package ethutil
import (
"bytes"
"fmt"
"math/big"
"reflect"
"strconv"
)
// Data values are returned by the rlp decoder. The data values represents
// one item within the rlp data structure. It's responsible for all the casting
// It always returns something valid
type Value struct {
Val interface{}
kind reflect.Value
}
func (val *Value) String() string {
return fmt.Sprintf("%x", val.Val)
}
func NewValue(val interface{}) *Value {
t := val
if v, ok := val.(*Value); ok {
t = v.Val
}
return &Value{Val: t}
}
func (val *Value) Type() reflect.Kind {
return reflect.TypeOf(val.Val).Kind()
}
func (val *Value) IsNil() bool {
return val.Val == nil
}
func (val *Value) Len() int {
//return val.kind.Len()
if data, ok := val.Val.([]interface{}); ok {
return len(data)
}
return len(val.Bytes())
}
func (val *Value) Raw() interface{} {
return val.Val
}
func (val *Value) Interface() interface{} {
return val.Val
}
func (val *Value) Uint() uint64 {
if Val, ok := val.Val.(uint8); ok {
return uint64(Val)
} else if Val, ok := val.Val.(uint16); ok {
return uint64(Val)
} else if Val, ok := val.Val.(uint32); ok {
return uint64(Val)
} else if Val, ok := val.Val.(uint64); ok {
return Val
} else if Val, ok := val.Val.(float32); ok {
return uint64(Val)
} else if Val, ok := val.Val.(float64); ok {
return uint64(Val)
} else if Val, ok := val.Val.(int); ok {
return uint64(Val)
} else if Val, ok := val.Val.(uint); ok {
return uint64(Val)
} else if Val, ok := val.Val.([]byte); ok {
return new(big.Int).SetBytes(Val).Uint64()
} else if Val, ok := val.Val.(*big.Int); ok {
return Val.Uint64()
}
return 0
}
func (val *Value) Int() int64 {
if Val, ok := val.Val.(int8); ok {
return int64(Val)
} else if Val, ok := val.Val.(int16); ok {
return int64(Val)
} else if Val, ok := val.Val.(int32); ok {
return int64(Val)
} else if Val, ok := val.Val.(int64); ok {
return Val
} else if Val, ok := val.Val.(int); ok {
return int64(Val)
} else if Val, ok := val.Val.(float32); ok {
return int64(Val)
} else if Val, ok := val.Val.(float64); ok {
return int64(Val)
} else if Val, ok := val.Val.([]byte); ok {
return new(big.Int).SetBytes(Val).Int64()
} else if Val, ok := val.Val.(*big.Int); ok {
return Val.Int64()
} else if Val, ok := val.Val.(string); ok {
n, _ := strconv.Atoi(Val)
return int64(n)
}
return 0
}
func (val *Value) Byte() byte {
if Val, ok := val.Val.(byte); ok {
return Val
}
return 0x0
}
func (val *Value) BigInt() *big.Int {
if a, ok := val.Val.([]byte); ok {
b := new(big.Int).SetBytes(a)
return b
} else if a, ok := val.Val.(*big.Int); ok {
return a
} else if a, ok := val.Val.(string); ok {
return Big(a)
} else {
return big.NewInt(int64(val.Uint()))
}
return big.NewInt(0)
}
func (val *Value) Str() string {
if a, ok := val.Val.([]byte); ok {
return string(a)
} else if a, ok := val.Val.(string); ok {
return a
} else if a, ok := val.Val.(byte); ok {
return string(a)
}
return ""
}
func (val *Value) Bytes() []byte {
if a, ok := val.Val.([]byte); ok {
return a
} else if s, ok := val.Val.(byte); ok {
return []byte{s}
} else if s, ok := val.Val.(string); ok {
return []byte(s)
} else if s, ok := val.Val.(*big.Int); ok {
return s.Bytes()
} else {
return big.NewInt(val.Int()).Bytes()
}
return []byte{}
}
func (val *Value) Err() error {
if err, ok := val.Val.(error); ok {
return err
}
return nil
}
func (val *Value) Slice() []interface{} {
if d, ok := val.Val.([]interface{}); ok {
return d
}
return []interface{}{}
}
func (val *Value) SliceFrom(from int) *Value {
slice := val.Slice()
return NewValue(slice[from:])
}
func (val *Value) SliceTo(to int) *Value {
slice := val.Slice()
return NewValue(slice[:to])
}
func (val *Value) SliceFromTo(from, to int) *Value {
slice := val.Slice()
return NewValue(slice[from:to])
}
// TODO More type checking methods
func (val *Value) IsSlice() bool {
return val.Type() == reflect.Slice
}
func (val *Value) IsStr() bool {
return val.Type() == reflect.String
}
func (self *Value) IsErr() bool {
_, ok := self.Val.(error)
return ok
}
// Special list checking function. Something is considered
// a list if it's of type []interface{}. The list is usually
// used in conjunction with rlp decoded streams.
