aboutsummaryrefslogblamecommitdiffstats
path: root/crypto/ecies/asn1.go
blob: 508a645cdf3babf687cd5c71da7cf770aa128124 (plain) (tree)




























                                                                         













                         

                                                          







































                                                                   
                                                             


                                                                      






                                                                                      














                                                               
                              








                                                             

                                             











                                                                     





                                               

                                               















                                                                                  
                                    
























































































                                                                   
                                                               

























































                                                                                      
                                    

















                                                                        
                                    

































                                                                    
                                    


















                                                                                
                                    








































































































































































































                                                                                            
// Copyright (c) 2013 Kyle Isom <kyle@tyrfingr.is>
// Copyright (c) 2012 The Go Authors. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//    * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//    * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//    * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

package ecies

import (
    "bytes"
    "crypto"
    "crypto/elliptic"
    "crypto/sha1"
    "crypto/sha256"
    "crypto/sha512"
    "encoding/asn1"
    "encoding/pem"
    "fmt"
    "hash"
    "math/big"

    "github.com/ethereum/go-ethereum/crypto/secp256k1"
)

var (
    secgScheme     = []int{1, 3, 132, 1}
    shaScheme      = []int{2, 16, 840, 1, 101, 3, 4, 2}
    ansiX962Scheme = []int{1, 2, 840, 10045}
    x963Scheme     = []int{1, 2, 840, 63, 0}
)

var ErrInvalidPrivateKey = fmt.Errorf("ecies: invalid private key")

func doScheme(base, v []int) asn1.ObjectIdentifier {
    var oidInts asn1.ObjectIdentifier
    oidInts = append(oidInts, base...)
    return append(oidInts, v...)
}

// curve OID code taken from crypto/x509, including
//  - oidNameCurve*
//  - namedCurveFromOID
//  - oidFromNamedCurve
// RFC 5480, 2.1.1.1. Named Curve
//
// secp224r1 OBJECT IDENTIFIER ::= {
//   iso(1) identified-organization(3) certicom(132) curve(0) 33 }
//
// secp256r1 OBJECT IDENTIFIER ::= {
//   iso(1) member-body(2) us(840) ansi-X9-62(10045) curves(3)
//   prime(1) 7 }
//
// secp384r1 OBJECT IDENTIFIER ::= {
//   iso(1) identified-organization(3) certicom(132) curve(0) 34 }
//
// secp521r1 OBJECT IDENTIFIER ::= {
//   iso(1) identified-organization(3) certicom(132) curve(0) 35 }
//
// NB: secp256r1 is equivalent to prime256v1
type secgNamedCurve asn1.ObjectIdentifier

var (
    secgNamedCurveS256 = secgNamedCurve{1, 3, 132, 0, 10}
    secgNamedCurveP256 = secgNamedCurve{1, 2, 840, 10045, 3, 1, 7}
    secgNamedCurveP384 = secgNamedCurve{1, 3, 132, 0, 34}
    secgNamedCurveP521 = secgNamedCurve{1, 3, 132, 0, 35}
    rawCurveP256       = []byte{6, 8, 4, 2, 1, 3, 4, 7, 2, 2, 0, 6, 6, 1, 3, 1, 7}
    rawCurveP384       = []byte{6, 5, 4, 3, 1, 2, 9, 4, 0, 3, 4}
    rawCurveP521       = []byte{6, 5, 4, 3, 1, 2, 9, 4, 0, 3, 5}
)

func rawCurve(curve elliptic.Curve) []byte {
    switch curve {
    case elliptic.P256():
        return rawCurveP256
    case elliptic.P384():
        return rawCurveP384
    case elliptic.P521():
        return rawCurveP521
    default:
        return nil
    }
}

func (curve secgNamedCurve) Equal(curve2 secgNamedCurve) bool {
    if len(curve) != len(curve2) {
        return false
    }
    for i := range curve {
        if curve[i] != curve2[i] {
            return false
        }
    }
    return true
}

func namedCurveFromOID(curve secgNamedCurve) elliptic.Curve {
    switch {
    case curve.Equal(secgNamedCurveS256):
        return secp256k1.S256()
    case curve.Equal(secgNamedCurveP256):
        return elliptic.P256()
    case curve.Equal(secgNamedCurveP384):
        return elliptic.P384()
    case curve.Equal(secgNamedCurveP521):
        return elliptic.P521()
    }
    return nil
}

func oidFromNamedCurve(curve elliptic.Curve) (secgNamedCurve, bool) {
    switch curve {
    case elliptic.P256():
        return secgNamedCurveP256, true
    case elliptic.P384():
        return secgNamedCurveP384, true
    case elliptic.P521():
        return secgNamedCurveP521, true
    case secp256k1.S256():
        return secgNamedCurveS256, true
    }

