aboutsummaryrefslogtreecommitdiffstats
path: root/libsolidity/analysis/TypeChecker.cpp
blob: 44f4629b1000f7593ab597be86efb9b93682db7d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
/*
    This file is part of cpp-ethereum.

    cpp-ethereum is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    cpp-ethereum is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with cpp-ethereum.  If not, see <http://www.gnu.org/licenses/>.
*/
/**
 * @author Christian <c@ethdev.com>
 * @date 2015
 * Type analyzer and checker.
 */

#include <libsolidity/analysis/TypeChecker.h>
#include <memory>
#include <boost/range/adaptor/reversed.hpp>
#include <libsolidity/ast/AST.h>

using namespace std;
using namespace dev;
using namespace dev::solidity;


bool TypeChecker::checkTypeRequirements(const ContractDefinition& _contract)
{
    try
    {
        visit(_contract);
    }
    catch (FatalError const&)
    {
        // We got a fatal error which required to stop further type checking, but we can
        // continue normally from here.
        if (m_errors.empty())
            throw; // Something is weird here, rather throw again.
    }
    return Error::containsOnlyWarnings(m_errors);
}

TypePointer const& TypeChecker::type(Expression const& _expression) const
{
    solAssert(!!_expression.annotation().type, "Type requested but not present.");
    return _expression.annotation().type;
}

TypePointer const& TypeChecker::type(VariableDeclaration const& _variable) const
{
    solAssert(!!_variable.annotation().type, "Type requested but not present.");
    return _variable.annotation().type;
}

bool TypeChecker::visit(ContractDefinition const& _contract)
{
    m_scope = &_contract;

    // We force our own visiting order here.
    //@TODO structs will be visited again below, but it is probably fine.
    ASTNode::listAccept(_contract.definedStructs(), *this);
    ASTNode::listAccept(_contract.baseContracts(), *this);

    checkContractDuplicateFunctions(_contract);
    checkContractIllegalOverrides(_contract);
    checkContractAbstractFunctions(_contract);
    checkContractAbstractConstructors(_contract);

    FunctionDefinition const* function = _contract.constructor();
    if (function && !function->returnParameters().empty())
        typeError(function->returnParameterList()->location(), "Non-empty \"returns\" directive for constructor.");

    FunctionDefinition const* fallbackFunction = nullptr;
    for (FunctionDefinition const* function: _contract.definedFunctions())
    {
        if (function->name().empty())
        {
            if (fallbackFunction)
            {
                auto err = make_shared<Error>(Error::Type::DeclarationError);
                *err << errinfo_comment("Only one fallback function is allowed.");
                m_errors.push_back(err);
            }
            else
            {
                fallbackFunction = function;
                if (!fallbackFunction->parameters().empty())
                    typeError(fallbackFunction->parameterList().location(), "Fallback function cannot take parameters.");
            }
        }
        if (!function->isImplemented())
            _contract.annotation().isFullyImplemented = false;
    }

    ASTNode::listAccept(_contract.subNodes(), *this);

    checkContractExternalTypeClashes(_contract);
    // check for hash collisions in function signatures
    set<FixedHash<4>> hashes;
    for (auto const& it: _contract.interfaceFunctionList())
    {
        FixedHash<4> const& hash = it.first;
        if (hashes.count(hash))
            typeError(
                _contract.location(),
                string("Function signature hash collision for ") + it.second->externalSignature()
            );
        hashes.insert(hash);
    }

    if (_contract.isLibrary())
        checkLibraryRequirements(_contract);

    return false;
}

void TypeChecker::checkContractDuplicateFunctions(ContractDefinition const& _contract)
{
    /// Checks that two functions with the same name defined in this contract have different
    /// argument types and that there is at most one constructor.
    map<string, vector<FunctionDefinition const*>> functions;
    for (FunctionDefinition const* function: _contract.definedFunctions())
        functions[function->name()].push_back(function);

    // Constructor
    if (functions[_contract.name()].size() > 1)
    {
        SecondarySourceLocation ssl;
        auto it = ++functions[_contract.name()].begin();
        for (; it != functions[_contract.name()].end(); ++it)
            ssl.append("Another declaration is here:", (*it)->location());

        auto err = make_shared<Error>(Error(Error::Type::DeclarationError));
        *err <<
            errinfo_sourceLocation(functions[_contract.name()].front()->location()) <<
            errinfo_comment("More than one constructor defined.") <<
            errinfo_secondarySourceLocation(ssl);
        m_errors.push_back(err);
    }
    for (auto const& it: functions)
    {
        vector<FunctionDefinition const*> const& overloads = it.second;
        for (size_t i = 0; i < overloads.size(); ++i)
            for (size_t j = i + 1; j < overloads.size(); ++j)
                if (FunctionType(*overloads[i]).hasEqualArgumentTypes(FunctionType(*overloads[j])))
                {
                    auto err = make_shared<Error>(Error(Error::Type::DeclarationError));
                    *err <<
                        errinfo_sourceLocation(overloads[j]->location()) <<
                        errinfo_comment("Function with same name and arguments defined twice.") <<
                        errinfo_secondarySourceLocation(SecondarySourceLocation().append(
                            "Other declaration is here:", overloads[i]->location()));
                    m_errors.push_back(err);
                }
    }
}

void TypeChecker::checkContractAbstractFunctions(ContractDefinition const& _contract)
{
    // Mapping from name to function definition (exactly one per argument type equality class) and
    // flag to indicate whether it is fully implemented.
    using FunTypeAndFlag = std::pair<FunctionTypePointer, bool>;
    map<string, vector<FunTypeAndFlag>> functions;

    // Search from base to derived
    for (ContractDefinition const* contract: boost::adaptors::reverse(_contract.annotation().linearizedBaseContracts))
        for (FunctionDefinition const* function: contract->definedFunctions())
        {
            auto& overloads = functions[function->name()];
            FunctionTypePointer funType = make_shared<FunctionType>(*function);
            auto it = find_if(overloads.begin(), overloads.end(), [&](FunTypeAndFlag const& _funAndFlag)
            {
                return funType->hasEqualArgumentTypes(*_funAndFlag.first);
            });
            if (it == overloads.end())
                overloads.push_back(make_pair(funType, function->isImplemented()));
            else if (it->second)
            {
                if (!function->isImplemented())
                    typeError(function->location(), "Redeclaring an already implemented function as abstract");
            }
            else if (function->isImplemented())
                it->second = true;
        }

