aboutsummaryrefslogblamecommitdiffstats
path: root/crypto/bn256/twist.go
blob: 1e052456e557bf944baee95984d47ae05bdb7c20 (plain) (tree)
























































































































































































































































                                                                                                               
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package bn256

import (
    "math/big"
)

// twistPoint implements the elliptic curve y²=x³+3/ξ over GF(p²). Points are
// kept in Jacobian form and t=z² when valid. The group G₂ is the set of
// n-torsion points of this curve over GF(p²) (where n = Order)
type twistPoint struct {
    x, y, z, t *gfP2
}

var twistB = &gfP2{
    bigFromBase10("266929791119991161246907387137283842545076965332900288569378510910307636690"),
    bigFromBase10("19485874751759354771024239261021720505790618469301721065564631296452457478373"),
}

// twistGen is the generator of group G₂.
var twistGen = &twistPoint{
    &gfP2{
        bigFromBase10("11559732032986387107991004021392285783925812861821192530917403151452391805634"),
        bigFromBase10("10857046999023057135944570762232829481370756359578518086990519993285655852781"),
    },
    &gfP2{
        bigFromBase10("4082367875863433681332203403145435568316851327593401208105741076214120093531"),
        bigFromBase10("8495653923123431417604973247489272438418190587263600148770280649306958101930"),
    },
    &gfP2{
        bigFromBase10("0"),
        bigFromBase10("1"),
    },
    &gfP2{
        bigFromBase10("0"),
        bigFromBase10("1"),
    },
}

func newTwistPoint(pool *bnPool) *twistPoint {
    return &twistPoint{
        newGFp2(pool),
        newGFp2(pool),
        newGFp2(pool),
        newGFp2(pool),
    }
}

func (c *twistPoint) String() string {
    return "(" + c.x.String() + ", " + c.y.String() + ", " + c.z.String() + ")"
}

func (c *twistPoint) Put(pool *bnPool) {
    c.x.Put(pool)
    c.y.Put(pool)
    c.z.Put(pool)
    c.t.Put(pool)
}

func (c *twistPoint) Set(a *twistPoint) {
    c.x.Set(a.x)
    c.y.Set(a.y)
    c.z.Set(a.z)
    c.t.Set(a.t)
}

// IsOnCurve returns true iff c is on the curve where c must be in affine form.
func (c *twistPoint) IsOnCurve() bool {
    pool := new(bnPool)
    yy := newGFp2(pool).Square(c.y, pool)
    xxx := newGFp2(pool).Square(c.x, pool)
    xxx.Mul(xxx, c.x, pool)
    yy.Sub(yy, xxx)
    yy.Sub(yy, twistB)
    yy.Minimal()
    return yy.x.Sign() == 0 && yy.y.Sign() == 0
}

func (c *twistPoint) SetInfinity() {
    c.z.SetZero()
}

func (c *twistPoint) IsInfinity() bool {
    return c.z.IsZero()
}

func (c *twistPoint) Add(a, b *twistPoint, pool *bnPool) {
    // For additional comments, see the same function in curve.go.

    if a.IsInfinity() {
        c.Set(b)
        return
    }
    if b.IsInfinity() {
        c.Set(a)
        return
    }

    // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3
    z1z1 := newGFp2(pool).Square(a.z, pool)
    z2z2 := newGFp2(pool).Square(b.z, pool)
    u1 := newGFp2(pool).Mul(a.x, z2z2, pool)
    u2 := newGFp2(pool).Mul(b.x, z1z1, pool)

    t := newGFp2(pool).Mul(b.z, z2z2, pool)
    s1 := newGFp2(pool).Mul(a.y, t, pool)

    t.Mul(a.z, z1z1, pool)
    s2 := newGFp2(pool).Mul(b.y, t, pool)

    h := newGFp2(pool).Sub(u2, u1)
    xEqual := h.IsZero()

    t.Add(h, h)
    i := newGFp2(pool).Square(t, pool)
    j := newGFp2(pool).Mul(h, i, pool)

