1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
|
/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @author Christian <c@ethdev.com>
* @date 2015
* Code generation utils that handle arrays.
*/
#include <libsolidity/codegen/ArrayUtils.h>
#include <libevmasm/Instruction.h>
#include <libsolidity/codegen/CompilerContext.h>
#include <libsolidity/codegen/CompilerUtils.h>
#include <libsolidity/ast/Types.h>
#include <libsolidity/interface/Exceptions.h>
#include <libsolidity/codegen/LValue.h>
using namespace std;
using namespace dev;
using namespace solidity;
void ArrayUtils::copyArrayToStorage(ArrayType const& _targetType, ArrayType const& _sourceType) const
{
// this copies source to target and also clears target if it was larger
// need to leave "target_ref target_byte_off" on the stack at the end
// stack layout: [source_ref] [source length] target_ref (top)
solAssert(_targetType.location() == DataLocation::Storage, "");
TypePointer uint256 = make_shared<IntegerType>(256);
TypePointer targetBaseType = _targetType.isByteArray() ? uint256 : _targetType.baseType();
TypePointer sourceBaseType = _sourceType.isByteArray() ? uint256 : _sourceType.baseType();
// TODO unroll loop for small sizes
bool sourceIsStorage = _sourceType.location() == DataLocation::Storage;
bool fromCalldata = _sourceType.location() == DataLocation::CallData;
bool directCopy = sourceIsStorage && sourceBaseType->isValueType() && *sourceBaseType == *targetBaseType;
bool haveByteOffsetSource = !directCopy && sourceIsStorage && sourceBaseType->storageBytes() <= 16;
bool haveByteOffsetTarget = !directCopy && targetBaseType->storageBytes() <= 16;
unsigned byteOffsetSize = (haveByteOffsetSource ? 1 : 0) + (haveByteOffsetTarget ? 1 : 0);
// stack: source_ref [source_length] target_ref
// store target_ref
for (unsigned i = _sourceType.sizeOnStack(); i > 0; --i)
m_context << swapInstruction(i);
// stack: target_ref source_ref [source_length]
// stack: target_ref source_ref [source_length]
// retrieve source length
if (_sourceType.location() != DataLocation::CallData || !_sourceType.isDynamicallySized())
retrieveLength(_sourceType); // otherwise, length is already there
if (_sourceType.location() == DataLocation::Memory && _sourceType.isDynamicallySized())
{
// increment source pointer to point to data
m_context << Instruction::SWAP1 << u256(0x20);
m_context << Instruction::ADD << Instruction::SWAP1;
}
// stack: target_ref source_ref source_length
TypePointer targetType = _targetType.shared_from_this();
TypePointer sourceType = _sourceType.shared_from_this();
m_context.callLowLevelFunction(
"$copyArrayToStorage_" + sourceType->identifier() + "_to_" + targetType->identifier(),
3,
1,
[=](CompilerContext& _context)
{
ArrayUtils utils(_context);
ArrayType const& _sourceType = dynamic_cast<ArrayType const&>(*sourceType);
ArrayType const& _targetType = dynamic_cast<ArrayType const&>(*targetType);
// stack: target_ref source_ref source_length
_context << Instruction::DUP3;
// stack: target_ref source_ref source_length target_ref
utils.retrieveLength(_targetType);
// stack: target_ref source_ref source_length target_ref target_length
if (_targetType.isDynamicallySized())
// store new target length
if (!_targetType.isByteArray())
// Otherwise, length will be stored below.
_context << Instruction::DUP3 << Instruction::DUP3 << Instruction::SSTORE;
if (sourceBaseType->category() == Type::Category::Mapping)
{
solAssert(targetBaseType->category() == Type::Category::Mapping, "");
solAssert(_sourceType.location() == DataLocation::Storage, "");
// nothing to copy
_context
<< Instruction::POP << Instruction::POP
<< Instruction::POP << Instruction::POP;
return;
}
// stack: target_ref source_ref source_length target_ref target_length
// compute hashes (data positions)
_context << Instruction::SWAP1;
if (_targetType.isDynamicallySized())
CompilerUtils(_context).computeHashStatic();
// stack: target_ref source_ref source_length target_length target_data_pos
_context << Instruction::SWAP1;
utils.convertLengthToSize(_targetType);
_context << Instruction::DUP2 << Instruction::ADD;
// stack: target_ref source_ref source_length target_data_pos target_data_end
_context << Instruction::SWAP3;
// stack: target_ref target_data_end source_length target_data_pos source_ref
eth::AssemblyItem copyLoopEndWithoutByteOffset = _context.newTag();
// special case for short byte arrays: Store them together with their length.