    // Set to not fully implemented if at least one flag is false.
    for (auto const& it: functions)
        for (auto const& funAndFlag: it.second)
            if (!funAndFlag.second)
            {
                _contract.annotation().isFullyImplemented = false;
                return;
            }
}

void TypeChecker::checkContractAbstractConstructors(ContractDefinition const& _contract)
{
    set<ContractDefinition const*> argumentsNeeded;
    // check that we get arguments for all base constructors that need it.
    // If not mark the contract as abstract (not fully implemented)

    vector<ContractDefinition const*> const& bases = _contract.annotation().linearizedBaseContracts;
    for (ContractDefinition const* contract: bases)
        if (FunctionDefinition const* constructor = contract->constructor())
            if (contract != &_contract && !constructor->parameters().empty())
                argumentsNeeded.insert(contract);

    for (ContractDefinition const* contract: bases)
    {
        if (FunctionDefinition const* constructor = contract->constructor())
            for (auto const& modifier: constructor->modifiers())
            {
                auto baseContract = dynamic_cast<ContractDefinition const*>(
                    &dereference(*modifier->name())
                );
                if (baseContract)
                    argumentsNeeded.erase(baseContract);
            }


        for (ASTPointer<InheritanceSpecifier> const& base: contract->baseContracts())
        {
            auto baseContract = dynamic_cast<ContractDefinition const*>(&dereference(base->name()));
            solAssert(baseContract, "");
            if (!base->arguments().empty())
                argumentsNeeded.erase(baseContract);
        }
    }
    if (!argumentsNeeded.empty())
        _contract.annotation().isFullyImplemented = false;
}

void TypeChecker::checkContractIllegalOverrides(ContractDefinition const& _contract)
{
    // TODO unify this at a later point. for this we need to put the constness and the access specifier
    // into the types
    map<string, vector<FunctionDefinition const*>> functions;
    map<string, ModifierDefinition const*> modifiers;

    // We search from derived to base, so the stored item causes the error.
    for (ContractDefinition const* contract: _contract.annotation().linearizedBaseContracts)
    {
        for (FunctionDefinition const* function: contract->definedFunctions())
        {
            if (function->isConstructor())
                continue; // constructors can neither be overridden nor override anything
            string const& name = function->name();
            if (modifiers.count(name))
                typeError(modifiers[name]->location(), "Override changes function to modifier.");
            FunctionType functionType(*function);
            // function should not change the return type
            for (FunctionDefinition const* overriding: functions[name])
            {
                FunctionType overridingType(*overriding);
                if (!overridingType.hasEqualArgumentTypes(functionType))
                    continue;
                if (
                    overriding->visibility() != function->visibility() ||
                    overriding->isDeclaredConst() != function->isDeclaredConst() ||
                    overridingType != functionType
                )
                    typeError(overriding->location(), "Override changes extended function signature.");
            }
            functions[name].push_back(function);
        }
        for (ModifierDefinition const* modifier: contract->functionModifiers())
        {
            string const& name = modifier->name();
            ModifierDefinition const*& override = modifiers[name];
            if (!override)
                override = modifier;
            else if (ModifierType(*override) != ModifierType(*modifier))
                typeError(override->location(), "Override changes modifier signature.");
            if (!functions[name].empty())
                typeError(override->location(), "Override changes modifier to function.");
        }
    }
}

void TypeChecker::checkContractExternalTypeClashes(ContractDefinition const& _contract)
{
    map<string, vector<pair<Declaration const*, FunctionTypePointer>>> externalDeclarations;
    for (ContractDefinition const* contract: _contract.annotation().linearizedBaseContracts)
    {
        for (FunctionDefinition const* f: contract->definedFunctions())
            if (f->isPartOfExternalInterface())
            {
                auto functionType = make_shared<FunctionType>(*f);
                // under non error circumstances this should be true
                if (functionType->interfaceFunctionType())
                    externalDeclarations[functionType->externalSignature()].push_back(
                        make_pair(f, functionType)
                    );
            }
        for (VariableDeclaration const* v: contract->stateVariables())
            if (v->isPartOfExternalInterface())
            {
                auto functionType = make_shared<FunctionType>(*v);
                // under non error circumstances this should be true
                if (functionType->interfaceFunctionType())
                    externalDeclarations[functionType->externalSignature()].push_back(
                        make_pair(v, functionType)
                    );
            }
    }
    for (auto const& it: externalDeclarations)
        for (size_t i = 0; i < it.second.size(); ++i)
            for (size_t j = i + 1; j < it.second.size(); ++j)
                if (!it.second[i].second->hasEqualArgumentTypes(*it.second[j].second))
                    typeError(
                        it.second[j].first->location(),
                        "Function overload clash during conversion to external types for arguments."
                    );
}

void TypeChecker::checkLibraryRequirements(ContractDefinition const& _contract)
{
    solAssert(_contract.isLibrary(), "");
    if (!_contract.baseContracts().empty())
        typeError(_contract.location(), "Library is not allowed to inherit.");

    for (auto const& var: _contract.stateVariables())
        if (!var->isConstant())
            typeError(var->location(), "Library cannot have non-constant state variables");
}

void TypeChecker::endVisit(InheritanceSpecifier const& _inheritance)
{
    auto base = dynamic_cast<ContractDefinition const*>(&dereference(_inheritance.name()));
    solAssert(base, "Base contract not available.");

    if (base->isLibrary())
        typeError(_inheritance.location(), "Libraries cannot be inherited from.");

    auto const& arguments = _inheritance.arguments();
    TypePointers parameterTypes = ContractType(*base).constructorType()->parameterTypes();
    if (!arguments.empty() && parameterTypes.size() != arguments.size())
    {
        typeError(
            _inheritance.location(),
            "Wrong argument count for constructor call: " +
            toString(arguments.size()) +
            " arguments given but expected " +
            toString(parameterTypes.size()) +
            "."
        );
        return;
    }

    for (size_t i = 0; i < arguments.size(); ++i)
        if (!type(*arguments[i])->isImplicitlyConvertibleTo(*parameterTypes[i]))
            typeError(
                arguments[i]->location(),
                "Invalid type for argument in constructor call. "
                "Invalid implicit conversion from " +
                type(*arguments[i])->toString() +
                " to " +
                parameterTypes[i]->toString() +
                " requested."
                        );
}

void TypeChecker::endVisit(UsingForDirective const& _usingFor)
{
    ContractDefinition const* library = dynamic_cast<ContractDefinition const*>(
        _usingFor.libraryName().annotation().referencedDeclaration
    );
    if (!library || !library->isLibrary())
        typeError(_usingFor.libraryName().location(), "Library name expected.");
}

bool TypeChecker::visit(StructDefinition const& _struct)
{
    for (ASTPointer<VariableDeclaration> const& member: _struct.members())
        if (!type(*member)->canBeStored())
            typeError(member->location(), "Type cannot be used in struct.");

