aboutsummaryrefslogblamecommitdiffstats
path: root/crypto/bn256/cloudflare/curve.go
blob: 18e9b38f3f5f0823dec2dd346b667da813e9bae7 (plain) (tree)
























































































































































































                                                                                                    








                                                                      
                         
                          
 
                                                    
                             
                                        
                                  

                                                           


































                                         
package bn256

import (
    "math/big"
)

// curvePoint implements the elliptic curve y²=x³+3. Points are kept in Jacobian
// form and t=z² when valid. G₁ is the set of points of this curve on GF(p).
type curvePoint struct {
    x, y, z, t gfP
}

var curveB = newGFp(3)

// curveGen is the generator of G₁.
var curveGen = &curvePoint{
    x: *newGFp(1),
    y: *newGFp(2),
    z: *newGFp(1),
    t: *newGFp(1),
}

func (c *curvePoint) String() string {
    c.MakeAffine()
    x, y := &gfP{}, &gfP{}
    montDecode(x, &c.x)
    montDecode(y, &c.y)
    return "(" + x.String() + ", " + y.String() + ")"
}

func (c *curvePoint) Set(a *curvePoint) {
    c.x.Set(&a.x)
    c.y.Set(&a.y)
    c.z.Set(&a.z)
    c.t.Set(&a.t)
}

// IsOnCurve returns true iff c is on the curve.
func (c *curvePoint) IsOnCurve() bool {
    c.MakeAffine()
    if c.IsInfinity() {
        return true
    }

    y2, x3 := &gfP{}, &gfP{}
    gfpMul(y2, &c.y, &c.y)
    gfpMul(x3, &c.x, &c.x)
    gfpMul(x3, x3, &c.x)
    gfpAdd(x3, x3, curveB)

    return *y2 == *x3
}

func (c *curvePoint) SetInfinity() {
    c.x = gfP{0}
    c.y = *newGFp(1)
    c.z = gfP{0}
    c.t = gfP{0}
}

func (c *curvePoint) IsInfinity() bool {
    return c.z == gfP{0}
}

func (c *curvePoint) Add(a, b *curvePoint) {
    if a.IsInfinity() {
        c.Set(b)
        return
    }
    if b.IsInfinity() {
        c.Set(a)
        return
    }

    // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3

    // Normalize the points by replacing a = [x1:y1:z1] and b = [x2:y2:z2]
    // by [u1:s1:z1·z2] and [u2:s2:z1·z2]
    // where u1 = x1·z2², s1 = y1·z2³ and u1 = x2·z1², s2 = y2·z1³
    z12, z22 := &gfP{}, &gfP{}
    gfpMul(z12, &a.z, &a.z)
    gfpMul(z22, &b.z, &b.z)

    u1, u2 := &gfP{}, &gfP{}
    gfpMul(u1, &a.x, z22)
    gfpMul(u2, &b.x, z12)

    t, s1 := &gfP{}, &gfP{}
    gfpMul(t, &b.z, z22)
    gfpMul(s1, &a.y, t)

    s2 := &gfP{}
    gfpMul(t, &a.z, z12)
    gfpMul(s2, &b.y, t)

    // Compute x = (2h)²(s²-u1-u2)
    // where s = (s2-s1)/(u2-u1) is the slope of the line through
    // (u1,s1) and (u2,s2). The extra factor 2h = 2(u2-u1) comes from the value of z below.
    // This is also:
    // 4(s2-s1)² - 4h²(u1+u2) = 4(s2-s1)² - 4h³ - 4h²(2u1)
    //                        = r² - j - 2v
    // with the notations below.
    h := &gfP{}
    gfpSub(h, u2, u1)
    xEqual := *h == gfP{0}

    gfpAdd(t, h, h)
    // i = 4h²
    i := &gfP{}
    gfpMul(i, t, t)
    // j = 4h³
    j := &gfP{}
    gfpMul(j, h, i)

    gfpSub(t, s2, s1)
    yEqual := *t == gfP{0}
    if xEqual && yEqual {
        c.Double(a)
        return
    }
    r := &gfP{}
    gfpAdd(r, t, t)

    v := &gfP{}
    gfpMul(v, u1, i)