if (_targetType.isByteArray())
{
// stack: target_ref target_data_end source_length target_data_pos source_ref
_context << Instruction::DUP3 << u256(31) << Instruction::LT;
eth::AssemblyItem longByteArray = _context.appendConditionalJump();
// store the short byte array
solAssert(_sourceType.isByteArray(), "");
if (_sourceType.location() == DataLocation::Storage)
{
// just copy the slot, it contains length and data
_context << Instruction::DUP1 << Instruction::SLOAD;
_context << Instruction::DUP6 << Instruction::SSTORE;
}
else
{
_context << Instruction::DUP1;
CompilerUtils(_context).loadFromMemoryDynamic(*sourceBaseType, fromCalldata, true, false);
// stack: target_ref target_data_end source_length target_data_pos source_ref value
// clear the lower-order byte - which will hold the length
_context << u256(0xff) << Instruction::NOT << Instruction::AND;
// fetch the length and shift it left by one
_context << Instruction::DUP4 << Instruction::DUP1 << Instruction::ADD;
// combine value and length and store them
_context << Instruction::OR << Instruction::DUP6 << Instruction::SSTORE;
}
// end of special case, jump right into cleaning target data area
_context.appendJumpTo(copyLoopEndWithoutByteOffset);
_context << longByteArray;
// Store length (2*length+1)
_context << Instruction::DUP3 << Instruction::DUP1 << Instruction::ADD;
_context << u256(1) << Instruction::ADD;
_context << Instruction::DUP6 << Instruction::SSTORE;
}
// skip copying if source length is zero
_context << Instruction::DUP3 << Instruction::ISZERO;
_context.appendConditionalJumpTo(copyLoopEndWithoutByteOffset);
if (_sourceType.location() == DataLocation::Storage && _sourceType.isDynamicallySized())
CompilerUtils(_context).computeHashStatic();
// stack: target_ref target_data_end source_length target_data_pos source_data_pos
_context << Instruction::SWAP2;
utils.convertLengthToSize(_sourceType);
_context << Instruction::DUP3 << Instruction::ADD;
// stack: target_ref target_data_end source_data_pos target_data_pos source_data_end
if (haveByteOffsetTarget)
_context << u256(0);
if (haveByteOffsetSource)
_context << u256(0);
// stack: target_ref target_data_end source_data_pos target_data_pos source_data_end [target_byte_offset] [source_byte_offset]
eth::AssemblyItem copyLoopStart = _context.newTag();
_context << copyLoopStart;
// check for loop condition
_context
<< dupInstruction(3 + byteOffsetSize) << dupInstruction(2 + byteOffsetSize)
<< Instruction::GT << Instruction::ISZERO;
eth::AssemblyItem copyLoopEnd = _context.appendConditionalJump();
// stack: target_ref target_data_end source_data_pos target_data_pos source_data_end [target_byte_offset] [source_byte_offset]
// copy
if (sourceBaseType->category() == Type::Category::Array)
{
solAssert(byteOffsetSize == 0, "Byte offset for array as base type.");
auto const& sourceBaseArrayType = dynamic_cast<ArrayType const&>(*sourceBaseType);
_context << Instruction::DUP3;
if (sourceBaseArrayType.location() == DataLocation::Memory)
_context << Instruction::MLOAD;
_context << Instruction::DUP3;
utils.copyArrayToStorage(dynamic_cast<ArrayType const&>(*targetBaseType), sourceBaseArrayType);
_context << Instruction::POP;
}
else if (directCopy)
{
solAssert(byteOffsetSize == 0, "Byte offset for direct copy.");
_context
<< Instruction::DUP3 << Instruction::SLOAD
<< Instruction::DUP3 << Instruction::SSTORE;
}
else
{
// Note that we have to copy each element on its own in case conversion is involved.
// We might copy too much if there is padding at the last element, but this way end
// checking is easier.
// stack: target_ref target_data_end source_data_pos target_data_pos source_data_end [target_byte_offset] [source_byte_offset]
_context << dupInstruction(3 + byteOffsetSize);
if (_sourceType.location() == DataLocation::Storage)
{
if (haveByteOffsetSource)
_context << Instruction::DUP2;
else
_context << u256(0);
StorageItem(_context, *sourceBaseType).retrieveValue(SourceLocation(), true);
}
else if (sourceBaseType->isValueType())
CompilerUtils(_context).loadFromMemoryDynamic(*sourceBaseType, fromCalldata, true, false);
else
solUnimplemented("Copying of type " + _sourceType.toString(false) + " to storage not yet supported.");
// stack: target_ref target_data_end source_data_pos target_data_pos source_data_end [target_byte_offset] [source_byte_offset] <source_value>...
solAssert(
2 + byteOffsetSize + sourceBaseType->sizeOnStack() <= 16,
"Stack too deep, try removing local variables."