    // Check recursion, fatal error if detected.
    using StructPointer = StructDefinition const*;
    using StructPointersSet = set<StructPointer>;
    function<void(StructPointer,StructPointersSet const&)> check = [&](StructPointer _struct, StructPointersSet const& _parents)
    {
        if (_parents.count(_struct))
            fatalTypeError(_struct->location(), "Recursive struct definition.");
        StructPointersSet parents = _parents;
        parents.insert(_struct);
        for (ASTPointer<VariableDeclaration> const& member: _struct->members())
            if (type(*member)->category() == Type::Category::Struct)
            {
                auto const& typeName = dynamic_cast<UserDefinedTypeName const&>(*member->typeName());
                check(&dynamic_cast<StructDefinition const&>(*typeName.annotation().referencedDeclaration), parents);
            }
    };
    check(&_struct, StructPointersSet{});

    ASTNode::listAccept(_struct.members(), *this);

    return false;
}

bool TypeChecker::visit(FunctionDefinition const& _function)
{
    bool isLibraryFunction = dynamic_cast<ContractDefinition const&>(*_function.scope()).isLibrary();
    for (ASTPointer<VariableDeclaration> const& var: _function.parameters() + _function.returnParameters())
    {
        if (!type(*var)->canLiveOutsideStorage())
            typeError(var->location(), "Type is required to live outside storage.");
        if (_function.visibility() >= FunctionDefinition::Visibility::Public && !(type(*var)->interfaceType(isLibraryFunction)))
            fatalTypeError(var->location(), "Internal type is not allowed for public or external functions.");
    }
    for (ASTPointer<ModifierInvocation> const& modifier: _function.modifiers())
        visitManually(
            *modifier,
            _function.isConstructor() ?
            dynamic_cast<ContractDefinition const&>(*_function.scope()).annotation().linearizedBaseContracts :
            vector<ContractDefinition const*>()
        );
    if (_function.isImplemented())
        _function.body().accept(*this);
    return false;
}

bool TypeChecker::visit(VariableDeclaration const& _variable)
{
    // Variables can be declared without type (with "var"), in which case the first assignment
    // sets the type.
    // Note that assignments before the first declaration are legal because of the special scoping
    // rules inherited from JavaScript.

    // type is filled either by ReferencesResolver directly from the type name or by
    // TypeChecker at the VariableDeclarationStatement level.
    TypePointer varType = _variable.annotation().type;
    solAssert(!!varType, "Failed to infer variable type.");
    if (_variable.isConstant())
    {
        if (!dynamic_cast<ContractDefinition const*>(_variable.scope()))
            typeError(_variable.location(), "Illegal use of \"constant\" specifier.");
        if (!_variable.value())
            typeError(_variable.location(), "Uninitialized \"constant\" variable.");
        if (!varType->isValueType())
        {
            bool constImplemented = false;
            if (auto arrayType = dynamic_cast<ArrayType const*>(varType.get()))
                constImplemented = arrayType->isByteArray();
            if (!constImplemented)
                typeError(
                    _variable.location(),
                    "Illegal use of \"constant\" specifier. \"constant\" "
                    "is not yet implemented for this type."
                );
        }
    }
    if (_variable.value())
        expectType(*_variable.value(), *varType);
    if (!_variable.isStateVariable())
    {
        if (varType->dataStoredIn(DataLocation::Memory) || varType->dataStoredIn(DataLocation::CallData))
            if (!varType->canLiveOutsideStorage())
                typeError(_variable.location(), "Type " + varType->toString() + " is only valid in storage.");
    }
    else if (
        _variable.visibility() >= VariableDeclaration::Visibility::Public &&
        !FunctionType(_variable).interfaceFunctionType()
    )
        typeError(_variable.location(), "Internal type is not allowed for public state variables.");
    return false;
}

void TypeChecker::visitManually(
    ModifierInvocation const& _modifier,
    vector<ContractDefinition const*> const& _bases
)
{
    std::vector<ASTPointer<Expression>> const& arguments = _modifier.arguments();
    for (ASTPointer<Expression> const& argument: arguments)
        argument->accept(*this);
    _modifier.name()->accept(*this);

    auto const* declaration = &dereference(*_modifier.name());
    vector<ASTPointer<VariableDeclaration>> emptyParameterList;
    vector<ASTPointer<VariableDeclaration>> const* parameters = nullptr;
    if (auto modifierDecl = dynamic_cast<ModifierDefinition const*>(declaration))
        parameters = &modifierDecl->parameters();
    else
        // check parameters for Base constructors
        for (ContractDefinition const* base: _bases)
            if (declaration == base)
            {
                if (auto referencedConstructor = base->constructor())
                    parameters = &referencedConstructor->parameters();
                else
                    parameters = &emptyParameterList;
                break;
            }
    if (!parameters)
    {
        typeError(_modifier.location(), "Referenced declaration is neither modifier nor base class.");
        return;
    }
    if (parameters->size() != arguments.size())
    {
        typeError(
            _modifier.location(),
            "Wrong argument count for modifier invocation: " +
            toString(arguments.size()) +
            " arguments given but expected " +
            toString(parameters->size()) +
            "."
        );
        return;
    }
    for (size_t i = 0; i < _modifier.arguments().size(); ++i)
        if (!type(*arguments[i])->isImplicitlyConvertibleTo(*type(*(*parameters)[i])))
            typeError(
                arguments[i]->location(),
                "Invalid type for argument in modifier invocation. "
                "Invalid implicit conversion from " +
                type(*arguments[i])->toString() +
                " to " +
                type(*(*parameters)[i])->toString() +
                " requested."
            );
}

bool TypeChecker::visit(EventDefinition const& _eventDef)
{
    unsigned numIndexed = 0;
    for (ASTPointer<VariableDeclaration> const& var: _eventDef.parameters())
    {
        if (var->isIndexed())
            numIndexed++;
        if (_eventDef.isAnonymous() && numIndexed > 4)
            typeError(_eventDef.location(), "More than 4 indexed arguments for anonymous event.");
        else if (!_eventDef.isAnonymous() && numIndexed > 3)
            typeError(_eventDef.location(), "More than 3 indexed arguments for event.");
        if (!type(*var)->canLiveOutsideStorage())
            typeError(var->location(), "Type is required to live outside storage.");
        if (!type(*var)->interfaceType(false))
            typeError(var->location(), "Internal type is not allowed as event parameter type.");
    }
    return false;
}


