diff options
author | Gustav Simonsson <gustav.simonsson@gmail.com> | 2015-09-30 01:37:44 +0800 |
---|---|---|
committer | Gustav Simonsson <gustav.simonsson@gmail.com> | 2015-11-30 20:43:32 +0800 |
commit | c8ad64f33cd04fc10ac6681260ea06e464908c91 (patch) | |
tree | bd48055c50b57e2b17ca0bde4e9e5ae9ba7ca5ce /crypto/curve.go | |
parent | 27a50c8f4bc69f98e20db361859bfbb6cf371c00 (diff) | |
download | dexon-c8ad64f33cd04fc10ac6681260ea06e464908c91.tar dexon-c8ad64f33cd04fc10ac6681260ea06e464908c91.tar.gz dexon-c8ad64f33cd04fc10ac6681260ea06e464908c91.tar.bz2 dexon-c8ad64f33cd04fc10ac6681260ea06e464908c91.tar.lz dexon-c8ad64f33cd04fc10ac6681260ea06e464908c91.tar.xz dexon-c8ad64f33cd04fc10ac6681260ea06e464908c91.tar.zst dexon-c8ad64f33cd04fc10ac6681260ea06e464908c91.zip |
crypto, crypto/ecies, crypto/secp256k1: libsecp256k1 scalar mult
thanks to Felix Lange (fjl) for help with design & impl
Diffstat (limited to 'crypto/curve.go')
-rw-r--r-- | crypto/curve.go | 397 |
1 files changed, 0 insertions, 397 deletions
diff --git a/crypto/curve.go b/crypto/curve.go deleted file mode 100644 index 48f3f5e9c..000000000 --- a/crypto/curve.go +++ /dev/null @@ -1,397 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Copyright 2011 ThePiachu. All rights reserved. -// -// Redistribution and use in source and binary forms, with or without -// modification, are permitted provided that the following conditions are -// met: -// -// * Redistributions of source code must retain the above copyright -// notice, this list of conditions and the following disclaimer. -// * Redistributions in binary form must reproduce the above -// copyright notice, this list of conditions and the following disclaimer -// in the documentation and/or other materials provided with the -// distribution. -// * Neither the name of Google Inc. nor the names of its -// contributors may be used to endorse or promote products derived from -// this software without specific prior written permission. -// * The name of ThePiachu may not be used to endorse or promote products -// derived from this software without specific prior written permission. -// -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS -// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT -// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR -// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT -// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, -// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT -// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, -// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY -// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT -// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE -// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - -package crypto - -import ( - "crypto/elliptic" - "io" - "math/big" - "sync" -) - -// This code is from https://github.com/ThePiachu/GoBit and implements -// several Koblitz elliptic curves over prime fields. -// -// The curve methods, internally, on Jacobian coordinates. For a given -// (x, y) position on the curve, the Jacobian coordinates are (x1, y1, -// z1) where x = x1/z1² and y = y1/z1³. The greatest speedups come -// when the whole calculation can be performed within the transform -// (as in ScalarMult and ScalarBaseMult). But even for Add and Double, -// it's faster to apply and reverse the transform than to operate in -// affine coordinates. - -// A BitCurve represents a Koblitz Curve with a=0. -// See