);
// fetch target storage reference
_context << dupInstruction(2 + byteOffsetSize + sourceBaseType->sizeOnStack());
if (haveByteOffsetTarget)
_context << dupInstruction(1 + byteOffsetSize + sourceBaseType->sizeOnStack());
else
_context << u256(0);
StorageItem(_context, *targetBaseType).storeValue(*sourceBaseType, SourceLocation(), true);
}
// stack: target_ref target_data_end source_data_pos target_data_pos source_data_end [target_byte_offset] [source_byte_offset]
// increment source
if (haveByteOffsetSource)
utils.incrementByteOffset(sourceBaseType->storageBytes(), 1, haveByteOffsetTarget ? 5 : 4);
else
{
_context << swapInstruction(2 + byteOffsetSize);
if (sourceIsStorage)
_context << sourceBaseType->storageSize();
else if (_sourceType.location() == DataLocation::Memory)
_context << sourceBaseType->memoryHeadSize();
else
_context << sourceBaseType->calldataEncodedSize(true);
_context
<< Instruction::ADD
<< swapInstruction(2 + byteOffsetSize);
}
// increment target
if (haveByteOffsetTarget)
utils.incrementByteOffset(targetBaseType->storageBytes(), byteOffsetSize, byteOffsetSize + 2);
else
_context
<< swapInstruction(1 + byteOffsetSize)
<< targetBaseType->storageSize()
<< Instruction::ADD
<< swapInstruction(1 + byteOffsetSize);
_context.appendJumpTo(copyLoopStart);
_context << copyLoopEnd;
if (haveByteOffsetTarget)
{
// clear elements that might be left over in the current slot in target
// stack: target_ref target_data_end source_data_pos target_data_pos source_data_end target_byte_offset [source_byte_offset]
_context << dupInstruction(byteOffsetSize) << Instruction::ISZERO;
eth::AssemblyItem copyCleanupLoopEnd = _context.appendConditionalJump();
_context << dupInstruction(2 + byteOffsetSize) << dupInstruction(1 + byteOffsetSize);
StorageItem(_context, *targetBaseType).setToZero(SourceLocation(), true);
utils.incrementByteOffset(targetBaseType->storageBytes(), byteOffsetSize, byteOffsetSize + 2);
_context.appendJumpTo(copyLoopEnd);
_context << copyCleanupLoopEnd;
_context << Instruction::POP; // might pop the source, but then target is popped next
}
if (haveByteOffsetSource)
_context << Instruction::POP;
_context << copyLoopEndWithoutByteOffset;
// zero-out leftovers in target
// stack: target_ref target_data_end source_data_pos target_data_pos_updated source_data_end
_context << Instruction::POP << Instruction::SWAP1 << Instruction::POP;
// stack: target_ref target_data_end target_data_pos_updated
utils.clearStorageLoop(targetBaseType);
_context << Instruction::POP;
}
);
}
void ArrayUtils::copyArrayToMemory(ArrayType const& _sourceType, bool _padToWordBoundaries) const
{
solUnimplementedAssert(
!_sourceType.baseType()->isDynamicallySized(),
"Nested dynamic arrays not implemented here."
);
CompilerUtils utils(m_context);
unsigned baseSize = 1;
if (!_sourceType.isByteArray())
{
// We always pad the elements, regardless of _padToWordBoundaries.
baseSize = _sourceType.baseType()->calldataEncodedSize();
solAssert(baseSize >= 0x20, "");
}
if (_sourceType.location() == DataLocation::CallData)
{
if (!_sourceType.isDynamicallySized())
m_context << _sourceType.length();
if (baseSize > 1)
m_context << u256(baseSize) << Instruction::MUL;
// stack: target source_offset source_len
m_context << Instruction::DUP1 << Instruction::DUP3 << Instruction::DUP5;
// stack: target source_offset source_len source_len source_offset target
m_context << Instruction::CALLDATACOPY;
m_context << Instruction::DUP3 << Instruction::ADD;
m_context << Instruction::SWAP2 << Instruction::POP << Instruction::POP;
}
else if (_sourceType.location() == DataLocation::Memory)
{
retrieveLength(_sourceType);
// stack: target source length
if (!_sourceType.baseType()->isValueType())
{
// copy using a loop
m_context << u256(0) << Instruction::SWAP3;
// stack: counter source length target
auto repeat = m_context.newTag();
m_context << repeat;
m_context << Instruction::DUP2 << Instruction::DUP5;
m_context << Instruction::LT << Instruction::ISZERO;
auto loopEnd = m_context.appendConditionalJump();
m_context << Instruction::DUP3 << Instruction::DUP5;
accessIndex(_sourceType, false);
MemoryItem(m_context, *_sourceType.baseType(), true).retrieveValue(SourceLocation(), true);
if (auto baseArray = dynamic_cast<ArrayType const*>(_sourceType.baseType().get()))
copyArrayToMemory(*baseArray, _padToWordBoundaries);
else
utils.storeInMemoryDynamic(*_sourceType.baseType());
m_context << Instruction::SWAP3 << u256(1) << Instruction::ADD;
m_context << Instruction::SWAP3;
m_context.appendJumpTo(repeat);
m_context << loopEnd;
m_context << Instruction::SWAP3;
utils.popStackSlots(3);
// stack: updated_target_pos
return;
}
// memcpy using the built-in contract
if (_sourceType.isDynamicallySized())
{
// change pointer to data part
m_context << Instruction::SWAP1 << u256(32) << Instruction::ADD;
m_context << Instruction::SWAP1;
}
// convert length to size
if (baseSize > 1)
m_context << u256(baseSize) << Instruction::MUL;
// stack: <target> <source> <size>
m_context << Instruction::DUP1 << Instruction::DUP4 << Instruction::DUP4;
// We can resort to copying full 32 bytes only if
// - the length is known to be a multiple of 32 or
// - we will pad to full 32 bytes later anyway.
if (((baseSize % 32) == 0) || _padToWordBoundaries)
utils.memoryCopy32();
else
utils.memoryCopy();
m_context << Instruction::SWAP1 << Instruction::POP;
// stack: <target> <size>
bool paddingNeeded = false;
if (_sourceType.isDynamicallySized())
paddingNeeded = _padToWordBoundaries && ((baseSize % 32) != 0);
else
paddingNeeded = _padToWordBoundaries && (((_sourceType.length() * baseSize) % 32) != 0);
if (paddingNeeded)
{
// stack: <target> <size>
m_context << Instruction::SWAP1 << Instruction::DUP2 << Instruction::ADD;
// stack: <length> <target + size>
m_context << Instruction::SWAP1 << u256(31) << Instruction::AND;
// stack: <target + size> <remainder = size % 32>
eth::AssemblyItem skip = m_context.newTag();
if (_sourceType.isDynamicallySized())
{
m_context << Instruction::DUP1 << Instruction::ISZERO;
m_context.appendConditionalJumpTo(skip);
}
// round off, load from there.
