aboutsummaryrefslogtreecommitdiffstats
path: root/p2p/handshake.go
diff options
context:
space:
mode:
authorFelix Lange <fjl@twurst.com>2015-03-02 22:26:44 +0800
committerFelix Lange <fjl@twurst.com>2015-03-04 19:27:24 +0800
commit7d39fd66782dee01f9534bed3cbe22c97c8d610f (patch)
tree6341efcb3a269a7b184788e4bc41671bd28550c5 /p2p/handshake.go
parent2c505efd1ec03dc28ebabbb54253f3eb9e719be5 (diff)
downloaddexon-7d39fd66782dee01f9534bed3cbe22c97c8d610f.tar
dexon-7d39fd66782dee01f9534bed3cbe22c97c8d610f.tar.gz
dexon-7d39fd66782dee01f9534bed3cbe22c97c8d610f.tar.bz2
dexon-7d39fd66782dee01f9534bed3cbe22c97c8d610f.tar.lz
dexon-7d39fd66782dee01f9534bed3cbe22c97c8d610f.tar.xz
dexon-7d39fd66782dee01f9534bed3cbe22c97c8d610f.tar.zst
dexon-7d39fd66782dee01f9534bed3cbe22c97c8d610f.zip
p2p: make encryption handshake code easier to follow
This mostly changes how information is passed around. Instead of using many function parameters and return values, put the entire state in a struct and pass that. This also adds back derivation of ecdhe-shared-secret. I deleted it by accident in a previous refactoring.
Diffstat (limited to 'p2p/handshake.go')
-rw-r--r--p2p/handshake.go449
1 files changed, 207 insertions, 242 deletions
diff --git a/p2p/handshake.go b/p2p/handshake.go
index 10ef970dc..a56de968d 100644
--- a/p2p/handshake.go
+++ b/p2p/handshake.go
@@ -2,6 +2,7 @@ package p2p
import (
"crypto/ecdsa"
+ "crypto/elliptic"
"crypto/rand"
"errors"
"fmt"
@@ -26,26 +27,26 @@ const (
authMsgLen = sigLen + shaLen + pubLen + shaLen + 1
authRespLen = pubLen + shaLen + 1
- eciesBytes = 65 + 16 + 32
- iHSLen = authMsgLen + eciesBytes // size of the final ECIES payload sent as initiator's handshake
- rHSLen = authRespLen + eciesBytes // size of the final ECIES payload sent as receiver's handshake
+ eciesBytes = 65 + 16 + 32
+ encAuthMsgLen = authMsgLen + eciesBytes // size of the final ECIES payload sent as initiator's handshake
+ encAuthRespLen = authRespLen + eciesBytes // size of the final ECIES payload sent as receiver's handshake
)
+// conn represents a remote connection after encryption handshake
+// and protocol handshake have completed.
+//
+// The MsgReadWriter is usually layered as follows:
+//
+// lockedRW (thread-safety for ReadMsg, WriteMsg)
+// rlpxFrameRW (message encoding, encryption, authentication)
+// bufio.ReadWriter (buffering)
+// net.Conn (network I/O)
+//
type conn struct {
MsgReadWriter
*protoHandshake
}
-// encHandshake contains the state of the encryption handshake.
-type encHandshake struct {
- remoteID discover.NodeID
- initiator bool
- initNonce, respNonce []byte
- dhSharedSecret []byte
- randomPrivKey *ecdsa.PrivateKey
- remoteRandomPub *ecdsa.PublicKey
-}
-
// secrets represents the connection secrets
// which are negotiated during the encryption handshake.
type secrets struct {
@@ -64,34 +65,6 @@ type protoHandshake struct {
ID discover.NodeID
}
-// secrets is called after the handshake is completed.
-// It extracts the connection secrets from the handshake values.
