1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
|
/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @author Christian <c@ethdev.com>
* @date 2014
* Framework for executing contracts and testing them using RPC.
*/
#pragma once
#include <test/Options.h>
#include <test/RPCSession.h>
#include <libsolidity/interface/EVMVersion.h>
#include <libdevcore/FixedHash.h>
#include <libdevcore/SHA3.h>
#include <functional>
namespace dev
{
namespace test
{
using rational = boost::rational<dev::bigint>;
/// An Ethereum address: 20 bytes.
/// @NOTE This is not endian-specific; it's just a bunch of bytes.
using Address = h160;
// The various denominations; here for ease of use where needed within code.
static const u256 wei = 1;
static const u256 shannon = u256("1000000000");
static const u256 szabo = shannon * 1000;
static const u256 finney = szabo * 1000;
static const u256 ether = finney * 1000;
class ExecutionFramework
{
public:
ExecutionFramework();
virtual ~ExecutionFramework() = default;
virtual bytes const& compileAndRunWithoutCheck(
std::string const& _sourceCode,
u256 const& _value = 0,
std::string const& _contractName = "",
bytes const& _arguments = bytes(),
std::map<std::string, Address> const& _libraryAddresses = std::map<std::string, Address>()
) = 0;
bytes const& compileAndRun(
std::string const& _sourceCode,
u256 const& _value = 0,
std::string const& _contractName = "",
bytes const& _arguments = bytes(),
std::map<std::string, Address> const& _libraryAddresses = std::map<std::string, Address>()
)
{
compileAndRunWithoutCheck(_sourceCode, _value, _contractName, _arguments, _libraryAddresses);
BOOST_REQUIRE(!m_output.empty());
return m_output;
}
bytes const& callFallbackWithValue(u256 const& _value)
{
sendMessage(bytes(), false, _value);
return m_output;
}
bytes const & callFallback()
{
return callFallbackWithValue(0);
}
bytes const& callContractFunctionWithValueNoEncoding(std::string _sig, u256 const& _value, bytes const& _arguments)
{
FixedHash<4> hash(dev::keccak256(_sig));
sendMessage(hash.asBytes() + _arguments, false, _value);
return m_output;
}
bytes const& callContractFunctionNoEncoding(std::string _sig, bytes const& _arguments)
{
return callContractFunctionWithValueNoEncoding(_sig, 0, _arguments);
}
template <class... Args>
bytes const& callContractFunctionWithValue(std::string _sig, u256 const& _value, Args const&... _arguments)
{
return callContractFunctionWithValueNoEncoding(_sig, _value, encodeArgs(_arguments...));
}
template <class... Args>
bytes const& callContractFunction(std::string _sig, Args const&... _arguments)
{
return callContractFunctionWithValue(_sig, 0, _arguments...);
}
template <class CppFunction, class... Args>
void testContractAgainstCpp(std::string _sig, CppFunction const& _cppFunction, Args const&... _arguments)
{
bytes contractResult = callContractFunction(_sig, _arguments...);
bytes cppResult = callCppAndEncodeResult(_cppFunction, _arguments...);
BOOST_CHECK_MESSAGE(
contractResult == cppResult,
"Computed values do not match.\nContract: " +
toHex(contractResult) +
"\nC++: " +
toHex(cppResult)
);
}
template <class CppFunction, class... Args>
void testContractAgainstCppOnRange(std::string _sig, CppFunction const& _cppFunction, u256 const& _rangeStart, u256 const& _rangeEnd)
{
for (u256 argument = _rangeStart; argument < _rangeEnd; ++argument)
{
bytes contractResult = callContractFunction(_sig, argument);
bytes cppResult = callCppAndEncodeResult(_cppFunction, argument);
BOOST_CHECK_MESSAGE(
contractResult == cppResult,
"Computed values do not match.\nContract: " +
toHex(contractResult) +
"\nC++: " +
toHex(cppResult) +
"\nArgument: " +
toHex(encode(argument))
);
}
}
static std::pair<bool, std::string> compareAndCreateMessage(bytes const& _result, bytes const& _expectation);
static bytes encode(bool _value) { return encode(byte(_value)); }
static bytes encode(int _value) { return encode(u256(_value)); }
static bytes encode(size_t _value) { return encode(u256(_value)); }
static bytes encode(char const* _value) { return encode(std::string(_value)); }
static bytes encode(byte _value) { return bytes(31, 0) + bytes{_value}; }
static bytes encode(u256 const& _value) { return toBigEndian(_value); }
/// @returns the fixed-point encoding of a rational number with a given
/// number of fractional bits.
static bytes encode(std::pair<rational, int> const& _valueAndPrecision)
{
rational const& value = _valueAndPrecision.first;
int fractionalBits = _valueAndPrecision.second;
return encode(u256((value.numerator() << fractionalBits) / value.denominator()));
}
static bytes encode(h256 const& _value) { return _value.asBytes(); }
static bytes encode(bytes const& _value, bool _padLeft = true)
{
bytes padding = bytes((32 - _value.size() % 32) % 32, 0);
return _padLeft ? padding + _value : _value + padding;
}
static bytes encode(std::string const& _value) { return encode(asBytes(_value), false); }
template <class _T>
static bytes encode(std::vector<_T> const& _value)
{
bytes ret;
for (auto const& v: _value)
ret += encode(v);
return ret;
}
template <class FirstArg, class... Args>
static bytes encodeArgs(FirstArg const& _firstArg, Args const&... _followingArgs)
{
return encode(_firstArg) + encodeArgs(_followingArgs...);
}
static bytes encodeArgs()
{
return bytes();
}
//@todo might be extended in the future
template <class Arg>
static bytes encodeDyn(Arg const& _arg)
{
return encodeArgs(u256(0x20), u256(_arg.size()), _arg);
}
private:
template <class CppFunction, class... Args>
auto callCppAndEncodeResult(CppFunction const& _cppFunction, Args const&... _arguments)
-> typename std::enable_if<std::is_void<decltype(_cppFunction(_arguments...))>::value, bytes>::type
{
_cppFunction(_arguments...);
return bytes();
}
template <class CppFunction, class... Args>
auto callCppAndEncodeResult(CppFunction const& _cppFunction, Args const&... _arguments)
-> typename std::enable_if<!std::is_void<decltype(_cppFunction(_arguments...))>::value, bytes>::type
{
return encode(_cppFunction(_arguments...));
}
protected:
void sendMessage(bytes const& _data, bool _isCreation, u256 const& _value = 0);
void sendEther(Address const& _to, u256 const& _value);
size_t currentTimestamp();
size_t blockTimestamp(u256 _number);
/// @returns the (potentially newly created) _ith address.
Address account(size_t _i);
u256 balanceAt(Address const& _addr);
bool storageEmpty(Address const& _addr);
bool addressHasCode(Address const& _addr);
RPCSession& m_rpc;
struct LogEntry
{
Address address;
std::vector<h256> topics;
bytes data;
};
solidity::EVMVersion m_evmVersion;
unsigned m_optimizeRuns = 200;
bool m_optimize = false;
bool m_showMessages = false;
Address m_sender;
Address m_contractAddress;
u256 m_blockNumber;
u256 const m_gasPrice = 100 * szabo;
u256 const m_gas = 100000000;
bytes m_output;
std::vector<LogEntry> m_logs;
u256 m_gasUsed;
};
#define ABI_CHECK(result, expectation) do { \
auto abiCheckResult = ExecutionFramework::compareAndCreateMessage((result), (expectation)); \
BOOST_CHECK_MESSAGE(abiCheckResult.first, abiCheckResult.second); \
} while (0)
}
} // end namespaces
|