aboutsummaryrefslogtreecommitdiffstats
path: root/libsolidity/codegen/Compiler.cpp
blob: 8b718fcae817131a7ad25dc6689b4e0933926fd2 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
/*
    This file is part of cpp-ethereum.

    cpp-ethereum is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    cpp-ethereum is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with cpp-ethereum.  If not, see <http://www.gnu.org/licenses/>.
*/
/**
 * @author Christian <c@ethdev.com>
 * @date 2014
 * Solidity compiler.
 */

#include <libsolidity/codegen/Compiler.h>
#include <algorithm>
#include <boost/range/adaptor/reversed.hpp>
#include <libevmasm/Instruction.h>
#include <libethcore/ChainOperationParams.h>
#include <libevmasm/Assembly.h>
#include <libsolidity/inlineasm/AsmCodeGen.h>
#include <libsolidity/ast/AST.h>
#include <libsolidity/codegen/ExpressionCompiler.h>
#include <libsolidity/codegen/CompilerUtils.h>
using namespace std;
using namespace dev;
using namespace dev::solidity;

/**
 * Simple helper class to ensure that the stack height is the same at certain places in the code.
 */
class StackHeightChecker
{
public:
    StackHeightChecker(CompilerContext const& _context):
        m_context(_context), stackHeight(m_context.stackHeight()) {}
    void check() { solAssert(m_context.stackHeight() == stackHeight, "I sense a disturbance in the stack."); }
private:
    CompilerContext const& m_context;
    unsigned stackHeight;
};

void Compiler::compileContract(
    ContractDefinition const& _contract,
    std::map<const ContractDefinition*, eth::Assembly const*> const& _contracts
)
{
    m_context = CompilerContext();
    {
        CompilerContext::LocationSetter locationSetterRunTime(m_context, _contract);
        initializeContext(_contract, _contracts);
        appendFunctionSelector(_contract);
        appendFunctionsWithoutCode();
    }

    // Swap the runtime context with the creation-time context
    swap(m_context, m_runtimeContext);
    CompilerContext::LocationSetter locationSetterCreationTime(m_context, _contract);
    initializeContext(_contract, _contracts);
    packIntoContractCreator(_contract, m_runtimeContext);
    if (m_optimize)
        m_context.optimise(m_optimizeRuns);

    if (_contract.isLibrary())
    {
        solAssert(m_runtimeSub != size_t(-1), "");
        m_context.injectVersionStampIntoSub(m_runtimeSub);
    }
}

void Compiler::compileClone(
    ContractDefinition const& _contract,
    map<ContractDefinition const*, eth::Assembly const*> const& _contracts
)
{
    m_context = CompilerContext(); // clear it just in case
    initializeContext(_contract, _contracts);

    appendInitAndConstructorCode(_contract);

    //@todo determine largest return size of all runtime functions
    eth::AssemblyItem runtimeSub = m_context.addSubroutine(cloneRuntime());
    solAssert(runtimeSub.data() < numeric_limits<size_t>::max(), "");
    m_runtimeSub = size_t(runtimeSub.data());

    // stack contains sub size
    m_context << Instruction::DUP1 << runtimeSub << u256(0) << Instruction::CODECOPY;
    m_context << u256(0) << Instruction::RETURN;

    appendFunctionsWithoutCode();

    if (m_optimize)
        m_context.optimise(m_optimizeRuns);
}

eth::AssemblyItem Compiler::functionEntryLabel(FunctionDefinition const& _function) const
{
    return m_runtimeContext.functionEntryLabelIfExists(_function);
}

void Compiler::initializeContext(
    ContractDefinition const& _contract,
    map<ContractDefinition const*, eth::Assembly const*> const& _compiledContracts
)
{
    m_context.setCompiledContracts(_compiledContracts);
    m_context.setInheritanceHierarchy(_contract.annotation().linearizedBaseContracts);
    CompilerUtils(m_context).initialiseFreeMemoryPointer();
    registerStateVariables(_contract);
    m_context.resetVisitedNodes(&_contract);
}