bool TypeChecker::visit(IfStatement const& _ifStatement)
{
    expectType(_ifStatement.condition(), BoolType());
    _ifStatement.trueStatement().accept(*this);
    if (_ifStatement.falseStatement())
        _ifStatement.falseStatement()->accept(*this);
    return false;
}

bool TypeChecker::visit(WhileStatement const& _whileStatement)
{
    expectType(_whileStatement.condition(), BoolType());
    _whileStatement.body().accept(*this);
    return false;
}

bool TypeChecker::visit(ForStatement const& _forStatement)
{
    if (_forStatement.initializationExpression())
        _forStatement.initializationExpression()->accept(*this);
    if (_forStatement.condition())
        expectType(*_forStatement.condition(), BoolType());
    if (_forStatement.loopExpression())
        _forStatement.loopExpression()->accept(*this);
    _forStatement.body().accept(*this);
    return false;
}

void TypeChecker::endVisit(Return const& _return)
{
    if (!_return.expression())
        return;
    ParameterList const* params = _return.annotation().functionReturnParameters;
    if (!params)
    {
        typeError(_return.location(), "Return arguments not allowed.");
        return;
    }
    TypePointers returnTypes;
    for (auto const& var: params->parameters())
        returnTypes.push_back(type(*var));
    if (auto tupleType = dynamic_cast<TupleType const*>(type(*_return.expression()).get()))
    {
        if (tupleType->components().size() != params->parameters().size())
            typeError(_return.location(), "Different number of arguments in return statement than in returns declaration.");
        else if (!tupleType->isImplicitlyConvertibleTo(TupleType(returnTypes)))
            typeError(
                _return.expression()->location(),
                "Return argument type " +
                type(*_return.expression())->toString() +
                " is not implicitly convertible to expected type " +
                TupleType(returnTypes).toString(false) +
                "."
            );
    }
    else if (params->parameters().size() != 1)
        typeError(_return.location(), "Different number of arguments in return statement than in returns declaration.");
    else
    {
        TypePointer const& expected = type(*params->parameters().front());
        if (!type(*_return.expression())->isImplicitlyConvertibleTo(*expected))
            typeError(
                _return.expression()->location(),
                "Return argument type " +
                type(*_return.expression())->toString() +
                " is not implicitly convertible to expected type (type of first return variable) " +
                expected->toString() +
                "."
            );
    }
}

bool TypeChecker::visit(VariableDeclarationStatement const& _statement)
{
    if (!_statement.initialValue())
    {
        // No initial value is only permitted for single variables with specified type.
        if (_statement.declarations().size() != 1 || !_statement.declarations().front())
            fatalTypeError(_statement.location(), "Assignment necessary for type detection.");
        VariableDeclaration const& varDecl = *_statement.declarations().front();
        if (!varDecl.annotation().type)
            fatalTypeError(_statement.location(), "Assignment necessary for type detection.");
        if (auto ref = dynamic_cast<ReferenceType const*>(type(varDecl).get()))
        {
            if (ref->dataStoredIn(DataLocation::Storage))
            {
                auto err = make_shared<Error>(Error::Type::Warning);
                *err <<
                    errinfo_sourceLocation(varDecl.location()) <<
                    errinfo_comment("Uninitialized storage pointer. Did you mean '<type> memory " + varDecl.name() + "'?");
                m_errors.push_back(err);
            }
        }
        varDecl.accept(*this);
        return false;
    }

    // Here we have an initial value and might have to derive some types before we can visit
    // the variable declaration(s).

    _statement.initialValue()->accept(*this);
    TypePointers valueTypes;
    if (auto tupleType = dynamic_cast<TupleType const*>(type(*_statement.initialValue()).get()))
        valueTypes = tupleType->components();
    else
        valueTypes = TypePointers{type(*_statement.initialValue())};

    // Determine which component is assigned to which variable.
    // If numbers do not match, fill up if variables begin or end empty (not both).
    vector<VariableDeclaration const*>& assignments = _statement.annotation().assignments;
    assignments.resize(valueTypes.size(), nullptr);
    vector<ASTPointer<VariableDeclaration>> const& variables = _statement.declarations();
    if (variables.empty())
    {
        if (!valueTypes.empty())
            fatalTypeError(
                _statement.location(),
                "Too many components (" +
                toString(valueTypes.size()) +
                ") in value for variable assignment (0) needed"
            );
    }
    else if (valueTypes.size() != variables.size() && !variables.front() && !variables.back())
        fatalTypeError(
            _statement.location(),
            "Wildcard both at beginning and end of variable declaration list is only allowed "
            "if the number of components is equal."
        );
    size_t minNumValues = variables.size();
    if (!variables.empty() && (!variables.back() || !variables.front()))
        --minNumValues;
    if (valueTypes.size() < minNumValues)
        fatalTypeError(
            _statement.location(),
            "Not enough components (" +
            toString(valueTypes.size()) +
            ") in value to assign all variables (" +
            toString(minNumValues) + ")."
        );
    if (valueTypes.size() > variables.size() && variables.front() && variables.back())
        fatalTypeError(
            _statement.location(),
            "Too many components (" +
            toString(valueTypes.size()) +
            ") in value for variable assignment (" +
            toString(minNumValues) +
            " needed)."
        );
    bool fillRight = !variables.empty() && (!variables.back() || variables.front());
    for (size_t i = 0; i < min(variables.size(), valueTypes.size()); ++i)
        if (fillRight)
            assignments[i] = variables[i].get();
        else
            assignments[assignments.size() - i - 1] = variables[variables.size() - i - 1].get();

