// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package dex
import (
"errors"
"fmt"
"math/big"
"sync"
"time"
mapset "github.com/deckarep/golang-set"
coreTypes "github.com/dexon-foundation/dexon-consensus-core/core/types"
"github.com/dexon-foundation/dexon/common"
"github.com/dexon-foundation/dexon/core/types"
"github.com/dexon-foundation/dexon/p2p"
"github.com/dexon-foundation/dexon/p2p/discover"
"github.com/dexon-foundation/dexon/rlp"
)
var (
errClosed = errors.New("peer set is closed")
errAlreadyRegistered = errors.New("peer is already registered")
errNotRegistered = errors.New("peer is not registered")
)
const (
maxKnownTxs = 32768 // Maximum transactions hashes to keep in the known list (prevent DOS)
maxKnownMetas = 32768 // Maximum metas hashes to keep in the known list (prevent DOS)
maxKnownBlocks = 1024 // Maximum block hashes to keep in the known list (prevent DOS)
// maxQueuedTxs is the maximum number of transaction lists to queue up before
// dropping broadcasts. This is a sensitive number as a transaction list might
// contain a single transaction, or thousands.
maxQueuedTxs = 128
maxQueuedMetas = 512
// maxQueuedProps is the maximum number of block propagations to queue up before
// dropping broadcasts. There's not much point in queueing stale blocks, so a few
// that might cover uncles should be enough.
maxQueuedProps = 4
// maxQueuedAnns is the maximum number of block announcements to queue up before
// dropping broadcasts. Similarly to block propagations, there's no point to queue
// above some healthy uncle limit, so use that.
maxQueuedAnns = 4
handshakeTimeout = 5 * time.Second
groupNodeNum = 3
)
// PeerInfo represents a short summary of the Ethereum sub-protocol metadata known
// about a connected peer.
type PeerInfo struct {
Version int `json:"version"` // Ethereum protocol version negotiated
Difficulty *big.Int `json:"difficulty"` // Total difficulty of the peer's blockchain
Head string `json:"head"` // SHA3 hash of the peer's best owned block
}
// propEvent is a block propagation, waiting for its turn in the broadcast queue.
type propEvent struct {
block *types.Block
td *big.Int
}
type setType uint32
const (
dkgset = iota
notaryset
)
type peerLabel struct {
set setType
chainID uint32
round uint64
}
type peer struct {
id string
*p2p.Peer
rw p2p.MsgReadWriter
version int // Protocol version negotiated
labels mapset.Set
head common.Hash
td *big.Int
lock sync.RWMutex
knownTxs mapset.Set // Set of transaction hashes known to be known by this peer
knownMetas mapset.Set // Set of node metas known to be known by this peer
knownBlocks mapset.Set // Set of block hashes known to be known by this peer
knownVotes mapset.Set
queuedTxs chan []*types.Transaction // Queue of transactions to broadcast to the peer
queuedMetas chan []*NodeMeta // Queue of node metas to broadcast to the peer
queuedProps chan *propEvent // Queue of blocks to broadcast to the peer
queuedAnns chan *types.Block // Queue of blocks to announce to the peer
queuedLatticeBlock chan *coreTypes.Block
queuedVote chan *coreTypes.Vote
queuedAgreement chan *coreTypes.AgreementResult
queuedRandomness chan *coreTypes.BlockRandomnessResult
queuedDKGPrivateShare chan *coreTypes.DKGPrivateShare
queuedDKGPartialSignature chan *coreTypes.DKGPartialSignature
term chan struct{} // Termination channel to stop the broadcaster
}
func newPeer(version int, p *p2p.Peer, rw p2p.MsgReadWriter) *peer {
return &peer{
Peer: p,
rw: rw,
version: version,
labels: mapset.NewSet(),
id: p.ID().String(),
knownTxs: mapset.NewSet(),
knownMetas: mapset.NewSet(),
knownBlocks: mapset.NewSet(),
knownVotes: mapset.NewSet(),
queuedTxs: make(chan []*types.Transaction, maxQueuedTxs),
queuedMetas: make(chan []*NodeMeta, maxQueuedMetas),
queuedProps: make(chan *propEvent, maxQueuedProps),
queuedAnns: make(chan *types.Block, maxQueuedAnns),
queuedLatticeBlock: make(chan *coreTypes.Block, 16),
queuedVote: make(chan *coreTypes.Vote, 16),
queuedAgreement: make(chan *coreTypes.AgreementResult, 16),
queuedRandomness: make(chan *coreTypes.BlockRandomnessResult, 16),
queuedDKGPrivateShare: make(chan *coreTypes.DKGPrivateShare, 16),
queuedDKGPartialSignature: make(chan *coreTypes.DKGPartialSignature, 16),
term: make(chan struct{}),
}
}
// broadcast is a write loop that multiplexes block propagations, announcements,
// transaction and notary node metas broadcasts into the remote peer.
