUBbwP0BPc1RprshN+ravApXfu9MbT4DRoh3knVPOjkEacE52MQyrbQfr77Nglg1S76tQDgjp4+sVI+FOYCg+3TkZAxTL6fPZb/hX4yBL7lEn4agOmpRcQN+eb4IWOwHIOauEM4+XsdJ4P3gi2EPd+e/5oespqhsnwyUGR7k1zBivxoyD+vJkvrvOi8ZOiaM5Lx7BF9MQ2njrKpvsbgRbHVsYt7Wf8oa8TDz+B6l9yqSTawPINUiMvRL82OVOJjhJ50NISR+OiG/GV6mGsEb8EJev2QlzcvJYudOPFSvmkqjxIzRJEGNtz2DQ9ekA3zAj+C8rhgYTX/C0mi244MY1bji2kLrjPaneNwgP66ylRXEhQwxiAtZfTuM+g25KlLIhV9lysmjzRTVFUdzwYgMGG3gCiuTBe1AEo3817P1Bibc5plD9wvtw76M66soHccD1BEp4GY3CYlVUK2IB/6VvA4ECDZI13o8bzZS4wgD5VeBJtlH15i6PvRBYupOU003gXfZJ2v/ICt0b5Hhbxh1arm5Og0PumawgDO1ffuJFgVXU9UgfxnhG0xO188jiyN9KTaAxbyWNPOwPm/9mcf6MIhr5PAWu/zaCdhEperNQiXefLOa/Et0Q9UAcXoe6ocu9t7AlX58j3tqRBI+BZQnXYctuVyoXzkDBV3voal0FNF9bAbm/64EeBVKd60/o9FAD/a5UOhluhRn7v8AzzZ+4tbGHDCzd8PjR3zy/vYllBlXpXtg0+PK2hAOS3dn01E56JjsfYNCPX4jEk0S/Je7YfZRfGN2DKUUi8C9YCPUvXuCbe1PZzjEUxlongva9XsicaMiXKzaQ7fb/cJ7uVAj9Fsnen05CWtwc4H8x7JCsyD9GeeKp85a0/2I5zvz5hrSq5MDDLQ2nD7pDxLFtlKmwg2+M8CJvS3toeyWEdPIGvDG9SQmyGlB8aRRmaY8cyo96mm1SCaruuiCe9xXKht7Xt5qXnHbvI3kaisHw/hjUL/AFofn1GFy1A7bP+QmDycJYsf0Qdye74ca0MSzhKQ9Bt/so2vktHZz9hm19NxGrLQfjUbPBuqMIGyJa0Ur/ARs/Gg+F/tvh5L2F4Gy+jBu2v6RvWo7cmvAO664b0hTjN1icVAaHrgnB1ehOWOiwgWQcjsLu//ZCxYIMVJbbx27JkrxGIYECdm6kzBFW0L5YDVXWG/Drab0UWqgNDqYt7JcXjLsyD0NS8WPSPPUJ/t7WAs1JwzlbMo5eSZ6Gbwteo93pLXB43B74ezcDI1Uf4Lv4kTzqqjwkLbHG+nNLcEbjAq7oOIg0xMItsReGMiSW1z+LAO0WfxSxQhCziaeBxmY68lgO1qffgVkOpzkiLA4PXD/ID46kgOPGV6SvZAY6ma6wYVEObLy2En7NlaV3foHoFKOINZ1R5FNXBtXL/6B4lw683JcHinyE2jdbIr/JYf/ZBTD9qxRKpCuQjtEz3h0uzMaS46HouzqNaT/PtcPqKEbxB2i+3M/hD8WwR+Isjv74Ai88nQWOw4TA8OJuvihjBy9qZtPN87foQdhnMJI+geO7fGjNni5aEJFJU0kAfm86CU4SQ3OZtQ9j5vmQ7ocTaFY9F4arzKeTkTNh1LbNOHmRPFzuu8ChodUksvsRGmwjYPk2/vlAlbecnwzPk1tIXqoG7MVVoGBJA5/KnQof24VprY8ECmj08/y1f3h3sguq3l2ItguTIUyVYGeLPm413sI2e//RjeCLtNk5l8YX2YD6qkdQ2fWImqbqYGqwCXRkxfCclW9x21EpPBcvS6YjIvlgyFcaNAiAuLFulPPIH0vfKkGY71iacw/JIuUVXR3fTM8ULdnV24B9XK/xH8tfuKJwLMjOnAQ3lMQpxkiSjCauwyu+hzlJ6A0NPF+BHc//8L/wLKrYqQl/MpSh8s+QExoWU+J1KboUU0yNqz/hf1nFPL3jJWX7yqB220fSNJoIC+3C+fWRJfBhlw99/h1J2283s946ebhia8RpKyeSTeUfdFtNMHD3E68u3gpfBwcgSOcC77l7i97MmQA6puXs+9GPI/NVMS1HD3qixfB8Ugn63XiBGVErWZAdSOCGCcipl/Gq1N+U7JyFsYZ6kHtLnN5GPSTl1Qfg3KFernTeDteFPPn8lMmsVDwCDu/fyd3jCJKiL9DqkP14bbouLTCfihfKnPHhpC9Efs8oInYJP22dD82LJoJOSinNpEn4tD+DxEce4RWGJtjz6CTvb7Hmv48m482nmUCuQ8z/pIluzuwDn2lv8ewmC6qpdIBzPg58RDGGSGADrd4qByq9o0Bg13v0fnEdzR42cPsCR2zscKX17tH859pNEKsVYL33+djrNQlWln+FDquLeLL4G+83f0n1/3yh+ZICfozMhkvlZfDp5wLQTDABza/i+N+YVnRsl8afh9tYrtqQneI/odb5fXDzwilKf76B0kdLw+qYTTTOOQuEL7TQLbtYOiv6nGtGWlHLmfH4ROwE0ysN+jDSGH7URdDniR/wYFs7pRgGY8aDUlhmF4FNJxaRfspPpuMHsOWrIWzreE29ndFseUED8HA+5GWGwP4XaZDpZYaJlr58rTsDNt23guFG1VT2sZlT1kTAAdUAsJ45ERt9inC9nzK9y7VGc8FiDugzgrAwQ/B3bse9X1/wvxfTmRbPwIiValiUupCKq56iz6ZY0PloAquFvuOEidZ8Y3QkNh5dCDGr/blxtSvnBbwgpeo/tOCqHbj6DYd98pZwJeI83PoPeN0Tc5T3HYnRRltxlW4Bq9v406OQIq4z0YN9Is7YdvwX/7sgigXpkTh8cxYfDp9LpxcNcq/bNprR3E1XR6rBAdN0OCvrCaW/z/C7oWz80JBKsyt8Wf27G1UvOwVORVmc2zwWDOTn8K2yZ1w5YyxbHDeDHfFLMT17LPYnnETTYZ9hYfpv/PDXDKTap8JiJyOiM4thcnQBKdiH8f1zeiQbkQIRTyfwWSa4YiwMBt896dTsHWymkkrVD27DjMPhuP2cNu28HMvnvm/F+ppMKNsyEZ4Pq+LFs/N5pGM5Ov4Uo31SeyAvZhRYpV7gimv2sPpNFLR9GQ6nZ5uDYKQSW7+Yx68D+lgurJx1HAqhO1qaMv5ex5j2J7iyWQiKHt1BNS9bPLRnHcbpNJP2Hk12ud0O8XnylB35FXLGJaJDylT4c9gRz+1MxxfvV9Px7xex0UQUL2Ueg6rqZdzP1XhDpwZ+TdeCc31zYWRgCnDRY7px5RRMvXSbSiybyPj8P1gWr0hpJUHoGKQAQSsb6U/6F5pYIoKnfh2C7lf5/D7QgfIWzqPL3ZVoXfMVdtiJQo28HxfcUYEVlQI4kDYDxrTtBtTJwMQvR2iSz3wwTKkCk5X6kCpyD26Pc+H0UXHoP7Sebq+vYOn0HzXGfeCIS4/x8rLFfLB0MohIl/HTJTW06b0mheWuwQeTkiE/RpU8pAxxxKQo8j94hS+p6MEdnQ343fwXfxNexwFXKlH6y1pMeFYJagbraXjxdQzadp4tQ8xgSdhbLs20gj1LMyj+wH22/yKIQ1SI35xmw4Zbx0D9cwD7XBWGFwdmcdNseShVDoMrA95wV245Hgq9yDvD32PzzRXk07KTVMarwYylnuh5bzJcWHyYCqc44qKeS2A4T5GGpzwgWJyL1vZbKWXWJJixcxveaC7H945S+O54BxT/zGfrwBlwRWEth3A8/lG2hlUFavDpkDm41KhhYasHOM5fww9makLf3yFHXHwN/7O+Cor3ViGuFYeq75P4vtYUUrmsjyPPToSScR1YXWBM2u+X0vKDhhg6YQHVfbWCnRVzoSHmCoXKJYB30Ftc4pbBhuuTOcREDrZs7UNf7dmgJqMFAzvyaNe3j/i+ypD+Nenwf+E2NGa9DBXET8ai/a9AO9gURSI04cLnhaC2wpjfGv/m3aSFF7tcYFV6JRWHdGNFvA2hsBFad8vA8ksfKPp6CyVvGM28vARPtl2l0cF7yEG2Fm8niKBQbQw1rlCA5hGHkD9YclLySdK6sQaFvCu5O/oB3aPRvG8nwGeLfwD3xCDitTlNS5oDB2cP46kFF+B1bDg9PyJC5rY76JZxKZp6dkBIhTLEzC6iiIQINPi1AiXyVnJQYiC0b26HdZedqCI3Ej2EbeDpWFMwqT4IezYEk/2VtczRE2B1wxeoLvnLI4cYKkF9FX3uMMSZEuawtDYXgs3Xw53Zl2GEigdfMJ1ISm5GEN2yia7lpIClxgEO1p8CAd9LYKb2MPJyusKHt/3gT2Yn2TnQnmMmScMu/W3QoBhBEnICcFryClJiGI3bvQZOagvSnK0OLNrRz6brTGGLjT98WHwPPt0XhcdPNoCzWBV2THcCeDaOk9ffBq0r63mIAvD5uEO0tssdRJN1oP5ADnKWDJ0WTAL3P/lo+qqHA/E9r93mik6zY9H04U2WvWoEJ7aVwsCuCaT05C02rlhEPzbWc0hOLHt7mIOlTwK9Ks+DBLvJcKN+kIZkGj+nraPLJtV8M0OJMt51g5ygEieOrMaPZZ8J5a1gvXwZHzUQRT8pf3TzK4fGh0zav/bjrtD39MdaAkNt7cnzvDhM3tvOAv+ZUEjHCchNSeWBW/3435NVNKP8Fbj5F6PMyHHYS0Jgc3EGJj0i2tSaS54j60jcdjNbKjyGVN9+OB55lQbztmPIbWWYUjKNs9TGQ02tH982zODmf1XY+LyEkvxV8YzVOtjwbz0UKA6HUdLb+FzYM6ixGstK2a7sULKUU1dHMy2fh46t02mSZjGm/VOFS2+r+b9Fg1SUuYxGVfykx76qbHFSEMRPhMOP2Z1k7TxkjT+GmPFQM3YdTWPxrwtR2vsrHowrw3CZTfjpmyMJrb8JkSP98fwtVSgV3so6U3tIxfkHiEjso36LM3j2bimbf3Rix95PrPtlB/qnK8OH06Hw+KEaZxQ+hoLT2+mIgjrmVyXx/N5jbLH8NYdoNnG3rzb8/exNiQdfglXIIch1mQUBtg743HcYjaibgVY3PlNC1Hb+umciFHzeQ5enXcKNucmwYsoptjaPQ+fW7RjpcwBVzXNwqqshTQB9mHnSEuolXsHAz2TM+y8Kxuq740vZJ7yqyZfjdcpxUOoaXVltCEHKb1jovjtWnusljYuOsPSwOCfI/ePFubl01d6Qg1rdYNSYqaB1KoLVB53o7tjFcLvyBYocDOaN5dr04uEM+qW5kDTTZHnY63FgNqcNFm4KxUmudjT4N4j3zh4P4z/cJx29eyw3TByUxujAwfmqIOkwDfL6HGDPhEa4Wbyeb6opQpyKIGz9GogeT7OgclsPa2VLwPSGR2zkqI3P1zfTlw136IeoJN58mYKvBPx4dtRYGP9ACtYKaIGcYgiJbDoEi9WVKURiELXVPcEtNoTD5zjBlpA8muaXD5HrNeG/a2l0RnA8Ln+fwB5vtmDG/AConveWN9Uq8r4NocxpOfytbiKMuHubbnmLQd15Hfz7pwAELili+nRDfDZnBA4kAV9sk2fzCebw9l4wLX29gDVmL0DTc6+o/1otTOk+AfvWauPtifMg9+FyypitDaeO/EDvJBs4llZHB0eNAqmeevg9rg1lypu5ZP13Ns/7AT8ujYWKuQI0QkqTl7MX7bldwAe2mHLm/MM4C17CW+H1GJqUgPMdx4K342HeuboQi5Z14pV30jC5Qgc8RswE/ap1cKxzOvV86KcKeR2weNdFi8+U8NvvjTz7hCHk6qWgwEZ5zjycDFda0ljK9TZf0VeE9mmJMHvqFTxRao8PPKbQAf0kkOB4wH11sPSkF0upFmJO+Zih66t8RqsDWxteU4OgAl4yH0EuQ/tyIqqHQ5RXgUS/G0km6sHT9uWsE1oGsbPS8JRIBi5fkQRxq/aR0oA2Dxq+xux9xvxzsgq8cbyKb+VG8YOaTSwi1w5+VqoQWqtIXpOOUZTDB6i2NqcFq0xhjcBmipU4hyfvRPBI+9kww/4EVrdXYIWyN33XUOLKlKXQbqsPRU7CMCibQ+sHzsKh2mh4bbsJjO5LQfJ2TTa20iPJznF47dEIGL3Ljqr3BUCb22hSCD/EawXzYGlrLExw+c1pK4iLctvA5qMhuK85jgYWN9nrXhQ9jXCCjIkmcEWrCX08pejMp6GY6ZkL56yE4fkRFbqabQOB2gO4wrGXBV40s+vRdTQehOmO9BjqcftC9Q/0QDJyHaYrF4L4qqXYut0atko+477ZJ/jAEmUKiF/Bj3TuUJPdeGipVcEVs25CiU4niFSHgefyZ7hTJwZjTbbh+LM/aUfwd/6xSgCmHZwFr7fa0cDdlxD7u5PSLv3Ht31MMLt7FkY73mGpJ03gvEUDOmYaofjERpBSL+AHxUJsO7qUH6ttoFnHEqh4ghRusrdGh2miMNg1DFzOvWHFj9P4suArzGsRBt+aXXD9+WTwn1WMUY6ZrNluAZfER5BCRhB0iy6idbY9vGueMTxXdOfoixt5ZHAb2vnHw8WMqTDv0xocJ/+E+0VDYIuCO504tZcUYpIJ3SZi8Z9+2DqU8YevSkL85HAc+Ahss0oCGgJXs1PJJDywMQOH75/Jh8/dws3X3fGy7ARYEW5NZfwPUj8+xn8jjnHgmE10ypVBd1c1yHszmwSIcESAEsjPSEanRfLc9UedZE7t4uDvo8BfeALu1dhPNhdquWv/d1pTrQ6lYe6YVX2LTdo12FZDlycqhbGXmQj56y3B1WeSYU4Zwo8ycZDeUInr/pjQ146ZcGOlJ6sPf0QfTkSyqdVC+JB6Go6nr4eLKRNB7+E+mPKgjXPhKP/5cpP2f3bGFVamdGn+Kwr5FoRr9T/RxRxpeDPeHpKcRrLpD18eN0UVnpdnYqRHHzk97kGN4dIUYbGdpTYPg9eXNrDvbANef+YAzKuNhGXX9kP2y0wUXPEeNXPyadnig1ghbwCStJG+a+ZDWMgYnpWtyPYfNND+oDu8U6qgeZc34rg1DSA2SwOeee2FhW2aaF47kVIuvONZnpboNPk2pzh/xqb4Seib7cEq00eC98Bn+L7Phq4ouXGRcxafl9tNt4dmcaOGLX9rmc4p7ndgo48InA7IwM4/+9EwPZK1lXdSvp4zCIxZycuUO4fO30XQNtaFgRYB6C4yh/uZCqjwq4rSI55yu24sf90cB+stQniVahb1FtTTnG+mcLNagytPOMMOkwZYly3EZwJfY97GPzBieQs03mykTQNW7GRqCv9sK6BS5REnN0xnrYZaUKr+i1XiLznzdTw57izHq1Mn8t5VI6Hr6lze9sYKzT8P4vm8Plhmepmsvv3GJINyPl2zA57/U4Str8xALfct3FF35teT3fjmxjLONkzmxjHvyLe/C44c2Q2ftp/glQnysPWWDwhen05sOItf7Z4FkR/c+YH8RFhZHs7ztOJozpQJcG2ZOtxb/ox26I+F9AbAnrSDQzN0HtesL6C7ncfws7cQP4vbjnM8LWHBQAQ41u1kf3QmyR1ZKJfnySHvsrjKQ4DEjJVZTfs5zhWShMn3gZ7N6kWnKw3gXDka1yQr8sbwIg5MvEZP5U+Q39mrpHdIE5ZpOOIjzZUsvfkYatp6guzRXFToe0TdsXq82+szPZf6DTOuyIBpQyc1diTyfHMxbvIaDqujSmDHa3csCY1n/y571tsQAE83jYMVJAvvdh/F9VMCsQGkeT8MOeCau7D4eA8+jh7kzE/HsaRtMiR+dEfTI3HwtOQO3XvVStufyeDx4VMhIXUsatf0UX2+Ju66KA/TYtVoVvcuENHrg5cuZ/hifCCmpX+m+3Ol2Gl1KJZmBdHuLcPBK7IeB4rz8Nj8IBJ8O44kS93wWUwWHLgoDqk3DtO/R0fJ00QLShynsNjRIQ6Um4Daih1ornQXdwfG4ybf+Xhqiy68zxeEGkMZuN+lgo2uldRz9QqCxUF89kQZXEgUkl7vR4exEmwt1A2fzHTBvbgYrNdp4oHDGnT2dA9sXLSXa8Y0QJ1CDk6pn4Pe4t78LM8Sxhw/xj1338DqiM1seC8RJIx6uHXJV9p8LQrcf27niHpZXDygCoZvrPFPlyY3RcjwpxzZ///PEBxv3IbIrBeY9/QDvIn9iosey4Jh6mZwP5wNie8suKoUQH33EvAzO0GWe1JILvUJKCjG4lI7aWjqe4k3suaxTL8JqSc9pCmCf1GWeuFgljaNk5KjlT53yPmvLMz7nsOFoS50S08NBXLtSVV3iC2j/DnoRSLJh5VwgnkoHzIjOHI0mwK9LsEX70647n8Bk7Pk2eGUJGVqqfDYf47gILKEf1fKwpFh5RBrtAw1RI3oi24/eVb1kGplEu4qrWVzIVNYFFiEeZ2asKb7DfycfgoznzbT6v2tqDruIeSpbaWW+afZK0qJP8wswnobKyjonMpG0Qlo+l6Ot/tkwTv/WBq5+wGKL3Sne7ExoFhQzpJ6U+H90XRoiniOU5d8wKYhj1N47YnJS11B3LML7vnJg99YX7ZrHw8WC73Q5fU8vJQoRPOeHIGKDCmYcmUShE7O5A+/WsnDSR6Dpo2G9WNMWKHwBbpp9lGg6yCIdzdDmPQN3L+9d8izfMhHsYLUHluCoOp73KTux0/6bMEqNpKv/FkJqTu98e2yWFzvK8Jlk4ywdooKVCz7S63JttS8yIZ3xcrwLJNNvPSTK6ksP8kvd3vQlaJOUmwSBAvhp/RxmQO9HudEE8X7OP1MBnt4hsH6uVt4k9FftBh7gqU9JsPUL/9wSeUPmDozi+zri2GpTAEt+rEZXIJ80Xh4N2fI7wG9BbKg6lqHU8NlUWPmYhCe/pDuNXXD6eZC2tURTLGbm2DJE3vSaRkL35oUseLzc1y6Wg6UKqfC5zuKVHXbFqaFRGFizRIo/PyD5n+ZAF7vS8HmcCAZCqxEN7EyfvckiT/mC/Db4/PJMPIrHUjfBVu6h8OcqZfYuSYGrTO2UOu8IBw84YpeY//S1WUL0e7dezRalYz7tynDo0UBYLoxgu+c8qT3wj4UHpzB/Tvj8dytCXxdSQFiJkXwkmRL2DJ+KrdcF8EZGfas6CrKW5MXwVuFR1y4bRzlPPbjphInLr+uAA//q6Mj0YUQOiqExpbX0ZYJZ1nlLvHYzXMh63gv3i7SoM9WYpC79hraF04Eta376KjJMA6eVk3xQorsrFxBb/LysWNlJMltMQb/cZPhnfkbcIgYBn/sY+i4dQXIn42kda099Hu4IgrL7OYYOS2w0LaDxOdTMMfchSMjge8Pz+VNxnZ0WHoT/Fx/i/yfR1OKgjBsK0hGw7rL/KywH5L9lfj7l+OcMTUE/6Vdps3ZKVimYkeyI9WABLog6WQ6vE16zkHRetQ2M4z9lY1BtNGak7f4YLzqfU7/oQwvAnvRZbIwBhuG0Yrf5rBIIhsiXHVJuaeSK0smwkvtbeAymcDM4ShLnkikp8IqfNp7Gms8vcvdxb4sr5oKGeXV1Bc/CDhGBIRCttODwPOw/0kW5qiORzv7w+ScXkzWQ/398NwrTBx7hszGqUCsUBItXbCQVEUdaJ6WIbTYB3P+5SSQK8+G4cUy+LbjHqlHjwbvjebkutkM185/A3tlN3FU/RhUWjgPjkWmYoRBKb8snMjm3hPgUOoIXLbqDutOXMOzf0vB0rJ6vCq3iVY8vAb4rJ0LYv6xeJ8SqFVpoIO+OS2rGoe/N3mwRsBuDknswBmz+yFvhTrVyUSCbJw2aN2NgE26JdRasIMd9zVD9459IDNLnNyW/GLTilYqaJhGXrbjoSvoJivsvI559R/56Ica3L8qiE5v/wjT72rh4L87NKr4Icj6m4LgVgP6ltnOY28codHohYtsy8Fu2Ty0qW8m4aPv+ZT5foqJ1QKz+hHYpKFPfnFLIHT+OrI4nsQjJYXR/nwynDXLxcllAbRoYCT4hh+Gg7SaW7Wn48QZhWh5pQgUH4RwiOUGlPVOorfdG0jHXxP6Dy7FoL4Etpj5l2LuZ9P05CI+3WdGna6pkB0ngpovUujmT33QejOOBuVv8Ye5XvQtTp4MoqpYMNWYJ5RJwdfaesqt00dwZ1ggtgXOVIagps4YelwTC9GnFTikNJrSd82Hk8/Xcq2bMgceGQv9UVbwU307HpIZxbOKQ+HxL1GepODOITI/aUOdLVg6xUJ+vjykTNsDixZfg7nTDTjHYC5aRXRxeqYY/Mq1h24PFfIoFuHs20JwpqkVJ9fU0L7Muajz7xloL3sBsVbXeYehFigLStDer8lQ2mMIF/fU4pnoIhS20eSr2pepbsokAgE7FN+nw+X3tsEs4TWsf8QQ7Gw20p/c96BwxIr/vTgO+jlmGDdvI9TlBIJHyExIOvyXJu8SguuPH8DajXV8rziMBnsfYmlAEDQ9saGRzz7SxLXpLN9mwpN+y8CkFitKtXWGasFo3tzQhF76BbT+3grsGv2Hc5aHo+kWc3IWtQK5uv9YzsAN7hNwXboHPxc3hGBhTWo7uxm3VR3DX9EDaHNQDZadmQQdpR0wEez5mfJ01MrWYpusIjYzHIQXYgtQ9gDx8PCREBB/i4pCBfmcxT3cKXUBEydUglNBEly9shdlBHQo6roNv1075FtPb8OUTik2Ci5Gsd6fmFyRzI/99oCQtin+W5uI6+3l4KGEDsxyScGjOQOwQKWUVWx/cLBcPG17N5/lH8+F6lXX2Pk/JZ50TwKGNYaTV9lrni+5hWZHW9BUi5WsrbaSBZQdcOreSri5QosNlsmA9809MNOxE98m+HBb4ExY/mkEnlwbgNtzIsBXYvHQ2g3prpwB2CuspF/GV8FHfAO0WYznzjRFfJNWjokjfVhc8Tv+fD4KLBZMAJOoJ6hrbIGK3wLg594FaCaUgIkGOly/rhW/B3zEY5uDKUpcFuzb4+iZdhwJWK7DGY5a4HnGhXYe/gUhAzJ8NXwlTEsYC88eCsGAUxYvG1cDu/2W8e3fGzkz/CVY9y3mhWAD7TbPQOhCHd7XF4X//p6Eh9M/0fFgKa6JTSePWBdSMVjMHddmwO11U3C1eiuK5qvBVdEC+DgvgB0/jED+cRkne17jmsY7/HnJNv4lJU7XdbKwvl8HWrpK4cLOh1S06wA4TejFatcK0mvRpdsXNeHdvqmYcWMp/H7EkP6xl8ouV4Cr6G1You4M5XtP0xEtDZQLk+LSrGnQ+Oo62H1RgwVOhTSl3puld7Rx7/pmmKS2AH2D5tIffTXKGXIeT6eReGSMJKS9qKQ9wRdxiuQGEH/6ELNvabK+hSAb5q2iRTJTQVtqI5hLI7SyIpskB8G8dh9Mj06C+f6f0GycD6XLLMNpF4swumgTFjoIQnl1My1cJ4SS30L44Axt2n98FNSJRsOJ5lfoUtSN67ZehB/VOqCU4IGd87t4eL8CNreF8ZbxqmSr/g6a56TjX4kT9G5gPYSlGsD8dbYsbHqO9KutyGHtX+roL6BC2zKSWLaGjarluNF2NfysHA3ND+1QOagP+o6KYf08Jbqg5oKmmf38W0edSoT2A0ZnQEOmMUxYMxGEvj/GDOUqEpA5gG4ji8mxIQGf5fez8cNbLF06GkTWjQR3cU1uXVHCD7wekVDLRtJRmMEBH45SytXlxN/rQO3KAAdZy0HOFh2KXxoGd9f0oOv7QJq34xIaHdAGlcU/UbUqny6RKr5+qAcLJ9zHdQujaP5Gf87anc37c31gRt1n3HdJEfR6nHhl2l5wt5wIi4SHQWZgPvbExuBhrb3wQPQUOi40Y6GhbA27Z8H/Vgx10Lkx8EfqDNoIxLFXzQDMaFLBhVGxLKH7iAUk1Bh4MhrLb6Y76vKw4q0QRDdsgHt7tsCBy1LwRP0qVS8Lp7akQpbymYFi8XuxqkoNwocN3fNrxMHyOXB4/EYMNViDSZ/z8d24E6SWPwt1438gmQ6H3spUEpm4nMbHrqP9202wRFSMnBPdqDaikhuHx2NE9DDu2Tkajgq6wbmbFpBichYO7biO6oKbUHtFN96blECvvo7Gv2umofyHMXBUy4Acbndwiaswu+oKQ9x3XfbTeQ9z4vv5mHo3jvfppi9H5cC58Qhu2TKGYzqaUeaaOOYvvg/5R1rghOlRlp78AJeNEyKFKl34qvsKnFKiuFthNcj8JwV6/w2nu2fCcYF+MCkO+OHYE2pQaKUPGxXecEmjNs86PQ6fhDyBZw1xbLxXHdMNG3HEiAKsiR0Pm8t04XVNEkYtkCWuiuWRI85j45atMPDrOC4WWg6hBSmg/qaRH0dMAA//cjBu/Yjvz5zFDcccee5KC/wi54s/DqnTIYe56HlrAfDAWIAvU1lM/Dx+vXoMf8h14Yicr3Qz6D/yjz9CIyscWUe0FLtJHYRudeOuWW9Avs0aby0RhN3Hb9DK1Lk45u1c3DNuNx4rlUT9amHwjn/Nnye4wSQdXZofEcFRS9/RBUUf7Du+GwMvVeL0GG1MZmEYW76fNeNdqBMSyNpGCOOnmvKUXbXUcPUc1H9qgW2r8/mCsBjIX9sMe6OIm7suMkZ208VhnnjJyxSq5y7jxUIyaLbGhj/sAwj9MuQX0SP4yj0/Fln9jQzObeGZsx04v7+WilR/UWHlBBj/chLsq8nnYVkNdMfzIR0sy4XzK1/SN4uHsFJ4D03utIRxAWLYXiIPZZnBGF+SCFccVGjUriSM9dlBUq0S5JkyH7okb2NZ3DU4nTEZfufr0N0n68DK6SReHxiJv9r04ZRMPG431IMJTs6cH62On2W0QTJxAlXVf4K1Fh/wdPZcXPFnBB+ZLgh7xyyHF3yebM0TIeHiJBjR2EPV+JGDS135nNJdcNWx4uGPvXCvbAQZjiqm2y/n4gtDA/CRNaXc1OswsMaJHyxohpTMV/TzvjLkzimD1sRm3L7DgYcJqUHEbwX61JWFC2Y9xZ2jNtPsKW6UI6hAt54YUtA9HSzYUomGTUYw/9RPeJ3rT0/nfGH7g2OoJW86jh30JE+pGqzPV4Uthuk8PVQRnKfn8zuVZMoKXwCW/X9QUuQTVXX1Mu0/gAEvbkBfaQ4/FRSCozVr0M6lDcZcvoMSYZJolvmerizdSrvLfpCJ6z564dUCu30JfP0Q1j27SyElmXwh7SS/nv0HGmYY0N6l4jT80XOWKL7M5ROHgZvYIlKZaolpHxrpulEYlfS/xMjlQMcCjejgvCts/60VV7jpwpzliqx5Ro07hTaxdos+fIrrhNPr74Hd0WSaOSsCldU/s1CvPkxe2s5+5rp8suMCtB23pd7ipzTVcQfJTphCnltjeZfDLKjNMoBWtf0osmQD7Ui4yVchjsJ3aoOLwydwaPWDPQZhmCr0ju0VVSHSfDWm3bOiEHUBmOFVyHNmFIOrbynMm5mDEdvGg6t+C2SbiUKGqiwPv25Ckt+O8J4F43mrUA47aE6gseJfOOhSAXkkFvDnnzKw6s8gXFZbxNfP3cJjGtEwrW4hffxQhpKuTaRVVc0jPM7wzEVqYF04i+PCu7jB9S3l4lbYq6VJCacD4F54ABnP08JTeTOp7ZY4vI0y4rRvPxHj3SluBFKRaTPE/I4h3a4YXHG+hndq3cdDPVrgZfQb1TsvQ2mbHsRNGI9n9s3BuIdlHLVwIgV72/K68zlwrM8Mpl4UYUFtRWhdVUehAdOHnNuElo7OhX+67dD9OADfVbVhVgbDkZ052NZ4gecKHYNk8TAYkBJCUzlPeGf6D1Yu+sNwQhTmhYnD1rl1UFVVA6grQCJvh2O/QBy52JnByY4f8OhrApbn7OP74VagrLubNrfm8y4xXwrq3gLvQoTI6mU8Btgfge+X8uHxBX/oFBgBd48dBhzuD5KqDvhm+9Ihx3WGv+uVsXdqD2YsdOUGnSXQ66sNO39/4LvDv/OSpYxv2sN4pu01WqV9AvabpPIFvW4Uch3klzWTwPC5PZbddGHhJ9t4ZncsFWjVkuEbTX7mvAEDJ33DnAOmeEJSHx5GXgY7Zw34p2HMuapBdFlgPm2OO4rNu+fgzJtjYV1vCoTdlYQDngtAPPAf6EhU0tkkD1z8Xp+dN/6j6wKyOCcoB61/SEPdTzEYdkKUO2qiePVCYVQ+Ho+X87O5p3k7yz7ZhBsvFmKfxnE69UsDzm/4TfKRaWw6+gjvW6mAnQGNcEZpHpy4JUMmo8TIKKEEBnZLgnegMVP4GqiaUI0ZprcoLNobzK3EUXP5PvA4gtT8IQu/gwrQ70f05OlKjBo+gp7uOUYNYu9odHo3XLl8iAck8iD3vSDdO6IEA/duYGbICVArmUIa/oVsX+vGba6uPGj7BLwnEUbozqNl4eNARfklroIx4Hywm/3XdXNJeAruHB3NstlvKbGC2WTLBy5fPQaavNrQfqwLfQiLYGV+CZ47xuCDrRnctWsfbszzxL2PLtL3j0bwdI0j910Lx5lyCvhuTDXLL3gKcfv66ZFVACt/dOKowU84dokSnE3/B9+bQ+FWyF3ovKXAial52Pp7NggqzsbjYIkPp3SgkbQWCC3sI8PAG2TSn0azRRthjs51WlI2loZHLoQ05Qf4NTAaV58Wh+yog2Q25KZL6n/TF4PzINu9DPflX4FLwg9pfe87+ObYjavcJ8Cfgk6eMuUvFs+uwZBVM+j5K0e+FikPEcr1OHcWs7KmAopFC0HVUyV4qf6bPvRX09jQ1/xbcCTZKWxAodfn+LnVO45crA97uiVhVF0MvS3fyrrx00H41Ufgwy58a6krKQnH0I/PLzip+iDOHy0KIaKxEKPtBK9L5tLGM6Yw/Jg9x99cD95LO7iy7ia55ydS/Gpt2Ox/HJovpiIdKkavjEco2t0L1ww0adPrGfyl4gC+GfYBtd1k4HtmA/lduYKjmlrpVXYefvlegwdmvGGZxffZbHwa5fWspGMto0H7rADn/iaeY2BAJ6cVoorNK/TuWQdX4yxo6ZpSUL6uCgnzRkLNemu8obwCJybup+y0Hthcf5jE12di14TbFCLpTZJFpeDuog/Vxp8pGLvoq84IFppZCPoZBTQ9LAaNLD149w9z5sBRdP2OCJj5tqCX2wUs7DjI2cXLMVNRiCd9/cprN2Zz3YzToLzYgk62Evi1LOBT7cdRcIEHa4xLIwlfUzg4cx72/11Ez4sQD7fHg+M8I1g2UZyrg5fAjc+1cDtwBJqb2PKj9iQuGjjHr0yuctChFTh6rTHkPZ6IWqu/oeVvNwqxNx/quQxaIz2cNI63QgjeZ6UZ+nDnrB7s2NwNYpYWsKrXHNO3akK2aSl7uTUiqcuBZpo8nPC8iWMeiEGt4kGsr/1Mq3pzaXm/PxbO/k4qQ9y9fOn/KDrvhx7Ytw1fI9LU0CTtrSFJoWREKEkoSRoy2hokldH4qAjpoZDdoyUhReiLjFJE6gkpGpRUykj26/0b7vM+zvP46dqDZba7ochuPPiiFtS9V+Azj3fj2pw2PntuE9watMXdTWXwb08RWxlV0PAnX1jgYwRWQ4XwvrWWkvo3Qc2/u0DumgbPk5X8mzNnvDwsxqvuTebsLePBdM8qDNARoisHddhNYRtl5qiC3yZ3niM7yEXJRbhU+jdId6uC7spiOmJohDdPibC1jCNn2RbjJ499kCE6hDkt/iC0PIbrbCaDYUgvSdp8p+N/TkHX1lRqiQVMt29F0dQ6mOAwFzWsfkKLqAE0O8TCnTw/vHZMnYJiVNFCXQLVk8Io0D6blwWnQt7kQxAdOgJ0F2fDJ7FwWlZ0ga1Gt6C1jSEaOrVSgWoBRoxfRPuM83h/MEKT0g8qdxWl7M3utKXlEyc2pVCR0nU6XHGet0lnU1/4atQY1IBWw9P4ShBPOjrWMHdNMuYlObD2flmUimxB/RIVqIj34bO+EvA8+w99+TqdQj2cOCkrDC619NG1lF/cPi6Ng7vOUztLQGgMwaSsuzTRbilaCGuBTkgq/Y76AEdgNnWuUSAnGymSqJLDh+b6cOrRNFh34xaprG5h9dDDUBk1B3Zc/MrT4h+hVuE+sD62loLyAAK690FK73VOGCOKbTcHqUItGnTcO0BbMRqNBUYcMe4qmCtMACn/7yDqMkzh+Awm6ZrDg5AdoNF5GHtnPYbK6X+wSLQe/GP1wMsToDJeFSZdHY+j6u9Ap7ERJy26xYuF40H8ZwRZmXnjkQXCYBXnT5kzDcjymh5LTiomqbdTILDKDx52T8EslViccns8nRgYB3WmaVhubgkF0lJ46GsNqMTFwoZr9ynN7jaVpR2GUTN9MXiOEWSfNoFpxQ/5VaoUyZks5HO7o1H50zrsO74e+nsWoIL4RVg+UwKaEtZyzb4h3l6/jlflmcLc255ovXEpiq52Bo3Ya1T1IwivuirBhSNAim4dWBvHqP95DbpPe4FZQolYWi0Ke6vt0S79Dp97KQofRI9Dw/4EvDveiM+o17DGAmXco23MTv/z4uIEfXpSFEAyNBI0hTVpY/sKvCMuQ1ufGJNmz07a3ruTXIoG8eP4MF4XrgBD7oYw3O0Jey3mcK7UG36ZfRJ6pYzZNNMMrhnaUkZ9ItteSeBgBSuIOTgXPPdKsNvefF5Zg6x8dxz4l/tQbfRq1hhVSSatm9G8RBwsdadx2qt+9A6dip0WiuCgoQbHt3xkHZ1GDu06zUJ98zksVgamKFShQtttVLPSp/8qTuPOGn+6J9xIX1pHot+aZeASeR9Lt0yAQMlZ8EFWi1yfPMLzsQl4YVk31d4oh0RfTzRP/ILDQovgxX59qNyTDXYBinyyZwwa1/vwgZ5TbDfTE0UUSkHo9ULwLdFFk9dicG2pB/lnrOCnyaXY353G51KFSdL7JalUfeLmeum/ribP2sVmUG8mC75hJ3m9zk/ceCgL/UzS0Nklne3Sn0DawXdc7jVMZ0pEoG2aAIKWL8HsbU70KukYqibrYUb/aE6fKsfl1pfw1sTncPOVNWyyT+XZ8b2wQMWNvC0UeUxOKsiNjYLy+TJgGv8OQl4JkdN3SRjfXkHj6kVR6OFBWJY8H7IOy/G6cdswp8oeTK034JCeCM1sHQdL73XTSs/psER4Ckq27aLwoEZY+taKPfdF0hiT3zTpyVK4UD0SpExdoWChH5qsMKDyjRdIru4Q3zVs5A61t5zzshjfR+XTDdsR8GfXeTLRRhTrFafBAxMxq2QpNL5OxR+vnCmpfBUvXjcPfmmaw6Ptz8HReiotfazNVjpbWH6PHw87ZPOUcdmkVKIDrqECiHulDwZ+aagu9Blf/c1NnbAcS4lL8z/+Opwd8g3O7Z/Lf5x/4r0UhjnjLuKbLa2s3PeB3bZ/xzQbEzqmOAkdr4VCQ4Yvq9UI0L1CDCJLxLDX7D7pO0RSt38D62nacpbkALckJLDCHQlYqH2V3D20oeu1P2gaB4Kh6BJadGEz9oREsesjYbifqQaP96hx3/4ivNBnApmvb/Li6VKc4toAefMzcWBdJtdL+UFH1y9cmJ2Ih/EtLAy2BrqciuExtpjpYIujzstCv4cHytt845JoQ/IV+evKTUYodtoQijas5KHqYAqVPIhez0+A9YV5XKMhRrkz7rGahhNOWlILN+8ZgqJ7N4h5JeG1v2ylUUpc3CxFefK51NHjQ0ckb9L+ok6ydhMBu7YGCJpxDPbs20wVA/IkxKLs2mrNsyQDqSNci2NF8lhJSwyu6z3A++6n8Oq0Z9BUqAcj4qPwhNBukq5MpYJfHni2qIHnf1QGs9wZdGqVAly2ceWBupW860YOri9SwGZnQ47ZuoarDm9m4VqE/WFi4Gkn4OPvBkisrAckQ5kUvyH2+eXR9SudWHxwKt3rMwBvGRG8dTMCj3rNZKMxOXAm5TdOCazDO7P7oXXHWPzV549vT8uDxQoBJ7cos7WKBVqYicDYl0LcaNGOUwXzuCsujKp9xtLgI1No+phBYZ5jqfBDHjY49HOi7wOIy38ONVmXYTjvEsV1HADxMHFQVxrmiZcq0eGfH/DOewGOWG6Kn7QNqMZzNNyyN8EIq1IMaDWCV1L+ILreiZUOVOOvA1lsJP8BQ36m4fuMyTBBJp0uoT9YPRaCCj1njHL2pVjFRL41sB/0Jq3AI5kxsKbEjCat3kAT6rNQbLEQhMyahbS3myR7TpFj4Uecpv2NGzbNx5fubiDX5ghj1Z042s4Ucqptca5zMz3r7oT2aW8o8OlZeH8jEuuOZsLMrUPss8QML43Vh+iEc/xpWJTSCpQ4RmUtfnwvDwoli8Fvzyru3aRLBWr6aPtFFfoVmqG7sQKDvEbxjDfvKafCEUH2ML6cOhNEx0Vh2SIxMI8aA4ZOxeT1o4UFU9+gbM4avmf2nY79nkArfXIxeWCQDzTMYCkPcdDPEofH6ftop282q7ccpZGix+hYgC/OCrcAc+9iUOl6A3t9pv7dis446e9fuWwUzBX1a/FtlDG0D6riybE3uDV4kCM+2+OKgwYQ33gFvm7ajW1hjiAbKc11p3xoUnMcVQ4J06Srd2nJtYekvWc0zI98gEaFZdA/Kwh/OPWx2QtzdEk7h4KtFXygawCSpvnyuFpZ8C7VhPQTT3FtTB1NzxQGn9BI9I7uR0WrK3Sg4yVU7BtJOYdEYU3PA44/OJriJUL5aKMXTB4WcOmKMVC2M54PXSbMeNPAzjNUIXj+ZNS0FME/cqa8UD8brJ96kXGHEFu/U6bqi11w374QR34XA7NEZXh8yR1NdqSQ1OdzOOWHErftOYl2NiU05ZQkDxqsgAKPibBIWI+vvPlCx3kea43NwfvBZaR49ij/rrpIIb/O4vAsVz4gMRVSl6fTdAl5DIkvB3cRWV7rYch+c5og1PgoxywT4Ll5CTBOVg5cTkWA5jZXCsx6DuFPS0lUMwDsXgizwjZ7zDOYwWpnPEl9uyl0Xn4IAfbzub1CAje6i2HRUD8//Mte882pfH7Lamhvvw8R0mbwbKUkqRhkYvuGI2zouJCSex/yC/deMunczyGFQzDv83qqfjUR/G8+RBEqpjjV/2jI0Qu+Vgphcv4FsnK9RLCtn0aIh1LKCVlIUP3K050XY5BVPnjHitL19cd4gZYQZoe+hFz/tZi08Bl3SABYBBhDZOIquC4fSWvf5dNmF0MQvG6G7/d+gqS/I6QIyrFUbQw89zBBL2ldDHPYj5OHfFCs+jWsbNyOTjInOFX7Ki5/MxnPe1vCXQkP6p4oBVfFJmDTyD5alCSDb/0eUunjbzi+cCkU5P7Bh23G0G9oxy9W6oJnQip3v/nBdoOdoDiDaYnVASiNvka9O86RU4MojK+LJp3xApIt+UL/3L2CkjL+NOrWV7jjNged7J9Rfsl0Et4zGRSaVtBy/ECNdyfAcKwb1ISo4QMDbT7QcQdMFr1G2fwPrGKrA3u3jKWHgkE0DQwG/0dNPGmnGkw36wVV9Sm89MRMkIuug0gLAktZaWh3+vsOvr4UHBaH8U1LyUp6Mzp/WAhBwxakqJTHNzMUIOP5Mb51PgbjHMVZ8+QCuPVNlHXvnoX2yi78VFZGgRXe0CwmBQ1DCdj4zhj/qzoDulUX4Vh6HSsPLmGbn7/xlLkLqo+s5h4ZS9Csnsw/D9/HVsURSB/qYEmvJqlIttGFY4OwNlsepp1aQ6rTEW7NqmA9r0fYY4L8O+IAOX11BPmUXkqGQc7arg1zDNLRe9JIEHs9laClGQqdVqBicCw3zF9JEHmc7UoL8V+nuagX5Ymq76yh9rMdO1ZqUVOZGupLvwG5lfZ84UUMTtX/RJrNl3BsoBXxXVNofPWNlryYTjYd/VS3UBLu9cSQzgMZXnFGkn2/59DZR+/QBsbAFJta0FtcD6+nXMaTjzupweoE2ji8AUedLh5o8iL9/HmUHz4SElc9g6uzlvCuICsK0bqCrXuTUZnGEB/OQfvZynDGYy5KhunCjK5m+C/EmDK6HuFl7wba+3fzXHzQx5r933iBTCnVbHoMRntNQbsihfd8cQd54eewUdaBf0jMhX8dd5FK/gWsWDME0cEivGhAFVK3r2GPRFXQlvPm5LCZ6C3opdIXD+DCaF+86CRMxmq2VDNxNPxb8QOdTd0wtHsDK0+ei63/3QcdJ2syCL0KXov+o4qIQ1RVoAXmngvod+pftzHJpiKPw/BVJpefGqfgUKUMFeW/p85hMywUHg0PwhrRP7wccwTL4IhqEJd8uso3fvdyq9h8tF9TioGiM1jZ0RieHbnOS84cY6MzWdDwcgx+0VHjEzt+QM/b2XDo2VKYsk+ZyVwEFj21oBv1/mBh/A6VHrfyiCcmoCIbyIKNnZQ/3x3X9r6AqdOnw03tBzCd7fG7+iLesXEOjN+dQobqaaizLQ0udV3mHztegMDSCBRuD0Ln6GjqnaxCe3dXw/O3d9l0bBp2BG5ApZkxNNugBzaXEeS62PHmDS5QUHAeVdpnkrN7At9f85qd8v+DW8ZfcHJYKRooKcPWc6PpjP8Mnm+7jZVjzsLG+jjMDU2Czkh7nKZVjM4ft6GlgTycfCZHT/ObeIdKK520PouNl9/StusXaelBAuerlnD50iGS8dKHarNTLPbRjyxletDf5Cgv3KoCbjMSWfTdMjK+0wmhqrW48TJCwLM1cCNrOrRoyqNM722M6r5ImzQH0CW8gz/8T56eOMeBGcwA9POBc6Oi2bPCFR54I76P3MnbfyVS6RUzMOmL4d4Nbbwr3whCn+0HlYP2dOCKPbktyaPDc8/x/27/Qsl7dvwz2ZeWpZ1E17vikDvBHjL/TOfWBQf4iPUR2JhwHZsu6WH0K0t0M7Dh4aHDqPcOwb9wE5wL2YUDUwR4y1CE9u85C3laEfRV9gXVa55il/AKmms4CgqCLKB1YB1PiB+DIn6nab5xEsYvn00GYp/YXF4EFvyMxOwaefgmU8EB750oI8YFFBQFsKR1A2wL7CbZkQOoONmQRY5/poWF42GHVDfv8nfl3dpufxnlBEqJSjDF6jmFpW+hs2dlwLe7G3eWy8IyA13Oj23G2iABe7vOAoct38j+xmsy6/oBqU90UVC0ixbOGQXfA3ezQKBBJct2Q8vixZC/VY4T1+yDs2V5WPveDlpqT/IVaUNYlNlPVRerccLOFt6S8YcdH4RjwOb35Ll3A72bmsS2yf+A7pMRYD+zjCpd99E/tkL40sAGT2u48L+zjlJZSBYpHf0fnfhai4b75KG/1oUa2n34y2+A7X9bPW74My1zsOHj6p9pzpZAPNpRRAkyWtCo+QtXPIlEqy5xCuj2h8O6llzwIZb14jbgNS8BNhhsQ60hYwhUG0FuDQaY2+hAibMioTxLkuOW6POZKZ7cW/UMrc58oZKcqfD2qht39nmiaHgeCq3SB9V/fDHXwBYr4hrp9c0UNKvcToXOI+D/j7iM2NWANz83svWRbnwfnol9Q+mYELGSky49hoy/TI4WGEJIpSXK7N5M0s2jQDJrIYzedwx/mZ8Gr3EzwCuigwpk6lkwqA5VoYngdkuR1YPO8M9nBdgcrQfL/gnC4HFt+NwlhsylhkE2QAlWpD5F15XJYGesTnJFkWiHUmids5LfPn3BW2Z2c+7u+aBQYwZjT09EW8uLaF9yi23cduBFNV26ESAFJwMecvVbNXzp0UpptQbA/t24q+c3vpy/AlW+VbG73AherSMEU4OF8UNuBF2a9Q7JejysHWiD58vvYKpfNyYFDOLXhijqiBjCrQeSaO2FWhA3q+e7nwHu7piJ359msCClDMQLg+mO4mqKulfFjXXpvPdTDr/eMQffSmvB2mVZHPK31wS2Y7jyWj8UOEiyxrrNrBmhxIO/ZVDv0Vcy79eA9UpXcXZXPcyxlMIl1fpQo9mKp9Knce8HK44yWo4Ng3Lc3zcVpCU+Y/mxVuzM2QR7vunRbJWnrKCZiLRuPaTXTaRcJUPet00JNGLLodj8CW6UmEv5HWNxVI0cm04cQ7dPfGSX0wQuEilkqTICSNsTf4kBFwvr4+KTlbj1cw4XqjrAXedATFLaBs3jXsEXDSNYapFORWavMSp/OTpYvAOdpzIgt2Ie4xsX/DG2mFJvb4WHrZrQ9vAyPOl7jEM9tpCh1I+3M32gQG40Fdffo8nXGIU3P6Ffs8wh+1ssq5c+wfWb3/IfZSu6LX0HOs++Z5/ry/F+HnHGaQGvJy2Ir9pLkke/4v/C2xH/nUOyjyai5k9LuhTTCeIP7rCS7xlKjJoEpnEj4bqTETobNvD/nkVygPgvUNn/CUclh8HOoGQarJYlldyJ0DH2Ir88vwPNtzuz2GAt//B1xBRsY933s8G19wjZiq2C33PGwf8FAAD//++T2kE="
diff --git a/vendor/github.com/btcsuite/btcd/btcec/signature.go b/vendor/github.com/btcsuite/btcd/btcec/signature.go
new file mode 100644
index 000000000..9b2765207
--- /dev/null
+++ b/vendor/github.com/btcsuite/btcd/btcec/signature.go
@@ -0,0 +1,539 @@
+// Copyright (c) 2013-2017 The btcsuite developers
+// Use of this source code is governed by an ISC
+// license that can be found in the LICENSE file.
+
+package btcec
+
+import (
+ "bytes"
+ "crypto/ecdsa"
+ "crypto/elliptic"
+ "crypto/hmac"
+ "crypto/sha256"
+ "errors"
+ "fmt"
+ "hash"
+ "math/big"
+)
+
+// Errors returned by canonicalPadding.
+var (
+ errNegativeValue = errors.New("value may be interpreted as negative")
+ errExcessivelyPaddedValue = errors.New("value is excessively padded")
+)
+
+// Signature is a type representing an ecdsa signature.
+type Signature struct {
+ R *big.Int
+ S *big.Int
+}
+
+var (
+ // Curve order and halforder, used to tame ECDSA malleability (see BIP-0062)
+ order = new(big.Int).Set(S256().N)
+ halforder = new(big.Int).Rsh(order, 1)
+
+ // Used in RFC6979 implementation when testing the nonce for correctness
+ one = big.NewInt(1)
+
+ // oneInitializer is used to fill a byte slice with byte 0x01. It is provided
+ // here to avoid the need to create it multiple times.
+ oneInitializer = []byte{0x01}
+)
+
+// Serialize returns the ECDSA signature in the more strict DER format. Note