// stack <target + size> <remainder = size % 32>
m_context << Instruction::DUP1 << Instruction::DUP3;
m_context << Instruction::SUB;
// stack: target+size remainder <target + size - remainder>
m_context << Instruction::DUP1 << Instruction::MLOAD;
// Now we AND it with ~(2**(8 * (32 - remainder)) - 1)
m_context << u256(1);
m_context << Instruction::DUP4 << u256(32) << Instruction::SUB;
// stack: ...<v> 1 <32 - remainder>
m_context << u256(0x100) << Instruction::EXP << Instruction::SUB;
m_context << Instruction::NOT << Instruction::AND;
// stack: target+size remainder target+size-remainder <v & ...>
m_context << Instruction::DUP2 << Instruction::MSTORE;
// stack: target+size remainder target+size-remainder
m_context << u256(32) << Instruction::ADD;
// stack: target+size remainder <new_padded_end>
m_context << Instruction::SWAP2 << Instruction::POP;
if (_sourceType.isDynamicallySized())
m_context << skip.tag();
// stack <target + "size"> <remainder = size % 32>
m_context << Instruction::POP;
}
else
// stack: <target> <size>
m_context << Instruction::ADD;
}
else
{
solAssert(_sourceType.location() == DataLocation::Storage, "");
unsigned storageBytes = _sourceType.baseType()->storageBytes();
u256 storageSize = _sourceType.baseType()->storageSize();
solAssert(storageSize > 1 || (storageSize == 1 && storageBytes > 0), "");
retrieveLength(_sourceType);
// stack here: memory_offset storage_offset length
// jump to end if length is zero
m_context << Instruction::DUP1 << Instruction::ISZERO;
eth::AssemblyItem loopEnd = m_context.appendConditionalJump();
// Special case for tightly-stored byte arrays
if (_sourceType.isByteArray())
{
// stack here: memory_offset storage_offset length
m_context << Instruction::DUP1 << u256(31) << Instruction::LT;
eth::AssemblyItem longByteArray = m_context.appendConditionalJump();
// store the short byte array (discard lower-order byte)
m_context << u256(0x100) << Instruction::DUP1;
m_context << Instruction::DUP4 << Instruction::SLOAD;
m_context << Instruction::DIV << Instruction::MUL;
m_context << Instruction::DUP4 << Instruction::MSTORE;
// stack here: memory_offset storage_offset length
// add 32 or length to memory offset
m_context << Instruction::SWAP2;
if (_padToWordBoundaries)
m_context << u256(32);
else
m_context << Instruction::DUP3;
m_context << Instruction::ADD;
m_context << Instruction::SWAP2;
m_context.appendJumpTo(loopEnd);
m_context << longByteArray;
}
// compute memory end offset
if (baseSize > 1)
// convert length to memory size
m_context << u256(baseSize) << Instruction::MUL;
m_context << Instruction::DUP3 << Instruction::ADD << Instruction::SWAP2;
if (_sourceType.isDynamicallySized())
{
// actual array data is stored at KECCAK256(storage_offset)
m_context << Instruction::SWAP1;
utils.computeHashStatic();
m_context << Instruction::SWAP1;
}
// stack here: memory_end_offset storage_data_offset memory_offset
bool haveByteOffset = !_sourceType.isByteArray() && storageBytes <= 16;
if (haveByteOffset)
m_context << u256(0) << Instruction::SWAP1;
// stack here: memory_end_offset storage_data_offset [storage_byte_offset] memory_offset
eth::AssemblyItem loopStart = m_context.newTag();
m_context << loopStart;
// load and store
if (_sourceType.isByteArray())
{
// Packed both in storage and memory.