// The goal is to have an async writer that does not lock up node internals.
func (p *peer) broadcast() {
for {
select {
case txs := <-p.queuedTxs:
if err := p.SendTransactions(txs); err != nil {
return
}
p.Log().Trace("Broadcast transactions", "count", len(txs))
case metas := <-p.queuedMetas:
if err := p.SendNodeMetas(metas); err != nil {
return
}
p.Log().Trace("Broadcast node metas", "count", len(metas))
case prop := <-p.queuedProps:
if err := p.SendNewBlock(prop.block, prop.td); err != nil {
return
}
p.Log().Trace("Propagated block", "number", prop.block.Number(), "hash", prop.block.Hash(), "td", prop.td)
case block := <-p.queuedAnns:
if err := p.SendNewBlockHashes([]common.Hash{block.Hash()}, []uint64{block.NumberU64()}); err != nil {
return
}
p.Log().Trace("Announced block", "number", block.Number(), "hash", block.Hash())
case block := <-p.queuedLatticeBlock:
if err := p.SendLatticeBlock(block); err != nil {
return
}
p.Log().Trace("Broadcast lattice block")
case vote := <-p.queuedVote:
if err := p.SendVote(vote); err != nil {
return
}
p.Log().Trace("Broadcast vote", "vote", vote.String(), "hash", rlpHash(vote))
case agreement := <-p.queuedAgreement:
if err := p.SendAgreement(agreement); err != nil {
return
}
p.Log().Trace("Broadcast agreement")
case randomness := <-p.queuedRandomness:
if err := p.SendRandomness(randomness); err != nil {
return
}
p.Log().Trace("Broadcast randomness")
case privateShare := <-p.queuedDKGPrivateShare:
if err := p.SendDKGPrivateShare(privateShare); err != nil {
return
}
p.Log().Trace("Broadcast DKG private share")
case psig := <-p.queuedDKGPartialSignature:
if err := p.SendDKGPartialSignature(psig); err != nil {
return
}
p.Log().Trace("Broadcast DKG partial signature")
case <-p.term:
return
}
}
}
// close signals the broadcast goroutine to terminate.
func (p *peer) close() {
close(p.term)
}
func (p *peer) addLabel(label peerLabel) {
p.labels.Add(label)
}
func (p *peer) removeLabel(label peerLabel) {
p.labels.Remove(label)
}
// Info gathers and returns a collection of metadata known about a peer.
func (p *peer) Info() *PeerInfo {
hash, td := p.Head()
return &PeerInfo{
Version: p.version,
Difficulty: td,
Head: hash.Hex(),
}
}
// Head retrieves a copy of the current head hash and total difficulty of the
// peer.
func (p *peer) Head() (hash common.Hash, td *big.Int) {
p.lock.RLock()
defer p.lock.RUnlock()
copy(hash[:], p.head[:])
return hash, new(big.Int).Set(p.td)
}
// SetHead updates the head hash and total difficulty of the peer.
func (p *peer) SetHead(hash common.Hash, td *big.Int) {
p.lock.Lock()
defer p.lock.Unlock()
copy(p.head[:], hash[:])
p.td.Set(td)
}
// MarkBlock marks a block as known for the peer, ensuring that the block will
// never be propagated to this particular peer.
func (p *peer) MarkBlock(hash common.Hash) {
// If we reached the memory allowance, drop a previously known block hash
for p.knownBlocks.Cardinality() >= maxKnownBlocks {
p.knownBlocks.Pop()
}
p.knownBlocks.Add(hash)
}
// MarkTransaction marks a transaction as known for the peer, ensuring that it
// will never be propagated to this particular peer.
func (p *peer) MarkTransaction(hash common.Hash) {
// If we reached the memory allowance, drop a previously known transaction hash
for p.knownTxs.Cardinality() >= maxKnownTxs {
p.knownTxs.Pop()
}
p.knownTxs.Add(hash)
}
func (p *peer) MarkNodeMeta(hash common.Hash) {
for p.knownMetas.Cardinality() >= maxKnownMetas {
p.knownMetas.Pop()
}
p.knownMetas.Add(hash)
}
// SendTransactions sends transactions to the peer and includes the hashes
// in its transaction hash set for future reference.