    t.Sub(s2, s1)
    yEqual := t.IsZero()
    if xEqual && yEqual {
        c.Double(a, pool)
        return
    }
    r := newGFp2(pool).Add(t, t)

    v := newGFp2(pool).Mul(u1, i, pool)

    t4 := newGFp2(pool).Square(r, pool)
    t.Add(v, v)
    t6 := newGFp2(pool).Sub(t4, j)
    c.x.Sub(t6, t)

    t.Sub(v, c.x)       // t7
    t4.Mul(s1, j, pool) // t8
    t6.Add(t4, t4)      // t9
    t4.Mul(r, t, pool)  // t10
    c.y.Sub(t4, t6)

    t.Add(a.z, b.z)    // t11
    t4.Square(t, pool) // t12
    t.Sub(t4, z1z1)    // t13
    t4.Sub(t, z2z2)    // t14
    c.z.Mul(t4, h, pool)

    z1z1.Put(pool)
    z2z2.Put(pool)
    u1.Put(pool)
    u2.Put(pool)
    t.Put(pool)
    s1.Put(pool)
    s2.Put(pool)
    h.Put(pool)
    i.Put(pool)
    j.Put(pool)
    r.Put(pool)
    v.Put(pool)
    t4.Put(pool)
    t6.Put(pool)
}

func (c *twistPoint) Double(a *twistPoint, pool *bnPool) {
    // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
    A := newGFp2(pool).Square(a.x, pool)
    B := newGFp2(pool).Square(a.y, pool)
    C := newGFp2(pool).Square(B, pool)

    t := newGFp2(pool).Add(a.x, B)
    t2 := newGFp2(pool).Square(t, pool)
    t.Sub(t2, A)
    t2.Sub(t, C)
    d := newGFp2(pool).Add(t2, t2)
    t.Add(A, A)
    e := newGFp2(pool).Add(t, A)
    f := newGFp2(pool).Square(e, pool)

    t.Add(d, d)
    c.x.Sub(f, t)

    t.Add(C, C)
    t2.Add(t, t)
    t.Add(t2, t2)
    c.y.Sub(d, c.x)
    t2.Mul(e, c.y, pool)
    c.y.Sub(t2, t)

    t.Mul(a.y, a.z, pool)
    c.z.Add(t, t)

    A.Put(pool)
    B.Put(pool)
    C.Put(pool)
    t.Put(pool)
    t2.Put(pool)
    d.Put(pool)
    e.Put(pool)
    f.Put(pool)
}

func (c *twistPoint) Mul(a *twistPoint, scalar *big.Int, pool *bnPool) *twistPoint {
    sum := newTwistPoint(pool)
    sum.SetInfinity()
    t := newTwistPoint(pool)

    for i := scalar.BitLen(); i >= 0; i-- {
        t.Double(sum, pool)
        if scalar.Bit(i) != 0 {
            sum.Add(t, a, pool)
        } else {
            sum.Set(t)
        }
    }

    c.Set(sum)
    sum.Put(pool)
    t.Put(pool)
    return c
}

func (c *twistPoint) MakeAffine(pool *bnPool) *twistPoint {
    if c.z.IsOne() {
        return c
    }

    zInv := newGFp2(pool).Invert(c.z, pool)
    t := newGFp2(pool).Mul(c.y, zInv, pool)
    zInv2 := newGFp2(pool).Square(zInv, pool)
    c.y.Mul(t, zInv2, pool)
    t.Mul(c.x, zInv2, pool)
    c.x.Set(t)
    c.z.SetOne()
    c.t.SetOne()

    zInv.Put(pool)
    t.Put(pool)
    zInv2.Put(pool)

    return c
}

func (c *twistPoint) Negative(a *twistPoint, pool *bnPool) {
    c.x.Set(a.x)
    c.y.SetZero()
    c.y.Sub(c.y, a.y)
    c.z.Set(a.z)
    c.t.SetZero()
}