+// that the serialized bytes returned do not include the appended hash type
+// used in Bitcoin signature scripts.
+//
+// encoding/asn1 is broken so we hand roll this output:
+//
+// 0x30 <length> 0x02 <length r> r 0x02 <length s> s
+func (sig *Signature) Serialize() []byte {
+ // low 'S' malleability breaker
+ sigS := sig.S
+ if sigS.Cmp(halforder) == 1 {
+ sigS = new(big.Int).Sub(order, sigS)
+ }
+ // Ensure the encoded bytes for the r and s values are canonical and
+ // thus suitable for DER encoding.
+ rb := canonicalizeInt(sig.R)
+ sb := canonicalizeInt(sigS)
+
+ // total length of returned signature is 1 byte for each magic and
+ // length (6 total), plus lengths of r and s
+ length := 6 + len(rb) + len(sb)
+ b := make([]byte, length, length)
+
+ b[0] = 0x30
+ b[1] = byte(length - 2)
+ b[2] = 0x02
+ b[3] = byte(len(rb))
+ offset := copy(b[4:], rb) + 4
+ b[offset] = 0x02
+ b[offset+1] = byte(len(sb))
+ copy(b[offset+2:], sb)
+ return b
+}
+
+// Verify calls ecdsa.Verify to verify the signature of hash using the public
+// key. It returns true if the signature is valid, false otherwise.
+func (sig *Signature) Verify(hash []byte, pubKey *PublicKey) bool {
+ return ecdsa.Verify(pubKey.ToECDSA(), hash, sig.R, sig.S)
+}
+
+// IsEqual compares this Signature instance to the one passed, returning true
+// if both Signatures are equivalent. A signature is equivalent to another, if
+// they both have the same scalar value for R and S.
+func (sig *Signature) IsEqual(otherSig *Signature) bool {
+ return sig.R.Cmp(otherSig.R) == 0 &&
+ sig.S.Cmp(otherSig.S) == 0
+}
+
+func parseSig(sigStr []byte, curve elliptic.Curve, der bool) (*Signature, error) {
+ // Originally this code used encoding/asn1 in order to parse the
+ // signature, but a number of problems were found with this approach.
+ // Despite the fact that signatures are stored as DER, the difference
+ // between go's idea of a bignum (and that they have sign) doesn't agree
+ // with the openssl one (where they do not). The above is true as of
+ // Go 1.1. In the end it was simpler to rewrite the code to explicitly
+ // understand the format which is this:
+ // 0x30 <length of whole message> <0x02> <length of R> <R> 0x2
+ // <length of S> <S>.
+
+ signature := &Signature{}
+
+ // minimal message is when both numbers are 1 bytes. adding up to:
+ // 0x30 + len + 0x02 + 0x01 + <byte> + 0x2 + 0x01 + <byte>
+ if len(sigStr) < 8 {
+ return nil, errors.New("malformed signature: too short")
+ }
+ // 0x30
+ index := 0
+ if sigStr[index] != 0x30 {
+ return nil, errors.New("malformed signature: no header magic")
+ }
+ index++
+ // length of remaining message
+ siglen := sigStr[index]
+ index++
+ if int(siglen+2) > len(sigStr) {
+ return nil, errors.New("malformed signature: bad length")
+ }
+ // trim the slice we're working on so we only look at what matters.
+ sigStr = sigStr[:siglen+2]
+
+ // 0x02
+ if sigStr[index] != 0x02 {
+ return nil,
+ errors.New("malformed signature: no 1st int marker")
+ }
+ index++
+
+ // Length of signature R.
+ rLen := int(sigStr[index])
+ // must be positive, must be able to fit in another 0x2, <len> <s>
+ // hence the -3. We assume that the length must be at least one byte.
+ index++
+ if rLen <= 0 || rLen > len(sigStr)-index-3 {
+ return nil, errors.New("malformed signature: bogus R length")
+ }
+
+ // Then R itself.
+ rBytes := sigStr[index : index+rLen]
+ if der {
+ switch err := canonicalPadding(rBytes); err {
+ case errNegativeValue:
+ return nil, errors.New("signature R is negative")
+ case errExcessivelyPaddedValue:
+ return nil, errors.New("signature R is excessively padded")
+ }
+ }
+ signature.R = new(big.Int).SetBytes(rBytes)
+ index += rLen
+ // 0x02. length already checked in previous if.
+ if sigStr[index] != 0x02 {
+ return nil, errors.New("malformed signature: no 2nd int marker")
+ }
+ index++
+
+ // Length of signature S.
+ sLen := int(sigStr[index])
+ index++
+ // S should be the rest of the string.
+ if sLen <= 0 || sLen > len(sigStr)-index {
+ return nil, errors.New("malformed signature: bogus S length")
+ }
+
+ // Then S itself.
+ sBytes := sigStr[index : index+sLen]
+ if der {
+ switch err := canonicalPadding(sBytes); err {
+ case errNegativeValue:
+ return nil, errors.New("signature S is negative")
+ case errExcessivelyPaddedValue:
+ return nil, errors.New("signature S is excessively padded")
+ }
+ }
+ signature.S = new(big.Int).SetBytes(sBytes)
+ index += sLen
+
+ // sanity check length parsing
+ if index != len(sigStr) {
+ return nil, fmt.Errorf("malformed signature: bad final length %v != %v",
+ index, len(sigStr))
+ }
+
+ // Verify also checks this, but we can be more sure that we parsed
+ // correctly if we verify here too.