m_context << Instruction::DUP2 << Instruction::SLOAD;
m_context << Instruction::DUP2 << Instruction::MSTORE;
// increment storage_data_offset by 1
m_context << Instruction::SWAP1 << u256(1) << Instruction::ADD;
// increment memory offset by 32
m_context << Instruction::SWAP1 << u256(32) << Instruction::ADD;
}
else
{
// stack here: memory_end_offset storage_data_offset [storage_byte_offset] memory_offset
if (haveByteOffset)
m_context << Instruction::DUP3 << Instruction::DUP3;
else
m_context << Instruction::DUP2 << u256(0);
StorageItem(m_context, *_sourceType.baseType()).retrieveValue(SourceLocation(), true);
if (auto baseArray = dynamic_cast<ArrayType const*>(_sourceType.baseType().get()))
copyArrayToMemory(*baseArray, _padToWordBoundaries);
else
utils.storeInMemoryDynamic(*_sourceType.baseType());
// increment storage_data_offset and byte offset
if (haveByteOffset)
incrementByteOffset(storageBytes, 2, 3);
else
{
m_context << Instruction::SWAP1;
m_context << storageSize << Instruction::ADD;
m_context << Instruction::SWAP1;
}
}
// check for loop condition
m_context << Instruction::DUP1 << dupInstruction(haveByteOffset ? 5 : 4);
m_context << Instruction::GT;
m_context.appendConditionalJumpTo(loopStart);
// stack here: memory_end_offset storage_data_offset [storage_byte_offset] memory_offset
if (haveByteOffset)
m_context << Instruction::SWAP1 << Instruction::POP;
if (_padToWordBoundaries && baseSize % 32 != 0)
{
// memory_end_offset - start is the actual length (we want to compute the ceil of).
// memory_offset - start is its next multiple of 32, but it might be off by 32.
// so we compute: memory_end_offset += (memory_offset - memory_end_offest) & 31
m_context << Instruction::DUP3 << Instruction::SWAP1 << Instruction::SUB;
m_context << u256(31) << Instruction::AND;
m_context << Instruction::DUP3 << Instruction::ADD;
m_context << Instruction::SWAP2;
}
m_context << loopEnd << Instruction::POP << Instruction::POP;
}
}
void ArrayUtils::clearArray(ArrayType const& _typeIn) const
{
TypePointer type = _typeIn.shared_from_this();
m_context.callLowLevelFunction(
"$clearArray_" + _typeIn.identifier(),
2,
0,
[type](CompilerContext& _context)
{
ArrayType const& _type = dynamic_cast<ArrayType const&>(*type);
unsigned stackHeightStart = _context.stackHeight();
solAssert(_type.location() == DataLocation::Storage, "");
if (_type.baseType()->storageBytes() < 32)
{
solAssert(_type.baseType()->isValueType(), "Invalid storage size for non-value type.");
solAssert(_type.baseType()->storageSize() <= 1, "Invalid storage size for type.");
}
if (_type.baseType()->isValueType())
solAssert(_type.baseType()->storageSize() <= 1, "Invalid size for value type.");
_context << Instruction::POP; // remove byte offset
if (_type.isDynamicallySized())
ArrayUtils(_context).clearDynamicArray(_type);
else if (_type.length() == 0 || _type.baseType()->category() == Type::Category::Mapping)
_context << Instruction::POP;
else if (_type.baseType()->isValueType() && _type.storageSize() <= 5)
{
// unroll loop for small arrays @todo choose a good value
// Note that we loop over storage slots here, not elements.
for (unsigned i = 1; i < _type.storageSize(); ++i)
_context
<< u256(0) << Instruction::DUP2 << Instruction::SSTORE
<< u256(1) << Instruction::ADD;
_context << u256(0) << Instruction::SWAP1 << Instruction::SSTORE;
}
else if (!_type.baseType()->isValueType() && _type.length() <= 4)
{
// unroll loop for small arrays @todo choose a good value
solAssert(_type.baseType()->storageBytes() >= 32, "Invalid storage size.");
for (unsigned i = 1; i < _type.length(); ++i)
{
_context << u256(0);
StorageItem(_context, *_type.baseType()).setToZero(SourceLocation(), false);
_context
<< Instruction::POP
<< u256(_type.baseType()->storageSize()) << Instruction::ADD;
}
_context << u256(0);
StorageItem(_context, *_type.baseType()).setToZero(SourceLocation(), true);
}
else
{
_context << Instruction::DUP1 << _type.length();
ArrayUtils(_context).convertLengthToSize(_type);
_context << Instruction::ADD << Instruction::SWAP1;
if (_type.baseType()->storageBytes() < 32)
ArrayUtils(_context).clearStorageLoop(make_shared<IntegerType>(256));
else
ArrayUtils(_context).clearStorageLoop(_type.baseType());
_context << Instruction::POP;
}
solAssert(_context.stackHeight() == stackHeightStart - 2, "");
}
);
}
void ArrayUtils::clearDynamicArray(ArrayType const& _type) const
{
solAssert(_type.location() == DataLocation::Storage, "");
solAssert(_type.isDynamicallySized(), "");
// fetch length
retrieveLength(_type);
// set length to zero
m_context << u256(0) << Instruction::DUP3 << Instruction::SSTORE;
// Special case: short byte arrays are stored togeher with their length
eth::AssemblyItem endTag = m_context.newTag();
if (_type.isByteArray())
{
// stack: ref old_length
m_context << Instruction::DUP1 << u256(31) << Instruction::LT;
eth::AssemblyItem longByteArray = m_context.appendConditionalJump();
m_context << Instruction::POP;
m_context.appendJumpTo(endTag);
m_context.adjustStackOffset(1); // needed because of jump
m_context << longByteArray;
}
// stack: ref old_length
convertLengthToSize(_type);
// compute data positions
m_context << Instruction::SWAP1;
CompilerUtils(m_context).computeHashStatic();
// stack: len data_pos
m_context << Instruction::SWAP1 << Instruction::DUP2 << Instruction::ADD
<< Instruction::SWAP1;
// stack: data_pos_end data_pos
if (_type.isByteArray() || _type.baseType()->storageBytes() < 32)
clearStorageLoop(make_shared<IntegerType>(256));
else
clearStorageLoop(_type.baseType());
// cleanup
m_context << endTag;
m_context << Instruction::POP;
}
void ArrayUtils::resizeDynamicArray(ArrayType const& _typeIn) const
{
TypePointer type = _typeIn.shared_from_this();
m_context.callLowLevelFunction(
"$resizeDynamicArray_" + _typeIn.identifier(),
2,
0,
[type](CompilerContext& _context)
{
ArrayType const& _type = dynamic_cast<ArrayType const&>(*type);
solAssert(_type.location() == DataLocation::Storage, "");
solAssert(_type.isDynamicallySized(), "");
if (!_type.isByteArray() && _type.baseType()->storageBytes() < 32)
solAssert(_type.baseType()->isValueType(), "Invalid storage size for non-value type.");
unsigned stackHeightStart = _context.stackHeight();
eth::AssemblyItem resizeEnd = _context.newTag();
// stack: ref new_length
// fetch old length
ArrayUtils(_context).retrieveLength(_type, 1);
// stack: ref new_length old_length
solAssert(_context.stackHeight() - stackHeightStart == 3 - 2, "2");
// Special case for short byte arrays, they are stored together with their length
if (_type.isByteArray())
{
eth::AssemblyItem regularPath = _context.newTag();
// We start by a large case-distinction about the old and new length of the byte array.
