aboutsummaryrefslogblamecommitdiffstats
path: root/crypto/signature_nocgo.go
blob: 47880aaf4d12c4844a97fcbd70ee6c5088917bd3 (plain) (tree)












































































                                                                                                 
// Copyright 2016 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

// +build nacl js nocgo

package crypto

import (
    "crypto/ecdsa"
    "crypto/elliptic"
    "fmt"

    "github.com/btcsuite/btcd/btcec"
)

func Ecrecover(hash, sig []byte) ([]byte, error) {
    pub, err := SigToPub(hash, sig)
    if err != nil {
        return nil, err
    }
    bytes := (*btcec.PublicKey)(pub).SerializeUncompressed()
    return bytes, err
}

func SigToPub(hash, sig []byte) (*ecdsa.PublicKey, error) {
    // Convert to btcec input format with 'recovery id' v at the beginning.
    btcsig := make([]byte, 65)
    btcsig[0] = sig[64] + 27
    copy(btcsig[1:], sig)

    pub, _, err := btcec.RecoverCompact(btcec.S256(), btcsig, hash)
    return (*ecdsa.PublicKey)(pub), err
}

// Sign calculates an ECDSA signature.
//
// This function is susceptible to chosen plaintext attacks that can leak
// information about the private key that is used for signing. Callers must
// be aware that the given hash cannot be chosen by an adversery. Common
// solution is to hash any input before calculating the signature.
//
// The produced signature is in the [R || S || V] format where V is 0 or 1.
func Sign(hash []byte, prv *ecdsa.PrivateKey) ([]byte, error) {
    if len(hash) != 32 {
        return nil, fmt.Errorf("hash is required to be exactly 32 bytes (%d)", len(hash))
    }
    if prv.Curve != btcec.S256() {
        return nil, fmt.Errorf("private key curve is not secp256k1")
    }
    sig, err := btcec.SignCompact(btcec.S256(), (*btcec.PrivateKey)(prv), hash, false)
    if err != nil {
        return nil, err
    }
    // Convert to Ethereum signature format with 'recovery id' v at the end.
    v := sig[0] - 27
    copy(sig, sig[1:])
    sig[64] = v
    return sig, nil
}

// S256 returns an instance of the secp256k1 curve.
func S256() elliptic.Curve {
    return btcec.S256()
}