    for (size_t i = 0; i < assignments.size(); ++i)
    {
        if (!assignments[i])
            continue;
        VariableDeclaration const& var = *assignments[i];
        solAssert(!var.value(), "Value has to be tied to statement.");
        TypePointer const& valueComponentType = valueTypes[i];
        solAssert(!!valueComponentType, "");
        if (!var.annotation().type)
        {
            // Infer type from value.
            solAssert(!var.typeName(), "");
            if (
                valueComponentType->category() == Type::Category::IntegerConstant &&
                !dynamic_pointer_cast<IntegerConstantType const>(valueComponentType)->integerType()
            )
                fatalTypeError(_statement.initialValue()->location(), "Invalid integer constant " + valueComponentType->toString() + ".");
            var.annotation().type = valueComponentType->mobileType();
            var.accept(*this);
        }
        else
        {
            var.accept(*this);
            if (!valueComponentType->isImplicitlyConvertibleTo(*var.annotation().type))
                typeError(
                    _statement.location(),
                    "Type " +
                    valueComponentType->toString() +
                    " is not implicitly convertible to expected type " +
                    var.annotation().type->toString() +
                    "."
                );
        }
    }
    return false;
}

void TypeChecker::endVisit(ExpressionStatement const& _statement)
{
    if (type(_statement.expression())->category() == Type::Category::IntegerConstant)
        if (!dynamic_pointer_cast<IntegerConstantType const>(type(_statement.expression()))->integerType())
            typeError(_statement.expression().location(), "Invalid integer constant.");
}

bool TypeChecker::visit(Conditional const& _conditional)
{
    expectType(_conditional.condition(), BoolType());

    _conditional.trueExpression().accept(*this);
    _conditional.falseExpression().accept(*this);

    TypePointer trueType = type(_conditional.trueExpression())->mobileType();
    TypePointer falseType = type(_conditional.falseExpression())->mobileType();

    TypePointer commonType = Type::commonType(trueType, falseType);
    if (!commonType)
    {
        typeError(
                _conditional.location(),
                "True expression's type " +
                trueType->toString() +
                " doesn't match false expression's type " +
                falseType->toString() +
                "."
        );
        // even we can't find a common type, we have to set a type here,
        // otherwise the upper statement will not be able to check the type.
        commonType = trueType;
    }

    _conditional.annotation().type = commonType;

    if (_conditional.annotation().lValueRequested)
        typeError(
                _conditional.location(),
                "Conditional expression as left value is not supported yet."
        );

    return false;
}

bool TypeChecker::visit(Assignment const& _assignment)
{
    requireLValue(_assignment.leftHandSide());
    TypePointer t = type(_assignment.leftHandSide());
    _assignment.annotation().type = t;
    if (TupleType const* tupleType = dynamic_cast<TupleType const*>(t.get()))
    {
        // Sequenced assignments of tuples is not valid, make the result a "void" type.
        _assignment.annotation().type = make_shared<TupleType>();
        expectType(_assignment.rightHandSide(), *tupleType);
    }
    else if (t->category() == Type::Category::Mapping)
    {
        typeError(_assignment.location(), "Mappings cannot be assigned to.");
        _assignment.rightHandSide().accept(*this);
    }
    else if (_assignment.assignmentOperator() == Token::Assign)
        expectType(_assignment.rightHandSide(), *t);
    else
    {
        // compound assignment
        _assignment.rightHandSide().accept(*this);
        TypePointer resultType = t->binaryOperatorResult(
            Token::AssignmentToBinaryOp(_assignment.assignmentOperator()),
            type(_assignment.rightHandSide())
        );
        if (!resultType || *resultType != *t)
            typeError(
                _assignment.location(),
                "Operator " +
                string(Token::toString(_assignment.assignmentOperator())) +
                " not compatible with types " +
                t->toString() +
                " and " +
                type(_assignment.rightHandSide())->toString()
            );
    }
    return false;
}

bool TypeChecker::visit(TupleExpression const& _tuple)
{
    vector<ASTPointer<Expression>> const& components = _tuple.components();
    TypePointers types;

    if (_tuple.annotation().lValueRequested)
    {
        if (_tuple.isInlineArray())
            fatalTypeError(_tuple.location(), "Inline array type cannot be declared as LValue.");
        for (auto const& component: components)
            if (component)
            {
                requireLValue(*component);
                types.push_back(type(*component));
            }
            else
                types.push_back(TypePointer());
        if (components.size() == 1)
            _tuple.annotation().type = type(*components[0]);
        else
            _tuple.annotation().type = make_shared<TupleType>(types);
        // If some of the components are not LValues, the error is reported above.
        _tuple.annotation().isLValue = true;
    }
    else
    {
        TypePointer inlineArrayType;
        for (size_t i = 0; i < components.size(); ++i)
        {
            // Outside of an lvalue-context, the only situation where a component can be empty is (x,).
            if (!components[i] && !(i == 1 && components.size() == 2))
                fatalTypeError(_tuple.location(), "Tuple component cannot be empty.");
            else if (components[i])
            {
                components[i]->accept(*this);
                types.push_back(type(*components[i]));
                if (_tuple.isInlineArray())
                    solAssert(!!types[i], "Inline array cannot have empty components");
                if (i == 0 && _tuple.isInlineArray())
                    inlineArrayType = types[i]->mobileType();
                else if (_tuple.isInlineArray() && inlineArrayType)
                    inlineArrayType = Type::commonType(inlineArrayType, types[i]->mobileType());
            }
            else
                types.push_back(TypePointer());
        }
        if (_tuple.isInlineArray())
        {
            if (!inlineArrayType) 
                fatalTypeError(_tuple.location(), "Unable to deduce common type for array elements.");
            _tuple.annotation().type = make_shared<ArrayType>(DataLocation::Memory, inlineArrayType, types.size());
        }
        else
        {
            if (components.size() == 1)
                _tuple.annotation().type = type(*components[0]);
            else
            {
                if (components.size() == 2 && !components[1])
                    types.pop_back();
                _tuple.annotation().type = make_shared<TupleType>(types);
            }
        }