-func (h *encHandshake) secrets(auth, authResp []byte) secrets {
- sharedSecret := crypto.Sha3(h.dhSharedSecret, crypto.Sha3(h.respNonce, h.initNonce))
- aesSecret := crypto.Sha3(h.dhSharedSecret, sharedSecret)
- s := secrets{
- RemoteID: h.remoteID,
- AES: aesSecret,
- MAC: crypto.Sha3(h.dhSharedSecret, aesSecret),
- Token: crypto.Sha3(sharedSecret),
- }
-
- // setup sha3 instances for the MACs
- mac1 := sha3.NewKeccak256()
- mac1.Write(xor(s.MAC, h.respNonce))
- mac1.Write(auth)
- mac2 := sha3.NewKeccak256()
- mac2.Write(xor(s.MAC, h.initNonce))
- mac2.Write(authResp)
- if h.initiator {
- s.EgressMAC, s.IngressMAC = mac1, mac2
- } else {
- s.EgressMAC, s.IngressMAC = mac2, mac1
- }
-
- return s
-}
-
// setupConn starts a protocol session on the given connection.
// It runs the encryption handshake and the protocol handshake.
// If dial is non-nil, the connection the local node is the initiator.
@@ -104,7 +77,7 @@ func setupConn(fd net.Conn, prv *ecdsa.PrivateKey, our *protoHandshake, dial *di
}
func setupInboundConn(fd net.Conn, prv *ecdsa.PrivateKey, our *protoHandshake) (*conn, error) {
- secrets, err := inboundEncHandshake(fd, prv, nil)
+ secrets, err := receiverEncHandshake(fd, prv, nil)
if err != nil {
return nil, fmt.Errorf("encryption handshake failed: %v", err)
}
@@ -124,7 +97,7 @@ func setupInboundConn(fd net.Conn, prv *ecdsa.PrivateKey, our *protoHandshake) (
}
func setupOutboundConn(fd net.Conn, prv *ecdsa.PrivateKey, our *protoHandshake, dial *discover.Node) (*conn, error) {
- secrets, err := outboundEncHandshake(fd, prv, dial.ID[:], nil)
+ secrets, err := initiatorEncHandshake(fd, prv, dial.ID, nil)
if err != nil {
return nil, fmt.Errorf("encryption handshake failed: %v", err)
}
@@ -145,14 +118,66 @@ func setupOutboundConn(fd net.Conn, prv *ecdsa.PrivateKey, our *protoHandshake,
return &conn{&lockedRW{wrapped: rw}, rhs}, nil
}
-// outboundEncHandshake negotiates a session token on conn.
+// encHandshake contains the state of the encryption handshake.
+type encHandshake struct {
+ initiator bool
+ remoteID discover.NodeID
+
+ remotePub *ecies.PublicKey // remote-pubk
+ initNonce, respNonce []byte // nonce
+ randomPrivKey *ecies.PrivateKey // ecdhe-random
+ remoteRandomPub *ecies.PublicKey // ecdhe-random-pubk
+}
+
+// secrets is called after the handshake is completed.
+// It extracts the connection secrets from the handshake values.
+func (h *encHandshake) secrets(auth, authResp []byte) (secrets, error) {
+ ecdheSecret, err := h.randomPrivKey.GenerateShared(h.remoteRandomPub, sskLen, sskLen)
+ if err != nil {
+ return secrets{}, err
+ }
+
+ // derive base secrets from ephemeral key agreement
+ sharedSecret := crypto.Sha3(ecdheSecret, crypto.Sha3(h.respNonce, h.initNonce))
+ aesSecret := crypto.Sha3(ecdheSecret, sharedSecret)
+ s := secrets{
+ RemoteID: h.remoteID,
+ AES: aesSecret,
+ MAC: crypto.Sha3(ecdheSecret, aesSecret),
+ Token: crypto.Sha3(sharedSecret),
+ }
+
+ // setup sha3 instances for the MACs
+ mac1 := sha3.NewKeccak256()
+ mac1.Write(xor(s.MAC, h.respNonce))
+ mac1.Write(auth)
+ mac2 := sha3.NewKeccak256()
+ mac2.Write(xor(s.MAC, h.initNonce))
+ mac2.Write(authResp)
+ if h.initiator {
+ s.EgressMAC, s.IngressMAC = mac1, mac2
+ } else {
+ s.EgressMAC, s.IngressMAC = mac2, mac1
+ }
+
+ return s, nil
+}
+
+func (h *encHandshake) ecdhShared(prv *ecdsa.PrivateKey) ([]byte, error) {
+ return ecies.ImportECDSA(prv).GenerateShared(h.remotePub, sskLen, sskLen)
+}
+
+// initiatorEncHandshake negotiates a session token on conn.
// it should be called on the dialing side of the connection.