_context << Instruction::DUP3 << Instruction::SLOAD;
// stack: ref new_length current_length ref_value
solAssert(_context.stackHeight() - stackHeightStart == 4 - 2, "3");
_context << Instruction::DUP2 << u256(31) << Instruction::LT;
eth::AssemblyItem currentIsLong = _context.appendConditionalJump();
_context << Instruction::DUP3 << u256(31) << Instruction::LT;
eth::AssemblyItem newIsLong = _context.appendConditionalJump();
// Here: short -> short
// Compute 1 << (256 - 8 * new_size)
eth::AssemblyItem shortToShort = _context.newTag();
_context << shortToShort;
_context << Instruction::DUP3 << u256(8) << Instruction::MUL;
_context << u256(0x100) << Instruction::SUB;
_context << u256(2) << Instruction::EXP;
// Divide and multiply by that value, clearing bits.
_context << Instruction::DUP1 << Instruction::SWAP2;
_context << Instruction::DIV << Instruction::MUL;
// Insert 2*length.
_context << Instruction::DUP3 << Instruction::DUP1 << Instruction::ADD;
_context << Instruction::OR;
// Store.
_context << Instruction::DUP4 << Instruction::SSTORE;
solAssert(_context.stackHeight() - stackHeightStart == 3 - 2, "3");
_context.appendJumpTo(resizeEnd);
_context.adjustStackOffset(1); // we have to do that because of the jumps
// Here: short -> long
_context << newIsLong;
// stack: ref new_length current_length ref_value
solAssert(_context.stackHeight() - stackHeightStart == 4 - 2, "3");
// Zero out lower-order byte.
_context << u256(0xff) << Instruction::NOT << Instruction::AND;
// Store at data location.
_context << Instruction::DUP4;
CompilerUtils(_context).computeHashStatic();
_context << Instruction::SSTORE;
// stack: ref new_length current_length
// Store new length: Compule 2*length + 1 and store it.
_context << Instruction::DUP2 << Instruction::DUP1 << Instruction::ADD;
_context << u256(1) << Instruction::ADD;
// stack: ref new_length current_length 2*new_length+1
_context << Instruction::DUP4 << Instruction::SSTORE;
solAssert(_context.stackHeight() - stackHeightStart == 3 - 2, "3");
_context.appendJumpTo(resizeEnd);
_context.adjustStackOffset(1); // we have to do that because of the jumps
_context << currentIsLong;
_context << Instruction::DUP3 << u256(31) << Instruction::LT;
_context.appendConditionalJumpTo(regularPath);
// Here: long -> short
// Read the first word of the data and store it on the stack. Clear the data location and
// then jump to the short -> short case.
// stack: ref new_length current_length ref_value
solAssert(_context.stackHeight() - stackHeightStart == 4 - 2, "3");
_context << Instruction::POP << Instruction::DUP3;
CompilerUtils(_context).computeHashStatic();
_context << Instruction::DUP1 << Instruction::SLOAD << Instruction::SWAP1;
// stack: ref new_length current_length first_word data_location
_context << Instruction::DUP3;
ArrayUtils(_context).convertLengthToSize(_type);
_context << Instruction::DUP2 << Instruction::ADD << Instruction::SWAP1;
// stack: ref new_length current_length first_word data_location_end data_location
ArrayUtils(_context).clearStorageLoop(make_shared<IntegerType>(256));
_context << Instruction::POP;
// stack: ref new_length current_length first_word
solAssert(_context.stackHeight() - stackHeightStart == 4 - 2, "3");
_context.appendJumpTo(shortToShort);
_context << regularPath;
// stack: ref new_length current_length ref_value
_context << Instruction::POP;
}
// Change of length for a regular array (i.e. length at location, data at KECCAK256(location)).