void Compiler::appendInitAndConstructorCode(ContractDefinition const& _contract)
{
    // Determine the arguments that are used for the base constructors.
    std::vector<ContractDefinition const*> const& bases = _contract.annotation().linearizedBaseContracts;
    for (ContractDefinition const* contract: bases)
    {
        if (FunctionDefinition const* constructor = contract->constructor())
            for (auto const& modifier: constructor->modifiers())
            {
                auto baseContract = dynamic_cast<ContractDefinition const*>(
                    modifier->name()->annotation().referencedDeclaration);
                if (baseContract)
                    if (m_baseArguments.count(baseContract->constructor()) == 0)
                        m_baseArguments[baseContract->constructor()] = &modifier->arguments();
            }

        for (ASTPointer<InheritanceSpecifier> const& base: contract->baseContracts())
        {
            ContractDefinition const* baseContract = dynamic_cast<ContractDefinition const*>(
                base->name().annotation().referencedDeclaration
            );
            solAssert(baseContract, "");

            if (m_baseArguments.count(baseContract->constructor()) == 0)
                m_baseArguments[baseContract->constructor()] = &base->arguments();
        }
    }
    // Initialization of state variables in base-to-derived order.
    for (ContractDefinition const* contract: boost::adaptors::reverse(bases))
        initializeStateVariables(*contract);

    if (FunctionDefinition const* constructor = _contract.constructor())
        appendConstructor(*constructor);
    else if (auto c = m_context.nextConstructor(_contract))
        appendBaseConstructor(*c);
}

void Compiler::packIntoContractCreator(ContractDefinition const& _contract, CompilerContext const& _runtimeContext)
{
    appendInitAndConstructorCode(_contract);

    eth::AssemblyItem runtimeSub = m_context.addSubroutine(_runtimeContext.assembly());
    solAssert(runtimeSub.data() < numeric_limits<size_t>::max(), "");
    m_runtimeSub = size_t(runtimeSub.data());

    // stack contains sub size
    m_context << Instruction::DUP1 << runtimeSub << u256(0) << Instruction::CODECOPY;
    m_context << u256(0) << Instruction::RETURN;

    // note that we have to include the functions again because of absolute jump labels
    appendFunctionsWithoutCode();
}

void Compiler::appendBaseConstructor(FunctionDefinition const& _constructor)
{
    CompilerContext::LocationSetter locationSetter(m_context, _constructor);
    FunctionType constructorType(_constructor);
    if (!constructorType.parameterTypes().empty())
    {
        solAssert(m_baseArguments.count(&_constructor), "");
        std::vector<ASTPointer<Expression>> const* arguments = m_baseArguments[&_constructor];
        solAssert(arguments, "");
        for (unsigned i = 0; i < arguments->size(); ++i)
            compileExpression(*(arguments->at(i)), constructorType.parameterTypes()[i]);
    }
    _constructor.accept(*this);
}

void Compiler::appendConstructor(FunctionDefinition const& _constructor)
{
    CompilerContext::LocationSetter locationSetter(m_context, _constructor);
    // copy constructor arguments from code to memory and then to stack, they are supplied after the actual program
    if (!_constructor.parameters().empty())
    {
        unsigned argumentSize = 0;
        for (ASTPointer<VariableDeclaration> const& var: _constructor.parameters())
            if (var->annotation().type->isDynamicallySized())
            {
                argumentSize = 0;
                break;
            }
            else
                argumentSize += var->annotation().type->calldataEncodedSize();

        CompilerUtils(m_context).fetchFreeMemoryPointer();
        if (argumentSize == 0)
        {
            // argument size is dynamic, use CODESIZE to determine it
            m_context.appendProgramSize(); // program itself
            // CODESIZE is program plus manually added arguments
            m_context << Instruction::CODESIZE << Instruction::SUB;
        }
        else
            m_context << u256(argumentSize);
        // stack: <memptr> <argument size>
        m_context << Instruction::DUP1;
        m_context.appendProgramSize();
        m_context << Instruction::DUP4 << Instruction::CODECOPY;
        m_context << Instruction::DUP2 << Instruction::ADD;
        CompilerUtils(m_context).storeFreeMemoryPointer();
        // stack: <memptr>
        appendCalldataUnpacker(FunctionType(_constructor).parameterTypes(), true);
    }
    _constructor.accept(*this);
}

void Compiler::appendFunctionSelector(ContractDefinition const& _contract)
{
    map<FixedHash<4>, FunctionTypePointer> interfaceFunctions = _contract.interfaceFunctions();
    map<FixedHash<4>, const eth::AssemblyItem> callDataUnpackerEntryPoints;