http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html -type BitCurve struct { - P *big.Int // the order of the underlying field - N *big.Int // the order of the base point - B *big.Int // the constant of the BitCurve equation - Gx, Gy *big.Int // (x,y) of the base point - BitSize int // the size of the underlying field -} - -func (BitCurve *BitCurve) Params() *elliptic.CurveParams { - return &elliptic.CurveParams{ - P: BitCurve.P, - N: BitCurve.N, - B: BitCurve.B, - Gx: BitCurve.Gx, - Gy: BitCurve.Gy, - BitSize: BitCurve.BitSize, - } -} - -// IsOnBitCurve returns true if the given (x,y) lies on the BitCurve. -func (BitCurve *BitCurve) IsOnCurve(x, y *big.Int) bool { - // y² = x³ + b - y2 := new(big.Int).Mul(y, y) //y² - y2.Mod(y2, BitCurve.P) //y²%P - - x3 := new(big.Int).Mul(x, x) //x² - x3.Mul(x3, x) //x³ - - x3.Add(x3, BitCurve.B) //x³+B - x3.Mod(x3, BitCurve.P) //(x³+B)%P - - return x3.Cmp(y2) == 0 -} - -//TODO: double check if the function is okay -// affineFromJacobian reverses the Jacobian transform. See the comment at the -// top of the file. -func (BitCurve *BitCurve) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) { - zinv := new(big.Int).ModInverse(z, BitCurve.P) - zinvsq := new(big.Int).Mul(zinv, zinv) - - xOut = new(big.Int).Mul(x, zinvsq) - xOut.Mod(xOut, BitCurve.P) - zinvsq.Mul(zinvsq, zinv) - yOut = new(big.Int).Mul(y, zinvsq) - yOut.Mod(yOut, BitCurve.P) - return -} - -// Add returns the sum of (x1,y1) and (x2,y2) -func (BitCurve *BitCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) { - z := new(big.Int).SetInt64(1) - return BitCurve.affineFromJacobian(BitCurve.addJacobian(x1, y1, z, x2, y2, z)) -} - -// addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and -// (x2, y2, z2) and returns their sum, also in Jacobian form. -func (BitCurve *BitCurve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) { - // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl - z1z1 := new(big.Int).Mul(z1, z1) - z1z1.Mod(z1z1, BitCurve.P) - z2z2 := new(big.Int).Mul(z2, z2) - z2z2.Mod(z2z2, BitCurve.P) - - u1 := new(big.Int).Mul(x1, z2z2) - u1.Mod(u1, BitCurve.P) - u2 := new(big.Int).Mul(x2, z1z1) - u2.Mod(u2, BitCurve.P) - h := new(big.Int).Sub(u2, u1) - if h.Sign() == -1 { - h.Add(h, BitCurve.P) - } - i := new(big.Int).Lsh(h, 1) - i.Mul(i, i) - j := new(big.Int).Mul(h, i) - - s1 := new(big.Int).Mul(y1, z2) - s1.Mul(s1, z2z2) - s1.Mod(s1, BitCurve.P) - s2 := new(big.Int).Mul(y2, z1) - s2.Mul(s2, z1z1) - s2.Mod(s2, BitCurve.P) - r := new(big.Int).Sub(s2, s1) - if r.Sign() == -1 { - r.Add(r, BitCurve.P) - } - r.Lsh(r, 1) - v := new(big.Int).Mul(u1, i) - - x3 := new(big.Int).Set(r) - x3.Mul(x3, x3) - x3.Sub(x3, j) - x3.Sub(x3, v) - x3.Sub(x3, v) - x3.Mod(x3, BitCurve.P) - - y3 := new(big.Int).Set(r) - v.Sub(v, x3) - y3.Mul(y3, v) - s1.Mul(s1, j) - s1.Lsh(s1, 1) - y3.Sub(y3, s1) - y3.Mod(y3, BitCurve.P) - - z3 := new(big.Int).Add(z1, z2) - z3.Mul(z3, z3) - z3.Sub(z3, z1z1) - if z3.Sign() == -1 { - z3.Add(z3, BitCurve.P) - } - z3.Sub(z3, z2z2) - if z3.Sign() == -1 { - z3.Add(z3, BitCurve.P) - } - z3.Mul(z3, h) - z3.Mod(z3, BitCurve.P) - - return x3, y3, z3 -} - -// Double returns 2*(x,y) -func (BitCurve *BitCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) { - z1 := new(big.Int).SetInt64(1) - return BitCurve.affineFromJacobian(BitCurve.doubleJacobian(x1, y1, z1)) -} - -// doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and -// returns its double, also in Jacobian form. -func (BitCurve *BitCurve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) { - // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l - - a := new(big.Int).Mul(x, x) //X1² - b := new(big.Int).Mul(y, y) //Y1² - c := new(big.Int).Mul(b, b) //B² - - d := new(big.Int).Add(x, b) //X1+B - d.Mul(d, d) //(X1+B)² - d.Sub(d, a) //(X1+B)²-A - d.Sub(d, c) //(X1+B)²-A-C - d.Mul(d, big.NewInt(2)) //2*((X1+B)²-A-C) - - e := new(big.Int).Mul(big.NewInt(3), a) //3*A - f := new(big.Int).Mul(e, e) //E² - - x3 := new(big.Int).Mul(big.NewInt(2), d) //2*D - x3.Sub(f, x3) //F-2*D - x3.Mod(x3, BitCurve.P) - - y3 := new(big.Int).Sub(d, x3) //D-X3 - y3.Mul(e, y3) //E*(D-X3) - y3.Sub(y3, new(big.Int).Mul(big.NewInt(8), c)) //E*(D-X3)-8*C - y3.Mod(y3, BitCurve.P) - - z3 := new(big.Int).Mul(y, z) //Y1*Z1 - z3.Mul(big.NewInt(2), z3) //3*Y1*Z1 - z3.Mod(z3, BitCurve.P) - - return x3, y3, z3 -} - -//TODO: double check if it is okay -// ScalarMult returns k*(Bx,By) where k is a number in big-endian form. -func (BitCurve *BitCurve) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) { - // We have a slight problem in that the identity of the group (the - // point at infinity) cannot be represented in (x, y) form on a finite - // machine. Thus the standard add/double algorithm has to be tweaked - // slightly: our initial state is not the identity, but x, and we - // ignore the first true bit in |k|. If we don't find any true bits in - // |k|, then we return nil, nil, because we cannot return the identity - // element. - - Bz := new(big.Int).SetInt64(1) - x := Bx - y := By - z := Bz - - seenFirstTrue := false - for _, byte := range k { - for bitNum := 0; bitNum < 8; bitNum++ { - if seenFirstTrue { - x, y, z = BitCurve.doubleJacobian(x, y, z) - } - if byte&0x80 == 0x80 { - if !seenFirstTrue { - seenFirstTrue = true - } else { - x, y, z = BitCurve.addJacobian(Bx, By, Bz, x, y, z) - } - } - byte <<= 1 - } - } - - if !seenFirstTrue { - return nil, nil - } - - return BitCurve.affineFromJacobian(x, y, z) -} - -// ScalarBaseMult returns k*G, where G is the base point of the group and k is -// an integer in big-endian form. -func (BitCurve *BitCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) { - return BitCurve.ScalarMult(BitCurve.Gx, BitCurve.Gy, k) -} - -var mask = []byte{0xff, 0x1, 0x3, 0x7, 0xf, 0x1f, 0x3f, 0x7f} - -//TODO: double check if it is okay -// GenerateKey returns a public/private key pair. The private key is generated -// using the given reader, which must return random data. -func (BitCurve *BitCurve) GenerateKey(rand io.Reader) (priv []byte, x, y *big.Int, err error) { - byteLen := (BitCurve.BitSize + 7) >> 3 - priv = make([]byte, byteLen) - - for x == nil { - _, err = io.ReadFull(rand, priv) - if err != nil { - return - } - // We have to mask off any excess bits in the case that the size of the - // underlying field is not a whole number of bytes. - priv[0] &= mask[BitCurve.BitSize%8] - // This is because, in tests, rand will return all zeros and we don't - // want to get the point at infinity and loop forever. - priv[1] ^= 0x42 - x, y = BitCurve.ScalarBaseMult(priv) - } - return -} - -// Marshal converts a point into the form specified in section 4.3.6 of ANSI -// X9.62. -func (BitCurve *BitCurve) Marshal(x, y *big.Int) []byte { - byteLen := (BitCurve.BitSize + 7) >> 3 - - ret := make([]byte, 1+2*byteLen) - ret[0] = 4 // uncompressed point - - xBytes := x.Bytes() - copy(ret[1+byteLen-len(xBytes):], xBytes) - yBytes := y.Bytes() - copy(ret[1+2*byteLen-len(yBytes):], yBytes) - return ret -} - -// Unmarshal converts a point, serialised by Marshal, into