    }
    return false;
}

bool TypeChecker::visit(UnaryOperation const& _operation)
{
    // Inc, Dec, Add, Sub, Not, BitNot, Delete
    Token::Value op = _operation.getOperator();
    if (op == Token::Value::Inc || op == Token::Value::Dec || op == Token::Value::Delete)
        requireLValue(_operation.subExpression());
    else
        _operation.subExpression().accept(*this);
    TypePointer const& subExprType = type(_operation.subExpression());
    TypePointer t = type(_operation.subExpression())->unaryOperatorResult(op);
    if (!t)
    {
        typeError(
            _operation.location(),
            "Unary operator " +
            string(Token::toString(op)) +
            " cannot be applied to type " +
            subExprType->toString()
        );
        t = subExprType;
    }
    _operation.annotation().type = t;
    return false;
}

void TypeChecker::endVisit(BinaryOperation const& _operation)
{
    TypePointer const& leftType = type(_operation.leftExpression());
    TypePointer const& rightType = type(_operation.rightExpression());
    TypePointer commonType = leftType->binaryOperatorResult(_operation.getOperator(), rightType);
    if (!commonType)
    {
        typeError(
            _operation.location(),
            "Operator " +
            string(Token::toString(_operation.getOperator())) +
            " not compatible with types " +
            leftType->toString() +
            " and " +
            rightType->toString()
        );
        commonType = leftType;
    }
    _operation.annotation().commonType = commonType;
    _operation.annotation().type =
        Token::isCompareOp(_operation.getOperator()) ?
        make_shared<BoolType>() :
        commonType;
}

bool TypeChecker::visit(FunctionCall const& _functionCall)
{
    bool isPositionalCall = _functionCall.names().empty();
    vector<ASTPointer<Expression const>> arguments = _functionCall.arguments();
    vector<ASTPointer<ASTString>> const& argumentNames = _functionCall.names();

    // We need to check arguments' type first as they will be needed for overload resolution.
    shared_ptr<TypePointers> argumentTypes;
    if (isPositionalCall)
        argumentTypes = make_shared<TypePointers>();
    for (ASTPointer<Expression const> const& argument: arguments)
    {
        argument->accept(*this);
        // only store them for positional calls
        if (isPositionalCall)
            argumentTypes->push_back(type(*argument));
    }
    if (isPositionalCall)
        _functionCall.expression().annotation().argumentTypes = move(argumentTypes);

    _functionCall.expression().accept(*this);
    TypePointer expressionType = type(_functionCall.expression());

    if (auto const* typeType = dynamic_cast<TypeType const*>(expressionType.get()))
    {
        _functionCall.annotation().isStructConstructorCall = (typeType->actualType()->category() == Type::Category::Struct);
        _functionCall.annotation().isTypeConversion = !_functionCall.annotation().isStructConstructorCall;
    }
    else
        _functionCall.annotation().isStructConstructorCall = _functionCall.annotation().isTypeConversion = false;

    if (_functionCall.annotation().isTypeConversion)
    {
        TypeType const& t = dynamic_cast<TypeType const&>(*expressionType);
        TypePointer resultType = t.actualType();
        if (arguments.size() != 1)
            typeError(_functionCall.location(), "Exactly one argument expected for explicit type conversion.");
        else if (!isPositionalCall)
            typeError(_functionCall.location(), "Type conversion cannot allow named arguments.");
        else
        {
            TypePointer const& argType = type(*arguments.front());
            if (auto argRefType = dynamic_cast<ReferenceType const*>(argType.get()))
                // do not change the data location when converting
                // (data location cannot yet be specified for type conversions)
                resultType = ReferenceType::copyForLocationIfReference(argRefType->location(), resultType);
            if (!argType->isExplicitlyConvertibleTo(*resultType))
                typeError(_functionCall.location(), "Explicit type conversion not allowed.");
        }
        _functionCall.annotation().type = resultType;

        return false;
    }

    // Actual function call or struct constructor call.

    FunctionTypePointer functionType;

    /// For error message: Struct members that were removed during conversion to memory.
    set<string> membersRemovedForStructConstructor;
    if (_functionCall.annotation().isStructConstructorCall)
    {
        TypeType const& t = dynamic_cast<TypeType const&>(*expressionType);
        auto const& structType = dynamic_cast<StructType const&>(*t.actualType());
        functionType = structType.constructorType();
        membersRemovedForStructConstructor = structType.membersMissingInMemory();
    }
    else
        functionType = dynamic_pointer_cast<FunctionType const>(expressionType);

    if (!functionType)
    {
        typeError(_functionCall.location(), "Type is not callable");
        _functionCall.annotation().type = make_shared<TupleType>();
        return false;
    }
    else if (functionType->returnParameterTypes().size() == 1)
        _functionCall.annotation().type = functionType->returnParameterTypes().front();
    else
        _functionCall.annotation().type = make_shared<TupleType>(functionType->returnParameterTypes());

    TypePointers parameterTypes = functionType->parameterTypes();
    if (!functionType->takesArbitraryParameters() && parameterTypes.size() != arguments.size())
    {
        string msg =
            "Wrong argument count for function call: " +
            toString(arguments.size()) +
            " arguments given but expected " +
            toString(parameterTypes.size()) +
            ".";
        // Extend error message in case we try to construct a struct with mapping member.
        if (_functionCall.annotation().isStructConstructorCall && !membersRemovedForStructConstructor.empty())
        {
            msg += " Members that have to be skipped in memory:";
            for (auto const& member: membersRemovedForStructConstructor)
                msg += " " + member;
        }
        typeError(_functionCall.location(), msg);
    }
    else if (isPositionalCall)
    {
        // call by positional arguments
        for (size_t i = 0; i < arguments.size(); ++i)
        {
            auto const& argType = type(*arguments[i]);
            if (functionType->takesArbitraryParameters())
            {
                if (auto t = dynamic_cast<IntegerConstantType const*>(argType.get()))
                    if (!t->integerType())
                        typeError(arguments[i]->location(), "Integer constant too large.");
            }
            else if (!type(*arguments[i])->isImplicitlyConvertibleTo(*parameterTypes[i]))
                typeError(
                    arguments[i]->location(),
                    "Invalid type for argument in function call. "
                    "Invalid implicit conversion from " +
                    type(*arguments[i])->toString() +
                    " to " +
                    parameterTypes[i]->toString() +
                    " requested."
                );
        }
    }
    else
    {
        // call by named arguments
        auto const& parameterNames = functionType->parameterNames();
        if (functionType->takesArbitraryParameters())
            typeError(
                _functionCall.location(),
                "Named arguments cannnot be used for functions that take arbitrary parameters."
            );
        else if (parameterNames.size() > argumentNames.size())
            typeError(_functionCall.location(), "Some argument names are missing.");
        else if (parameterNames.size() < argumentNames.size())
            typeError(_functionCall.location(), "Too many arguments.");
        else
        {
            // check duplicate names
            bool duplication = false;
            for (size_t i = 0; i < argumentNames.size(); i++)
                for (size_t j = i + 1; j < argumentNames.size(); j++)
                    if (*argumentNames[i] == *argumentNames[j])
                    {
                        duplication = true;
                        typeError(arguments[i]->location(), "Duplicate named argument.");
                    }

