package ethchain
import (
"bytes"
"container/list"
"fmt"
"math/big"
"os"
"sync"
"time"
"github.com/ethereum/eth-go/ethcrypto"
"github.com/ethereum/eth-go/ethlog"
"github.com/ethereum/eth-go/ethstate"
"github.com/ethereum/eth-go/ethutil"
"github.com/ethereum/eth-go/ethwire"
"github.com/ethereum/eth-go/event"
)
var statelogger = ethlog.NewLogger("STATE")
type Peer interface {
Inbound() bool
LastSend() time.Time
LastPong() int64
Host() []byte
Port() uint16
Version() string
PingTime() string
Connected() *int32
Caps() *ethutil.Value
}
type EthManager interface {
StateManager() *StateManager
BlockChain() *BlockChain
TxPool() *TxPool
Broadcast(msgType ethwire.MsgType, data []interface{})
PeerCount() int
IsMining() bool
IsListening() bool
Peers() *list.List
KeyManager() *ethcrypto.KeyManager
ClientIdentity() ethwire.ClientIdentity
Db() ethutil.Database
EventMux() *event.TypeMux
}
type StateManager struct {
// Mutex for locking the block processor. Blocks can only be handled one at a time
mutex sync.Mutex
// Canonical block chain
bc *BlockChain
// non-persistent key/value memory storage
mem map[string]*big.Int
// Proof of work used for validating
Pow PoW
// The ethereum manager interface
eth EthManager
// The managed states
// Transiently state. The trans state isn't ever saved, validated and
// it could be used for setting account nonces without effecting
// the main states.
transState *ethstate.State
// Mining state. The mining state is used purely and solely by the mining
// operation.
miningState *ethstate.State
// The last attempted block is mainly used for debugging purposes
// This does not have to be a valid block and will be set during
// 'Process' & canonical validation.
lastAttemptedBlock *Block
events event.Subscription
}
func NewStateManager(ethereum EthManager) *StateManager {
sm := &StateManager{
mem: make(map[string]*big.Int),
Pow: &EasyPow{},
eth: ethereum,
bc: ethereum.BlockChain(),
}
sm.transState = ethereum.BlockChain().CurrentBlock.State().Copy()
sm.miningState = ethereum.BlockChain().CurrentBlock.State().Copy()
return sm
}
func (self *StateManager) Start() {
statelogger.Debugln("Starting state manager")
self.events = self.eth.EventMux().Subscribe(Blocks(nil))
go self.updateThread()
}
func (self *StateManager) Stop() {
statelogger.Debugln("Stopping state manager")
self.events.Unsubscribe()
}
func (self *StateManager) updateThread() {
for ev := range self.events.Chan() {
for _, block := range ev.(Blocks) {
err := self.Process(block, false)
if err != nil {
statelogger.Infoln(err)
statelogger.Debugf("Block #%v failed (%x...)\n", block.Number, block.Hash()[0:4])
statelogger.Debugln(block)
break
}
}
}
}
func (sm *StateManager) CurrentState() *ethstate.State {
return sm.eth.BlockChain().CurrentBlock.State()
}
func (sm *StateManager) TransState() *ethstate.State {
return sm.transState
}
func (sm *StateManager) MiningState() *ethstate.State {
return sm.miningState
}
func (sm *StateManager) NewMiningState() *ethstate.State {
sm.miningState = sm.eth.BlockChain().CurrentBlock.State().Copy()
return sm.miningState
}
func (sm *StateManager) BlockChain() *BlockChain {
return sm.bc
}
func (self *StateManager) ProcessTransactions(coinbase *ethstate.StateObject, state *ethstate.State, block, parent *Block, txs Transactions) (Receipts, Transactions, Transactions, error) {
var (
receipts Receipts
handled, unhandled Transactions
totalUsedGas = big.NewInt(0)
err error
)
done:
for i, tx := range txs {
txGas := new(big.Int).Set(tx.Gas)
cb := state.GetStateObject(coinbase.Address())
st := NewStateTransition(cb, tx, state, block)
err = st.TransitionState()
if err != nil {
statelogger.Infoln(err)
switch {
case IsNonceErr(err):
err = nil // ignore error
continue
case IsGasLimitErr(err):
unhandled = txs[i:]
break done
default:
statelogger.Infoln(err)
err = nil
//return nil, nil, nil, err
}
}
// Update the state with pending changes
state.Update()
txGas.Sub(txGas, st.gas)
accumelative := new(big.Int).Set(totalUsedGas.Add(totalUsedGas, txGas))