    FunctionDefinition const* fallback = _contract.fallbackFunction();
    eth::AssemblyItem notFound = m_context.newTag();
    // shortcut messages without data if we have many functions in order to be able to receive
    // ether with constant gas
    if (interfaceFunctions.size() > 5 || fallback)
    {
        m_context << Instruction::CALLDATASIZE << Instruction::ISZERO;
        m_context.appendConditionalJumpTo(notFound);
    }

    // retrieve the function signature hash from the calldata
    if (!interfaceFunctions.empty())
        CompilerUtils(m_context).loadFromMemory(0, IntegerType(CompilerUtils::dataStartOffset * 8), true);

    // stack now is: 1 0 <funhash>
    for (auto const& it: interfaceFunctions)
    {
        callDataUnpackerEntryPoints.insert(std::make_pair(it.first, m_context.newTag()));
        m_context << dupInstruction(1) << u256(FixedHash<4>::Arith(it.first)) << Instruction::EQ;
        m_context.appendConditionalJumpTo(callDataUnpackerEntryPoints.at(it.first));
    }
    m_context.appendJumpTo(notFound);

    m_context << notFound;
    if (fallback)
    {
        eth::AssemblyItem returnTag = m_context.pushNewTag();
        fallback->accept(*this);
        m_context << returnTag;
        appendReturnValuePacker(FunctionType(*fallback).returnParameterTypes(), _contract.isLibrary());
    }
    else if (_contract.isLibrary())
        // Reject invalid library calls and ether sent to a library.
        m_context.appendJumpTo(m_context.errorTag());
    else
        m_context << Instruction::STOP; // function not found

    for (auto const& it: interfaceFunctions)
    {
        FunctionTypePointer const& functionType = it.second;
        solAssert(functionType->hasDeclaration(), "");
        CompilerContext::LocationSetter locationSetter(m_context, functionType->declaration());
        m_context << callDataUnpackerEntryPoints.at(it.first);
        eth::AssemblyItem returnTag = m_context.pushNewTag();
        m_context << CompilerUtils::dataStartOffset;
        appendCalldataUnpacker(functionType->parameterTypes());
        m_context.appendJumpTo(m_context.functionEntryLabel(functionType->declaration()));
        m_context << returnTag;
        appendReturnValuePacker(functionType->returnParameterTypes(), _contract.isLibrary());
    }
}

void Compiler::appendCalldataUnpacker(TypePointers const& _typeParameters, bool _fromMemory)
{
    // We do not check the calldata size, everything is zero-padded

