aboutsummaryrefslogtreecommitdiffstats
path: root/p2p/handshake.go
diff options
context:
space:
mode:
authorAlexandre Van de Sande <alex.vandesande@ethdev.com>2015-02-23 20:05:15 +0800
committerAlexandre Van de Sande <alex.vandesande@ethdev.com>2015-02-23 20:05:15 +0800
commitdea65840186fe861017524c9cb59ae07ac97ed06 (patch)
tree5cb5e339b9ce77a2a3c92cf8a10c4294fcf7965c /p2p/handshake.go
parentbb3338df6363d8267a24190584f0908463241a6c (diff)
parentdd086791acf477da7641c168f82de70ed0b2dca6 (diff)
downloaddexon-dea65840186fe861017524c9cb59ae07ac97ed06.tar
dexon-dea65840186fe861017524c9cb59ae07ac97ed06.tar.gz
dexon-dea65840186fe861017524c9cb59ae07ac97ed06.tar.bz2
dexon-dea65840186fe861017524c9cb59ae07ac97ed06.tar.lz
dexon-dea65840186fe861017524c9cb59ae07ac97ed06.tar.xz
dexon-dea65840186fe861017524c9cb59ae07ac97ed06.tar.zst
dexon-dea65840186fe861017524c9cb59ae07ac97ed06.zip
Merge branch 'develop' into ui
Diffstat (limited to 'p2p/handshake.go')
-rw-r--r--p2p/handshake.go434
1 files changed, 434 insertions, 0 deletions
diff --git a/p2p/handshake.go b/p2p/handshake.go
new file mode 100644
index 000000000..614711eaf
--- /dev/null
+++ b/p2p/handshake.go
@@ -0,0 +1,434 @@
+package p2p
+
+import (
+ "crypto/ecdsa"
+ "crypto/rand"
+ "errors"
+ "fmt"
+ "io"
+ "net"
+
+ "github.com/ethereum/go-ethereum/crypto"
+ "github.com/ethereum/go-ethereum/crypto/ecies"
+ "github.com/ethereum/go-ethereum/crypto/secp256k1"
+ "github.com/ethereum/go-ethereum/p2p/discover"
+ "github.com/ethereum/go-ethereum/rlp"
+)
+
+const (
+ sskLen = 16 // ecies.MaxSharedKeyLength(pubKey) / 2
+ sigLen = 65 // elliptic S256
+ pubLen = 64 // 512 bit pubkey in uncompressed representation without format byte
+ shaLen = 32 // hash length (for nonce etc)
+
+ authMsgLen = sigLen + shaLen + pubLen + shaLen + 1
+ authRespLen = pubLen + shaLen + 1
+
+ eciesBytes = 65 + 16 + 32
+ iHSLen = authMsgLen + eciesBytes // size of the final ECIES payload sent as initiator's handshake
+ rHSLen = authRespLen + eciesBytes // size of the final ECIES payload sent as receiver's handshake
+)
+
+type conn struct {
+ *frameRW
+ *protoHandshake
+}
+
+func newConn(fd net.Conn, hs *protoHandshake) *conn {
+ return &conn{newFrameRW(fd, msgWriteTimeout), hs}
+}
+
+// encHandshake represents information about the remote end
+// of a connection that is negotiated during the encryption handshake.
+type encHandshake struct {
+ ID discover.NodeID
+ IngressMAC []byte
+ EgressMAC []byte
+ Token []byte
+}
+
+// protoHandshake is the RLP structure of the protocol handshake.
+type protoHandshake struct {
+ Version uint64
+ Name string
+ Caps []Cap
+ ListenPort uint64
+ ID discover.NodeID
+}
+
+// setupConn starts a protocol session on the given connection.
+// It runs the encryption handshake and the protocol handshake.
+// If dial is non-nil, the connection the local node is the initiator.
+func setupConn(fd net.Conn, prv *ecdsa.PrivateKey, our *protoHandshake, dial *discover.Node) (*conn, error) {
+ if dial == nil {
+ return setupInboundConn(fd, prv, our)
+ } else {
+ return setupOutboundConn(fd, prv, our, dial)
+ }
+}
+
+func setupInboundConn(fd net.Conn, prv *ecdsa.PrivateKey, our *protoHandshake) (*conn, error) {
+ // var remotePubkey []byte
+ // sessionToken, remotePubkey, err = inboundEncHandshake(fd, prv, nil)
+ // copy(remoteID[:], remotePubkey)
+
+ rw := newFrameRW(fd, msgWriteTimeout)
+ rhs, err := readProtocolHandshake(rw, our)
+ if err != nil {
+ return nil, err
+ }
+ if err := writeProtocolHandshake(rw, our); err != nil {
+ return nil, fmt.Errorf("protocol write error: %v", err)
+ }
+ return &conn{rw, rhs}, nil
+}
+
+func setupOutboundConn(fd net.Conn, prv *ecdsa.PrivateKey, our *protoHandshake, dial *discover.Node) (*conn, error) {
+ // remoteID = dial.ID
+ // sessionToken, err = outboundEncHandshake(fd, prv, remoteID[:], nil)
+
+ rw := newFrameRW(fd, msgWriteTimeout)
+ if err := writeProtocolHandshake(rw, our); err != nil {
+ return nil, fmt.Errorf("protocol write error: %v", err)
+ }
+ rhs, err := readProtocolHandshake(rw, our)
+ if err != nil {
+ return nil, fmt.Errorf("protocol handshake read error: %v", err)
+ }
+ if rhs.ID != dial.ID {
+ return nil, errors.New("dialed node id mismatch")
+ }
+ return &conn{rw, rhs}, nil
+}
+
+// outboundEncHandshake negotiates a session token on conn.
+// it should be called on the dialing side of the connection.
+//
+// privateKey is the local client's private key
+// remotePublicKey is the remote peer's node ID
+// sessionToken is the token from a previous session with this node.
+func outboundEncHandshake(conn io.ReadWriter, prvKey *ecdsa.PrivateKey, remotePublicKey []byte, sessionToken []byte) (
+ newSessionToken []byte,
+ err error,
+) {
+ auth, initNonce, randomPrivKey, err := authMsg(prvKey, remotePublicKey, sessionToken)
+ if err != nil {
+ return nil, err
+ }
+ if _, err = conn.Write(auth); err != nil {
+ return nil, err
+ }
+
+ response := make([]byte, rHSLen)
+ if _, err = io.ReadFull(conn, response); err != nil {
+ return nil, err
+ }
+ recNonce, remoteRandomPubKey, _, err := completeHandshake(response, prvKey)
+ if err != nil {
+ return nil, err
+ }
+
+ return newSession(initNonce, recNonce, randomPrivKey, remoteRandomPubKey)
+}
+
+// authMsg creates the initiator handshake.
+func authMsg(prvKey *ecdsa.PrivateKey, remotePubKeyS, sessionToken []byte) (
+ auth, initNonce []byte,
+ randomPrvKey *ecdsa.PrivateKey,
+ err error,
+) {
+ // session init, common to both parties
+ remotePubKey, err := importPublicKey(remotePubKeyS)
+ if err != nil {
+ return
+ }
+
+ var tokenFlag byte // = 0x00
+ if sessionToken == nil {
+ // no session token found means we need to generate shared secret.