+ // FWIW the ecdsa spec states that R and S must be | 1, N - 1 |
+ // but crypto/ecdsa only checks for Sign != 0. Mirror that.
+ if signature.R.Sign() != 1 {
+ return nil, errors.New("signature R isn't 1 or more")
+ }
+ if signature.S.Sign() != 1 {
+ return nil, errors.New("signature S isn't 1 or more")
+ }
+ if signature.R.Cmp(curve.Params().N) >= 0 {
+ return nil, errors.New("signature R is >= curve.N")
+ }
+ if signature.S.Cmp(curve.Params().N) >= 0 {
+ return nil, errors.New("signature S is >= curve.N")
+ }
+
+ return signature, nil
+}
+
+// ParseSignature parses a signature in BER format for the curve type `curve'
+// into a Signature type, perfoming some basic sanity checks. If parsing
+// according to the more strict DER format is needed, use ParseDERSignature.
+func ParseSignature(sigStr []byte, curve elliptic.Curve) (*Signature, error) {
+ return parseSig(sigStr, curve, false)
+}
+
+// ParseDERSignature parses a signature in DER format for the curve type
+// `curve` into a Signature type. If parsing according to the less strict
+// BER format is needed, use ParseSignature.
+func ParseDERSignature(sigStr []byte, curve elliptic.Curve) (*Signature, error) {
+ return parseSig(sigStr, curve, true)
+}
+
+// canonicalizeInt returns the bytes for the passed big integer adjusted as
+// necessary to ensure that a big-endian encoded integer can't possibly be
+// misinterpreted as a negative number. This can happen when the most
+// significant bit is set, so it is padded by a leading zero byte in this case.
+// Also, the returned bytes will have at least a single byte when the passed
+// value is 0. This is required for DER encoding.
+func canonicalizeInt(val *big.Int) []byte {
+ b := val.Bytes()
+ if len(b) == 0 {
+ b = []byte{0x00}
+ }
+ if b[0]&0x80 != 0 {
+ paddedBytes := make([]byte, len(b)+1)
+ copy(paddedBytes[1:], b)
+ b = paddedBytes
+ }
+ return b
+}
+
+// canonicalPadding checks whether a big-endian encoded integer could
+// possibly be misinterpreted as a negative number (even though OpenSSL
+// treats all numbers as unsigned), or if there is any unnecessary
+// leading zero padding.
+func canonicalPadding(b []byte) error {
+ switch {
+ case b[0]&0x80 == 0x80:
+ return errNegativeValue
+ case len(b) > 1 && b[0] == 0x00 && b[1]&0x80 != 0x80:
+ return errExcessivelyPaddedValue
+ default:
+ return nil
+ }
+}
+
+// hashToInt converts a hash value to an integer. There is some disagreement
+// about how this is done. [NSA] suggests that this is done in the obvious
+// manner, but [SECG] truncates the hash to the bit-length of the curve order
+// first. We follow [SECG] because that's what OpenSSL does. Additionally,
+// OpenSSL right shifts excess bits from the number if the hash is too large
+// and we mirror that too.
+// This is borrowed from crypto/ecdsa.
+func hashToInt(hash []byte, c elliptic.Curve) *big.Int {
+ orderBits := c.Params().N.BitLen()
+ orderBytes := (orderBits + 7) / 8
+ if len(hash) > orderBytes {
+ hash = hash[:orderBytes]
+ }
+
+ ret := new(big.Int).SetBytes(hash)
+ excess := len(hash)*8 - orderBits
+ if excess > 0 {
+ ret.Rsh(ret, uint(excess))
+ }
+ return ret
+}
+
+// recoverKeyFromSignature recoves a public key from the signature "sig" on the
+// given message hash "msg". Based on the algorithm found in section 5.1.5 of
+// SEC 1 Ver 2.0, page 47-48 (53 and 54 in the pdf). This performs the details
+// in the inner loop in Step 1. The counter provided is actually the j parameter
+// of the loop * 2 - on the first iteration of j we do the R case, else the -R
+// case in step 1.6. This counter is used in the bitcoin compressed signature
+// format and thus we match bitcoind's behaviour here.
+func recoverKeyFromSignature(curve *KoblitzCurve, sig *Signature, msg []byte,
+ iter int, doChecks bool) (*PublicKey, error) {
+ // 1.1 x = (n * i) + r
+ Rx := new(big.Int).Mul(curve.Params().N,
+ new(big.Int).SetInt64(int64(iter/2)))
+ Rx.Add(Rx, sig.R)
+ if Rx.Cmp(curve.Params().P) != -1 {
+ return nil, errors.New("calculated Rx is larger than curve P")
+ }
+
+ // convert 02<Rx> to point R. (step 1.2 and 1.3). If we are on an odd
+ // iteration then 1.6 will be done with -R, so we calculate the other
+ // term when uncompressing the point.
+ Ry, err := decompressPoint(curve, Rx, iter%2 == 1)
+ if err != nil {
+ return nil, err
+ }
+
+ // 1.4 Check n*R is point at infinity
+ if doChecks {
+ nRx, nRy := curve.ScalarMult(Rx, Ry, curve.Params().N.Bytes())
+ if nRx.Sign() != 0 || nRy.Sign() != 0 {
+ return nil, errors.New("n*R does not equal the point at infinity")
+ }
+ }
+
+ // 1.5 calculate e from message using the same algorithm as ecdsa
+ // signature calculation.
+ e := hashToInt(msg, curve)
+
+ // Step 1.6.1:
+ // We calculate the two terms sR and eG separately multiplied by the
+ // inverse of r (from the signature). We then add them to calculate
+ // Q = r^-1(sR-eG)
+ invr := new(big.Int).ModInverse(sig.R, curve.Params().N)
+
+ // first term.
+ invrS := new(big.Int).Mul(invr, sig.S)
+ invrS.Mod(invrS, curve.Params().N)
+ sRx, sRy := curve.ScalarMult(Rx, Ry, invrS.Bytes())
+
+ // second term.
+ e.Neg(e)
+ e.Mod(e, curve.Params().N)
+ e.Mul(e, invr)
+ e.Mod(e, curve.Params().N)
+ minuseGx, minuseGy := curve.ScalarBaseMult(e.Bytes())
+
+ // TODO: this would be faster if we did a mult and add in one
+ // step to prevent the jacobian conversion back and forth.
+ Qx, Qy := curve.Add(sRx, sRy, minuseGx, minuseGy)
+
+ return &PublicKey{
+ Curve: curve,
+ X: Qx,
+ Y: Qy,
+ }, nil
+}
+
+// SignCompact produces a compact signature of the data in hash with the given
+// private key on the given koblitz curve. The isCompressed parameter should
+// be used to detail if the given signature should reference a compressed
+// public key or not. If successful the bytes of the compact signature will be
+// returned in the format:
+// <(byte of 27+public key solution)+4 if compressed >< padded bytes for signature R><padded bytes for signature S>
+// where the R and S parameters are padde up to the bitlengh of the curve.
+func SignCompact(curve *KoblitzCurve, key *PrivateKey,
+ hash []byte, isCompressedKey bool) ([]byte, error) {
+ sig, err := key.Sign(hash)
+ if err != nil {
+ return nil, err
+ }
+
+ // bitcoind checks the bit length of R and S here. The ecdsa signature
+ // algorithm returns R and S mod N therefore they will be the bitsize of
+ // the curve, and thus correctly sized.
+ for i := 0; i < (curve.H+1)*2; i++ {
+ pk, err := recoverKeyFromSignature(curve, sig, hash, i, true)
+ if err == nil && pk.X.Cmp(key.X) == 0 && pk.Y.Cmp(key.Y) == 0 {
+ result := make([]byte, 1, 2*curve.byteSize+1)
+ result[0] = 27 + byte(i)
+ if isCompressedKey {
+ result[0] += 4
+ }
+ // Not sure this needs rounding but safer to do so.
+ curvelen := (curve.BitSize + 7) / 8
+
+ // Pad R and S to curvelen if needed.
+ bytelen := (sig.R.BitLen() + 7) / 8
+ if bytelen < curvelen {
+ result = append(result,
+ make([]byte, curvelen-bytelen)...)
+ }
+ result = append(result, sig.R.Bytes()...)
+
+ bytelen = (sig.S.BitLen() + 7) / 8
+ if bytelen < curvelen {
+ result = append(result,
+ make([]byte, curvelen-bytelen)...)
+ }
+ result = append(result, sig.S.Bytes()...)
+
+ return result, nil
+ }
+ }
+
+ return nil, errors.New("no valid solution for pubkey found")
+}
+
+// RecoverCompact verifies the compact signature "signature" of "hash" for the
+// Koblitz curve in "curve". If the signature matches then the recovered public
+// key will be returned as well as a boolen if the original key was compressed
+// or not, else an error will be returned.
+func RecoverCompact(curve *KoblitzCurve, signature,
+ hash []byte) (*PublicKey, bool, error) {
+ bitlen := (curve.BitSize + 7) / 8
+ if len(signature) != 1+bitlen*2 {
+ return nil, false, errors.New("invalid compact signature size")
+ }
+
+ iteration := int((signature[0] - 27) & ^byte(4))
+
+ // format is <header byte><bitlen R><bitlen S>
+ sig := &Signature{
+ R: new(big.Int).SetBytes(signature[1 : bitlen+1]),
+ S: new(big.Int).SetBytes(signature[bitlen+1:]),
+ }
+ // The iteration used here was encoded
+ key, err := recoverKeyFromSignature(curve, sig, hash, iteration, false)
+ if err != nil {
+ return nil, false, err
+ }
+
+ return key, ((signature[0] - 27) & 4) == 4, nil
+}
+
+// signRFC6979 generates a deterministic ECDSA signature according to RFC 6979 and BIP 62.