    //@todo this does not yet support nested dynamic arrays

    // Retain the offset pointer as base_offset, the point from which the data offsets are computed.
    m_context << Instruction::DUP1;
    for (TypePointer const& parameterType: _typeParameters)
    {
        // stack: v1 v2 ... v(k-1) base_offset current_offset
        TypePointer type = parameterType->decodingType();
        if (type->category() == Type::Category::Array)
        {
            auto const& arrayType = dynamic_cast<ArrayType const&>(*type);
            solAssert(!arrayType.baseType()->isDynamicallySized(), "Nested arrays not yet implemented.");
            if (_fromMemory)
            {
                solAssert(
                    arrayType.baseType()->isValueType(),
                    "Nested memory arrays not yet implemented here."
                );
                // @todo If base type is an array or struct, it is still calldata-style encoded, so
                // we would have to convert it like below.
                solAssert(arrayType.location() == DataLocation::Memory, "");
                if (arrayType.isDynamicallySized())
                {
                    // compute data pointer
                    m_context << Instruction::DUP1 << Instruction::MLOAD;
                    m_context << Instruction::DUP3 << Instruction::ADD;
                    m_context << Instruction::SWAP2 << Instruction::SWAP1;
                    m_context << u256(0x20) << Instruction::ADD;
                }
                else
                {
                    m_context << Instruction::DUP1;
                    m_context << u256(arrayType.calldataEncodedSize(true)) << Instruction::ADD;
                }
            }
            else
            {
                // first load from calldata and potentially convert to memory if arrayType is memory
                TypePointer calldataType = arrayType.copyForLocation(DataLocation::CallData, false);
                if (calldataType->isDynamicallySized())
                {
                    // put on stack: data_pointer length
                    CompilerUtils(m_context).loadFromMemoryDynamic(IntegerType(256), !_fromMemory);
                    // stack: base_offset data_offset next_pointer
                    m_context << Instruction::SWAP1 << Instruction::DUP3 << Instruction::ADD;
                    // stack: base_offset next_pointer data_pointer
                    // retrieve length
                    CompilerUtils(m_context).loadFromMemoryDynamic(IntegerType(256), !_fromMemory, true);
                    // stack: base_offset next_pointer length data_pointer
                    m_context << Instruction::SWAP2;
                    // stack: base_offset data_pointer length next_pointer
                }
                else
                {
                    // leave the pointer on the stack
                    m_context << Instruction::DUP1;
                    m_context << u256(calldataType->calldataEncodedSize()) << Instruction::ADD;
                }
                if (arrayType.location() == DataLocation::Memory)
                {
                    // stack: base_offset calldata_ref [length] next_calldata
                    // copy to memory
                    // move calldata type up again
                    CompilerUtils(m_context).moveIntoStack(calldataType->sizeOnStack());
                    CompilerUtils(m_context).convertType(*calldataType, arrayType);
                    // fetch next pointer again
                    CompilerUtils(m_context).moveToStackTop(arrayType.sizeOnStack());
                }
                // move base_offset up
                CompilerUtils(m_context).moveToStackTop(1 + arrayType.sizeOnStack());
                m_context << Instruction::SWAP1;
            }
        }
        else
        {
            solAssert(!type->isDynamicallySized(), "Unknown dynamically sized type: " + type->toString());
            CompilerUtils(m_context).loadFromMemoryDynamic(*type, !_fromMemory, true);
            CompilerUtils(m_context).moveToStackTop(1 + type->sizeOnStack());
            m_context << Instruction::SWAP1;
        }
        // stack: v1 v2 ... v(k-1) v(k) base_offset mem_offset
    }
    m_context << Instruction::POP << Instruction::POP;
}

void Compiler::appendReturnValuePacker(TypePointers const& _typeParameters, bool _isLibrary)
{
    CompilerUtils utils(m_context);
    if (_typeParameters.empty())
        m_context << Instruction::STOP;
    else
    {
        utils.fetchFreeMemoryPointer();
        //@todo optimization: if we return a single memory array, there should be enough space before
        // its data to add the needed parts and we avoid a memory copy.
        utils.encodeToMemory(_typeParameters, _typeParameters, true, false, _isLibrary);
        utils.toSizeAfterFreeMemoryPointer();
        m_context << Instruction::RETURN;
    }
}

void Compiler::registerStateVariables(ContractDefinition const& _contract)
{
    for (auto const& var: ContractType(_contract).stateVariables())
        m_context.addStateVariable(*get<0>(var), get<1>(var), get<2>(var));
}

void Compiler::initializeStateVariables(ContractDefinition const& _contract)
{
    for (VariableDeclaration const* variable: _contract.stateVariables())
        if (variable->value() && !variable->isConstant())
            ExpressionCompiler(m_context, m_optimize).appendStateVariableInitialization(*variable);
}

bool Compiler::visit(VariableDeclaration const& _variableDeclaration)
{
    solAssert(_variableDeclaration.isStateVariable(), "Compiler visit to non-state variable declaration.");
    CompilerContext::LocationSetter locationSetter(m_context, _variableDeclaration);

    m_context.startFunction(_variableDeclaration);
    m_breakTags.clear();
    m_continueTags.clear();

    if (_variableDeclaration.isConstant())
        ExpressionCompiler(m_context, m_optimize).appendConstStateVariableAccessor(_variableDeclaration);
    else
        ExpressionCompiler(m_context, m_optimize).appendStateVariableAccessor(_variableDeclaration);

    return false;
}

bool Compiler::visit(FunctionDefinition const& _function)
{
    CompilerContext::LocationSetter locationSetter(m_context, _function);

    m_context.startFunction(_function);

