aboutsummaryrefslogtreecommitdiffstats
path: root/libevmasm/KnownState.cpp
blob: a5546e617e44a36847338a4da7a26c9bf49a1909 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
/*
    This file is part of solidity.

    solidity is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    solidity is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with solidity.  If not, see <http://www.gnu.org/licenses/>.
*/
/**
 * @file KnownState.cpp
 * @author Christian <c@ethdev.com>
 * @date 2015
 * Contains knowledge about the state of the virtual machine at a specific instruction.
 */

#include "KnownState.h"
#include <functional>
#include <libdevcore/Keccak256.h>
#include <libevmasm/AssemblyItem.h>

using namespace std;
using namespace dev;
using namespace dev::eth;
using namespace langutil;

ostream& KnownState::stream(ostream& _out) const
{
    auto streamExpressionClass = [this](ostream& _out, Id _id)
    {
        auto const& expr = m_expressionClasses->representative(_id);
        _out << "  " << dec << _id << ": ";
        if (!expr.item)
            _out << " no item";
        else if (expr.item->type() == UndefinedItem)
            _out << " unknown " << int(expr.item->data());
        else
            _out << *expr.item;
        if (expr.sequenceNumber)
            _out << "@" << dec << expr.sequenceNumber;
        _out << "(";
        for (Id arg: expr.arguments)
            _out << dec << arg << ",";
        _out << ")" << endl;
    };

    _out << "=== State ===" << endl;
    _out << "Stack height: " << dec << m_stackHeight << endl;
    _out << "Equivalence classes: " << endl;
    for (Id eqClass = 0; eqClass < m_expressionClasses->size(); ++eqClass)
        streamExpressionClass(_out, eqClass);

    _out << "Stack: " << endl;
    for (auto const& it: m_stackElements)
    {
        _out << "  " << dec << it.first << ": ";
        streamExpressionClass(_out, it.second);
    }
    _out << "Storage: " << endl;
    for (auto const& it: m_storageContent)
    {
        _out << "  ";
        streamExpressionClass(_out, it.first);
        _out << ": ";
        streamExpressionClass(_out, it.second);
    }
    _out << "Memory: " << endl;
    for (auto const& it: m_memoryContent)
    {
        _out << "  ";
        streamExpressionClass(_out, it.first);
        _out << ": ";
        streamExpressionClass(_out, it.second);
    }

    return _out;
}

KnownState::StoreOperation KnownState::feedItem(AssemblyItem const& _item, bool _copyItem)
{
    StoreOperation op;
    if (_item.type() == Tag)
    {
        // can be ignored
    }
    else if (_item.type() != Operation)
    {
        assertThrow(_item.deposit() == 1, InvalidDeposit, "");
        if (_item.pushedValue())
            // only available after assembly stage, should not be used for optimisation
            setStackElement(++m_stackHeight, m_expressionClasses->find(*_item.pushedValue()));
        else
            setStackElement(++m_stackHeight, m_expressionClasses->find(_item, {}, _copyItem));
    }
    else
    {
        Instruction instruction = _item.instruction();
        InstructionInfo info = instructionInfo(instruction);
        if (SemanticInformation::isDupInstruction(_item))
            setStackElement(
                m_stackHeight + 1,
                stackElement(
                    m_stackHeight - int(instruction) + int(Instruction::DUP1),
                    _item.location()
                )
            );
        else if (SemanticInformation::isSwapInstruction(_item))
            swapStackElements(
                m_stackHeight,
                m_stackHeight - 1 - int(instruction) + int(Instruction::SWAP1),
                _item.location()
            );
        else if (instruction != Instruction::POP)
        {
            vector<Id> arguments(info.args);
            for (int i = 0; i < info.args; ++i)
                arguments[i] = stackElement(m_stackHeight - i, _item.location());
            switch (_item.instruction())
            {
            case Instruction::SSTORE:
                op = storeInStorage(arguments[0], arguments[1], _item.location());
                break;
            case Instruction::SLOAD:
                setStackElement(
                    m_stackHeight + _item.deposit(),
                    loadFromStorage(arguments[0], _item.location())
                );
                break;
            case Instruction::MSTORE:
                op = storeInMemory(arguments[0], arguments[1], _item.location());
                break;
            case Instruction::MLOAD:
                setStackElement(
                    m_stackHeight + _item.deposit(),
                    loadFromMemory(arguments[0], _item.location())
                );
                break;
            case Instruction::KECCAK256:
                setStackElement(
                    m_stackHeight + _item.deposit(),
                    applyKeccak256(arguments.at(0), arguments.at(1), _item.location())
                );
                break;
            default:
                bool invMem = SemanticInformation::invalidatesMemory(_item.instruction());
                bool invStor = SemanticInformation::invalidatesStorage(_item.instruction());
                // We could be a bit more fine-grained here (CALL only invalidates part of
                // memory, etc), but we do not for now.
                if (invMem)
                    resetMemory();
                if (invStor)
                    resetStorage();
                if (invMem || invStor)
                    m_sequenceNumber += 2; // Increment by two because it can read and write
                assertThrow(info.ret <= 1, InvalidDeposit, "");
                if (info.ret == 1)
                    setStackElement(
                        m_stackHeight + _item.deposit(),
                        m_expressionClasses->find(_item, arguments, _copyItem)
                    );
            }
        }
        m_stackElements.erase(
            m_stackElements.upper_bound(m_stackHeight + _item.deposit()),
            m_stackElements.end()
        );
        m_stackHeight += _item.deposit();
    }
    return op;
}