//
-// privateKey is the local client's private key
-// remotePublicKey is the remote peer's node ID
-// sessionToken is the token from a previous session with this node.
-func outboundEncHandshake(conn io.ReadWriter, prvKey *ecdsa.PrivateKey, remotePublicKey []byte, sessionToken []byte) (s secrets, err error) {
- auth, initNonce, randomPrivKey, err := authMsg(prvKey, remotePublicKey, sessionToken)
+// prv is the local client's private key.
+// token is the token from a previous session with this node.
+func initiatorEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, remoteID discover.NodeID, token []byte) (s secrets, err error) {
+ h, err := newInitiatorHandshake(remoteID)
+ if err != nil {
+ return s, err
+ }
+ auth, err := h.authMsg(prv, token)
if err != nil {
return s, err
}
@@ -160,250 +185,189 @@ func outboundEncHandshake(conn io.ReadWriter, prvKey *ecdsa.PrivateKey, remotePu
return s, err
}
- response := make([]byte, rHSLen)
+ response := make([]byte, encAuthRespLen)
if _, err = io.ReadFull(conn, response); err != nil {
return s, err
}
- recNonce, remoteRandomPubKey, _, err := completeHandshake(response, prvKey)
- if err != nil {
+ if err := h.decodeAuthResp(response, prv); err != nil {
return s, err
}
-
- h := &encHandshake{
- initiator: true,
- initNonce: initNonce,
- respNonce: recNonce,
- randomPrivKey: randomPrivKey,
- remoteRandomPub: remoteRandomPubKey,
- }
- copy(h.remoteID[:], remotePublicKey)
- return h.secrets(auth, response), nil
+ return h.secrets(auth, response)
}
-// authMsg creates the initiator handshake.
-// TODO: change all the names
-func authMsg(prvKey *ecdsa.PrivateKey, remotePubKeyS, sessionToken []byte) (
- auth, initNonce []byte,
- randomPrvKey *ecdsa.PrivateKey,
- err error,
-) {
- remotePubKey, err := importPublicKey(remotePubKeyS)
+func newInitiatorHandshake(remoteID discover.NodeID) (*encHandshake, error) {
+ // generate random initiator nonce
+ n := make([]byte, shaLen)
+ if _, err := rand.Read(n); err != nil {
+ return nil, err
+ }
+ // generate random keypair to use for signing
+ randpriv, err := ecies.GenerateKey(rand.Reader, crypto.S256(), nil)
+ if err != nil {
+ return nil, err
+ }
+ rpub, err := remoteID.Pubkey()
if err != nil {
- return
+ return nil, fmt.Errorf("bad remoteID: %v", err)
}
+ h := &encHandshake{
+ initiator: true,
+ remoteID: remoteID,
+ remotePub: ecies.ImportECDSAPublic(rpub),
+ initNonce: n,
+ randomPrivKey: randpriv,
+ }
+ return h, nil
+}
+// authMsg creates an encrypted initiator handshake message.
+func (h *encHandshake) authMsg(prv *ecdsa.PrivateKey, token []byte) ([]byte, error) {
var tokenFlag byte
- if sessionToken == nil {
+ if token == nil {
// no session token found means we need to generate shared secret.