    // stack upon entry: [return address] [arg0] [arg1] ... [argn]
    // reserve additional slots: [retarg0] ... [retargm] [localvar0] ... [localvarp]

    unsigned parametersSize = CompilerUtils::sizeOnStack(_function.parameters());
    if (!_function.isConstructor())
        // adding 1 for return address.
        m_context.adjustStackOffset(parametersSize + 1);
    for (ASTPointer<VariableDeclaration const> const& variable: _function.parameters())
    {
        m_context.addVariable(*variable, parametersSize);
        parametersSize -= variable->annotation().type->sizeOnStack();
    }

    for (ASTPointer<VariableDeclaration const> const& variable: _function.returnParameters())
        appendStackVariableInitialisation(*variable);
    for (VariableDeclaration const* localVariable: _function.localVariables())
        appendStackVariableInitialisation(*localVariable);

    if (_function.isConstructor())
        if (auto c = m_context.nextConstructor(dynamic_cast<ContractDefinition const&>(*_function.scope())))
            appendBaseConstructor(*c);

    m_returnTag = m_context.newTag();
    m_breakTags.clear();
    m_continueTags.clear();
    m_stackCleanupForReturn = 0;
    m_currentFunction = &_function;
    m_modifierDepth = 0;

    appendModifierOrFunctionCode();

    m_context << m_returnTag;

    // Now we need to re-shuffle the stack. For this we keep a record of the stack layout
    // that shows the target positions of the elements, where "-1" denotes that this element needs
    // to be removed from the stack.
    // Note that the fact that the return arguments are of increasing index is vital for this
    // algorithm to work.

    unsigned const c_argumentsSize = CompilerUtils::sizeOnStack(_function.parameters());
    unsigned const c_returnValuesSize = CompilerUtils::sizeOnStack(_function.returnParameters());
    unsigned const c_localVariablesSize = CompilerUtils::sizeOnStack(_function.localVariables());

    vector<int> stackLayout;
    stackLayout.push_back(c_returnValuesSize); // target of return address
    stackLayout += vector<int>(c_argumentsSize, -1); // discard all arguments
    for (unsigned i = 0; i < c_returnValuesSize; ++i)
        stackLayout.push_back(i);
    stackLayout += vector<int>(c_localVariablesSize, -1);

    solAssert(stackLayout.size() <= 17, "Stack too deep, try removing local variables.");
    while (stackLayout.back() != int(stackLayout.size() - 1))
        if (stackLayout.back() < 0)
        {
            m_context << Instruction::POP;
            stackLayout.pop_back();
        }
        else
        {
            m_context << swapInstruction(stackLayout.size() - stackLayout.back() - 1);
            swap(stackLayout[stackLayout.back()], stackLayout.back());
        }
    //@todo assert that everything is in place now

    for (ASTPointer<VariableDeclaration const> const& variable: _function.parameters() + _function.returnParameters())
        m_context.removeVariable(*variable);
    for (VariableDeclaration const* localVariable: _function.localVariables())
        m_context.removeVariable(*localVariable);

    m_context.adjustStackOffset(-(int)c_returnValuesSize);

    if (!_function.isConstructor())
        m_context.appendJump(eth::AssemblyItem::JumpType::OutOfFunction);
    return false;
}