func (val *Value) IsList() bool {
_, ok := val.Val.([]interface{})
return ok
}
func (val *Value) IsEmpty() bool {
return val.Val == nil || ((val.IsSlice() || val.IsStr()) && val.Len() == 0)
}
// Threat the value as a slice
func (val *Value) Get(idx int) *Value {
if d, ok := val.Val.([]interface{}); ok {
// Guard for oob
if len(d) <= idx {
return NewValue(nil)
}
if idx < 0 {
return NewValue(nil)
}
return NewValue(d[idx])
}
// If this wasn't a slice you probably shouldn't be using this function
return NewValue(nil)
}
func (self *Value) Copy() *Value {
switch val := self.Val.(type) {
case *big.Int:
return NewValue(new(big.Int).Set(val))
case []byte:
return NewValue(CopyBytes(val))
default:
return NewValue(self.Val)
}
return nil
}
func (val *Value) Cmp(o *Value) bool {
return reflect.DeepEqual(val.Val, o.Val)
}
func (self *Value) DeepCmp(o *Value) bool {
return bytes.Compare(self.Bytes(), o.Bytes()) == 0
}
func (val *Value) Encode() []byte {
return Encode(val.Val)
}
// Assume that the data we have is encoded
func (self *Value) Decode() {
v, _ := Decode(self.Bytes(), 0)
self.Val = v
//self.Val = DecodeWithReader(bytes.NewBuffer(self.Bytes()))
}
func NewValueFromBytes(data []byte) *Value {
if len(data) != 0 {
value := NewValue(data)
value.Decode()
return value
}
return NewValue(nil)
}
// Value setters
func NewSliceValue(s interface{}) *Value {
list := EmptyValue()
if s != nil {
if slice, ok := s.([]interface{}); ok {
for _, val := range slice {
list.Append(val)
}
} else if slice, ok := s.([]string); ok {
for _, val := range slice {
list.Append(val)
}
}
}
return list
}
func EmptyValue() *Value {
return NewValue([]interface{}{})
}
func (val *Value) AppendList() *Value {
list := EmptyValue()
val.Val = append(val.Slice(), list)
return list
}
func (val *Value) Append(v interface{}) *Value {
val.Val = append(val.Slice(), v)
return val
}
const (
valOpAdd = iota
valOpDiv
valOpMul
valOpPow
valOpSub
)
// Math stuff
func (self *Value) doOp(op int, other interface{}) *Value {
left := self.BigInt()
right := NewValue(other).BigInt()
switch op {
case valOpAdd:
self.Val = left.Add(left, right)
case valOpDiv:
self.Val = left.Div(left, right)
case valOpMul:
self.Val = left.Mul(left, right)
case valOpPow:
self.Val = left.Exp(left, right, Big0)
case valOpSub:
self.Val = left.Sub(left, right)
}
return self
}
func (self *Value) Add(other interface{}) *Value {
return self.doOp(valOpAdd, other)
}
func (self *Value) Sub(other interface{}) *Value {
return self.doOp(valOpSub, other)
}
func (self *Value) Div(other interface{}) *Value {
return self.doOp(valOpDiv, other)
}
func (self *Value) Mul(other interface{}) *Value {
return self.doOp(valOpMul, other)
}
func (self *Value) Pow(other interface{}) *Value {
return self.doOp(valOpPow, other)
}
type ValueIterator struct {
value *Value
currentValue *Value
idx int
}
func (val *Value) NewIterator() *ValueIterator {
return &ValueIterator{value: val}
}
func (it *ValueIterator) Next() bool {
if it.idx >= it.value.Len() {
return false
}
it.currentValue = it.value.Get(it.idx)
it.idx++
return true
}
func (it *ValueIterator) Value() *Value {
return it.currentValue
}
func (it *ValueIterator) Idx() int {
return it.idx
}