// ecies shared secret is used as initial session token for new peers
// generate shared key from prv and remote pubkey
- if sessionToken, err = ecies.ImportECDSA(prvKey).GenerateShared(ecies.ImportECDSAPublic(remotePubKey), sskLen, sskLen); err != nil {
- return
+ var err error
+ if token, err = h.ecdhShared(prv); err != nil {
+ return nil, err
}
} else {
// for known peers, we use stored token from the previous session
tokenFlag = 0x01
}
- //E(remote-pubk, S(ecdhe-random, sha3(ecdh-shared-secret^nonce)) || H(ecdhe-random-pubk) || pubk || nonce || 0x0)
- // E(remote-pubk, S(ecdhe-random, sha3(token^nonce)) || H(ecdhe-random-pubk) || pubk || nonce || 0x1)
- // allocate msgLen long message,
- var msg []byte = make([]byte, authMsgLen)
- initNonce = msg[authMsgLen-shaLen-1 : authMsgLen-1]
- if _, err = rand.Read(initNonce); err != nil {
- return
+ // sign known message:
+ // ecdh-shared-secret^nonce for new peers
+ // token^nonce for old peers
+ signed := xor(token, h.initNonce)
+ signature, err := crypto.Sign(signed, h.randomPrivKey.ExportECDSA())
+ if err != nil {
+ return nil, err
}
- // create known message
- // ecdh-shared-secret^nonce for new peers
- // token^nonce for old peers
- var sharedSecret = xor(sessionToken, initNonce)
- // generate random keypair to use for signing
- if randomPrvKey, err = crypto.GenerateKey(); err != nil {
- return
- }
- // sign shared secret (message known to both parties): shared-secret
- var signature []byte
- // signature = sign(ecdhe-random, shared-secret)
- // uses secp256k1.Sign
- if signature, err = crypto.Sign(sharedSecret, randomPrvKey); err != nil {
- return
- }
-
- // message
- // signed-shared-secret || H(ecdhe-random-pubk) || pubk || nonce || 0x0
- copy(msg, signature) // copy signed-shared-secret
- // H(ecdhe-random-pubk)
- var randomPubKey64 []byte
- if randomPubKey64, err = exportPublicKey(&randomPrvKey.PublicKey); err != nil {
- return
- }
- var pubKey64 []byte
- if pubKey64, err = exportPublicKey(&prvKey.PublicKey); err != nil {
- return
- }
- copy(msg[sigLen:sigLen+shaLen], crypto.Sha3(randomPubKey64))
- // pubkey copied to the correct segment.
- copy(msg[sigLen+shaLen:sigLen+shaLen+pubLen], pubKey64)
- // nonce is already in the slice
- // stick tokenFlag byte to the end
- msg[authMsgLen-1] = tokenFlag
+ // encode auth message
+ // signature || sha3(ecdhe-random-pubk) || pubk || nonce || token-flag
+ msg := make([]byte, authMsgLen)
+ n := copy(msg, signature)
+ n += copy(msg[n:], crypto.Sha3(exportPubkey(&h.randomPrivKey.PublicKey)))
+ n += copy(msg[n:], crypto.FromECDSAPub(&prv.PublicKey)[1:])
+ n += copy(msg[n:], h.initNonce)
+ msg[n] = tokenFlag
- // encrypt using remote-pubk
- // auth = eciesEncrypt(remote-pubk, msg)
- if auth, err = crypto.Encrypt(remotePubKey, msg); err != nil {
- return
- }
- return
+ // encrypt auth message using remote-pubk
+ return ecies.Encrypt(rand.Reader, h.remotePub, msg, nil, nil)
}
-// completeHandshake is called when the initiator receives an
-// authentication response (aka receiver handshake). It completes the
-// handshake by reading off parameters the remote peer provides needed
-// to set up the secure session.
-func completeHandshake(auth []byte, prvKey *ecdsa.PrivateKey) (
- respNonce []byte,
- remoteRandomPubKey *ecdsa.PublicKey,
- tokenFlag bool,
- err error,
-) {
- var msg []byte
- // they prove that msg is meant for me,
- // I prove I possess private key if i can read it
- if msg, err = crypto.Decrypt(prvKey, auth); err != nil {
- return
- }
-
- respNonce = msg[pubLen : pubLen+shaLen]
- var remoteRandomPubKeyS = msg[:pubLen]
- if remoteRandomPubKey, err = importPublicKey(remoteRandomPubKeyS); err != nil {
- return
- }
- if msg[authRespLen-1] == 0x01 {
- tokenFlag = true
- }
- return
+// decodeAuthResp decode an encrypted authentication response message.
+func (h *encHandshake) decodeAuthResp(auth []byte, prv *ecdsa.PrivateKey) error {
+ msg, err := crypto.Decrypt(prv, auth)
+ if err != nil {
+ return fmt.Errorf("could not decrypt auth response (%v)", err)
+ }
+ h.respNonce = msg[pubLen : pubLen+shaLen]
+ h.remoteRandomPub, err = importPublicKey(msg[:pubLen])
+ if err != nil {
+ return err
+ }
+ // ignore token flag for now
+ return nil
}
-// inboundEncHandshake negotiates a session token on conn.
+// receiverEncHandshake negotiates a session token on conn.
// it should be called on the listening side of the connection.
//
-// privateKey is the local client's private key
-// sessionToken is the token from a previous session with this node.