bool Compiler::visit(InlineAssembly const& _inlineAssembly)
{
    ErrorList errors;
    assembly::CodeGenerator codeGen(_inlineAssembly.operations(), errors);
    int startStackHeight = m_context.stackHeight();
    m_context.appendInlineAssembly(codeGen.assemble(
        [&](assembly::Identifier const& _identifier, eth::Assembly& _assembly, assembly::CodeGenerator::IdentifierContext _context) {
            auto ref = _inlineAssembly.annotation().externalReferences.find(&_identifier);
            if (ref == _inlineAssembly.annotation().externalReferences.end())
                return false;
            Declaration const* decl = ref->second;
            solAssert(!!decl, "");
            if (_context == assembly::CodeGenerator::IdentifierContext::RValue)
            {
                solAssert(!!decl->type(), "Type of declaration required but not yet determined.");
                if (/*FunctionDefinition const* functionDef = */dynamic_cast<FunctionDefinition const*>(decl))
                {
                    solAssert(false, "Referencing local functions in inline assembly not yet implemented.");
                    // This does not work directly, because the label does not exist in _assembly
                    // (it is a fresh assembly object).
                    // _assembly.append(m_context.virtualFunctionEntryLabel(*functionDef).pushTag());
                }
                else if (auto variable = dynamic_cast<VariableDeclaration const*>(decl))
                {
                    solAssert(!variable->isConstant(), "");
                    if (m_context.isLocalVariable(variable))
                    {
                        int stackDiff = _assembly.deposit() + startStackHeight - m_context.baseStackOffsetOfVariable(*variable);
                        if (stackDiff < 1 || stackDiff > 16)
                            BOOST_THROW_EXCEPTION(
                                CompilerError() <<
                                errinfo_comment("Stack too deep, try removing local variables.")
                            );
                        for (unsigned i = 0; i < variable->type()->sizeOnStack(); ++i)
                            _assembly.append(dupInstruction(stackDiff));
                    }
                    else
                    {
                        solAssert(m_context.isStateVariable(variable), "Invalid variable type.");
                        auto const& location = m_context.storageLocationOfVariable(*variable);
                        if (!variable->type()->isValueType())
                        {
                            solAssert(location.second == 0, "Intra-slot offest assumed to be zero.");
                            _assembly.append(location.first);
                        }
                        else
                        {
                            _assembly.append(location.first);
                            _assembly.append(u256(location.second));
                        }
                    }
                }
                else if (auto contract = dynamic_cast<ContractDefinition const*>(decl))
                {
                    solAssert(contract->isLibrary(), "");
                    _assembly.appendLibraryAddress(contract->name());
                }
                else
                    solAssert(false, "Invalid declaration type.");
            } else {
                // lvalue context
                auto variable = dynamic_cast<VariableDeclaration const*>(decl);
                solAssert(
                    !!variable || !m_context.isLocalVariable(variable),
                    "Can only assign to stack variables in inline assembly."
                );
                unsigned size = variable->type()->sizeOnStack();
                int stackDiff = _assembly.deposit() + startStackHeight - m_context.baseStackOffsetOfVariable(*variable) - size;
                if (stackDiff > 16 || stackDiff < 1)
                    BOOST_THROW_EXCEPTION(
                        CompilerError() <<
                        errinfo_comment("Stack too deep, try removing local variables.")
                    );
                for (unsigned i = 0; i < size; ++i) {
                    _assembly.append(swapInstruction(stackDiff));
                    _assembly.append(Instruction::POP);
                }
            }
            return true;
        }
    ));
    solAssert(errors.empty(), "Code generation for inline assembly with errors requested.");
    return false;
}

bool Compiler::visit(IfStatement const& _ifStatement)
{
    StackHeightChecker checker(m_context);
    CompilerContext::LocationSetter locationSetter(m_context, _ifStatement);
    compileExpression(_ifStatement.condition());
    m_context << Instruction::ISZERO;
    eth::AssemblyItem falseTag = m_context.appendConditionalJump();
    eth::AssemblyItem endTag = falseTag;
    _ifStatement.trueStatement().accept(*this);
    if (_ifStatement.falseStatement())
    {
        endTag = m_context.appendJumpToNew();
        m_context << falseTag;
        _ifStatement.falseStatement()->accept(*this);
    }
    m_context << endTag;

    checker.check();
    return false;
}

bool Compiler::visit(WhileStatement const& _whileStatement)
{
    StackHeightChecker checker(m_context);
    CompilerContext::LocationSetter locationSetter(m_context, _whileStatement);
    eth::AssemblyItem loopStart = m_context.newTag();
    eth::AssemblyItem loopEnd = m_context.newTag();
    m_continueTags.push_back(loopStart);
    m_breakTags.push_back(loopEnd);

    m_context << loopStart;
    compileExpression(_whileStatement.condition());
    m_context << Instruction::ISZERO;
    m_context.appendConditionalJumpTo(loopEnd);

    _whileStatement.body().accept(*this);

    m_context.appendJumpTo(loopStart);
    m_context << loopEnd;

    m_continueTags.pop_back();
    m_breakTags.pop_back();

    checker.check();
    return false;
}

bool Compiler::visit(ForStatement const& _forStatement)
{
    StackHeightChecker checker(m_context);
    CompilerContext::LocationSetter locationSetter(m_context, _forStatement);
    eth::AssemblyItem loopStart = m_context.newTag();
    eth::AssemblyItem loopEnd = m_context.newTag();
    eth::AssemblyItem loopNext = m_context.newTag();
    m_continueTags.push_back(loopNext);
    m_breakTags.push_back(loopEnd);

    if (_forStatement.initializationExpression())
        _forStatement.initializationExpression()->accept(*this);

    m_context << loopStart;