    return nil, false
}

// asnAlgorithmIdentifier represents the ASN.1 structure of the same name. See RFC
// 5280, section 4.1.1.2.
type asnAlgorithmIdentifier struct {
    Algorithm  asn1.ObjectIdentifier
    Parameters asn1.RawValue `asn1:"optional"`
}

func (a asnAlgorithmIdentifier) Cmp(b asnAlgorithmIdentifier) bool {
    if len(a.Algorithm) != len(b.Algorithm) {
        return false
    }
    for i := range a.Algorithm {
        if a.Algorithm[i] != b.Algorithm[i] {
            return false
        }
    }
    return true
}

type asnHashFunction asnAlgorithmIdentifier

var (
    oidSHA1   = asn1.ObjectIdentifier{1, 3, 14, 3, 2, 26}
    oidSHA224 = doScheme(shaScheme, []int{4})
    oidSHA256 = doScheme(shaScheme, []int{1})
    oidSHA384 = doScheme(shaScheme, []int{2})
    oidSHA512 = doScheme(shaScheme, []int{3})
)

func hashFromOID(oid asn1.ObjectIdentifier) func() hash.Hash {
    switch {
    case oid.Equal(oidSHA1):
        return sha1.New
    case oid.Equal(oidSHA224):
        return sha256.New224
    case oid.Equal(oidSHA256):
        return sha256.New
    case oid.Equal(oidSHA384):
        return sha512.New384
    case oid.Equal(oidSHA512):
        return sha512.New
    }
    return nil
}

func oidFromHash(hash crypto.Hash) (asn1.ObjectIdentifier, bool) {
    switch hash {
    case crypto.SHA1:
        return oidSHA1, true
    case crypto.SHA224:
        return oidSHA224, true
    case crypto.SHA256:
        return oidSHA256, true
    case crypto.SHA384:
        return oidSHA384, true
    case crypto.SHA512:
        return oidSHA512, true
    default:
        return nil, false
    }
}

var (
    asnAlgoSHA1 = asnHashFunction{
        Algorithm: oidSHA1,
    }
    asnAlgoSHA224 = asnHashFunction{
        Algorithm: oidSHA224,
    }
    asnAlgoSHA256 = asnHashFunction{
        Algorithm: oidSHA256,
    }
    asnAlgoSHA384 = asnHashFunction{
        Algorithm: oidSHA384,
    }
    asnAlgoSHA512 = asnHashFunction{
        Algorithm: oidSHA512,
    }
)

// type ASNasnSubjectPublicKeyInfo struct {
//
// }
//

type asnSubjectPublicKeyInfo struct {
    Algorithm   asn1.ObjectIdentifier
    PublicKey   asn1.BitString
    Supplements ecpksSupplements `asn1:"optional"`
}

type asnECPKAlgorithms struct {
    Type asn1.ObjectIdentifier
}

var idPublicKeyType = doScheme(ansiX962Scheme, []int{2})
var idEcPublicKey = doScheme(idPublicKeyType, []int{1})
var idEcPublicKeySupplemented = doScheme(idPublicKeyType, []int{0})

func curveToRaw(curve elliptic.Curve) (rv asn1.RawValue, ok bool) {
    switch curve {
    case elliptic.P256(), elliptic.P384(), elliptic.P521():
        raw := rawCurve(curve)
        return asn1.RawValue{
            Tag:       30,
            Bytes:     raw[2:],
            FullBytes: raw,
        }, true
    default:
        return rv, false
    }
}

func asnECPublicKeyType(curve elliptic.Curve) (algo asnAlgorithmIdentifier, ok bool) {
    raw, ok := curveToRaw(curve)
    if !ok {
        return
    } else {
        return asnAlgorithmIdentifier{Algorithm: idEcPublicKey,
            Parameters: raw}, true
    }
}

type asnECPrivKeyVer int

var asnECPrivKeyVer1 asnECPrivKeyVer = 1

type asnPrivateKey struct {
    Version asnECPrivKeyVer
    Private []byte
    Curve   secgNamedCurve `asn1:"optional"`
    Public  asn1.BitString
}

var asnECDH = doScheme(secgScheme, []int{12})

