// Package discover implements the Node Discovery Protocol.
//
// The Node Discovery protocol provides a way to find RLPx nodes that
// can be connected to. It uses a Kademlia-like protocol to maintain a
// distributed database of the IDs and endpoints of all listening
// nodes.
package discover
import (
"crypto/rand"
"encoding/binary"
"net"
"sort"
"sync"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/logger"
"github.com/ethereum/go-ethereum/logger/glog"
)
const (
alpha = 3 // Kademlia concurrency factor
bucketSize = 16 // Kademlia bucket size
hashBits = len(common.Hash{}) * 8
nBuckets = hashBits + 1 // Number of buckets
maxBondingPingPongs = 16
maxFindnodeFailures = 5
)
type Table struct {
mutex sync.Mutex // protects buckets, their content, and nursery
buckets [nBuckets]*bucket // index of known nodes by distance
nursery []*Node // bootstrap nodes
db *nodeDB // database of known nodes
bondmu sync.Mutex
bonding map[NodeID]*bondproc
bondslots chan struct{} // limits total number of active bonding processes
net transport
self *Node // metadata of the local node
}
type bondproc struct {
err error
n *Node
done chan struct{}
}
// transport is implemented by the UDP transport.
// it is an interface so we can test without opening lots of UDP
// sockets and without generating a private key.
type transport interface {
ping(NodeID, *net.UDPAddr) error
waitping(NodeID) error
findnode(toid NodeID, addr *net.UDPAddr, target NodeID) ([]*Node, error)
close()
}
// bucket contains nodes, ordered by their last activity.
// the entry that was most recently active is the last element
// in entries.
type bucket struct {
lastLookup time.Time
entries []*Node
}
func newTable(t transport, ourID NodeID, ourAddr *net.UDPAddr, nodeDBPath string) *Table {
// If no node database was given, use an in-memory one
db, err := newNodeDB(nodeDBPath, Version, ourID)
if err != nil {
glog.V(logger.Warn).Infoln("Failed to open node database:", err)
db, _ = newNodeDB("", Version, ourID)
}
tab := &Table{
net: t,
db: db,
self: newNode(ourID, ourAddr.IP, uint16(ourAddr.Port), uint16(ourAddr.Port)),
bonding: make(map[NodeID]*bondproc),
bondslots: make(chan struct{}, maxBondingPingPongs),
}
for i := 0; i < cap(tab.bondslots); i++ {
tab.bondslots <- struct{}{}
}
for i := range tab.buckets {
tab.buckets[i] = new(bucket)
}
return tab
}
// Self returns the local node.
// The returned node should not be modified by the caller.
func (tab *Table) Self() *Node {
return tab.self
}
// ReadRandomNodes fills the given slice with random nodes from the
// table. It will not write the same node more than once. The nodes in
// the slice are copies and can be modified by the caller.
func (tab *Table) ReadRandomNodes(buf []*Node) (n int) {
tab.mutex.Lock()
defer tab.mutex.Unlock()
// TODO: tree-based buckets would help here
// Find all non-empty buckets and get a fresh slice of their entries.
var buckets [][]*Node
for _, b := range tab.buckets {
if len(b.entries) > 0 {
buckets = append(buckets, b.entries[:])
}
}
if len(buckets) == 0 {
return 0
}
// Shuffle the buckets.
for i := uint32(len(buckets)) - 1; i > 0; i-- {
j := randUint(i)
buckets[i], buckets[j] = buckets[j], buckets[i]
}
// Move head of each bucket into buf, removing buckets that become empty.
var i, j int
for ; i < len(buf); i, j = i+1, (j+1)%len(buckets) {
b := buckets[j]
buf[i] = &(*b[0])
buckets[j] = b[1:]
if len(b) == 1 {
buckets = append(buckets[:j], buckets[j+1:]...)
}
if len(buckets) == 0 {
break
}
}
return i + 1
}
func randUint(max uint32) uint32 {
if max == 0 {
return 0
}
var b [4]byte
rand.Read(b[:])
return binary.BigEndian.Uint32(b[:]) % max
}
// Close terminates the network listener and flushes the node database.
func (tab *Table) Close() {
tab.net.close()
tab.db.close()
}
// Bootstrap sets the bootstrap nodes. These nodes are used to connect
// to the network if the table is empty. Bootstrap will also attempt to
// fill the table by performing random lookup operations on the
// network.
func (tab *Table) Bootstrap(nodes []*Node) {
tab.mutex.Lock()
// TODO: maybe filter nodes with bad fields (nil, etc.) to avoid strange crashes
tab.nursery = make([]*Node, 0, len(nodes))
for _, n := range nodes {
cpy := *n
cpy.sha = crypto.Sha3Hash(n.ID[:])
tab.nursery = append(tab.nursery, &cpy)
}
tab.mutex.Unlock()
tab.refresh()
}
// Lookup performs a network search for nodes close
// to the given target. It approaches the target by querying
// nodes that are closer to it on each iteration.