/// Helper function for KnownState::reduceToCommonKnowledge, removes everything from
/// _this which is not in or not equal to the value in _other.
template <class _Mapping> void intersect(_Mapping& _this, _Mapping const& _other)
{
    for (auto it = _this.begin(); it != _this.end();)
        if (_other.count(it->first) && _other.at(it->first) == it->second)
            ++it;
        else
            it = _this.erase(it);
}

void KnownState::reduceToCommonKnowledge(KnownState const& _other, bool _combineSequenceNumbers)
{
    int stackDiff = m_stackHeight - _other.m_stackHeight;
    for (auto it = m_stackElements.begin(); it != m_stackElements.end();)
        if (_other.m_stackElements.count(it->first - stackDiff))
        {
            Id other = _other.m_stackElements.at(it->first - stackDiff);
            if (it->second == other)
                ++it;
            else
            {
                set<u256> theseTags = tagsInExpression(it->second);
                set<u256> otherTags = tagsInExpression(other);
                if (!theseTags.empty() && !otherTags.empty())
                {
                    theseTags.insert(otherTags.begin(), otherTags.end());
                    it->second = tagUnion(theseTags);
                    ++it;
                }
                else
                    it = m_stackElements.erase(it);
            }
        }
        else
            it = m_stackElements.erase(it);

    // Use the smaller stack height. Essential to terminate in case of loops.
    if (m_stackHeight > _other.m_stackHeight)
    {
        map<int, Id> shiftedStack;
        for (auto const& stackElement: m_stackElements)
            shiftedStack[stackElement.first - stackDiff] = stackElement.second;
        m_stackElements = move(shiftedStack);
        m_stackHeight = _other.m_stackHeight;
    }

    intersect(m_storageContent, _other.m_storageContent);
    intersect(m_memoryContent, _other.m_memoryContent);
    if (_combineSequenceNumbers)
        m_sequenceNumber = max(m_sequenceNumber, _other.m_sequenceNumber);
}

bool KnownState::operator==(KnownState const& _other) const
{
    if (m_storageContent != _other.m_storageContent || m_memoryContent != _other.m_memoryContent)
        return false;
    int stackDiff = m_stackHeight - _other.m_stackHeight;
    auto thisIt = m_stackElements.cbegin();
    auto otherIt = _other.m_stackElements.cbegin();
    for (; thisIt != m_stackElements.cend() && otherIt != _other.m_stackElements.cend(); ++thisIt, ++otherIt)
        if (thisIt->first - stackDiff != otherIt->first || thisIt->second != otherIt->second)
            return false;
    return (thisIt == m_stackElements.cend() && otherIt == _other.m_stackElements.cend());
}

ExpressionClasses::Id KnownState::stackElement(int _stackHeight, SourceLocation const& _location)
{
    if (m_stackElements.count(_stackHeight))
        return m_stackElements.at(_stackHeight);
    // Stack element not found (not assigned yet), create new unknown equivalence class.
    return m_stackElements[_stackHeight] =
            m_expressionClasses->find(AssemblyItem(UndefinedItem, _stackHeight, _location));
}

KnownState::Id KnownState::relativeStackElement(int _stackOffset, SourceLocation const& _location)
{
    return stackElement(m_stackHeight + _stackOffset, _location);
}

void KnownState::clearTagUnions()
{
    for (auto it = m_stackElements.begin(); it != m_stackElements.end();)
        if (m_tagUnions.left.count(it->second))
            it = m_stackElements.erase(it);
        else
            ++it;
}

void KnownState::setStackElement(int _stackHeight, Id _class)
{
    m_stackElements[_stackHeight] = _class;
}

void KnownState::swapStackElements(
    int _stackHeightA,
    int _stackHeightB,
    SourceLocation const& _location
)
{
    assertThrow(_stackHeightA != _stackHeightB, OptimizerException, "Swap on same stack elements.");
    // ensure they are created
    stackElement(_stackHeightA, _location);
    stackElement(_stackHeightB, _location);

    swap(m_stackElements[_stackHeightA], m_stackElements[_stackHeightB]);
}

KnownState::StoreOperation KnownState::storeInStorage(
    Id _slot,
    Id _value,
    SourceLocation const& _location)
{
    if (m_storageContent.count(_slot) && m_storageContent[_slot] == _value)
        // do not execute the storage if we know that the value is already there
        return StoreOperation();
    m_sequenceNumber++;
    decltype(m_storageContent) storageContents;
    // Copy over all values (i.e. retain knowledge about them) where we know that this store
    // operation will not destroy the knowledge. Specifically, we copy storage locations we know
    // are different from _slot or locations where we know that the stored value is equal to _value.
    for (auto const& storageItem: m_storageContent)
        if (m_expressionClasses->knownToBeDifferent(storageItem.first, _slot) || storageItem.second == _value)
            storageContents.insert(storageItem);
    m_storageContent = move(storageContents);

