aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorzelig <viktor.tron@gmail.com>2015-01-20 07:42:13 +0800
committerFelix Lange <fjl@twurst.com>2015-02-06 07:00:35 +0800
commite252c634cb40c8ef7f9bcd542f5418a937929620 (patch)
treeacc946f71f724eed5f8244d302c74fce7f5bd0b8
parent1803c65e4097b9d6cb83f72a8a09aeddcc01f685 (diff)
downloaddexon-e252c634cb40c8ef7f9bcd542f5418a937929620.tar
dexon-e252c634cb40c8ef7f9bcd542f5418a937929620.tar.gz
dexon-e252c634cb40c8ef7f9bcd542f5418a937929620.tar.bz2
dexon-e252c634cb40c8ef7f9bcd542f5418a937929620.tar.lz
dexon-e252c634cb40c8ef7f9bcd542f5418a937929620.tar.xz
dexon-e252c634cb40c8ef7f9bcd542f5418a937929620.tar.zst
dexon-e252c634cb40c8ef7f9bcd542f5418a937929620.zip
first stab at integrating crypto in our p2p
- abstract the entire handshake logic in cryptoId.Run() taking session-relevant parameters - changes in peer to accomodate how the encryption layer would be switched on - modify arguments of handshake components - fixed test getting the wrong pubkey but it till crashes on DH in newSession()
-rw-r--r--p2p/crypto.go53
-rw-r--r--p2p/crypto_test.go39
-rw-r--r--p2p/peer.go31
3 files changed, 79 insertions, 44 deletions
diff --git a/p2p/crypto.go b/p2p/crypto.go
index 728b8e884..b6d600826 100644
--- a/p2p/crypto.go
+++ b/p2p/crypto.go
@@ -4,6 +4,7 @@ import (
"crypto/ecdsa"
"crypto/rand"
"fmt"
+ "io"
"github.com/ethereum/go-ethereum/crypto"
"github.com/obscuren/ecies"
@@ -53,19 +54,35 @@ func newCryptoId(id ClientIdentity) (self *cryptoId, err error) {
return
}
-func (self *cryptoId) Run(remotePubKeyDER []byte) (rw *secretRW) {
- if self.initiator {
- auth, initNonce, randomPrvKey, randomPubKey, err := initiator.initAuth(remotePubKeyDER, sessionToken)
-
- respNonce, remoteRandomPubKey, _, _ := initiator.verifyAuthResp(response)
+func (self *cryptoId) Run(conn io.ReadWriter, remotePubKeyDER []byte, sessionToken []byte, initiator bool) (token []byte, rw *secretRW, err error) {
+ var auth, initNonce, recNonce []byte
+ var randomPrivKey *ecdsa.PrivateKey
+ var remoteRandomPubKey *ecdsa.PublicKey
+ if initiator {
+ if auth, initNonce, randomPrivKey, _, err = self.startHandshake(remotePubKeyDER, sessionToken); err != nil {
+ return
+ }
+ conn.Write(auth)
+ var response []byte
+ conn.Read(response)
+ // write out auth message
+ // wait for response, then call complete
+ if recNonce, remoteRandomPubKey, _, err = self.completeHandshake(response); err != nil {
+ return
+ }
} else {
- // we are listening connection. we are responders in the haandshake.
+ conn.Read(auth)
+ // we are listening connection. we are responders in the handshake.
// Extract info from the authentication. The initiator starts by sending us a handshake that we need to respond to.
- response, remoteRespNonce, remoteInitNonce, remoteRandomPrivKey, _ := responder.verifyAuth(auth, sessionToken, pubInit)
-
+ // so we read auth message first, then respond
+ var response []byte
+ if response, recNonce, initNonce, randomPrivKey, err = self.respondToHandshake(auth, remotePubKeyDER, sessionToken); err != nil {
+ return
+ }
+ remoteRandomPubKey = &randomPrivKey.PublicKey
+ conn.Write(response)
}
- initSessionToken, initSecretRW, _ := initiator.newSession(initNonce, respNonce, auth, randomPrvKey, remoteRandomPubKey)
- respSessionToken, respSecretRW, _ := responder.newSession(remoteInitNonce, remoteRespNonce, auth, remoteRandomPrivKey, randomPubKey)
+ return self.newSession(initNonce, recNonce, auth, randomPrivKey, remoteRandomPubKey)
}
/* startHandshake is called by peer if it initiated the connection.