// The given target does not need to be an actual node
// identifier.
func (tab *Table) Lookup(targetID NodeID) []*Node {
var (
target = crypto.Sha3Hash(targetID[:])
asked = make(map[NodeID]bool)
seen = make(map[NodeID]bool)
reply = make(chan []*Node, alpha)
pendingQueries = 0
)
// don't query further if we hit ourself.
// unlikely to happen often in practice.
asked[tab.self.ID] = true
tab.mutex.Lock()
// update last lookup stamp (for refresh logic)
tab.buckets[logdist(tab.self.sha, target)].lastLookup = time.Now()
// generate initial result set
result := tab.closest(target, bucketSize)
tab.mutex.Unlock()
// If the result set is empty, all nodes were dropped, refresh
if len(result.entries) == 0 {
tab.refresh()
return nil
}
for {
// ask the alpha closest nodes that we haven't asked yet
for i := 0; i < len(result.entries) && pendingQueries < alpha; i++ {
n := result.entries[i]
if !asked[n.ID] {
asked[n.ID] = true
pendingQueries++
go func() {
// Find potential neighbors to bond with
r, err := tab.net.findnode(n.ID, n.addr(), targetID)
if err != nil {
// Bump the failure counter to detect and evacuate non-bonded entries
fails := tab.db.findFails(n.ID) + 1
tab.db.updateFindFails(n.ID, fails)
glog.V(logger.Detail).Infof("Bumping failures for %x: %d", n.ID[:8], fails)
if fails >= maxFindnodeFailures {
glog.V(logger.Detail).Infof("Evacuating node %x: %d findnode failures", n.ID[:8], fails)
tab.del(n)
}
}
reply <- tab.bondall(r)
}()
}
}
if pendingQueries == 0 {
// we have asked all closest nodes, stop the search
break
}
// wait for the next reply
for _, n := range <-reply {
if n != nil && !seen[n.ID] {
seen[n.ID] = true
result.push(n, bucketSize)
}
}
pendingQueries--
}
return result.entries
}
// refresh performs a lookup for a random target to keep buckets full, or seeds
// the table if it is empty (initial bootstrap or discarded faulty peers).
func (tab *Table) refresh() {
seed := true
// If the discovery table is empty, seed with previously known nodes
tab.mutex.Lock()
for _, bucket := range tab.buckets {
if len(bucket.entries) > 0 {
seed = false
break
}
}
tab.mutex.Unlock()
// If the table is not empty, try to refresh using the live entries
if !seed {
// The Kademlia paper specifies that the bucket refresh should
// perform a refresh in the least recently used bucket. We cannot
// adhere to this because the findnode target is a 512bit value
// (not hash-sized) and it is not easily possible to generate a
// sha3 preimage that falls into a chosen bucket.
//
// We perform a lookup with a random target instead.
var target NodeID
rand.Read(target[:])
result := tab.Lookup(target)
if len(result) == 0 {
// Lookup failed, seed after all
seed = true
}
}
if seed {
// Pick a batch of previously know seeds to lookup with
seeds := tab.db.querySeeds(10)
for _, seed := range seeds {
glog.V(logger.Debug).Infoln("Seeding network with", seed)
}
nodes := append(tab.nursery, seeds...)
// Bond with all the seed nodes (will pingpong only if failed recently)
bonded := tab.bondall(nodes)
if len(bonded) > 0 {
tab.Lookup(tab.self.ID)
}
// TODO: the Kademlia paper says that we're supposed to perform
// random lookups in all buckets further away than our closest neighbor.
}
}
// closest returns the n nodes in the table that are closest to the
// given id. The caller must hold tab.mutex.
func (tab *Table) closest(target common.Hash, nresults int) *nodesByDistance {
// This is a very wasteful way to find the closest nodes but
// obviously correct. I believe that tree-based buckets would make
// this easier to implement efficiently.
close := &nodesByDistance{target: target}
for _, b := range tab.buckets {
for _, n := range b.entries {
close.push(n, nresults)
}
}
return close
}
func (tab *Table) len() (n int) {
for _, b := range tab.buckets {
n += len(b.entries)
}
return n
}
// bondall bonds with all given nodes concurrently and returns
// those nodes for which bonding has probably succeeded.
func (tab *Table) bondall(nodes []*Node) (result []*Node) {
rc := make(chan *Node, len(nodes))
for i := range nodes {
go func(n *Node) {
nn, _ := tab.bond(false, n.ID, n.addr(), uint16(n.TCP))
rc <- nn
}(nodes[i])
}
for _ = range nodes {
if n := <-rc; n != nil {
result = append(result, n)
}
}
return result
}
// bond ensures the local node has a bond with the given remote node.
// It also attempts to insert the node into the table if bonding succeeds.
// The caller must not hold tab.mutex.
//
// A bond is must be established before sending findnode requests.
// Both sides must have completed a ping/pong exchange for a bond to
// exist. The total number of active bonding processes is limited in
// order to restrain network use.
//
// bond is meant to operate idempotently in that bonding with a remote
// node which still remembers a previously established bond will work.
// The remote node will simply not send a ping back, causing waitping
// to time out.