// stack: ref new_length old_length
// store new length
_context << Instruction::DUP2;
if (_type.isByteArray())
// For a "long" byte array, store length as 2*length+1
_context << Instruction::DUP1 << Instruction::ADD << u256(1) << Instruction::ADD;
_context<< Instruction::DUP4 << Instruction::SSTORE;
// skip if size is not reduced
_context << Instruction::DUP2 << Instruction::DUP2
<< Instruction::ISZERO << Instruction::GT;
_context.appendConditionalJumpTo(resizeEnd);
// size reduced, clear the end of the array
// stack: ref new_length old_length
ArrayUtils(_context).convertLengthToSize(_type);
_context << Instruction::DUP2;
ArrayUtils(_context).convertLengthToSize(_type);
// stack: ref new_length old_size new_size
// compute data positions
_context << Instruction::DUP4;
CompilerUtils(_context).computeHashStatic();
// stack: ref new_length old_size new_size data_pos
_context << Instruction::SWAP2 << Instruction::DUP3 << Instruction::ADD;
// stack: ref new_length data_pos new_size delete_end
_context << Instruction::SWAP2 << Instruction::ADD;
// stack: ref new_length delete_end delete_start
if (_type.isByteArray() || _type.baseType()->storageBytes() < 32)
ArrayUtils(_context).clearStorageLoop(make_shared<IntegerType>(256));
else
ArrayUtils(_context).clearStorageLoop(_type.baseType());
_context << resizeEnd;
// cleanup
_context << Instruction::POP << Instruction::POP << Instruction::POP;
solAssert(_context.stackHeight() == stackHeightStart - 2, "");
}
);
}
void ArrayUtils::clearStorageLoop(TypePointer const& _type) const
{
m_context.callLowLevelFunction(
"$clearStorageLoop_" + _type->identifier(),
2,
1,
[_type](CompilerContext& _context)
{
unsigned stackHeightStart = _context.stackHeight();
if (_type->category() == Type::Category::Mapping)
{
_context << Instruction::POP;
return;
}
// stack: end_pos pos
// jump to and return from the loop to allow for duplicate code removal
eth::AssemblyItem returnTag = _context.pushNewTag();
_context << Instruction::SWAP2 << Instruction::SWAP1;
// stack: <return tag> end_pos pos
eth::AssemblyItem loopStart = _context.appendJumpToNew();
_context << loopStart;
// check for loop condition
_context << Instruction::DUP1 << Instruction::DUP3
<< Instruction::GT << Instruction::ISZERO;
eth::AssemblyItem zeroLoopEnd = _context.newTag();
_context.appendConditionalJumpTo(zeroLoopEnd);
// delete
_context << u256(0);
StorageItem(_context, *_type).setToZero(SourceLocation(), false);
_context << Instruction::POP;
// increment
_context << _type->storageSize() << Instruction::ADD;
_context.appendJumpTo(loopStart);
// cleanup
_context << zeroLoopEnd;
_context << Instruction::POP << Instruction::SWAP1;
// "return"
_context << Instruction::JUMP;
_context << returnTag;
solAssert(_context.stackHeight() == stackHeightStart - 1, "");
}
);
}
void ArrayUtils::convertLengthToSize(ArrayType const& _arrayType, bool _pad) const
{
if (_arrayType.location() == DataLocation::Storage)
{
if (_arrayType.baseType()->storageSize() <= 1)
{
unsigned baseBytes = _arrayType.baseType()->storageBytes();
if (baseBytes == 0)
m_context << Instruction::POP << u256(1);
else if (baseBytes <= 16)
{
unsigned itemsPerSlot = 32 / baseBytes;
m_context
<< u256(itemsPerSlot - 1) << Instruction::ADD
<< u256(itemsPerSlot) << Instruction::SWAP1 << Instruction::DIV;
}
}
else
m_context << _arrayType.baseType()->storageSize() << Instruction::MUL;
}
else
{
if (!_arrayType.isByteArray())
{
if (_arrayType.location() == DataLocation::Memory)
m_context << _arrayType.baseType()->memoryHeadSize();
else
m_context << _arrayType.baseType()->calldataEncodedSize();
m_context << Instruction::MUL;
}
else if (_pad)
m_context << u256(31) << Instruction::ADD
<< u256(32) << Instruction::DUP1
<< Instruction::SWAP2 << Instruction::DIV << Instruction::MUL;
}
}
void ArrayUtils::retrieveLength(ArrayType const& _arrayType, unsigned _stackDepth) const
{
if (!_arrayType.isDynamicallySized())
m_context << _arrayType.length();
else
{
m_context << dupInstruction(1 + _stackDepth);
switch (_arrayType.location())
{
case DataLocation::CallData:
// length is stored on the stack
break;
case DataLocation::Memory:
m_context << Instruction::MLOAD;
break;
case DataLocation::Storage:
m_context << Instruction::SLOAD;
if (_arrayType.isByteArray())
{
// Retrieve length both for in-place strings and off-place strings:
// Computes (x & (0x100 * (ISZERO (x & 1)) - 1)) / 2
// i.e. for short strings (x & 1 == 0) it does (x & 0xff) / 2 and for long strings it
// computes (x & (-1)) / 2, which is equivalent to just x / 2.