@@ -83,9 +100,9 @@ The handshake is the process by which the peers establish their connection for a
*/
-func (self *cryptoId) startHandshake(remotePubKeyDER, sessionToken []byte) (auth []byte, initNonce []byte, randomPrvKey *ecdsa.PrivateKey, randomPubKey *ecdsa.PublicKey, err error) {
+func (self *cryptoId) startHandshake(remotePubKeyDER, sessionToken []byte) (auth []byte, initNonce []byte, randomPrvKey *ecdsa.PrivateKey, remotePubKey *ecdsa.PublicKey, err error) {
// session init, common to both parties
- remotePubKey := crypto.ToECDSAPub(remotePubKeyDER)
+ remotePubKey = crypto.ToECDSAPub(remotePubKeyDER)
if remotePubKey == nil {
err = fmt.Errorf("invalid remote public key")
return
@@ -160,8 +177,14 @@ func (self *cryptoId) startHandshake(remotePubKeyDER, sessionToken []byte) (auth
}
// verifyAuth is called by peer if it accepted (but not initiated) the connection
-func (self *cryptoId) respondToHandshake(auth, sessionToken []byte, remotePubKey *ecdsa.PublicKey) (authResp []byte, respNonce []byte, initNonce []byte, randomPrvKey *ecdsa.PrivateKey, err error) {
+func (self *cryptoId) respondToHandshake(auth, remotePubKeyDER, sessionToken []byte) (authResp []byte, respNonce []byte, initNonce []byte, randomPrivKey *ecdsa.PrivateKey, err error) {
var msg []byte
+ remotePubKey := crypto.ToECDSAPub(remotePubKeyDER)
+ if remotePubKey == nil {
+ err = fmt.Errorf("invalid public key")
+ return
+ }
+
fmt.Printf("encrypted message received: %v %x\n used pubkey: %x\n", len(auth), auth, crypto.FromECDSAPub(self.pubKey))
// they prove that msg is meant for me,
// I prove I possess private key if i can read it
@@ -210,12 +233,12 @@ func (self *cryptoId) respondToHandshake(auth, sessionToken []byte, remotePubKey
return
}
// generate random keypair for session
- if randomPrvKey, err = crypto.GenerateKey(); err != nil {
+ if randomPrivKey, err = crypto.GenerateKey(); err != nil {
return
}
// responder auth message
// E(remote-pubk, ecdhe-random-pubk || nonce || 0x0)
- copy(resp[:keyLen], crypto.FromECDSAPub(&randomPrvKey.PublicKey))
+ copy(resp[:keyLen], crypto.FromECDSAPub(&randomPrivKey.PublicKey))
// nonce is already in the slice
resp[resLen-1] = tokenFlag
diff --git a/p2p/crypto_test.go b/p2p/crypto_test.go
index cfb2d19d1..fb7df6b50 100644
--- a/p2p/crypto_test.go
+++ b/p2p/crypto_test.go
@@ -11,44 +11,43 @@ import (
func TestCryptoHandshake(t *testing.T) {
var err error
var sessionToken []byte
- prvInit, _ := crypto.GenerateKey()
- pubInit := &prvInit.PublicKey
- prvResp, _ := crypto.GenerateKey()
- pubResp := &prvResp.PublicKey
+ prv0, _ := crypto.GenerateKey()
+ pub0 := &prv0.PublicKey
+ prv1, _ := crypto.GenerateKey()
+ pub1 := &prv1.PublicKey
- var initiator, responder *cryptoId
- if initiator, err = newCryptoId(&peerId{crypto.FromECDSA(prvInit), crypto.FromECDSAPub(pubInit)}); err != nil {
+ var initiator, receiver *cryptoId
+ if initiator, err = newCryptoId(&peerId{crypto.FromECDSA(prv0), crypto.FromECDSAPub(pub0)}); err != nil {
return
}
- if responder, err = newCryptoId(&peerId{crypto.FromECDSA(prvResp), crypto.FromECDSAPub(pubResp)}); err != nil {
+ if receiver, err = newCryptoId(&peerId{crypto.FromECDSA(prv1), crypto.FromECDSAPub(pub1)}); err != nil {
return
}
- auth, initNonce, randomPrvKey, randomPubKey, _ := initiator.initAuth(responder.pubKeyDER, sessionToken)
+ // simulate handshake by feeding output to input
+ auth, initNonce, randomPrivKey, _, _ := initiator.startHandshake(receiver.pubKeyDER, sessionToken)
+ response, remoteRecNonce, remoteInitNonce, remoteRandomPrivKey, _ := receiver.respondToHandshake(auth, crypto.FromECDSAPub(pub0), sessionToken)
+ recNonce, remoteRandomPubKey, _, _ := initiator.completeHandshake(response)
- response, remoteRespNonce, remoteInitNonce, remoteRandomPrivKey, _ := responder.verifyAuth(auth, sessionToken, pubInit)