-func inboundEncHandshake(conn io.ReadWriter, prvKey *ecdsa.PrivateKey, sessionToken []byte) (s secrets, err error) {
- // we are listening connection. we are responders in the
- // handshake. Extract info from the authentication. The initiator
- // starts by sending us a handshake that we need to respond to. so
- // we read auth message first, then respond.
- auth := make([]byte, iHSLen)
+// prv is the local client's private key.
+// token is the token from a previous session with this node.
+func receiverEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, token []byte) (s secrets, err error) {
+ // read remote auth sent by initiator.
+ auth := make([]byte, encAuthMsgLen)
if _, err := io.ReadFull(conn, auth); err != nil {
return s, err
}
- response, recNonce, initNonce, remotePubKey, randomPrivKey, remoteRandomPubKey, err := authResp(auth, sessionToken, prvKey)
+ h, err := decodeAuthMsg(prv, token, auth)
if err != nil {
return s, err
}
- if _, err = conn.Write(response); err != nil {
+
+ // send auth response
+ resp, err := h.authResp(prv, token)
+ if err != nil {
+ return s, err
+ }
+ if _, err = conn.Write(resp); err != nil {
return s, err
}
- h := &encHandshake{
- initiator: false,
- initNonce: initNonce,
- respNonce: recNonce,
- randomPrivKey: randomPrivKey,
- remoteRandomPub: remoteRandomPubKey,
- }
- copy(h.remoteID[:], remotePubKey)
- return h.secrets(auth, response), err
+ return h.secrets(auth, resp)
}
-// authResp is called by peer if it accepted (but not
-// initiated) the connection from the remote. It is passed the initiator
-// handshake received and the session token belonging to the
-// remote initiator.
-//
-// The first return value is the authentication response (aka receiver
-// handshake) that is to be sent to the remote initiator.
-func authResp(auth, sessionToken []byte, prvKey *ecdsa.PrivateKey) (
- authResp, respNonce, initNonce, remotePubKeyS []byte,
- randomPrivKey *ecdsa.PrivateKey,
- remoteRandomPubKey *ecdsa.PublicKey,
- err error,
-) {
- // they prove that msg is meant for me,
- // I prove I possess private key if i can read it
- msg, err := crypto.Decrypt(prvKey, auth)
+func decodeAuthMsg(prv *ecdsa.PrivateKey, token []byte, auth []byte) (*encHandshake, error) {
+ var err error
+ h := new(encHandshake)
+ // generate random keypair for session
+ h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil)
if err != nil {
- return
+ return nil, err
}
-
- remotePubKeyS = msg[sigLen+shaLen : sigLen+shaLen+pubLen]
- remotePubKey, _ := importPublicKey(remotePubKeyS)
-
- var tokenFlag byte
- if sessionToken == nil {
- // no session token found means we need to generate shared secret.
- // ecies shared secret is used as initial session token for new peers
- // generate shared key from prv and remote pubkey
- if sessionToken, err = ecies.ImportECDSA(prvKey).GenerateShared(ecies.ImportECDSAPublic(remotePubKey), sskLen, sskLen); err != nil {
- return
- }
- // tokenFlag = 0x00 // redundant
- } else {
- // for known peers, we use stored token from the previous session
- tokenFlag = 0x01
+ // generate random nonce
+ h.respNonce = make([]byte, shaLen)
+ if _, err = rand.Read(h.respNonce); err != nil {
+ return nil, err
}
- // the initiator nonce is read off the end of the message
- initNonce = msg[authMsgLen-shaLen-1 : authMsgLen-1]
- // I prove that i own prv key (to derive shared secret, and read
- // nonce off encrypted msg) and that I own shared secret they
- // prove they own the private key belonging to ecdhe-random-pubk
- // we can now reconstruct the signed message and recover the peers
- // pubkey
- var signedMsg = xor(sessionToken, initNonce)
- var remoteRandomPubKeyS []byte
- if remoteRandomPubKeyS, err = secp256k1.RecoverPubkey(signedMsg, msg[:sigLen]); err != nil {
- return
+ msg, err := crypto.Decrypt(prv, auth)
+ if err != nil {
+ return nil, fmt.Errorf("could not decrypt auth message (%v)", err)
}
- // convert to ECDSA standard
- if remoteRandomPubKey, err = importPublicKey(remoteRandomPubKeyS); err != nil {
- return
+
+ // decode message parameters
+ // signature || sha3(ecdhe-random-pubk) || pubk || nonce || token-flag
+ h.initNonce = msg[authMsgLen-shaLen-1 : authMsgLen-1]
+ copy(h.remoteID[:], msg[sigLen+shaLen:sigLen+shaLen+pubLen])
+ rpub, err := h.remoteID.Pubkey()
+ if err != nil {
+ return nil, fmt.Errorf("bad remoteID: %#v", err)
}
+ h.remotePub = ecies.ImportECDSAPublic(rpub)
- // now we find ourselves a long task too, fill it random
- var resp = make([]byte, authRespLen)
- // generate shaLen long nonce
- respNonce = resp[pubLen : pubLen+shaLen]
- if _, err = rand.Read(respNonce); err != nil {
- return
+ // recover remote random pubkey from signed message.
