aboutsummaryrefslogblamecommitdiffstats
path: root/crypto/bn256/curve.go
blob: 93f858def70d152904fa4ed14230956791161b81 (plain) (tree)





















































































































































































































































































                                                                                                    
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package bn256

import (
    "math/big"
)

// curvePoint implements the elliptic curve y²=x³+3. Points are kept in
// Jacobian form and t=z² when valid. G₁ is the set of points of this curve on
// GF(p).
type curvePoint struct {
    x, y, z, t *big.Int
}

var curveB = new(big.Int).SetInt64(3)

// curveGen is the generator of G₁.
var curveGen = &curvePoint{
    new(big.Int).SetInt64(1),
    new(big.Int).SetInt64(-2),
    new(big.Int).SetInt64(1),
    new(big.Int).SetInt64(1),
}

func newCurvePoint(pool *bnPool) *curvePoint {
    return &curvePoint{
        pool.Get(),
        pool.Get(),
        pool.Get(),
        pool.Get(),
    }
}

func (c *curvePoint) String() string {
    c.MakeAffine(new(bnPool))
    return "(" + c.x.String() + ", " + c.y.String() + ")"
}

func (c *curvePoint) Put(pool *bnPool) {
    pool.Put(c.x)
    pool.Put(c.y)
    pool.Put(c.z)
    pool.Put(c.t)
}

func (c *curvePoint) Set(a *curvePoint) {
    c.x.Set(a.x)
    c.y.Set(a.y)
    c.z.Set(a.z)
    c.t.Set(a.t)
}

// IsOnCurve returns true iff c is on the curve where c must be in affine form.
func (c *curvePoint) IsOnCurve() bool {
    yy := new(big.Int).Mul(c.y, c.y)
    xxx := new(big.Int).Mul(c.x, c.x)
    xxx.Mul(xxx, c.x)
    yy.Sub(yy, xxx)
    yy.Sub(yy, curveB)
    if yy.Sign() < 0 || yy.Cmp(P) >= 0 {
        yy.Mod(yy, P)
    }
    return yy.Sign() == 0
}

func (c *curvePoint) SetInfinity() {
    c.z.SetInt64(0)
}

func (c *curvePoint) IsInfinity() bool {
    return c.z.Sign() == 0
}

func (c *curvePoint) Add(a, b *curvePoint, pool *bnPool) {
    if a.IsInfinity() {
        c.Set(b)
        return
    }
    if b.IsInfinity() {
        c.Set(a)
        return
    }

    // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3

    // Normalize the points by replacing a = [x1:y1:z1] and b = [x2:y2:z2]
    // by [u1:s1:z1·z2] and [u2:s2:z1·z2]
    // where u1 = x1·z2², s1 = y1·z2³ and u1 = x2·z1², s2 = y2·z1³
    z1z1 := pool.Get().Mul(a.z, a.z)
    z1z1.Mod(z1z1, P)
    z2z2 := pool.Get().Mul(b.z, b.z)
    z2z2.Mod(z2z2, P)
    u1 := pool.Get().Mul(a.x, z2z2)
    u1.Mod(u1, P)
    u2 := pool.Get().Mul(b.x, z1z1)
    u2.Mod(u2, P)

    t := pool.Get().Mul(b.z, z2z2)
    t.Mod(t, P)
    s1 := pool.Get().Mul(a.y, t)
    s1.Mod(s1, P)

    t.Mul(a.z, z1z1)
    t.Mod(t, P)
    s2 := pool.Get().Mul(b.y, t)
    s2.Mod(s2, P)

    // Compute x = (2h)²(s²-u1-u2)
    // where s = (s2-s1)/(u2-u1) is the slope of the line through
    // (u1,s1) and (u2,s2). The extra factor 2h = 2(u2-u1) comes from the value of z below.
    // This is also:
    // 4(s2-s1)² - 4h²(u1+u2) = 4(s2-s1)² - 4h³ - 4h²(2u1)
    //                        = r² - j - 2v
    // with the notations below.
    h := pool.Get().Sub(u2, u1)
    xEqual := h.Sign() == 0

    t.Add(h, h)
    // i = 4h²
    i := pool.Get().Mul(t, t)
    i.Mod(i, P)
    // j = 4h³
    j := pool.Get().Mul(h, i)
    j.Mod(j, P)

    t.Sub(s2, s1)
    yEqual := t.Sign() == 0
    if xEqual && yEqual {
        c.Double(a, pool)
        return
    }
    r := pool.Get().Add(t, t)

    v := pool.Get().Mul(u1, i)
    v.Mod(v, P)