//
// If pinged is true, the remote node has just pinged us and one half
// of the process can be skipped.
func (tab *Table) bond(pinged bool, id NodeID, addr *net.UDPAddr, tcpPort uint16) (*Node, error) {
// Retrieve a previously known node and any recent findnode failures
node, fails := tab.db.node(id), 0
if node != nil {
fails = tab.db.findFails(id)
}
// If the node is unknown (non-bonded) or failed (remotely unknown), bond from scratch
var result error
if node == nil || fails > 0 {
glog.V(logger.Detail).Infof("Bonding %x: known=%v, fails=%v", id[:8], node != nil, fails)
tab.bondmu.Lock()
w := tab.bonding[id]
if w != nil {
// Wait for an existing bonding process to complete.
tab.bondmu.Unlock()
<-w.done
} else {
// Register a new bonding process.
w = &bondproc{done: make(chan struct{})}
tab.bonding[id] = w
tab.bondmu.Unlock()
// Do the ping/pong. The result goes into w.
tab.pingpong(w, pinged, id, addr, tcpPort)
// Unregister the process after it's done.
tab.bondmu.Lock()
delete(tab.bonding, id)
tab.bondmu.Unlock()
}
// Retrieve the bonding results
result = w.err
if result == nil {
node = w.n
}
}
// Even if bonding temporarily failed, give the node a chance
if node != nil {
tab.mutex.Lock()
defer tab.mutex.Unlock()
b := tab.buckets[logdist(tab.self.sha, node.sha)]
if !b.bump(node) {
tab.pingreplace(node, b)
}
tab.db.updateFindFails(id, 0)
}
return node, result
}
func (tab *Table) pingpong(w *bondproc, pinged bool, id NodeID, addr *net.UDPAddr, tcpPort uint16) {
// Request a bonding slot to limit network usage
<-tab.bondslots
defer func() { tab.bondslots <- struct{}{} }()
// Ping the remote side and wait for a pong
if w.err = tab.ping(id, addr); w.err != nil {
close(w.done)
return
}
if !pinged {
// Give the remote node a chance to ping us before we start
// sending findnode requests. If they still remember us,
// waitping will simply time out.
tab.net.waitping(id)
}
// Bonding succeeded, update the node database
w.n = newNode(id, addr.IP, uint16(addr.Port), tcpPort)
tab.db.updateNode(w.n)
close(w.done)
}
func (tab *Table) pingreplace(new *Node, b *bucket) {
if len(b.entries) == bucketSize {
oldest := b.entries[bucketSize-1]
if err := tab.ping(oldest.ID, oldest.addr()); err == nil {
// The node responded, we don't need to replace it.
return
}
} else {
// Add a slot at the end so the last entry doesn't
// fall off when adding the new node.
b.entries = append(b.entries, nil)
}
copy(b.entries[1:], b.entries)
b.entries[0] = new
}
// ping a remote endpoint and wait for a reply, also updating the node database
// accordingly.
func (tab *Table) ping(id NodeID, addr *net.UDPAddr) error {
// Update the last ping and send the message
tab.db.updateLastPing(id, time.Now())
if err := tab.net.ping(id, addr); err != nil {
return err
}
// Pong received, update the database and return
tab.db.updateLastPong(id, time.Now())
tab.db.ensureExpirer()
return nil
}
// add puts the entries into the table if their corresponding
// bucket is not full. The caller must hold tab.mutex.
func (tab *Table) add(entries []*Node) {
outer:
for _, n := range entries {
if n.ID == tab.self.ID {
// don't add self.
continue
}
bucket := tab.buckets[logdist(tab.self.sha, n.sha)]
for i := range bucket.entries {
if bucket.entries[i].ID == n.ID {
// already in bucket
continue outer
}
}
if len(bucket.entries) < bucketSize {
bucket.entries = append(bucket.entries, n)
}
}
}
// del removes an entry from the node table (used to evacuate failed/non-bonded
// discovery peers).
func (tab *Table) del(node *Node) {
tab.mutex.Lock()
defer tab.mutex.Unlock()
bucket := tab.buckets[logdist(tab.self.sha, node.sha)]
for i := range bucket.entries {
if bucket.entries[i].ID == node.ID {
bucket.entries = append(bucket.entries[:i], bucket.entries[i+1:]...)
return
}
}
}
func (b *bucket) bump(n *Node) bool {
for i := range b.entries {
if b.entries[i].ID == n.ID {
// move it to the front
copy(b.entries[1:], b.entries[:i])
b.entries[0] = n
return true
}
}
return false
}
// nodesByDistance is a list of nodes, ordered by
// distance to target.
type nodesByDistance struct {
entries []*Node
target common.Hash
}
// push adds the given node to the list, keeping the total size below maxElems.
func (h *nodesByDistance) push(n *Node, maxElems int) {
ix := sort.Search(len(h.entries), func(i int) bool {
return distcmp(h.target, h.entries[i].sha, n.sha) > 0
})
if len(h.entries) < maxElems {
h.entries = append(h.entries, n)
}
if ix == len(h.entries) {
// farther away than all nodes we already have.
// if there was room for it, the node is now the last element.
} else {
// slide existing entries down to make room
// this will overwrite the entry we just appended.
copy(h.entries[ix+1:], h.entries[ix:])
h.entries[ix] = n
}
}