            // check actual types
            if (!duplication)
                for (size_t i = 0; i < argumentNames.size(); i++)
                {
                    bool found = false;
                    for (size_t j = 0; j < parameterNames.size(); j++)
                        if (parameterNames[j] == *argumentNames[i])
                        {
                            found = true;
                            // check type convertible
                            if (!type(*arguments[i])->isImplicitlyConvertibleTo(*parameterTypes[j]))
                                typeError(
                                    arguments[i]->location(),
                                    "Invalid type for argument in function call. "
                                    "Invalid implicit conversion from " +
                                    type(*arguments[i])->toString() +
                                    " to " +
                                    parameterTypes[i]->toString() +
                                    " requested."
                                );
                            break;
                        }

                    if (!found)
                        typeError(
                            _functionCall.location(),
                            "Named argument does not match function declaration."
                        );
                }
        }
    }

    return false;
}

void TypeChecker::endVisit(NewExpression const& _newExpression)
{
    TypePointer type = _newExpression.typeName().annotation().type;
    solAssert(!!type, "Type name not resolved.");

    if (auto contractName = dynamic_cast<UserDefinedTypeName const*>(&_newExpression.typeName()))
    {
        auto contract = dynamic_cast<ContractDefinition const*>(&dereference(*contractName));

        if (!contract)
            fatalTypeError(_newExpression.location(), "Identifier is not a contract.");
        if (!contract->annotation().isFullyImplemented)
            typeError(_newExpression.location(), "Trying to create an instance of an abstract contract.");

        solAssert(!!m_scope, "");
        m_scope->annotation().contractDependencies.insert(contract);
        solAssert(
            !contract->annotation().linearizedBaseContracts.empty(),
            "Linearized base contracts not yet available."
        );
        if (contractDependenciesAreCyclic(*m_scope))
            typeError(
                _newExpression.location(),
                "Circular reference for contract creation (cannot create instance of derived or same contract)."
            );

        auto contractType = make_shared<ContractType>(*contract);
        TypePointers parameterTypes = contractType->constructorType()->parameterTypes();
        _newExpression.annotation().type = make_shared<FunctionType>(
            parameterTypes,
            TypePointers{contractType},
            strings(),
            strings(),
            FunctionType::Location::Creation
        );
    }
    else if (type->category() == Type::Category::Array)
    {
        if (!type->canLiveOutsideStorage())
            fatalTypeError(
                _newExpression.typeName().location(),
                "Type cannot live outside storage."
            );
        if (!type->isDynamicallySized())
            typeError(
                _newExpression.typeName().location(),
                "Length has to be placed in parentheses after the array type for new expression."
            );
        type = ReferenceType::copyForLocationIfReference(DataLocation::Memory, type);
        _newExpression.annotation().type = make_shared<FunctionType>(
            TypePointers{make_shared<IntegerType>(256)},
            TypePointers{type},
            strings(),
            strings(),
            FunctionType::Location::ObjectCreation
        );
    }
    else
        fatalTypeError(_newExpression.location(), "Contract or array type expected.");
}

bool TypeChecker::visit(MemberAccess const& _memberAccess)
{
    _memberAccess.expression().accept(*this);
    TypePointer exprType = type(_memberAccess.expression());
    ASTString const& memberName = _memberAccess.memberName();

    // Retrieve the types of the arguments if this is used to call a function.
    auto const& argumentTypes = _memberAccess.annotation().argumentTypes;
    MemberList::MemberMap possibleMembers = exprType->members(m_scope).membersByName(memberName);
    if (possibleMembers.size() > 1 && argumentTypes)
    {
        // do overload resolution
        for (auto it = possibleMembers.begin(); it != possibleMembers.end();)
            if (
                it->type->category() == Type::Category::Function &&
                !dynamic_cast<FunctionType const&>(*it->type).canTakeArguments(*argumentTypes, exprType)
            )
                it = possibleMembers.erase(it);
            else
                ++it;
    }
    if (possibleMembers.size() == 0)
    {
        auto storageType = ReferenceType::copyForLocationIfReference(
            DataLocation::Storage,
            exprType
        );
        if (!storageType->members(m_scope).membersByName(memberName).empty())
            fatalTypeError(
                _memberAccess.location(),
                "Member \"" + memberName + "\" is not available in " +
                exprType->toString() +
                " outside of storage."
            );
        fatalTypeError(
            _memberAccess.location(),
            "Member \"" + memberName + "\" not found or not visible "
            "after argument-dependent lookup in " + exprType->toString()
        );
    }
    else if (possibleMembers.size() > 1)
        fatalTypeError(
            _memberAccess.location(),
            "Member \"" + memberName + "\" not unique "
            "after argument-dependent lookup in " + exprType->toString()
        );

    auto& annotation = _memberAccess.annotation();
    annotation.referencedDeclaration = possibleMembers.front().declaration;
    annotation.type = possibleMembers.front().type;

    if (auto funType = dynamic_cast<FunctionType const*>(annotation.type.get()))
        if (funType->bound() && !exprType->isImplicitlyConvertibleTo(*funType->selfType()))
            typeError(
                _memberAccess.location(),
                "Function \"" + memberName + "\" cannot be called on an object of type " +
                exprType->toString() + " (expected " + funType->selfType()->toString() + ")"
            );

    if (exprType->category() == Type::Category::Struct)
        annotation.isLValue = true;
    else if (exprType->category() == Type::Category::Array)
    {
        auto const& arrayType(dynamic_cast<ArrayType const&>(*exprType));
        annotation.isLValue = (
            memberName == "length" &&
            arrayType.location() == DataLocation::Storage &&
            arrayType.isDynamicallySized()
        );
    }
    else if (exprType->category() == Type::Category::FixedBytes)
        annotation.isLValue = false;