    // t4 = 4(s2-s1)²
    t4 := pool.Get().Mul(r, r)
    t4.Mod(t4, P)
    t.Add(v, v)
    t6 := pool.Get().Sub(t4, j)
    c.x.Sub(t6, t)

    // Set y = -(2h)³(s1 + s*(x/4h²-u1))
    // This is also
    // y = - 2·s1·j - (s2-s1)(2x - 2i·u1) = r(v-x) - 2·s1·j
    t.Sub(v, c.x) // t7
    t4.Mul(s1, j) // t8
    t4.Mod(t4, P)
    t6.Add(t4, t4) // t9
    t4.Mul(r, t)   // t10
    t4.Mod(t4, P)
    c.y.Sub(t4, t6)

    // Set z = 2(u2-u1)·z1·z2 = 2h·z1·z2
    t.Add(a.z, b.z) // t11
    t4.Mul(t, t)    // t12
    t4.Mod(t4, P)
    t.Sub(t4, z1z1) // t13
    t4.Sub(t, z2z2) // t14
    c.z.Mul(t4, h)
    c.z.Mod(c.z, P)

    pool.Put(z1z1)
    pool.Put(z2z2)
    pool.Put(u1)
    pool.Put(u2)
    pool.Put(t)
    pool.Put(s1)
    pool.Put(s2)
    pool.Put(h)
    pool.Put(i)
    pool.Put(j)
    pool.Put(r)
    pool.Put(v)
    pool.Put(t4)
    pool.Put(t6)
}

func (c *curvePoint) Double(a *curvePoint, pool *bnPool) {
    // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
    A := pool.Get().Mul(a.x, a.x)
    A.Mod(A, P)
    B := pool.Get().Mul(a.y, a.y)
    B.Mod(B, P)
    C := pool.Get().Mul(B, B)
    C.Mod(C, P)

    t := pool.Get().Add(a.x, B)
    t2 := pool.Get().Mul(t, t)
    t2.Mod(t2, P)
    t.Sub(t2, A)
    t2.Sub(t, C)
    d := pool.Get().Add(t2, t2)
    t.Add(A, A)
    e := pool.Get().Add(t, A)
    f := pool.Get().Mul(e, e)
    f.Mod(f, P)

    t.Add(d, d)
    c.x.Sub(f, t)

    t.Add(C, C)
    t2.Add(t, t)
    t.Add(t2, t2)
    c.y.Sub(d, c.x)
    t2.Mul(e, c.y)
    t2.Mod(t2, P)
    c.y.Sub(t2, t)

    t.Mul(a.y, a.z)
    t.Mod(t, P)
    c.z.Add(t, t)

    pool.Put(A)
    pool.Put(B)
    pool.Put(C)
    pool.Put(t)
    pool.Put(t2)
    pool.Put(d)
    pool.Put(e)
    pool.Put(f)
}

func (c *curvePoint) Mul(a *curvePoint, scalar *big.Int, pool *bnPool) *curvePoint {
    sum := newCurvePoint(pool)
    sum.SetInfinity()
    t := newCurvePoint(pool)

    for i := scalar.BitLen(); i >= 0; i-- {
        t.Double(sum, pool)
        if scalar.Bit(i) != 0 {
            sum.Add(t, a, pool)
        } else {
            sum.Set(t)
        }
    }

    c.Set(sum)
    sum.Put(pool)
    t.Put(pool)
    return c
}

func (c *curvePoint) MakeAffine(pool *bnPool) *curvePoint {
    if words := c.z.Bits(); len(words) == 1 && words[0] == 1 {
        return c
    }

    zInv := pool.Get().ModInverse(c.z, P)
    t := pool.Get().Mul(c.y, zInv)
    t.Mod(t, P)
    zInv2 := pool.Get().Mul(zInv, zInv)
    zInv2.Mod(zInv2, P)
    c.y.Mul(t, zInv2)
    c.y.Mod(c.y, P)
    t.Mul(c.x, zInv2)
    t.Mod(t, P)
    c.x.Set(t)
    c.z.SetInt64(1)
    c.t.SetInt64(1)

    pool.Put(zInv)
    pool.Put(t)
    pool.Put(zInv2)

    return c
}

func (c *curvePoint) Negative(a *curvePoint) {
    c.x.Set(a.x)
    c.y.Neg(a.y)
    c.z.Set(a.z)
    c.t.SetInt64(0)
}