an x, y pair. On -// error, x = nil. -func (BitCurve *BitCurve) Unmarshal(data []byte) (x, y *big.Int) { - byteLen := (BitCurve.BitSize + 7) >> 3 - if len(data) != 1+2*byteLen { - return - } - if data[0] != 4 { // uncompressed form - return - } - x = new(big.Int).SetBytes(data[1 : 1+byteLen]) - y = new(big.Int).SetBytes(data[1+byteLen:]) - return -} - -//curve parameters taken from: -//http://www.secg.org/collateral/sec2_final.pdf - -var initonce sync.Once -var ecp160k1 *BitCurve -var ecp192k1 *BitCurve -var ecp224k1 *BitCurve -var ecp256k1 *BitCurve - -func initAll() { - initS160() - initS192() - initS224() - initS256() -} - -func initS160() { - // See SEC 2 section 2.4.1 - ecp160k1 = new(BitCurve) - ecp160k1.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFAC73", 16) - ecp160k1.N, _ = new(big.Int).SetString("0100000000000000000001B8FA16DFAB9ACA16B6B3", 16) - ecp160k1.B, _ = new(big.Int).SetString("0000000000000000000000000000000000000007", 16) - ecp160k1.Gx, _ = new(big.Int).SetString("3B4C382CE37AA192A4019E763036F4F5DD4D7EBB", 16) - ecp160k1.Gy, _ = new(big.Int).SetString("938CF935318FDCED6BC28286531733C3F03C4FEE", 16) - ecp160k1.BitSize = 160 -} - -func initS192() { - // See SEC 2 section 2.5.1 - ecp192k1 = new(BitCurve) - ecp192k1.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFEE37", 16) - ecp192k1.N, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8D", 16) - ecp192k1.B, _ = new(big.Int).SetString("000000000000000000000000000000000000000000000003", 16) - ecp192k1.Gx, _ = new(big.Int).SetString("DB4FF10EC057E9AE26B07D0280B7F4341DA5D1B1EAE06C7D", 16) - ecp192k1.Gy, _ = new(big.Int).SetString("9B2F2F6D9C5628A7844163D015BE86344082AA88D95E2F9D", 16) - ecp192k1.BitSize = 192 -} - -func initS224() { - // See SEC 2 section 2.6.1 - ecp224k1 = new(BitCurve) - ecp224k1.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFE56D", 16) - ecp224k1.N, _ = new(big.Int).SetString("010000000000000000000000000001DCE8D2EC6184CAF0A971769FB1F7", 16) - ecp224k1.B, _ = new(big.Int).SetString("00000000000000000000000000000000000000000000000000000005", 16) - ecp224k1.Gx, _ = new(big.Int).SetString("A1455B334DF099DF30FC28A169A467E9E47075A90F7E650EB6B7A45C", 16) - ecp224k1.Gy, _ = new(big.Int).SetString("7E089FED7FBA344282CAFBD6F7E319F7C0B0BD59E2CA4BDB556D61A5", 16) - ecp224k1.BitSize = 224 -} - -func initS256() { - // See SEC 2 section 2.7.1 - ecp256k1 = new(BitCurve) - ecp256k1.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", 16) - ecp256k1.N, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", 16) - ecp256k1.B, _ = new(big.Int).SetString("0000000000000000000000000000000000000000000000000000000000000007", 16) - ecp256k1.Gx, _ = new(big.Int).SetString("79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798", 16) - ecp256k1.Gy, _ = new(big.Int).SetString("483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8", 16) - ecp256k1.BitSize = 256 -} - -// S160 returns a BitCurve which implements secp160k1 (see SEC 2 section 2.4.1) -func S160() *BitCurve { - initonce.Do(initAll) - return ecp160k1 -} - -// S192 returns a BitCurve which implements secp192k1 (see SEC 2 section 2.5.1) -func S192() *BitCurve { - initonce.Do(initAll) - return ecp192k1 -} - -// S224 returns a BitCurve which implements secp224k1 (see SEC 2 section 2.6.1) -func S224() *BitCurve { - initonce.Do(initAll) - return ecp224k1 -} - -// S256 returns a BitCurve which implements secp256k1 (see SEC 2 section 2.7.1) -func S256() *BitCurve { - initonce.Do(initAll) - return ecp256k1 -} |