+ // ecies shared secret is used as initial session token for new peers
+ // generate shared key from prv and remote pubkey
+ if sessionToken, err = ecies.ImportECDSA(prvKey).GenerateShared(ecies.ImportECDSAPublic(remotePubKey), sskLen, sskLen); err != nil {
+ return
+ }
+ // tokenFlag = 0x00 // redundant
+ } else {
+ // for known peers, we use stored token from the previous session
+ tokenFlag = 0x01
+ }
+
+ //E(remote-pubk, S(ecdhe-random, ecdh-shared-secret^nonce) || H(ecdhe-random-pubk) || pubk || nonce || 0x0)
+ // E(remote-pubk, S(ecdhe-random, token^nonce) || H(ecdhe-random-pubk) || pubk || nonce || 0x1)
+ // allocate msgLen long message,
+ var msg []byte = make([]byte, authMsgLen)
+ initNonce = msg[authMsgLen-shaLen-1 : authMsgLen-1]
+ if _, err = rand.Read(initNonce); err != nil {
+ return
+ }
+ // create known message
+ // ecdh-shared-secret^nonce for new peers
+ // token^nonce for old peers
+ var sharedSecret = xor(sessionToken, initNonce)
+
+ // generate random keypair to use for signing
+ if randomPrvKey, err = crypto.GenerateKey(); err != nil {
+ return
+ }
+ // sign shared secret (message known to both parties): shared-secret
+ var signature []byte
+ // signature = sign(ecdhe-random, shared-secret)
+ // uses secp256k1.Sign
+ if signature, err = crypto.Sign(sharedSecret, randomPrvKey); err != nil {
+ return
+ }
+
+ // message
+ // signed-shared-secret || H(ecdhe-random-pubk) || pubk || nonce || 0x0
+ copy(msg, signature) // copy signed-shared-secret
+ // H(ecdhe-random-pubk)
+ var randomPubKey64 []byte
+ if randomPubKey64, err = exportPublicKey(&randomPrvKey.PublicKey); err != nil {
+ return
+ }
+ var pubKey64 []byte
+ if pubKey64, err = exportPublicKey(&prvKey.PublicKey); err != nil {
+ return
+ }
+ copy(msg[sigLen:sigLen+shaLen], crypto.Sha3(randomPubKey64))
+ // pubkey copied to the correct segment.
+ copy(msg[sigLen+shaLen:sigLen+shaLen+pubLen], pubKey64)
+ // nonce is already in the slice
+ // stick tokenFlag byte to the end
+ msg[authMsgLen-1] = tokenFlag
+
+ // encrypt using remote-pubk
+ // auth = eciesEncrypt(remote-pubk, msg)
+ if auth, err = crypto.Encrypt(remotePubKey, msg); err != nil {
+ return
+ }
+ return
+}
+
+// completeHandshake is called when the initiator receives an
+// authentication response (aka receiver handshake). It completes the
+// handshake by reading off parameters the remote peer provides needed
+// to set up the secure session.
+func completeHandshake(auth []byte, prvKey *ecdsa.PrivateKey) (
+ respNonce []byte,
+ remoteRandomPubKey *ecdsa.PublicKey,
+ tokenFlag bool,
+ err error,
+) {
+ var msg []byte
+ // they prove that msg is meant for me,
+ // I prove I possess private key if i can read it
+ if msg, err = crypto.Decrypt(prvKey, auth); err != nil {
+ return
+ }
+
+ respNonce = msg[pubLen : pubLen+shaLen]
+ var remoteRandomPubKeyS = msg[:pubLen]
+ if remoteRandomPubKey, err = importPublicKey(remoteRandomPubKeyS); err != nil {
+ return
+ }
+ if msg[authRespLen-1] == 0x01 {
+ tokenFlag = true
+ }
+ return
+}
+
+// inboundEncHandshake negotiates a session token on conn.
+// it should be called on the listening side of the connection.
+//
+// privateKey is the local client's private key
+// sessionToken is the token from a previous session with this node.
+func inboundEncHandshake(conn io.ReadWriter, prvKey *ecdsa.PrivateKey, sessionToken []byte) (
+ token, remotePubKey []byte,
+ err error,
+) {
+ // we are listening connection. we are responders in the
+ // handshake. Extract info from the authentication. The initiator
+ // starts by sending us a handshake that we need to respond to. so
+ // we read auth message first, then respond.