    AssemblyItem item(Instruction::SSTORE, _location);
    Id id = m_expressionClasses->find(item, {_slot, _value}, true, m_sequenceNumber);
    StoreOperation operation(StoreOperation::Storage, _slot, m_sequenceNumber, id);
    m_storageContent[_slot] = _value;
    // increment a second time so that we get unique sequence numbers for writes
    m_sequenceNumber++;

    return operation;
}

ExpressionClasses::Id KnownState::loadFromStorage(Id _slot, SourceLocation const& _location)
{
    if (m_storageContent.count(_slot))
        return m_storageContent.at(_slot);

    AssemblyItem item(Instruction::SLOAD, _location);
    return m_storageContent[_slot] = m_expressionClasses->find(item, {_slot}, true, m_sequenceNumber);
}

KnownState::StoreOperation KnownState::storeInMemory(Id _slot, Id _value, SourceLocation const& _location)
{
    if (m_memoryContent.count(_slot) && m_memoryContent[_slot] == _value)
        // do not execute the store if we know that the value is already there
        return StoreOperation();
    m_sequenceNumber++;
    decltype(m_memoryContent) memoryContents;
    // copy over values at points where we know that they are different from _slot by at least 32
    for (auto const& memoryItem: m_memoryContent)
        if (m_expressionClasses->knownToBeDifferentBy32(memoryItem.first, _slot))
            memoryContents.insert(memoryItem);
    m_memoryContent = move(memoryContents);

    AssemblyItem item(Instruction::MSTORE, _location);
    Id id = m_expressionClasses->find(item, {_slot, _value}, true, m_sequenceNumber);
    StoreOperation operation(StoreOperation(StoreOperation::Memory, _slot, m_sequenceNumber, id));
    m_memoryContent[_slot] = _value;
    // increment a second time so that we get unique sequence numbers for writes
    m_sequenceNumber++;
    return operation;
}

ExpressionClasses::Id KnownState::loadFromMemory(Id _slot, SourceLocation const& _location)
{
    if (m_memoryContent.count(_slot))
        return m_memoryContent.at(_slot);

    AssemblyItem item(Instruction::MLOAD, _location);
    return m_memoryContent[_slot] = m_expressionClasses->find(item, {_slot}, true, m_sequenceNumber);
}

KnownState::Id KnownState::applyKeccak256(
    Id _start,
    Id _length,
    SourceLocation const& _location
)
{
    AssemblyItem keccak256Item(Instruction::KECCAK256, _location);
    // Special logic if length is a short constant, otherwise we cannot tell.
    u256 const* l = m_expressionClasses->knownConstant(_length);
    // unknown or too large length
    if (!l || *l > 128)
        return m_expressionClasses->find(keccak256Item, {_start, _length}, true, m_sequenceNumber);

    vector<Id> arguments;
    for (u256 i = 0; i < *l; i += 32)
    {
        Id slot = m_expressionClasses->find(
            AssemblyItem(Instruction::ADD, _location),
            {_start, m_expressionClasses->find(i)}
        );
        arguments.push_back(loadFromMemory(slot, _location));
    }
    if (m_knownKeccak256Hashes.count(arguments))
        return m_knownKeccak256Hashes.at(arguments);
    Id v;
    // If all arguments are known constants, compute the Keccak-256 here
    if (all_of(arguments.begin(), arguments.end(), [this](Id _a) { return !!m_expressionClasses->knownConstant(_a); }))
    {
        bytes data;
        for (Id a: arguments)
            data += toBigEndian(*m_expressionClasses->knownConstant(a));
        data.resize(size_t(*l));
        v = m_expressionClasses->find(AssemblyItem(u256(dev::keccak256(data)), _location));
    }
    else
        v = m_expressionClasses->find(keccak256Item, {_start, _length}, true, m_sequenceNumber);
    return m_knownKeccak256Hashes[arguments] = v;
}

set<u256> KnownState::tagsInExpression(KnownState::Id _expressionId)
{
    if (m_tagUnions.left.count(_expressionId))
        return m_tagUnions.left.at(_expressionId);
    // Might be a tag, then return the set of itself.
    ExpressionClasses::Expression expr = m_expressionClasses->representative(_expressionId);
    if (expr.item && expr.item->type() == PushTag)
        return set<u256>({expr.item->data()});
    else
        return set<u256>();
}

KnownState::Id KnownState::tagUnion(set<u256> _tags)
{
    if (m_tagUnions.right.count(_tags))
        return m_tagUnions.right.at(_tags);
    else
    {
        Id id = m_expressionClasses->newClass(SourceLocation());
        m_tagUnions.right.insert(make_pair(_tags, id));
        return id;
    }
}