func (p *peer) SendTransactions(txs types.Transactions) error {
for _, tx := range txs {
p.knownTxs.Add(tx.Hash())
}
return p2p.Send(p.rw, TxMsg, txs)
}
// AsyncSendTransactions queues list of transactions propagation to a remote
// peer. If the peer's broadcast queue is full, the event is silently dropped.
func (p *peer) AsyncSendTransactions(txs []*types.Transaction) {
select {
case p.queuedTxs <- txs:
for _, tx := range txs {
p.knownTxs.Add(tx.Hash())
}
default:
p.Log().Debug("Dropping transaction propagation", "count", len(txs))
}
}
// SendNodeMetas sends the metas to the peer and includes the hashes
// in its metas hash set for future reference.
func (p *peer) SendNodeMetas(metas []*NodeMeta) error {
for _, meta := range metas {
p.knownMetas.Add(meta.Hash())
}
return p2p.Send(p.rw, MetaMsg, metas)
}
// AsyncSendNodeMeta queues list of notary node meta propagation to a
// remote peer. If the peer's broadcast queue is full, the event is silently
// dropped.
func (p *peer) AsyncSendNodeMetas(metas []*NodeMeta) {
select {
case p.queuedMetas <- metas:
for _, meta := range metas {
p.knownMetas.Add(meta.Hash())
}
default:
p.Log().Debug("Dropping node meta propagation", "count", len(metas))
}
}
// SendNewBlockHashes announces the availability of a number of blocks through
// a hash notification.
func (p *peer) SendNewBlockHashes(hashes []common.Hash, numbers []uint64) error {
for _, hash := range hashes {
p.knownBlocks.Add(hash)
}
request := make(newBlockHashesData, len(hashes))
for i := 0; i < len(hashes); i++ {
request[i].Hash = hashes[i]
request[i].Number = numbers[i]
}
return p2p.Send(p.rw, NewBlockHashesMsg, request)
}
// AsyncSendNewBlockHash queues the availability of a block for propagation to a
// remote peer. If the peer's broadcast queue is full, the event is silently
// dropped.
func (p *peer) AsyncSendNewBlockHash(block *types.Block) {
select {
case p.queuedAnns <- block:
p.knownBlocks.Add(block.Hash())
default:
p.Log().Debug("Dropping block announcement", "number", block.NumberU64(), "hash", block.Hash())
}
}
// SendNewBlock propagates an entire block to a remote peer.
func (p *peer) SendNewBlock(block *types.Block, td *big.Int) error {
p.knownBlocks.Add(block.Hash())
return p2p.Send(p.rw, NewBlockMsg, []interface{}{block, td})
}
// AsyncSendNewBlock queues an entire block for propagation to a remote peer. If
// the peer's broadcast queue is full, the event is silently dropped.
func (p *peer) AsyncSendNewBlock(block *types.Block, td *big.Int) {
select {
case p.queuedProps <- &propEvent{block: block, td: td}:
p.knownBlocks.Add(block.Hash())
default:
p.Log().Debug("Dropping block propagation", "number", block.NumberU64(), "hash", block.Hash())
}
}
func (p *peer) SendLatticeBlock(block *coreTypes.Block) error {
return p2p.Send(p.rw, LatticeBlockMsg, toRLPLatticeBlock(block))
}
func (p *peer) AsyncSendLatticeBlock(block *coreTypes.Block) {
select {
case p.queuedLatticeBlock <- block:
default:
p.Log().Debug("Dropping lattice block propagation")
}
}
func (p *peer) SendVote(vote *coreTypes.Vote) error {
return p2p.Send(p.rw, VoteMsg, vote)
}
func (p *peer) AsyncSendVote(vote *coreTypes.Vote) {
select {
case p.queuedVote <- vote:
default:
p.Log().Debug("Dropping vote propagation")
}
}
func (p *peer) SendAgreement(agreement *coreTypes.AgreementResult) error {
return p2p.Send(p.rw, AgreementMsg, agreement)
}
func (p *peer) AsyncSendAgreement(agreement *coreTypes.AgreementResult) {
select {
case p.queuedAgreement <- agreement:
default:
p.Log().Debug("Dropping agreement result")
}
}