+ auth := make([]byte, iHSLen)
+ if _, err := io.ReadFull(conn, auth); err != nil {
+ return nil, nil, err
+ }
+ response, recNonce, initNonce, remotePubKey, randomPrivKey, remoteRandomPubKey, err := authResp(auth, sessionToken, prvKey)
+ if err != nil {
+ return nil, nil, err
+ }
+ if _, err = conn.Write(response); err != nil {
+ return nil, nil, err
+ }
+ token, err = newSession(initNonce, recNonce, randomPrivKey, remoteRandomPubKey)
+ return token, remotePubKey, err
+}
+
+// authResp is called by peer if it accepted (but not
+// initiated) the connection from the remote. It is passed the initiator
+// handshake received and the session token belonging to the
+// remote initiator.
+//
+// The first return value is the authentication response (aka receiver
+// handshake) that is to be sent to the remote initiator.
+func authResp(auth, sessionToken []byte, prvKey *ecdsa.PrivateKey) (
+ authResp, respNonce, initNonce, remotePubKeyS []byte,
+ randomPrivKey *ecdsa.PrivateKey,
+ remoteRandomPubKey *ecdsa.PublicKey,
+ err error,
+) {
+ // they prove that msg is meant for me,
+ // I prove I possess private key if i can read it
+ msg, err := crypto.Decrypt(prvKey, auth)
+ if err != nil {
+ return
+ }
+
+ remotePubKeyS = msg[sigLen+shaLen : sigLen+shaLen+pubLen]
+ remotePubKey, _ := importPublicKey(remotePubKeyS)
+
+ var tokenFlag byte
+ if sessionToken == nil {
+ // no session token found means we need to generate shared secret.
+ // ecies shared secret is used as initial session token for new peers
+ // generate shared key from prv and remote pubkey
+ if sessionToken, err = ecies.ImportECDSA(prvKey).GenerateShared(ecies.ImportECDSAPublic(remotePubKey), sskLen, sskLen); err != nil {
+ return
+ }
+ // tokenFlag = 0x00 // redundant
+ } else {
+ // for known peers, we use stored token from the previous session
+ tokenFlag = 0x01
+ }
+
+ // the initiator nonce is read off the end of the message
+ initNonce = msg[authMsgLen-shaLen-1 : authMsgLen-1]
+ // I prove that i own prv key (to derive shared secret, and read
+ // nonce off encrypted msg) and that I own shared secret they
+ // prove they own the private key belonging to ecdhe-random-pubk
+ // we can now reconstruct the signed message and recover the peers
+ // pubkey
+ var signedMsg = xor(sessionToken, initNonce)
+ var remoteRandomPubKeyS []byte
+ if remoteRandomPubKeyS, err = secp256k1.RecoverPubkey(signedMsg, msg[:sigLen]); err != nil {
+ return
+ }
+ // convert to ECDSA standard
+ if remoteRandomPubKey, err = importPublicKey(remoteRandomPubKeyS); err != nil {
+ return
+ }
+
+ // now we find ourselves a long task too, fill it random
+ var resp = make([]byte, authRespLen)
+ // generate shaLen long nonce
+ respNonce = resp[pubLen : pubLen+shaLen]
+ if _, err = rand.Read(respNonce); err != nil {
+ return
+ }
+ // generate random keypair for session
+ if randomPrivKey, err = crypto.GenerateKey(); err != nil {
+ return
+ }
+ // responder auth message
+ // E(remote-pubk, ecdhe-random-pubk || nonce || 0x0)
+ var randomPubKeyS []byte
+ if randomPubKeyS, err = exportPublicKey(&randomPrivKey.PublicKey); err != nil {
+ return
+ }
+ copy(resp[:pubLen], randomPubKeyS)
+ // nonce is already in the slice
+ resp[authRespLen-1] = tokenFlag
+
+ // encrypt using remote-pubk
+ // auth = eciesEncrypt(remote-pubk, msg)
+ // why not encrypt with ecdhe-random-remote
+ if authResp, err = crypto.Encrypt(remotePubKey, resp); err != nil {
+ return
+ }
+ return
+}
+
+// newSession is called after the handshake is completed. The
+// arguments are values negotiated in the handshake. The return value
+// is a new session Token to be remembered for the next time we
+// connect with this peer.