    // if there is no terminating condition in for, default is to always be true
    if (_forStatement.condition())
    {
        compileExpression(*_forStatement.condition());
        m_context << Instruction::ISZERO;
        m_context.appendConditionalJumpTo(loopEnd);
    }

    _forStatement.body().accept(*this);

    m_context << loopNext;

    // for's loop expression if existing
    if (_forStatement.loopExpression())
        _forStatement.loopExpression()->accept(*this);

    m_context.appendJumpTo(loopStart);
    m_context << loopEnd;

    m_continueTags.pop_back();
    m_breakTags.pop_back();

    checker.check();
    return false;
}

bool Compiler::visit(Continue const& _continueStatement)
{
    CompilerContext::LocationSetter locationSetter(m_context, _continueStatement);
    if (!m_continueTags.empty())
        m_context.appendJumpTo(m_continueTags.back());
    return false;
}

bool Compiler::visit(Break const& _breakStatement)
{
    CompilerContext::LocationSetter locationSetter(m_context, _breakStatement);
    if (!m_breakTags.empty())
        m_context.appendJumpTo(m_breakTags.back());
    return false;
}

bool Compiler::visit(Return const& _return)
{
    CompilerContext::LocationSetter locationSetter(m_context, _return);
    if (Expression const* expression = _return.expression())
    {
        solAssert(_return.annotation().functionReturnParameters, "Invalid return parameters pointer.");
        vector<ASTPointer<VariableDeclaration>> const& returnParameters =
            _return.annotation().functionReturnParameters->parameters();
        TypePointers types;
        for (auto const& retVariable: returnParameters)
            types.push_back(retVariable->annotation().type);

        TypePointer expectedType;
        if (expression->annotation().type->category() == Type::Category::Tuple || types.size() != 1)
            expectedType = make_shared<TupleType>(types);
        else
            expectedType = types.front();
        compileExpression(*expression, expectedType);

        for (auto const& retVariable: boost::adaptors::reverse(returnParameters))
            CompilerUtils(m_context).moveToStackVariable(*retVariable);
    }
    for (unsigned i = 0; i < m_stackCleanupForReturn; ++i)
        m_context << Instruction::POP;
    m_context.appendJumpTo(m_returnTag);
    m_context.adjustStackOffset(m_stackCleanupForReturn);
    return false;
}

bool Compiler::visit(Throw const& _throw)
{
    CompilerContext::LocationSetter locationSetter(m_context, _throw);
    m_context.appendJumpTo(m_context.errorTag());
    return false;
}

bool Compiler::visit(VariableDeclarationStatement const& _variableDeclarationStatement)
{
    StackHeightChecker checker(m_context);
    CompilerContext::LocationSetter locationSetter(m_context, _variableDeclarationStatement);
    if (Expression const* expression = _variableDeclarationStatement.initialValue())
    {
        CompilerUtils utils(m_context);
        compileExpression(*expression);
        TypePointers valueTypes;
        if (auto tupleType = dynamic_cast<TupleType const*>(expression->annotation().type.get()))
            valueTypes = tupleType->components();
        else
            valueTypes = TypePointers{expression->annotation().type};
        auto const& assignments = _variableDeclarationStatement.annotation().assignments;
        solAssert(assignments.size() == valueTypes.size(), "");
        for (size_t i = 0; i < assignments.size(); ++i)
        {
            size_t j = assignments.size() - i - 1;
            solAssert(!!valueTypes[j], "");
            VariableDeclaration const* varDecl = assignments[j];
            if (!varDecl)
                utils.popStackElement(*valueTypes[j]);
            else
            {
                utils.convertType(*valueTypes[j], *varDecl->annotation().type);
                utils.moveToStackVariable(*varDecl);
            }
        }
    }
    checker.check();
    return false;
}

bool Compiler::visit(ExpressionStatement const& _expressionStatement)
{
    StackHeightChecker checker(m_context);
    CompilerContext::LocationSetter locationSetter(m_context, _expressionStatement);
    Expression const& expression = _expressionStatement.expression();
    compileExpression(expression);
    CompilerUtils(m_context).popStackElement(*expression.annotation().type);
    checker.check();
    return false;
}