func (p *peer) SendRandomness(randomness *coreTypes.BlockRandomnessResult) error {
return p2p.Send(p.rw, RandomnessMsg, randomness)
}
func (p *peer) AsyncSendRandomness(randomness *coreTypes.BlockRandomnessResult) {
select {
case p.queuedRandomness <- randomness:
default:
p.Log().Debug("Dropping randomness result")
}
}
func (p *peer) SendDKGPrivateShare(privateShare *coreTypes.DKGPrivateShare) error {
return p2p.Send(p.rw, DKGPrivateShareMsg, toRLPDKGPrivateShare(privateShare))
}
func (p *peer) AsyncSendDKGPrivateShare(privateShare *coreTypes.DKGPrivateShare) {
select {
case p.queuedDKGPrivateShare <- privateShare:
default:
p.Log().Debug("Dropping DKG private share")
}
}
func (p *peer) SendDKGPartialSignature(psig *coreTypes.DKGPartialSignature) error {
return p2p.Send(p.rw, DKGPartialSignatureMsg, psig)
}
func (p *peer) AsyncSendDKGPartialSignature(psig *coreTypes.DKGPartialSignature) {
select {
case p.queuedDKGPartialSignature <- psig:
default:
p.Log().Debug("Dropping DKG partial signature")
}
}
// SendBlockHeaders sends a batch of block headers to the remote peer.
func (p *peer) SendBlockHeaders(headers []*types.Header) error {
return p2p.Send(p.rw, BlockHeadersMsg, headers)
}
// SendBlockBodies sends a batch of block contents to the remote peer.
func (p *peer) SendBlockBodies(bodies []*blockBody) error {
return p2p.Send(p.rw, BlockBodiesMsg, blockBodiesData(bodies))
}
// SendBlockBodiesRLP sends a batch of block contents to the remote peer from
// an already RLP encoded format.
func (p *peer) SendBlockBodiesRLP(bodies []rlp.RawValue) error {
return p2p.Send(p.rw, BlockBodiesMsg, bodies)
}
// SendNodeDataRLP sends a batch of arbitrary internal data, corresponding to the
// hashes requested.
func (p *peer) SendNodeData(data [][]byte) error {
return p2p.Send(p.rw, NodeDataMsg, data)
}
// SendReceiptsRLP sends a batch of transaction receipts, corresponding to the
// ones requested from an already RLP encoded format.
func (p *peer) SendReceiptsRLP(receipts []rlp.RawValue) error {
return p2p.Send(p.rw, ReceiptsMsg, receipts)
}
// RequestOneHeader is a wrapper around the header query functions to fetch a
// single header. It is used solely by the fetcher.
func (p *peer) RequestOneHeader(hash common.Hash) error {
p.Log().Debug("Fetching single header", "hash", hash)
return p2p.Send(p.rw, GetBlockHeadersMsg, &getBlockHeadersData{Origin: hashOrNumber{Hash: hash}, Amount: uint64(1), Skip: uint64(0), Reverse: false})
}
// RequestHeadersByHash fetches a batch of blocks' headers corresponding to the
// specified header query, based on the hash of an origin block.
func (p *peer) RequestHeadersByHash(origin common.Hash, amount int, skip int, reverse bool) error {
p.Log().Debug("Fetching batch of headers", "count", amount, "fromhash", origin, "skip", skip, "reverse", reverse)
return p2p.Send(p.rw, GetBlockHeadersMsg, &getBlockHeadersData{Origin: hashOrNumber{Hash: origin}, Amount: uint64(amount), Skip: uint64(skip), Reverse: reverse})
}
// RequestHeadersByNumber fetches a batch of blocks' headers corresponding to the
// specified header query, based on the number of an origin block.
func (p *peer) RequestHeadersByNumber(origin uint64, amount int, skip int, reverse bool) error {
p.Log().Debug("Fetching batch of headers", "count", amount, "fromnum", origin, "skip", skip, "reverse", reverse)
return p2p.Send(p.rw, GetBlockHeadersMsg, &getBlockHeadersData{Origin: hashOrNumber{Number: origin}, Amount: uint64(amount), Skip: uint64(skip), Reverse: reverse})
}
// RequestBodies fetches a batch of blocks' bodies corresponding to the hashes
// specified.