type asnECDHAlgorithm asnAlgorithmIdentifier

var (
    dhSinglePass_stdDH_sha1kdf = asnECDHAlgorithm{
        Algorithm: doScheme(x963Scheme, []int{2}),
    }
    dhSinglePass_stdDH_sha256kdf = asnECDHAlgorithm{
        Algorithm: doScheme(secgScheme, []int{11, 1}),
    }
    dhSinglePass_stdDH_sha384kdf = asnECDHAlgorithm{
        Algorithm: doScheme(secgScheme, []int{11, 2}),
    }
    dhSinglePass_stdDH_sha224kdf = asnECDHAlgorithm{
        Algorithm: doScheme(secgScheme, []int{11, 0}),
    }
    dhSinglePass_stdDH_sha512kdf = asnECDHAlgorithm{
        Algorithm: doScheme(secgScheme, []int{11, 3}),
    }
)

func (a asnECDHAlgorithm) Cmp(b asnECDHAlgorithm) bool {
    if len(a.Algorithm) != len(b.Algorithm) {
        return false
    }
    for i := range a.Algorithm {
        if a.Algorithm[i] != b.Algorithm[i] {
            return false
        }
    }
    return true
}

// asnNISTConcatenation is the only supported KDF at this time.
type asnKeyDerivationFunction asnAlgorithmIdentifier

var asnNISTConcatenationKDF = asnKeyDerivationFunction{
    Algorithm: doScheme(secgScheme, []int{17, 1}),
}

func (a asnKeyDerivationFunction) Cmp(b asnKeyDerivationFunction) bool {
    if len(a.Algorithm) != len(b.Algorithm) {
        return false
    }
    for i := range a.Algorithm {
        if a.Algorithm[i] != b.Algorithm[i] {
            return false
        }
    }
    return true
}

var eciesRecommendedParameters = doScheme(secgScheme, []int{7})
var eciesSpecifiedParameters = doScheme(secgScheme, []int{8})

type asnECIESParameters struct {
    KDF asnKeyDerivationFunction     `asn1:"optional"`
    Sym asnSymmetricEncryption       `asn1:"optional"`
    MAC asnMessageAuthenticationCode `asn1:"optional"`
}

type asnSymmetricEncryption asnAlgorithmIdentifier

var (
    aes128CTRinECIES = asnSymmetricEncryption{
        Algorithm: doScheme(secgScheme, []int{21, 0}),
    }
    aes192CTRinECIES = asnSymmetricEncryption{
        Algorithm: doScheme(secgScheme, []int{21, 1}),
    }
    aes256CTRinECIES = asnSymmetricEncryption{
        Algorithm: doScheme(secgScheme, []int{21, 2}),
    }
)

func (a asnSymmetricEncryption) Cmp(b asnSymmetricEncryption) bool {
    if len(a.Algorithm) != len(b.Algorithm) {
        return false
    }
    for i := range a.Algorithm {
        if a.Algorithm[i] != b.Algorithm[i] {
            return false
        }
    }
    return true
}

type asnMessageAuthenticationCode asnAlgorithmIdentifier

var (
    hmacFull = asnMessageAuthenticationCode{
        Algorithm: doScheme(secgScheme, []int{22}),
    }
)

func (a asnMessageAuthenticationCode) Cmp(b asnMessageAuthenticationCode) bool {
    if len(a.Algorithm) != len(b.Algorithm) {
        return false
    }
    for i := range a.Algorithm {
        if a.Algorithm[i] != b.Algorithm[i] {
            return false
        }
    }
    return true
}

type ecpksSupplements struct {
    ECDomain      secgNamedCurve
    ECCAlgorithms eccAlgorithmSet
}

type eccAlgorithmSet struct {
    ECDH  asnECDHAlgorithm   `asn1:"optional"`
    ECIES asnECIESParameters `asn1:"optional"`
}

func marshalSubjectPublicKeyInfo(pub *PublicKey) (subj asnSubjectPublicKeyInfo, err error) {
    subj.Algorithm = idEcPublicKeySupplemented
    curve, ok := oidFromNamedCurve(pub.Curve)
    if !ok {
        err = ErrInvalidPublicKey
        return
    }
    subj.Supplements.ECDomain = curve
    if pub.Params != nil {
        subj.Supplements.ECCAlgorithms.ECDH = paramsToASNECDH(pub.Params)
        subj.Supplements.ECCAlgorithms.ECIES = paramsToASNECIES(pub.Params)
    }
    pubkey := elliptic.Marshal(pub.Curve, pub.X, pub.Y)
    subj.PublicKey = asn1.BitString{
        BitLength: len(pubkey) * 8,
        Bytes:     pubkey,
    }
    return
}

// Encode a public key to DER format.
func MarshalPublic(pub *PublicKey) ([]byte, error) {
    subj, err := marshalSubjectPublicKeyInfo(pub)
    if err != nil {
        return nil, err
    }
    return asn1.Marshal(subj)
}