m_context << u256(1) << Instruction::DUP2 << u256(1) << Instruction::AND;
m_context << Instruction::ISZERO << u256(0x100) << Instruction::MUL;
m_context << Instruction::SUB << Instruction::AND;
m_context << u256(2) << Instruction::SWAP1 << Instruction::DIV;
}
break;
}
}
}
void ArrayUtils::accessIndex(ArrayType const& _arrayType, bool _doBoundsCheck) const
{
/// Stack: reference [length] index
DataLocation location = _arrayType.location();
if (_doBoundsCheck)
{
// retrieve length
ArrayUtils::retrieveLength(_arrayType, 1);
// Stack: ref [length] index length
// check out-of-bounds access
m_context << Instruction::DUP2 << Instruction::LT << Instruction::ISZERO;
// out-of-bounds access throws exception
m_context.appendConditionalInvalid();
}
if (location == DataLocation::CallData && _arrayType.isDynamicallySized())
// remove length if present
m_context << Instruction::SWAP1 << Instruction::POP;
// stack: <base_ref> <index>
m_context << Instruction::SWAP1;
// stack: <index> <base_ref>
switch (location)
{
case DataLocation::Memory:
case DataLocation::CallData:
if (location == DataLocation::Memory && _arrayType.isDynamicallySized())
m_context << u256(32) << Instruction::ADD;
if (!_arrayType.isByteArray())
{
m_context << Instruction::SWAP1;
if (location == DataLocation::CallData)
m_context << _arrayType.baseType()->calldataEncodedSize();
else
m_context << u256(_arrayType.memoryHeadSize());
m_context << Instruction::MUL;
}
m_context << Instruction::ADD;
break;
case DataLocation::Storage:
{
eth::AssemblyItem endTag = m_context.newTag();
if (_arrayType.isByteArray())
{
// Special case of short byte arrays.
m_context << Instruction::SWAP1;
m_context << Instruction::DUP2 << Instruction::SLOAD;
m_context << u256(1) << Instruction::AND << Instruction::ISZERO;
// No action needed for short byte arrays.
m_context.appendConditionalJumpTo(endTag);
m_context << Instruction::SWAP1;
}
if (_arrayType.isDynamicallySized())
CompilerUtils(m_context).computeHashStatic();
m_context << Instruction::SWAP1;
if (_arrayType.baseType()->storageBytes() <= 16)
{
// stack: <data_ref> <index>
// goal:
// <ref> <byte_number> = <base_ref + index / itemsPerSlot> <(index % itemsPerSlot) * byteSize>
unsigned byteSize = _arrayType.baseType()->storageBytes();
solAssert(byteSize != 0, "");
unsigned itemsPerSlot = 32 / byteSize;
m_context << u256(itemsPerSlot) << Instruction::SWAP2;
// stack: itemsPerSlot index data_ref
m_context
<< Instruction::DUP3 << Instruction::DUP3
<< Instruction::DIV << Instruction::ADD
// stack: itemsPerSlot index (data_ref + index / itemsPerSlot)
<< Instruction::SWAP2 << Instruction::SWAP1
<< Instruction::MOD;
if (byteSize != 1)
m_context << u256(byteSize) << Instruction::MUL;
}
else
{
if (_arrayType.baseType()->storageSize() != 1)
m_context << _arrayType.baseType()->storageSize() << Instruction::MUL;
m_context << Instruction::ADD << u256(0);
}
m_context << endTag;
break;
}
default:
solAssert(false, "");
}
}
void ArrayUtils::incrementByteOffset(unsigned _byteSize, unsigned _byteOffsetPosition, unsigned _storageOffsetPosition) const
{
solAssert(_byteSize < 32, "");
solAssert(_byteSize != 0, "");
// We do the following, but avoiding jumps:
// byteOffset += byteSize
// if (byteOffset + byteSize > 32)
// {
// storageOffset++;
// byteOffset = 0;
// }
if (_byteOffsetPosition > 1)
m_context << swapInstruction(_byteOffsetPosition - 1);
m_context << u256(_byteSize) << Instruction::ADD;
if (_byteOffsetPosition > 1)
m_context << swapInstruction(_byteOffsetPosition - 1);
// compute, X := (byteOffset + byteSize - 1) / 32, should be 1 iff byteOffset + bytesize > 32
m_context
<< u256(32) << dupInstruction(1 + _byteOffsetPosition) << u256(_byteSize - 1)
<< Instruction::ADD << Instruction::DIV;
// increment storage offset if X == 1 (just add X to it)
// stack: X
m_context
<< swapInstruction(_storageOffsetPosition) << dupInstruction(_storageOffsetPosition + 1)
<< Instruction::ADD << swapInstruction(_storageOffsetPosition);
// stack: X
// set source_byte_offset to zero if X == 1 (using source_byte_offset *= 1 - X)
m_context << u256(1) << Instruction::SUB;
// stack: 1 - X
if (_byteOffsetPosition == 1)
m_context << Instruction::MUL;
else
m_context
<< dupInstruction(_byteOffsetPosition + 1) << Instruction::MUL
<< swapInstruction(_byteOffsetPosition) << Instruction::POP;
}
|