func (p *peer) RequestBodies(hashes []common.Hash) error {
p.Log().Debug("Fetching batch of block bodies", "count", len(hashes))
return p2p.Send(p.rw, GetBlockBodiesMsg, hashes)
}
// RequestNodeData fetches a batch of arbitrary data from a node's known state
// data, corresponding to the specified hashes.
func (p *peer) RequestNodeData(hashes []common.Hash) error {
p.Log().Debug("Fetching batch of state data", "count", len(hashes))
return p2p.Send(p.rw, GetNodeDataMsg, hashes)
}
// RequestReceipts fetches a batch of transaction receipts from a remote node.
func (p *peer) RequestReceipts(hashes []common.Hash) error {
p.Log().Debug("Fetching batch of receipts", "count", len(hashes))
return p2p.Send(p.rw, GetReceiptsMsg, hashes)
}
// Handshake executes the eth protocol handshake, negotiating version number,
// network IDs, difficulties, head and genesis blocks.
func (p *peer) Handshake(network uint64, td *big.Int, head common.Hash, genesis common.Hash) error {
// Send out own handshake in a new thread
errc := make(chan error, 2)
var status statusData // safe to read after two values have been received from errc
go func() {
errc <- p2p.Send(p.rw, StatusMsg, &statusData{
ProtocolVersion: uint32(p.version),
NetworkId: network,
TD: td,
CurrentBlock: head,
GenesisBlock: genesis,
})
}()
go func() {
errc <- p.readStatus(network, &status, genesis)
}()
timeout := time.NewTimer(handshakeTimeout)
defer timeout.Stop()
for i := 0; i < 2; i++ {
select {
case err := <-errc:
if err != nil {
return err
}
case <-timeout.C:
return p2p.DiscReadTimeout
}
}
p.td, p.head = status.TD, status.CurrentBlock
return nil
}
func (p *peer) readStatus(network uint64, status *statusData, genesis common.Hash) (err error) {
msg, err := p.rw.ReadMsg()
if err != nil {
return err
}
if msg.Code != StatusMsg {
return errResp(ErrNoStatusMsg, "first msg has code %x (!= %x)", msg.Code, StatusMsg)
}
if msg.Size > ProtocolMaxMsgSize {
return errResp(ErrMsgTooLarge, "%v > %v", msg.Size, ProtocolMaxMsgSize)
}
// Decode the handshake and make sure everything matches
if err := msg.Decode(&status); err != nil {
return errResp(ErrDecode, "msg %v: %v", msg, err)
}
if status.GenesisBlock != genesis {
return errResp(ErrGenesisBlockMismatch, "%x (!= %x)", status.GenesisBlock[:8], genesis[:8])
}
if status.NetworkId != network {
return errResp(ErrNetworkIdMismatch, "%d (!= %d)", status.NetworkId, network)
}
if int(status.ProtocolVersion) != p.version {
return errResp(ErrProtocolVersionMismatch, "%d (!= %d)", status.ProtocolVersion, p.version)
}
return nil
}
// String implements fmt.Stringer.
func (p *peer) String() string {
return fmt.Sprintf("Peer %s [%s]", p.id,
fmt.Sprintf("dex/%2d", p.version),
)
}
// peerSet represents the collection of active peers currently participating in
// the Ethereum sub-protocol.
type peerSet struct {
peers map[string]*peer
lock sync.RWMutex
closed bool
tab *nodeTable
srvr p2pServer
gov governance
peer2Labels map[string]map[peerLabel]struct{}
label2Peers map[peerLabel]map[string]struct{}
notaryHistory map[uint64]struct{}
dkgHistory map[uint64]struct{}
}
// newPeerSet creates a new peer set to track the active participants.
func newPeerSet(gov governance, srvr p2pServer, tab *nodeTable) *peerSet {
return &peerSet{
peers: make(map[string]*peer),
gov: gov,
srvr: srvr,
tab: tab,
peer2Labels: make(map[string]map[peerLabel]struct{}),
label2Peers: make(map[peerLabel]map[string]struct{}),
notaryHistory: make(map[uint64]struct{}),
dkgHistory: make(map[uint64]struct{}),
}
}
// Register injects a new peer into the working set, or returns an error if the
// peer is already known. If a new peer it registered, its broadcast loop is also
// started.
func (ps *peerSet) Register(p *peer) error {
ps.lock.Lock()
defer ps.lock.Unlock()
if ps.closed {
return errClosed
}
if _, ok := ps.peers[p.id]; ok {
return errAlreadyRegistered
}
ps.peers[p.id] = p
go p.broadcast()
return nil
}
// Unregister removes a remote peer from the active set, disabling any further
// actions to/from that particular entity.