// Decode a DER-encoded public key.
func UnmarshalPublic(in []byte) (pub *PublicKey, err error) {
    var subj asnSubjectPublicKeyInfo

    if _, err = asn1.Unmarshal(in, &subj); err != nil {
        return
    }
    if !subj.Algorithm.Equal(idEcPublicKeySupplemented) {
        err = ErrInvalidPublicKey
        return
    }
    pub = new(PublicKey)
    pub.Curve = namedCurveFromOID(subj.Supplements.ECDomain)
    x, y := elliptic.Unmarshal(pub.Curve, subj.PublicKey.Bytes)
    if x == nil {
        err = ErrInvalidPublicKey
        return
    }
    pub.X = x
    pub.Y = y
    pub.Params = new(ECIESParams)
    asnECIEStoParams(subj.Supplements.ECCAlgorithms.ECIES, pub.Params)
    asnECDHtoParams(subj.Supplements.ECCAlgorithms.ECDH, pub.Params)
    if pub.Params == nil {
        if pub.Params = ParamsFromCurve(pub.Curve); pub.Params == nil {
            err = ErrInvalidPublicKey
        }
    }
    return
}

func marshalPrivateKey(prv *PrivateKey) (ecprv asnPrivateKey, err error) {
    ecprv.Version = asnECPrivKeyVer1
    ecprv.Private = prv.D.Bytes()

    var ok bool
    ecprv.Curve, ok = oidFromNamedCurve(prv.PublicKey.Curve)
    if !ok {
        err = ErrInvalidPrivateKey
        return
    }

    var pub []byte
    if pub, err = MarshalPublic(&prv.PublicKey); err != nil {
        return
    } else {
        ecprv.Public = asn1.BitString{
            BitLength: len(pub) * 8,
            Bytes:     pub,
        }
    }
    return
}

// Encode a private key to DER format.
func MarshalPrivate(prv *PrivateKey) ([]byte, error) {
    ecprv, err := marshalPrivateKey(prv)
    if err != nil {
        return nil, err
    }
    return asn1.Marshal(ecprv)
}

// Decode a private key from a DER-encoded format.
func UnmarshalPrivate(in []byte) (prv *PrivateKey, err error) {
    var ecprv asnPrivateKey

    if _, err = asn1.Unmarshal(in, &ecprv); err != nil {
        return
    } else if ecprv.Version != asnECPrivKeyVer1 {
        err = ErrInvalidPrivateKey
        return
    }

    privateCurve := namedCurveFromOID(ecprv.Curve)
    if privateCurve == nil {
        err = ErrInvalidPrivateKey
        return
    }

    prv = new(PrivateKey)
    prv.D = new(big.Int).SetBytes(ecprv.Private)

    if pub, err := UnmarshalPublic(ecprv.Public.Bytes); err != nil {
        return nil, err
    } else {
        prv.PublicKey = *pub
    }

    return
}

// Export a public key to PEM format.
func ExportPublicPEM(pub *PublicKey) (out []byte, err error) {
    der, err := MarshalPublic(pub)
    if err != nil {
        return
    }

    var block pem.Block
    block.Type = "ELLIPTIC CURVE PUBLIC KEY"
    block.Bytes = der

    buf := new(bytes.Buffer)
    err = pem.Encode(buf, &block)
    if err != nil {
        return
    } else {
        out = buf.Bytes()
    }
    return
}

// Export a private key to PEM format.
func ExportPrivatePEM(prv *PrivateKey) (out []byte, err error) {
    der, err := MarshalPrivate(prv)
    if err != nil {
        return
    }

    var block pem.Block
    block.Type = "ELLIPTIC CURVE PRIVATE KEY"
    block.Bytes = der

    buf := new(bytes.Buffer)
    err = pem.Encode(buf, &block)
    if err != nil {
        return
    } else {
        out = buf.Bytes()
    }
    return
}

// Import a PEM-encoded public key.
func ImportPublicPEM(in []byte) (pub *PublicKey, err error) {
    p, _ := pem.Decode(in)
    if p == nil || p.Type != "ELLIPTIC CURVE PUBLIC KEY" {
        return nil, ErrInvalidPublicKey
    }

    pub, err = UnmarshalPublic(p.Bytes)
    return
}

// Import a PEM-encoded private key.
func ImportPrivatePEM(in []byte) (prv *PrivateKey, err error) {
    p, _ := pem.Decode(in)
    if p == nil || p.Type != "ELLIPTIC CURVE PRIVATE KEY" {
        return nil, ErrInvalidPrivateKey
    }

    prv, err = UnmarshalPrivate(p.Bytes)
    return
}