bool Compiler::visit(PlaceholderStatement const& _placeholderStatement)
{
    StackHeightChecker checker(m_context);
    CompilerContext::LocationSetter locationSetter(m_context, _placeholderStatement);
    ++m_modifierDepth;
    appendModifierOrFunctionCode();
    --m_modifierDepth;
    checker.check();
    return true;
}

void Compiler::appendFunctionsWithoutCode()
{
    set<Declaration const*> functions = m_context.functionsWithoutCode();
    while (!functions.empty())
    {
        for (Declaration const* function: functions)
        {
            m_context.setStackOffset(0);
            function->accept(*this);
        }
        functions = m_context.functionsWithoutCode();
    }
}

void Compiler::appendModifierOrFunctionCode()
{
    solAssert(m_currentFunction, "");
    if (m_modifierDepth >= m_currentFunction->modifiers().size())
        m_currentFunction->body().accept(*this);
    else
    {
        ASTPointer<ModifierInvocation> const& modifierInvocation = m_currentFunction->modifiers()[m_modifierDepth];

        // constructor call should be excluded
        if (dynamic_cast<ContractDefinition const*>(modifierInvocation->name()->annotation().referencedDeclaration))
        {
            ++m_modifierDepth;
            appendModifierOrFunctionCode();
            --m_modifierDepth;
            return;
        }

        ModifierDefinition const& modifier = m_context.functionModifier(modifierInvocation->name()->name());
        CompilerContext::LocationSetter locationSetter(m_context, modifier);
        solAssert(modifier.parameters().size() == modifierInvocation->arguments().size(), "");
        for (unsigned i = 0; i < modifier.parameters().size(); ++i)
        {
            m_context.addVariable(*modifier.parameters()[i]);
            compileExpression(
                *modifierInvocation->arguments()[i],
                modifier.parameters()[i]->annotation().type
            );
        }
        for (VariableDeclaration const* localVariable: modifier.localVariables())
            appendStackVariableInitialisation(*localVariable);

        unsigned const c_stackSurplus = CompilerUtils::sizeOnStack(modifier.parameters()) +
                                        CompilerUtils::sizeOnStack(modifier.localVariables());
        m_stackCleanupForReturn += c_stackSurplus;

        modifier.body().accept(*this);

        for (unsigned i = 0; i < c_stackSurplus; ++i)
            m_context << Instruction::POP;
        m_stackCleanupForReturn -= c_stackSurplus;
    }
}

void Compiler::appendStackVariableInitialisation(VariableDeclaration const& _variable)
{
    CompilerContext::LocationSetter location(m_context, _variable);
    m_context.addVariable(_variable);
    CompilerUtils(m_context).pushZeroValue(*_variable.annotation().type);
}

void Compiler::compileExpression(Expression const& _expression, TypePointer const& _targetType)
{
    ExpressionCompiler expressionCompiler(m_context, m_optimize);
    expressionCompiler.compile(_expression);
    if (_targetType)
        CompilerUtils(m_context).convertType(*_expression.annotation().type, *_targetType);
}

eth::Assembly Compiler::cloneRuntime()
{
    eth::EVMSchedule schedule;
    eth::Assembly a;
    a << Instruction::CALLDATASIZE;
    a << u256(0) << Instruction::DUP1 << Instruction::CALLDATACOPY;
    //@todo adjust for larger return values, make this dynamic.
    a << u256(0x20) << u256(0) << Instruction::CALLDATASIZE;
    a << u256(0);
    // this is the address which has to be substituted by the linker.
    //@todo implement as special "marker" AssemblyItem.
    a << u256("0xcafecafecafecafecafecafecafecafecafecafe");
    a << u256(schedule.callGas + 10) << Instruction::GAS << Instruction::SUB;
    a << Instruction::DELEGATECALL;
    //Propagate error condition (if DELEGATECALL pushes 0 on stack).
    a << Instruction::ISZERO;
    a.appendJumpI(a.errorTag());
    //@todo adjust for larger return values, make this dynamic.
    a << u256(0x20) << u256(0) << Instruction::RETURN;
    return a;
}