    return false;
}

bool TypeChecker::visit(IndexAccess const& _access)
{
    _access.baseExpression().accept(*this);
    TypePointer baseType = type(_access.baseExpression());
    TypePointer resultType;
    bool isLValue = false;
    Expression const* index = _access.indexExpression();
    switch (baseType->category())
    {
    case Type::Category::Array:
    {
        ArrayType const& actualType = dynamic_cast<ArrayType const&>(*baseType);
        if (!index)
            typeError(_access.location(), "Index expression cannot be omitted.");
        else if (actualType.isString())
        {
            typeError(_access.location(), "Index access for string is not possible.");
            index->accept(*this);
        }
        else
        {
            expectType(*index, IntegerType(256));
            if (auto integerType = dynamic_cast<IntegerConstantType const*>(type(*index).get()))
                if (!actualType.isDynamicallySized() && actualType.length() <= integerType->literalValue(nullptr))
                    typeError(_access.location(), "Out of bounds array access.");
        }
        resultType = actualType.baseType();
        isLValue = actualType.location() != DataLocation::CallData;
        break;
    }
    case Type::Category::Mapping:
    {
        MappingType const& actualType = dynamic_cast<MappingType const&>(*baseType);
        if (!index)
            typeError(_access.location(), "Index expression cannot be omitted.");
        else
            expectType(*index, *actualType.keyType());
        resultType = actualType.valueType();
        isLValue = true;
        break;
    }
    case Type::Category::TypeType:
    {
        TypeType const& typeType = dynamic_cast<TypeType const&>(*baseType);
        if (!index)
            resultType = make_shared<TypeType>(make_shared<ArrayType>(DataLocation::Memory, typeType.actualType()));
        else
        {
            index->accept(*this);
            if (auto length = dynamic_cast<IntegerConstantType const*>(type(*index).get()))
                resultType = make_shared<TypeType>(make_shared<ArrayType>(
                    DataLocation::Memory,
                    typeType.actualType(),
                    length->literalValue(nullptr)
                ));
            else
                typeError(index->location(), "Integer constant expected.");
        }
        break;
    }
    case Type::Category::FixedBytes:
    {
        FixedBytesType const& bytesType = dynamic_cast<FixedBytesType const&>(*baseType);
        if (!index)
            typeError(_access.location(), "Index expression cannot be omitted.");
        else
        {
            expectType(*index, IntegerType(256));
            if (auto integerType = dynamic_cast<IntegerConstantType const*>(type(*index).get()))
                if (bytesType.numBytes() <= integerType->literalValue(nullptr))
                    typeError(_access.location(), "Out of bounds array access.");
        }
        resultType = make_shared<FixedBytesType>(1);
        isLValue = false; // @todo this heavily depends on how it is embedded
        break;
    }
    default:
        fatalTypeError(
            _access.baseExpression().location(),
            "Indexed expression has to be a type, mapping or array (is " + baseType->toString() + ")"
        );
    }
    _access.annotation().type = move(resultType);
    _access.annotation().isLValue = isLValue;

    return false;
}

bool TypeChecker::visit(Identifier const& _identifier)
{
    IdentifierAnnotation& annotation = _identifier.annotation();
    if (!annotation.referencedDeclaration)
    {
        if (!annotation.argumentTypes)
            fatalTypeError(_identifier.location(), "Unable to determine overloaded type.");
        if (annotation.overloadedDeclarations.empty())
            fatalTypeError(_identifier.location(), "No candidates for overload resolution found.");
        else if (annotation.overloadedDeclarations.size() == 1)
            annotation.referencedDeclaration = *annotation.overloadedDeclarations.begin();
        else
        {
            vector<Declaration const*> candidates;

            for (Declaration const* declaration: annotation.overloadedDeclarations)
            {
                TypePointer function = declaration->type();
                solAssert(!!function, "Requested type not present.");
                auto const* functionType = dynamic_cast<FunctionType const*>(function.get());
                if (functionType && functionType->canTakeArguments(*annotation.argumentTypes))
                    candidates.push_back(declaration);
            }
            if (candidates.empty())
                fatalTypeError(_identifier.location(), "No matching declaration found after argument-dependent lookup.");
            else if (candidates.size() == 1)
                annotation.referencedDeclaration = candidates.front();
            else
                fatalTypeError(_identifier.location(), "No unique declaration found after argument-dependent lookup.");
        }
    }
    solAssert(
        !!annotation.referencedDeclaration,
        "Referenced declaration is null after overload resolution."
    );
    annotation.isLValue = annotation.referencedDeclaration->isLValue();
    annotation.type = annotation.referencedDeclaration->type();
    if (!annotation.type)
        fatalTypeError(_identifier.location(), "Declaration referenced before type could be determined.");
    return false;
}

void TypeChecker::endVisit(ElementaryTypeNameExpression const& _expr)
{
    _expr.annotation().type = make_shared<TypeType>(Type::fromElementaryTypeName(_expr.typeName()));
}

void TypeChecker::endVisit(Literal const& _literal)
{
    _literal.annotation().type = Type::forLiteral(_literal);
    if (!_literal.annotation().type)
        fatalTypeError(_literal.location(), "Invalid literal value.");
}

bool TypeChecker::contractDependenciesAreCyclic(
    ContractDefinition const& _contract,
    std::set<ContractDefinition const*> const& _seenContracts
) const
{
    // Naive depth-first search that remembers nodes already seen.
    if (_seenContracts.count(&_contract))
        return true;
    set<ContractDefinition const*> seen(_seenContracts);
    seen.insert(&_contract);
    for (auto const* c: _contract.annotation().contractDependencies)
        if (contractDependenciesAreCyclic(*c, seen))
            return true;
    return false;
}

Declaration const& TypeChecker::dereference(Identifier const& _identifier) const
{
    solAssert(!!_identifier.annotation().referencedDeclaration, "Declaration not stored.");
    return *_identifier.annotation().referencedDeclaration;
}

Declaration const& TypeChecker::dereference(UserDefinedTypeName const& _typeName) const
{
    solAssert(!!_typeName.annotation().referencedDeclaration, "Declaration not stored.");
    return *_typeName.annotation().referencedDeclaration;
}

void TypeChecker::expectType(Expression const& _expression, Type const& _expectedType)
{
    _expression.accept(*this);

    if (!type(_expression)->isImplicitlyConvertibleTo(_expectedType))
        typeError(
            _expression.location(),
            "Type " +
            type(_expression)->toString() +
            " is not implicitly convertible to expected type " +
            _expectedType.toString() +
            "."
        );
}

void TypeChecker::requireLValue(Expression const& _expression)
{
    _expression.annotation().lValueRequested = true;
    _expression.accept(*this);
    if (!_expression.annotation().isLValue)
        typeError(_expression.location(), "Expression has to be an lvalue.");
}

void TypeChecker::typeError(SourceLocation const& _location, string const& _description)
{
    auto err = make_shared<Error>(Error::Type::TypeError);
    *err <<
        errinfo_sourceLocation(_location) <<
        errinfo_comment(_description);

    m_errors.push_back(err);
}

void TypeChecker::fatalTypeError(SourceLocation const& _location, string const& _description)
{
    typeError(_location, _description);
    BOOST_THROW_EXCEPTION(FatalError());
}