func (ps *peerSet) Unregister(id string) error {
ps.lock.Lock()
defer ps.lock.Unlock()
p, ok := ps.peers[id]
if !ok {
return errNotRegistered
}
delete(ps.peers, id)
p.close()
return nil
}
// Peer retrieves the registered peer with the given id.
func (ps *peerSet) Peer(id string) *peer {
ps.lock.RLock()
defer ps.lock.RUnlock()
return ps.peers[id]
}
// Len returns if the current number of peers in the set.
func (ps *peerSet) Len() int {
ps.lock.RLock()
defer ps.lock.RUnlock()
return len(ps.peers)
}
// PeersWithoutBlock retrieves a list of peers that do not have a given block in
// their set of known hashes.
func (ps *peerSet) PeersWithoutBlock(hash common.Hash) []*peer {
ps.lock.RLock()
defer ps.lock.RUnlock()
list := make([]*peer, 0, len(ps.peers))
for _, p := range ps.peers {
if !p.knownBlocks.Contains(hash) {
list = append(list, p)
}
}
return list
}
// PeersWithoutTx retrieves a list of peers that do not have a given transaction
// in their set of known hashes.
func (ps *peerSet) PeersWithoutTx(hash common.Hash) []*peer {
ps.lock.RLock()
defer ps.lock.RUnlock()
list := make([]*peer, 0, len(ps.peers))
for _, p := range ps.peers {
if !p.knownTxs.Contains(hash) {
list = append(list, p)
}
}
return list
}
func (ps *peerSet) PeersWithoutVote(hash common.Hash, label peerLabel) []*peer {
ps.lock.RLock()
defer ps.lock.RUnlock()
list := make([]*peer, 0, len(ps.label2Peers[label]))
for id := range ps.label2Peers[label] {
if p, ok := ps.peers[id]; ok {
if !p.knownVotes.Contains(hash) {
list = append(list, p)
}
}
}
return list
}
// PeersWithoutNodeMeta retrieves a list of peers that do not have a
// given meta in their set of known hashes.
func (ps *peerSet) PeersWithoutNodeMeta(hash common.Hash) []*peer {
ps.lock.RLock()
defer ps.lock.RUnlock()
list := make([]*peer, 0, len(ps.peers))
for _, p := range ps.peers {
if !p.knownMetas.Contains(hash) {
list = append(list, p)
}
}
return list
}
// TODO(sonic): finish the following dummy function.
func (ps *peerSet) PeersWithoutAgreement(hash common.Hash) []*peer {
return ps.allPeers()
}
func (ps *peerSet) PeersWithoutRandomness(hash common.Hash) []*peer {
return ps.allPeers()
}
func (ps *peerSet) PeersWithoutDKGPartialSignature(hash common.Hash) []*peer {
return ps.allPeers()
}
func (ps *peerSet) PeersWithoutLatticeBlock(hash common.Hash) []*peer {
return ps.allPeers()
}
func (ps *peerSet) allPeers() []*peer {
list := make([]*peer, 0, len(ps.peers))
for _, p := range ps.peers {
list = append(list, p)
}
return list
}
// BestPeer retrieves the known peer with the currently highest total difficulty.
func (ps *peerSet) BestPeer() *peer {
ps.lock.RLock()
defer ps.lock.RUnlock()
var (
bestPeer *peer
bestTd *big.Int
)
for _, p := range ps.peers {
if _, td := p.Head(); bestPeer == nil || td.Cmp(bestTd) > 0 {
bestPeer, bestTd = p, td
}
}
return bestPeer
}
// Close disconnects all peers.
// No new peers can be registered after Close has returned.