receipt := &Receipt{tx, ethutil.CopyBytes(state.Root().([]byte)), accumelative}
if i < len(block.Receipts()) {
original := block.Receipts()[i]
if !original.Cmp(receipt) {
if ethutil.Config.Diff {
os.Exit(1)
}
err := fmt.Errorf("#%d receipt failed (r) %v ~ %x <=> (c) %v ~ %x (%x...)", i+1, original.CumulativeGasUsed, original.PostState[0:4], receipt.CumulativeGasUsed, receipt.PostState[0:4], receipt.Tx.Hash()[0:4])
return nil, nil, nil, err
}
}
// Notify all subscribers
self.eth.EventMux().Post(TxEvent{TxPost, tx})
receipts = append(receipts, receipt)
handled = append(handled, tx)
if ethutil.Config.Diff && ethutil.Config.DiffType == "all" {
state.CreateOutputForDiff()
}
}
parent.GasUsed = totalUsedGas
return receipts, handled, unhandled, err
}
func (sm *StateManager) Process(block *Block, dontReact bool) (err error) {
// Processing a blocks may never happen simultaneously
sm.mutex.Lock()
defer sm.mutex.Unlock()
if sm.bc.HasBlock(block.Hash()) {
return nil
}
if !sm.bc.HasBlock(block.PrevHash) {
return ParentError(block.PrevHash)
}
sm.lastAttemptedBlock = block
var (
parent = sm.bc.GetBlock(block.PrevHash)
state = parent.State()
)
// Defer the Undo on the Trie. If the block processing happened
// we don't want to undo but since undo only happens on dirty
// nodes this won't happen because Commit would have been called
// before that.
defer state.Reset()
if ethutil.Config.Diff && ethutil.Config.DiffType == "all" {
fmt.Printf("## %x %x ##\n", block.Hash(), block.Number)
}
receipts, err := sm.ApplyDiff(state, parent, block)
if err != nil {
return err
}
txSha := CreateTxSha(receipts)
if bytes.Compare(txSha, block.TxSha) != 0 {
return fmt.Errorf("Error validating tx sha. Received %x, got %x", block.TxSha, txSha)
}
// Block validation
if err = sm.ValidateBlock(block); err != nil {
statelogger.Errorln("Error validating block:", err)
return err
}
if err = sm.AccumelateRewards(state, block, parent); err != nil {
statelogger.Errorln("Error accumulating reward", err)
return err
}
state.Update()
if !block.State().Cmp(state) {
err = fmt.Errorf("Invalid merkle root.\nrec: %x\nis: %x", block.State().Trie.Root, state.Trie.Root)
return
}
// Calculate the new total difficulty and sync back to the db
if sm.CalculateTD(block) {
// Sync the current block's state to the database and cancelling out the deferred Undo
state.Sync()
// Add the block to the chain
sm.bc.Add(block)
sm.transState = state.Copy()
// Create a bloom bin for this block
filter := sm.createBloomFilter(state)
// Persist the data
fk := append([]byte("bloom"), block.Hash()...)
sm.eth.Db().Put(fk, filter.Bin())
statelogger.Infof("Imported block #%d (%x...)\n", block.Number, block.Hash()[0:4])
if dontReact == false {
sm.eth.EventMux().Post(NewBlockEvent{block})
state.Manifest().Reset()
}
sm.eth.TxPool().RemoveInvalid(state)
} else {
statelogger.Errorln("total diff failed")
}
return nil
}
func (sm *StateManager) ApplyDiff(state *ethstate.State, parent, block *Block) (receipts Receipts, err error) {
coinbase := state.GetOrNewStateObject(block.Coinbase)
coinbase.SetGasPool(block.CalcGasLimit(parent))
// Process the transactions on to current block
receipts, _, _, err = sm.ProcessTransactions(coinbase, state, block, parent, block.Transactions())
if err != nil {
return nil, err
}
return receipts, nil
}
func (sm *StateManager) CalculateTD(block *Block) bool {
uncleDiff := new(big.Int)
for _, uncle := range block.Uncles {
uncleDiff = uncleDiff.Add(uncleDiff, uncle.Difficulty)
}
// TD(genesis_block) = 0 and TD(B) = TD(B.parent) + sum(u.difficulty for u in B.uncles) + B.difficulty
td := new(big.Int)
td = td.Add(sm.bc.TD, uncleDiff)
td = td.Add(td, block.Difficulty)
// The new TD will only be accepted if the new difficulty is
// is greater than the previous.
if td.Cmp(sm.bc.TD) > 0 {
// Set the new total difficulty back to the block chain
sm.bc.SetTotalDifficulty(td)
return true
}
return false
}
// Validates the current block. Returns an error if the block was invalid,
// an uncle or anything that isn't on the current block chain.
