aboutsummaryrefslogtreecommitdiffstats
path: root/p2p/discover/table.go
diff options
context:
space:
mode:
authorFelix Lange <fjl@twurst.com>2015-04-27 06:50:18 +0800
committerFelix Lange <fjl@twurst.com>2015-05-06 22:10:41 +0800
commit2adcc31bb48af0dee979f2b4ab255d9af21fd097 (patch)
treee13845f15c96a87ac0fc9345f3a0ee90cfd006da /p2p/discover/table.go
parentd457a1187dbbbf08bcce437789732dab02a73b0f (diff)
downloaddexon-2adcc31bb48af0dee979f2b4ab255d9af21fd097.tar
dexon-2adcc31bb48af0dee979f2b4ab255d9af21fd097.tar.gz
dexon-2adcc31bb48af0dee979f2b4ab255d9af21fd097.tar.bz2
dexon-2adcc31bb48af0dee979f2b4ab255d9af21fd097.tar.lz
dexon-2adcc31bb48af0dee979f2b4ab255d9af21fd097.tar.xz
dexon-2adcc31bb48af0dee979f2b4ab255d9af21fd097.tar.zst
dexon-2adcc31bb48af0dee979f2b4ab255d9af21fd097.zip
p2p/discover: new distance metric based on sha3(id)
The previous metric was pubkey1^pubkey2, as specified in the Kademlia paper. We missed that EC public keys are not uniformly distributed. Using the hash of the public keys addresses that. It also makes it a bit harder to generate node IDs that are close to a particular node.
Diffstat (limited to 'p2p/discover/table.go')
-rw-r--r--p2p/discover/table.go54
1 files changed, 30 insertions, 24 deletions
diff --git a/p2p/discover/table.go b/p2p/discover/table.go
index ae10fed5b..2c9cb80d5 100644
--- a/p2p/discover/table.go
+++ b/p2p/discover/table.go
@@ -7,20 +7,24 @@
package discover
import (
+ "crypto/rand"
"net"
"sort"
"sync"
"time"
+ "github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/logger"
"github.com/ethereum/go-ethereum/logger/glog"
)
const (
- alpha = 3 // Kademlia concurrency factor
- bucketSize = 16 // Kademlia bucket size
- nBuckets = nodeIDBits + 1 // Number of buckets
+ alpha = 3 // Kademlia concurrency factor
+ bucketSize = 16 // Kademlia bucket size
+ hashBits = len(common.Hash{}) * 8
+ nBuckets = hashBits + 1 // Number of buckets
+
maxBondingPingPongs = 10
)
@@ -116,21 +120,23 @@ func (tab *Table) Bootstrap(nodes []*Node) {
// Lookup performs a network search for nodes close
// to the given target. It approaches the target by querying
// nodes that are closer to it on each iteration.
-func (tab *Table) Lookup(target NodeID) []*Node {
+// The given target does not need to be an actual node
+// identifier.
+func (tab *Table) Lookup(targetID NodeID) []*Node {
var (
+ target = crypto.Sha3Hash(targetID[:])
asked = make(map[NodeID]bool)
seen = make(map[NodeID]bool)
reply = make(chan []*Node, alpha)
pendingQueries = 0
)
- // don't query further if we hit the target or ourself.
+ // don't query further if we hit ourself.
// unlikely to happen often in practice.
- asked[target] = true
asked[tab.self.ID] = true
tab.mutex.Lock()
// update last lookup stamp (for refresh logic)
- tab.buckets[logdist(tab.self.ID, target)].lastLookup = time.Now()
+ tab.buckets[logdist(tab.self.sha, target)].lastLookup = time.Now()
// generate initial result set
result := tab.closest(target, bucketSize)
tab.mutex.Unlock()
@@ -143,7 +149,7 @@ func (tab *Table) Lookup(target NodeID) []*Node {
asked[n.ID] = true
pendingQueries++
go func() {
- r, _ := tab.net.findnode(n.ID, n.addr(), target)
+ r, _ := tab.net.findnode(n.ID, n.addr(), targetID)
reply <- tab.bondall(r)
}()
}
@@ -166,17 +172,16 @@ func (tab *Table) Lookup(target NodeID) []*Node {
// refresh performs a lookup for a random target to keep buckets full.
func (tab *Table) refresh() {
- ld := -1 // logdist of chosen bucket
- tab.mutex.Lock()
- for i, b := range tab.buckets {
- if i > 0 && b.lastLookup.Before(time.Now().Add(-1*time.Hour)) {
- ld = i
- break
- }
- }
- tab.mutex.Unlock()
-
- result := tab.Lookup(randomID(tab.self.ID, ld))
+ // The Kademlia paper specifies that the bucket refresh should
+ // perform a refresh in the least recently used bucket. We cannot
+ // adhere to this because the findnode target is a 512bit value
+ // (not hash-sized) and it is not easily possible to generate a
+ // sha3 preimage that falls into a chosen bucket.
+ //
+ // We perform a lookup with a random target instead.
+ var target NodeID
+ rand.Read(target[:])
+ result := tab.Lookup(target)
if len(result) == 0 {
// Pick a batch of previously know seeds to lookup with
seeds := tab.db.querySeeds(10)
@@ -196,7 +201,7 @@ func (tab *Table) refresh() {
// closest returns the n nodes in the table that are closest to the
// given id. The caller must hold tab.mutex.
-func (tab *Table) closest(target NodeID, nresults int) *nodesByDistance {
+func (tab *Table) closest(target common.Hash, nresults int) *nodesByDistance {
// This is a very wasteful way to find the closest nodes but
// obviously correct. I believe that tree-based buckets would make
// this easier to implement efficiently.
@@ -278,7 +283,8 @@ func (tab *Table) bond(pinged bool, id NodeID, addr *net.UDPAddr, tcpPort uint16
}
tab.mutex.Lock()
defer tab.mutex.Unlock()
- if b := tab.buckets[logdist(tab.self.ID, n.ID)]; !b.bump(n) {
+ b := tab.buckets[logdist(tab.self.sha, n.sha)]
+ if !b.bump(n) {
tab.pingreplace(n, b)
}
return n, nil
@@ -346,7 +352,7 @@ outer:
// don't add self.
continue
}
- bucket := tab.buckets[logdist(tab.self.ID, n.ID)]
+ bucket := tab.buckets[logdist(tab.self.sha, n.sha)]
for i := range bucket.entries {
if bucket.entries[i].ID == n.ID {
// already in bucket
@@ -375,13 +381,13 @@ func (b *bucket) bump(n *Node) bool {
// distance to target.
type nodesByDistance struct {
entries []*Node
- target NodeID
+ target common.Hash
}
// push adds the given node to the list, keeping the total size below maxElems.
func (h *nodesByDistance) push(n *Node, maxElems int) {
ix := sort.Search(len(h.entries), func(i int) bool {
- return distcmp(h.target, h.entries[i].ID, n.ID) > 0
+ return distcmp(h.target, h.entries[i].sha, n.sha) > 0
})
if len(h.entries) < maxElems {
h.entries = append(h.entries, n)