+ if token == nil {
+ // TODO: it is an error if the initiator has a token and we don't. check that.
+
+ // no session token means we need to generate shared secret.
+ // ecies shared secret is used as initial session token for new peers.
+ // generate shared key from prv and remote pubkey.
+ if token, err = h.ecdhShared(prv); err != nil {
+ return nil, err
+ }
}
- // generate random keypair for session
- if randomPrivKey, err = crypto.GenerateKey(); err != nil {
- return
+ signedMsg := xor(token, h.initNonce)
+ remoteRandomPub, err := secp256k1.RecoverPubkey(signedMsg, msg[:sigLen])
+ if err != nil {
+ return nil, err
}
+ h.remoteRandomPub, _ = importPublicKey(remoteRandomPub)
+ return h, nil
+}
+
+// authResp generates the encrypted authentication response message.
+func (h *encHandshake) authResp(prv *ecdsa.PrivateKey, token []byte) ([]byte, error) {
// responder auth message
// E(remote-pubk, ecdhe-random-pubk || nonce || 0x0)
- var randomPubKeyS []byte
- if randomPubKeyS, err = exportPublicKey(&randomPrivKey.PublicKey); err != nil {
- return
+ resp := make([]byte, authRespLen)
+ n := copy(resp, exportPubkey(&h.randomPrivKey.PublicKey))
+ n += copy(resp[n:], h.respNonce)
+ if token == nil {
+ resp[n] = 0
+ } else {
+ resp[n] = 1
}
- copy(resp[:pubLen], randomPubKeyS)
- // nonce is already in the slice
- resp[authRespLen-1] = tokenFlag
-
// encrypt using remote-pubk
- // auth = eciesEncrypt(remote-pubk, msg)
- // why not encrypt with ecdhe-random-remote
- if authResp, err = crypto.Encrypt(remotePubKey, resp); err != nil {
- return
- }
- return
+ return ecies.Encrypt(rand.Reader, h.remotePub, resp, nil, nil)
}
// importPublicKey unmarshals 512 bit public keys.
-func importPublicKey(pubKey []byte) (pubKeyEC *ecdsa.PublicKey, err error) {
+func importPublicKey(pubKey []byte) (*ecies.PublicKey, error) {
var pubKey65 []byte
switch len(pubKey) {
case 64:
@@ -414,14 +378,15 @@ func importPublicKey(pubKey []byte) (pubKeyEC *ecdsa.PublicKey, err error) {
default:
return nil, fmt.Errorf("invalid public key length %v (expect 64/65)", len(pubKey))
}
- return crypto.ToECDSAPub(pubKey65), nil
+ // TODO: fewer pointless conversions
+ return ecies.ImportECDSAPublic(crypto.ToECDSAPub(pubKey65)), nil
}
-func exportPublicKey(pubKeyEC *ecdsa.PublicKey) (pubKey []byte, err error) {
- if pubKeyEC == nil {
- return nil, fmt.Errorf("no ECDSA public key given")
+func exportPubkey(pub *ecies.PublicKey) []byte {
+ if pub == nil {
+ panic("nil pubkey")
}
- return crypto.FromECDSAPub(pubKeyEC)[1:], nil
+ return elliptic.Marshal(pub.Curve, pub.X, pub.Y)[1:]
}
func xor(one, other []byte) (xor []byte) {