+ initSessionToken, initSecretRW, _ := initiator.newSession(initNonce, recNonce, auth, randomPrivKey, remoteRandomPubKey)
+ recSessionToken, recSecretRW, _ := receiver.newSession(remoteInitNonce, remoteRecNonce, auth, remoteRandomPrivKey, &randomPrivKey.PublicKey)
- respNonce, remoteRandomPubKey, _, _ := initiator.verifyAuthResp(response)
+ fmt.Printf("%x\n%x\n%x\n%x\n%x\n%x\n%x\n%x\n%x\n%x\n", auth, initNonce, response, remoteRecNonce, remoteInitNonce, remoteRandomPubKey, recNonce, &randomPrivKey.PublicKey, initSessionToken, initSecretRW)
- initSessionToken, initSecretRW, _ := initiator.newSession(initNonce, respNonce, auth, randomPrvKey, remoteRandomPubKey)
- respSessionToken, respSecretRW, _ := responder.newSession(remoteInitNonce, remoteRespNonce, auth, remoteRandomPrivKey, randomPubKey)
-
- fmt.Printf("%x\n%x\n%x\n%x\n%x\n%x\n%x\n%x\n%x\n%x\n", auth, initNonce, response, remoteRespNonce, remoteInitNonce, remoteRandomPubKey, respNonce, randomPubKey, initSessionToken, initSecretRW)
-
- if !bytes.Equal(initSessionToken, respSessionToken) {
+ if !bytes.Equal(initSessionToken, recSessionToken) {
t.Errorf("session tokens do not match")
}
// aesSecret, macSecret, egressMac, ingressMac
- if !bytes.Equal(initSecretRW.aesSecret, respSecretRW.aesSecret) {
+ if !bytes.Equal(initSecretRW.aesSecret, recSecretRW.aesSecret) {
t.Errorf("AES secrets do not match")
}
- if !bytes.Equal(initSecretRW.macSecret, respSecretRW.macSecret) {
+ if !bytes.Equal(initSecretRW.macSecret, recSecretRW.macSecret) {
t.Errorf("macSecrets do not match")
}
- if !bytes.Equal(initSecretRW.egressMac, respSecretRW.egressMac) {
+ if !bytes.Equal(initSecretRW.egressMac, recSecretRW.egressMac) {
t.Errorf("egressMacs do not match")
}
- if !bytes.Equal(initSecretRW.ingressMac, respSecretRW.ingressMac) {
+ if !bytes.Equal(initSecretRW.ingressMac, recSecretRW.ingressMac) {
t.Errorf("ingressMacs do not match")
}
diff --git a/p2p/peer.go b/p2p/peer.go
index e98c3d560..e3e04ee65 100644
--- a/p2p/peer.go
+++ b/p2p/peer.go
@@ -222,9 +222,9 @@ func (p *Peer) loop() (reason DiscReason, err error) {
defer close(p.closed)
defer p.conn.Close()
- var readLoop func(chan Msg, chan error, chan bool)
+ var readLoop func(chan<- Msg, chan<- error, <-chan bool)
if p.cryptoHandshake {
- if readLoop, err := p.handleCryptoHandshake(); err != nil {
+ if readLoop, err = p.handleCryptoHandshake(); err != nil {
// from here on everything can be encrypted, authenticated
return DiscProtocolError, err // no graceful disconnect
}
@@ -332,20 +332,33 @@ func (p *Peer) dispatch(msg Msg, protoDone chan struct{}) (wait bool, err error)
return wait, nil
}
-func (p *Peer) handleCryptoHandshake() (err error) {
+type readLoop func(chan<- Msg, chan<- error, <-chan bool)
+
+func (p *Peer) handleCryptoHandshake() (loop readLoop, err error) {
// cryptoId is just created for the lifecycle of the handshake
// it is survived by an encrypted readwriter
- if p.dialAddr != 0 { // this should have its own method Outgoing() bool
+ var initiator bool
+ var sessionToken []byte
+ if p.dialAddr != nil { // this should have its own method Outgoing() bool
initiator = true
}
// create crypto layer
- cryptoId := newCryptoId(p.identity, initiator, sessionToken)
+ // this could in principle run only once but maybe we want to allow
+ // identity switching
+ var crypto *cryptoId
+ if crypto, err = newCryptoId(p.ourID); err != nil {
+ return
+ }
// run on peer
- if rw, err := cryptoId.Run(p.Pubkey()); err != nil {
- return err
+ // this bit handles the handshake and creates a secure communications channel with
+ // var rw *secretRW
+ if sessionToken, _, err = crypto.Run(p.conn, p.Pubkey(), sessionToken, initiator); err != nil {
+ return
}
- p.conn = rw.Run(p.conn)
-
+ loop = func(msg chan<- Msg, err chan<- error, next <-chan bool) {
+ // this is the readloop :)
+ }
+ return
}
func (p *Peer) startBaseProtocol() {