+func newSession(initNonce, respNonce []byte, privKey *ecdsa.PrivateKey, remoteRandomPubKey *ecdsa.PublicKey) ([]byte, error) {
+ // 3) Now we can trust ecdhe-random-pubk to derive new keys
+ //ecdhe-shared-secret = ecdh.agree(ecdhe-random, remote-ecdhe-random-pubk)
+ pubKey := ecies.ImportECDSAPublic(remoteRandomPubKey)
+ dhSharedSecret, err := ecies.ImportECDSA(privKey).GenerateShared(pubKey, sskLen, sskLen)
+ if err != nil {
+ return nil, err
+ }
+ sharedSecret := crypto.Sha3(dhSharedSecret, crypto.Sha3(respNonce, initNonce))
+ sessionToken := crypto.Sha3(sharedSecret)
+ return sessionToken, nil
+}
+
+// importPublicKey unmarshals 512 bit public keys.
+func importPublicKey(pubKey []byte) (pubKeyEC *ecdsa.PublicKey, err error) {
+ var pubKey65 []byte
+ switch len(pubKey) {
+ case 64:
+ // add 'uncompressed key' flag
+ pubKey65 = append([]byte{0x04}, pubKey...)
+ case 65:
+ pubKey65 = pubKey
+ default:
+ return nil, fmt.Errorf("invalid public key length %v (expect 64/65)", len(pubKey))
+ }
+ return crypto.ToECDSAPub(pubKey65), nil
+}
+
+func exportPublicKey(pubKeyEC *ecdsa.PublicKey) (pubKey []byte, err error) {
+ if pubKeyEC == nil {
+ return nil, fmt.Errorf("no ECDSA public key given")
+ }
+ return crypto.FromECDSAPub(pubKeyEC)[1:], nil
+}
+
+func xor(one, other []byte) (xor []byte) {
+ xor = make([]byte, len(one))
+ for i := 0; i < len(one); i++ {
+ xor[i] = one[i] ^ other[i]
+ }
+ return xor
+}
+
+func writeProtocolHandshake(w MsgWriter, our *protoHandshake) error {
+ return EncodeMsg(w, handshakeMsg, our.Version, our.Name, our.Caps, our.ListenPort, our.ID[:])
+}
+
+func readProtocolHandshake(r MsgReader, our *protoHandshake) (*protoHandshake, error) {
+ // read and handle remote handshake
+ msg, err := r.ReadMsg()
+ if err != nil {
+ return nil, err
+ }
+ if msg.Code == discMsg {
+ // disconnect before protocol handshake is valid according to the
+ // spec and we send it ourself if Server.addPeer fails.
+ var reason DiscReason
+ rlp.Decode(msg.Payload, &reason)
+ return nil, discRequestedError(reason)
+ }
+ if msg.Code != handshakeMsg {
+ return nil, fmt.Errorf("expected handshake, got %x", msg.Code)
+ }
+ if msg.Size > baseProtocolMaxMsgSize {
+ return nil, fmt.Errorf("message too big (%d > %d)", msg.Size, baseProtocolMaxMsgSize)
+ }
+ var hs protoHandshake
+ if err := msg.Decode(&hs); err != nil {
+ return nil, err
+ }
+ // validate handshake info
+ if hs.Version != our.Version {
+ return nil, newPeerError(errP2PVersionMismatch, "required version %d, received %d\n", baseProtocolVersion, hs.Version)
+ }
+ if (hs.ID == discover.NodeID{}) {
+ return nil, newPeerError(errPubkeyInvalid, "missing")
+ }
+ return &hs, nil
+}