func (ps *peerSet) Close() {
ps.lock.Lock()
defer ps.lock.Unlock()
for _, p := range ps.peers {
p.Disconnect(p2p.DiscQuitting)
}
ps.closed = true
}
func (ps *peerSet) BuildNotaryConn(round uint64) {
ps.lock.Lock()
defer ps.lock.Unlock()
if _, ok := ps.notaryHistory[round]; ok {
return
}
ps.notaryHistory[round] = struct{}{}
selfID := ps.srvr.Self().ID.String()
for chainID := uint32(0); chainID < ps.gov.GetNumChains(round); chainID++ {
s := ps.gov.NotarySet(chainID, round)
// not in notary set, add group
if _, ok := s[selfID]; !ok {
var nodes []*discover.Node
for id := range s {
nodes = append(nodes, ps.newNode(id))
}
ps.srvr.AddGroup(notarySetName(chainID, round), nodes, groupNodeNum)
continue
}
label := peerLabel{
set: notaryset,
chainID: chainID,
round: round,
}
delete(s, selfID)
for id := range s {
ps.addDirectPeer(id, label)
}
}
}
func (ps *peerSet) ForgetNotaryConn(round uint64) {
ps.lock.Lock()
defer ps.lock.Unlock()
// forget all the rounds before the given round
for r := range ps.notaryHistory {
if r <= round {
ps.forgetNotaryConn(r)
delete(ps.notaryHistory, r)
}
}
}
func (ps *peerSet) forgetNotaryConn(round uint64) {
selfID := ps.srvr.Self().ID.String()
for chainID := uint32(0); chainID < ps.gov.GetNumChains(round); chainID++ {
s := ps.gov.NotarySet(chainID, round)
if _, ok := s[selfID]; !ok {
ps.srvr.RemoveGroup(notarySetName(chainID, round))
continue
}
label := peerLabel{
set: notaryset,
chainID: chainID,
round: round,
}
delete(s, selfID)
for id := range s {
ps.removeDirectPeer(id, label)
}
}
}
func notarySetName(chainID uint32, round uint64) string {
return fmt.Sprintf("%d-%d-notaryset", chainID, round)
}
func (ps *peerSet) BuildDKGConn(round uint64) {
ps.lock.Lock()
defer ps.lock.Unlock()
selfID := ps.srvr.Self().ID.String()
s := ps.gov.DKGSet(round)
if _, ok := s[selfID]; !ok {
return
}
ps.dkgHistory[round] = struct{}{}
delete(s, selfID)
for id := range s {
ps.addDirectPeer(id, peerLabel{
set: dkgset,
round: round,
})
}
}
func (ps *peerSet) ForgetDKGConn(round uint64) {
ps.lock.Lock()
defer ps.lock.Unlock()
// forget all the rounds before the given round
for r := range ps.dkgHistory {
if r <= round {
ps.forgetDKGConn(r)
delete(ps.dkgHistory, r)
}
}
}
func (ps *peerSet) forgetDKGConn(round uint64) {
selfID := ps.srvr.Self().ID.String()
s := ps.gov.DKGSet(round)
if _, ok := s[selfID]; !ok {
return
}
delete(s, selfID)
label := peerLabel{
set: dkgset,
round: round,
}
for id := range s {
ps.removeDirectPeer(id, label)
}
}
// make sure the ps.lock is hold
func (ps *peerSet) addDirectPeer(id string, label peerLabel) {
// if the peer exists add the label
if p, ok := ps.peers[id]; ok {
p.addLabel(label)
}
if _, ok := ps.peer2Labels[id]; !ok {
ps.peer2Labels[id] = make(map[peerLabel]struct{})
}
if _, ok := ps.label2Peers[label]; !ok {
ps.label2Peers[label] = make(map[string]struct{})
}
ps.peer2Labels[id][label] = struct{}{}
ps.label2Peers[label][id] = struct{}{}
ps.srvr.AddDirectPeer(ps.newNode(id))
}
// make sure the ps.lock is hold
func (ps *peerSet) removeDirectPeer(id string, label peerLabel) {
if p, ok := ps.peers[id]; ok {
p.removeLabel(label)
}
delete(ps.peer2Labels[id], label)
if len(ps.peer2Labels[id]) == 0 {
ps.srvr.RemoveDirectPeer(ps.newNode(id))
delete(ps.peer2Labels, id)
}
if _, ok := ps.label2Peers[label]; ok {
delete(ps.label2Peers[label], id)
if len(ps.label2Peers[label]) == 0 {
delete(ps.label2Peers, label)
}
}
}
func (ps *peerSet) newNode(id string) *enode.Node {
nodeID := enode.HexID(id)
meta := ps.tab.Get(enode.HexID(id))
var r enr.Record
r.Set(enr.ID(nodeID.String()))
r.Set(enr.IP(meta.IP))
r.Set(enr.TCP(meta.TCP))
r.Set(enr.UDP(meta.UDP))
n, err := enode.New(enode.ValidSchemes, &r)
if err != nil {
panic(err)
}
return n
}