+func signRFC6979(privateKey *PrivateKey, hash []byte) (*Signature, error) {
+
+ privkey := privateKey.ToECDSA()
+ N := order
+ k := nonceRFC6979(privkey.D, hash)
+ inv := new(big.Int).ModInverse(k, N)
+ r, _ := privkey.Curve.ScalarBaseMult(k.Bytes())
+ if r.Cmp(N) == 1 {
+ r.Sub(r, N)
+ }
+
+ if r.Sign() == 0 {
+ return nil, errors.New("calculated R is zero")
+ }
+
+ e := hashToInt(hash, privkey.Curve)
+ s := new(big.Int).Mul(privkey.D, r)
+ s.Add(s, e)
+ s.Mul(s, inv)
+ s.Mod(s, N)
+
+ if s.Cmp(halforder) == 1 {
+ s.Sub(N, s)
+ }
+ if s.Sign() == 0 {
+ return nil, errors.New("calculated S is zero")
+ }
+ return &Signature{R: r, S: s}, nil
+}
+
+// nonceRFC6979 generates an ECDSA nonce (`k`) deterministically according to RFC 6979.
+// It takes a 32-byte hash as an input and returns 32-byte nonce to be used in ECDSA algorithm.
+func nonceRFC6979(privkey *big.Int, hash []byte) *big.Int {
+
+ curve := S256()
+ q := curve.Params().N
+ x := privkey
+ alg := sha256.New
+
+ qlen := q.BitLen()
+ holen := alg().Size()
+ rolen := (qlen + 7) >> 3
+ bx := append(int2octets(x, rolen), bits2octets(hash, curve, rolen)...)
+
+ // Step B
+ v := bytes.Repeat(oneInitializer, holen)
+
+ // Step C (Go zeroes the all allocated memory)
+ k := make([]byte, holen)
+
+ // Step D
+ k = mac(alg, k, append(append(v, 0x00), bx...))
+
+ // Step E
+ v = mac(alg, k, v)
+
+ // Step F
+ k = mac(alg, k, append(append(v, 0x01), bx...))
+
+ // Step G
+ v = mac(alg, k, v)
+
+ // Step H
+ for {
+ // Step H1
+ var t []byte
+
+ // Step H2
+ for len(t)*8 < qlen {
+ v = mac(alg, k, v)
+ t = append(t, v...)
+ }
+
+ // Step H3
+ secret := hashToInt(t, curve)
+ if secret.Cmp(one) >= 0 && secret.Cmp(q) < 0 {
+ return secret
+ }
+ k = mac(alg, k, append(v, 0x00))
+ v = mac(alg, k, v)
+ }
+}
+
+// mac returns an HMAC of the given key and message.
+func mac(alg func() hash.Hash, k, m []byte) []byte {
+ h := hmac.New(alg, k)
+ h.Write(m)
+ return h.Sum(nil)
+}
+
+// https://tools.ietf.org/html/rfc6979#section-2.3.3
+func int2octets(v *big.Int, rolen int) []byte {
+ out := v.Bytes()
+
+ // left pad with zeros if it's too short
+ if len(out) < rolen {
+ out2 := make([]byte, rolen)
+ copy(out2[rolen-len(out):], out)
+ return out2
+ }
+
+ // drop most significant bytes if it's too long
+ if len(out) > rolen {
+ out2 := make([]byte, rolen)
+ copy(out2, out[len(out)-rolen:])
+ return out2
+ }
+
+ return out
+}
+
+// https://tools.ietf.org/html/rfc6979#section-2.3.4
+func bits2octets(in []byte, curve elliptic.Curve, rolen int) []byte {
+ z1 := hashToInt(in, curve)
+ z2 := new(big.Int).Sub(z1, curve.Params().N)
+ if z2.Sign() < 0 {
+ return int2octets(z1, rolen)
+ }
+ return int2octets(z2, rolen)
+}
diff --git a/vendor/vendor.json b/vendor/vendor.json
index 007a7e77b..f44f0038a 100644
--- a/vendor/vendor.json
+++ b/vendor/vendor.json
@@ -17,6 +17,12 @@
"revisionTime": "2017-02-10T01:56:32Z"
},
{
+ "checksumSHA1": "fIpm6Vr5a8kgr22gWkQx7vKUTyU=",
+ "path": "github.com/btcsuite/btcd/btcec",
+ "revision": "d06c0bb181529331be8f8d9350288c420d9e60e4",
+ "revisionTime": "2017-02-01T21:25:25Z"
+ },
+ {
"checksumSHA1": "cDMtzKmdTx4CcIpP4broa+16X9g=",
"path": "github.com/cespare/cp",
"revision": "165db2f241fd235aec29ba6d9b1ccd5f1c14637c",
diff --git a/whisper/whisperv2/message.go b/whisper/whisperv2/message.go
index 7ef9d0912..e55544ffc 100644
--- a/whisper/whisperv2/message.go
+++ b/whisper/whisperv2/message.go
@@ -21,11 +21,13 @@ package whisperv2
import (
"crypto/ecdsa"
+ crand "crypto/rand"
"math/rand"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/crypto"
+ "github.com/ethereum/go-ethereum/crypto/ecies"
"github.com/ethereum/go-ethereum/logger"
"github.com/ethereum/go-ethereum/logger/glog"
)
@@ -131,13 +133,13 @@ func (self *Message) Recover() *ecdsa.PublicKey {
// encrypt encrypts a message payload with a public key.
func (self *Message) encrypt(key *ecdsa.PublicKey) (err error) {
- self.Payload, err = crypto.Encrypt(key, self.Payload)
+ self.Payload, err = ecies.Encrypt(crand.Reader, ecies.ImportECDSAPublic(key), self.Payload, nil, nil)
return
}
// decrypt decrypts an encrypted payload with a private key.
func (self *Message) decrypt(key *ecdsa.PrivateKey) error {
- cleartext, err := crypto.Decrypt(key, self.Payload)
+ cleartext, err := ecies.ImportECDSA(key).Decrypt(crand.Reader, self.Payload, nil, nil)
if err == nil {
self.Payload = cleartext
}
diff --git a/whisper/whisperv2/message_test.go b/whisper/whisperv2/message_test.go
index d3b307d2a..c760ac54c 100644
--- a/whisper/whisperv2/message_test.go
+++ b/whisper/whisperv2/message_test.go
@@ -23,7 +23,6 @@ import (
"time"
"github.com/ethereum/go-ethereum/crypto"
- "github.com/ethereum/go-ethereum/crypto/secp256k1"
)
// Tests whether a message can be wrapped without any identity or encryption.
@@ -73,8 +72,8 @@ func TestMessageCleartextSignRecover(t *testing.T) {
if pubKey == nil {
t.Fatalf("failed to recover public key")
}
- p1 := elliptic.Marshal(secp256k1.S256(), key.PublicKey.X, key.PublicKey.Y)
- p2 := elliptic.Marshal(secp256k1.S256(), pubKey.X, pubKey.Y)
+ p1 := elliptic.Marshal(crypto.S256(), key.PublicKey.X, key.PublicKey.Y)
+ p2 := elliptic.Marshal(crypto.S256(), pubKey.X, pubKey.Y)
if !bytes.Equal(p1, p2) {
t.Fatalf("public key mismatch: have 0x%x, want 0x%x", p2, p1)
}
@@ -151,8 +150,8 @@ func TestMessageFullCrypto(t *testing.T) {
if pubKey == nil {
t.Fatalf("failed to recover public key")
}
- p1 := elliptic.Marshal(secp256k1.S256(), fromKey.PublicKey.X, fromKey.PublicKey.Y)
- p2 := elliptic.Marshal(secp256k1.S256(), pubKey.X, pubKey.Y)
+ p1 := elliptic.Marshal(crypto.S256(), fromKey.PublicKey.X, fromKey.PublicKey.Y)
+ p2 := elliptic.Marshal(crypto.S256(), pubKey.X, pubKey.Y)
if !bytes.Equal(p1, p2) {
t.Fatalf("public key mismatch: have 0x%x, want 0x%x", p2, p1)
}
diff --git a/whisper/whisperv5/message.go b/whisper/whisperv5/message.go
index a095f7c0c..255ad380d 100644
--- a/whisper/whisperv5/message.go
+++ b/whisper/whisperv5/message.go
@@ -30,6 +30,7 @@ import (
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/crypto"
+ "github.com/ethereum/go-ethereum/crypto/ecies"
"github.com/ethereum/go-ethereum/logger"
"github.com/ethereum/go-ethereum/logger/glog"
"golang.org/x/crypto/pbkdf2"
@@ -163,7 +164,7 @@ func (msg *SentMessage) encryptAsymmetric(key *ecdsa.PublicKey) error {
if !ValidatePublicKey(key) {
return fmt.Errorf("Invalid public key provided for asymmetric encryption")
}
- encrypted, err := crypto.Encrypt(key, msg.Raw)
+ encrypted, err := ecies.Encrypt(crand.Reader, ecies.ImportECDSAPublic(key), msg.Raw, nil, nil)
if err == nil {
msg.Raw = encrypted
}
@@ -293,7 +294,7 @@ func (msg *ReceivedMessage) decryptSymmetric(key []byte, salt []byte, nonce []by
// decryptAsymmetric decrypts an encrypted payload with a private key.
func (msg *ReceivedMessage) decryptAsymmetric(key *ecdsa.PrivateKey) error {
- decrypted, err := crypto.Decrypt(key, msg.Raw)
+ decrypted, err := ecies.ImportECDSA(key).Decrypt(crand.Reader, msg.Raw, nil, nil)
if err == nil {
msg.Raw = decrypted
}