// Validation validates easy over difficult (dagger takes longer time = difficult)
func (sm *StateManager) ValidateBlock(block *Block) error {
// Check each uncle's previous hash. In order for it to be valid
// is if it has the same block hash as the current
parent := sm.bc.GetBlock(block.PrevHash)
/*
for _, uncle := range block.Uncles {
if bytes.Compare(uncle.PrevHash,parent.PrevHash) != 0 {
return ValidationError("Mismatch uncle's previous hash. Expected %x, got %x",parent.PrevHash, uncle.PrevHash)
}
}
*/
expd := CalcDifficulty(block, parent)
if expd.Cmp(block.Difficulty) < 0 {
return fmt.Errorf("Difficulty check failed for block %v, %v", block.Difficulty, expd)
}
diff := block.Time - parent.Time
if diff < 0 {
return ValidationError("Block timestamp less then prev block %v (%v - %v)", diff, block.Time, sm.bc.CurrentBlock.Time)
}
/* XXX
// New blocks must be within the 15 minute range of the last block.
if diff > int64(15*time.Minute) {
return ValidationError("Block is too far in the future of last block (> 15 minutes)")
}
*/
// Verify the nonce of the block. Return an error if it's not valid
if !sm.Pow.Verify(block.HashNoNonce(), block.Difficulty, block.Nonce) {
return ValidationError("Block's nonce is invalid (= %v)", ethutil.Bytes2Hex(block.Nonce))
}
return nil
}
func (sm *StateManager) AccumelateRewards(state *ethstate.State, block, parent *Block) error {
reward := new(big.Int).Set(BlockReward)
knownUncles := ethutil.Set(parent.Uncles)
nonces := ethutil.NewSet(block.Nonce)
for _, uncle := range block.Uncles {
if nonces.Include(uncle.Nonce) {
// Error not unique
return UncleError("Uncle not unique")
}
uncleParent := sm.bc.GetBlock(uncle.PrevHash)
if uncleParent == nil {
return UncleError("Uncle's parent unknown")
}
if uncleParent.Number.Cmp(new(big.Int).Sub(parent.Number, big.NewInt(6))) < 0 {
return UncleError("Uncle too old")
}
if knownUncles.Include(uncle.Hash()) {
return UncleError("Uncle in chain")
}
nonces.Insert(uncle.Nonce)
r := new(big.Int)
r.Mul(BlockReward, big.NewInt(15)).Div(r, big.NewInt(16))
uncleAccount := state.GetAccount(uncle.Coinbase)
uncleAccount.AddAmount(r)
reward.Add(reward, new(big.Int).Div(BlockReward, big.NewInt(32)))
}
// Get the account associated with the coinbase
account := state.GetAccount(block.Coinbase)
// Reward amount of ether to the coinbase address
account.AddAmount(reward)
return nil
}
// Manifest will handle both creating notifications and generating bloom bin data
func (sm *StateManager) createBloomFilter(state *ethstate.State) *BloomFilter {
bloomf := NewBloomFilter(nil)
for _, msg := range state.Manifest().Messages {
bloomf.Set(msg.To)
bloomf.Set(msg.From)
}
sm.eth.EventMux().Post(state.Manifest().Messages)
return bloomf
}
func (sm *StateManager) GetMessages(block *Block) (messages []*ethstate.Message, err error) {
if !sm.bc.HasBlock(block.PrevHash) {
return nil, ParentError(block.PrevHash)
}
sm.lastAttemptedBlock = block
var (
parent = sm.bc.GetBlock(block.PrevHash)
state = parent.State().Copy()
)
defer state.Reset()
sm.ApplyDiff(state, parent, block)
sm.AccumelateRewards(state, block, parent)
return state.Manifest().Messages, nil
}