    // t4 = 4(s2-s1)²
    t4, t6 := &gfP{}, &gfP{}
    gfpMul(t4, r, r)
    gfpAdd(t, v, v)
    gfpSub(t6, t4, j)

    gfpSub(&c.x, t6, t)

    // Set y = -(2h)³(s1 + s*(x/4h²-u1))
    // This is also
    // y = - 2·s1·j - (s2-s1)(2x - 2i·u1) = r(v-x) - 2·s1·j
    gfpSub(t, v, &c.x) // t7
    gfpMul(t4, s1, j)  // t8
    gfpAdd(t6, t4, t4) // t9
    gfpMul(t4, r, t)   // t10
    gfpSub(&c.y, t4, t6)

    // Set z = 2(u2-u1)·z1·z2 = 2h·z1·z2
    gfpAdd(t, &a.z, &b.z) // t11
    gfpMul(t4, t, t)      // t12
    gfpSub(t, t4, z12)    // t13
    gfpSub(t4, t, z22)    // t14
    gfpMul(&c.z, t4, h)
}

func (c *curvePoint) Double(a *curvePoint) {
    // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
    A, B, C := &gfP{}, &gfP{}, &gfP{}
    gfpMul(A, &a.x, &a.x)
    gfpMul(B, &a.y, &a.y)
    gfpMul(C, B, B)

    t, t2 := &gfP{}, &gfP{}
    gfpAdd(t, &a.x, B)
    gfpMul(t2, t, t)
    gfpSub(t, t2, A)
    gfpSub(t2, t, C)

    d, e, f := &gfP{}, &gfP{}, &gfP{}
    gfpAdd(d, t2, t2)
    gfpAdd(t, A, A)
    gfpAdd(e, t, A)
    gfpMul(f, e, e)

    gfpAdd(t, d, d)
    gfpSub(&c.x, f, t)

    gfpAdd(t, C, C)
    gfpAdd(t2, t, t)
    gfpAdd(t, t2, t2)
    gfpSub(&c.y, d, &c.x)
    gfpMul(t2, e, &c.y)
    gfpSub(&c.y, t2, t)

    gfpMul(t, &a.y, &a.z)
    gfpAdd(&c.z, t, t)
}

func (c *curvePoint) Mul(a *curvePoint, scalar *big.Int) {
    precomp := [1 << 2]*curvePoint{nil, {}, {}, {}}
    precomp[1].Set(a)
    precomp[2].Set(a)
    gfpMul(&precomp[2].x, &precomp[2].x, xiTo2PSquaredMinus2Over3)
    precomp[3].Add(precomp[1], precomp[2])

    multiScalar := curveLattice.Multi(scalar)

    sum := &curvePoint{}
    sum.SetInfinity()
    t := &curvePoint{}

    for i := len(multiScalar) - 1; i >= 0; i-- {
        t.Double(sum)
        if multiScalar[i] == 0 {
            sum.Set(t)
        } else {
            sum.Add(t, precomp[multiScalar[i]])
        }
    }
    c.Set(sum)
}

func (c *curvePoint) MakeAffine() {
    if c.z == *newGFp(1) {
        return
    } else if c.z == *newGFp(0) {
        c.x = gfP{0}
        c.y = *newGFp(1)
        c.t = gfP{0}
        return
    }

    zInv := &gfP{}
    zInv.Invert(&c.z)

    t, zInv2 := &gfP{}, &gfP{}
    gfpMul(t, &c.y, zInv)
    gfpMul(zInv2, zInv, zInv)

    gfpMul(&c.x, &c.x, zInv2)
    gfpMul(&c.y, t, zInv2)

    c.z = *newGFp(1)
    c.t = *newGFp(1)
}

func (c *curvePoint) Neg(a *curvePoint) {
    c.x.Set(&a.x)
    gfpNeg(&c.y, &a.y)
    c.z.Set(&a.z)
    c.t = gfP{0}
}