aboutsummaryrefslogtreecommitdiffstats
path: root/libevmasm/ConstantOptimiser.cpp
blob: ae1a564373d10e57a8253009d8113544075e0f60 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
/*
    This file is part of solidity.

    solidity is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    solidity is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with solidity.  If not, see <http://www.gnu.org/licenses/>.
*/
/** @file ConstantOptimiser.cpp
 * @author Christian <c@ethdev.com>
 * @date 2015
 */

#include <libevmasm/ConstantOptimiser.h>
#include <libevmasm/Assembly.h>
#include <libevmasm/GasMeter.h>
using namespace std;
using namespace dev;
using namespace dev::eth;

unsigned ConstantOptimisationMethod::optimiseConstants(
    bool _isCreation,
    size_t _runs,
    solidity::EVMVersion _evmVersion,
    Assembly& _assembly,
    AssemblyItems& _items
)
{
    unsigned optimisations = 0;
    map<AssemblyItem, size_t> pushes;
    for (AssemblyItem const& item: _items)
        if (item.type() == Push)
            pushes[item]++;
    map<u256, AssemblyItems> pendingReplacements;
    for (auto it: pushes)
    {
        AssemblyItem const& item = it.first;
        if (item.data() < 0x100)
            continue;
        Params params;
        params.multiplicity = it.second;
        params.isCreation = _isCreation;
        params.runs = _runs;
        params.evmVersion = _evmVersion;
        LiteralMethod lit(params, item.data());
        bigint literalGas = lit.gasNeeded();
        CodeCopyMethod copy(params, item.data());
        bigint copyGas = copy.gasNeeded();
        ComputeMethod compute(params, item.data());
        bigint computeGas = compute.gasNeeded();
        AssemblyItems replacement;
        if (copyGas < literalGas && copyGas < computeGas)
        {
            replacement = copy.execute(_assembly);
            optimisations++;
        }
        else if (computeGas < literalGas && computeGas <= copyGas)
        {
            replacement = compute.execute(_assembly);
            optimisations++;
        }
        if (!replacement.empty())
            pendingReplacements[item.data()] = replacement;
    }
    if (!pendingReplacements.empty())
        replaceConstants(_items, pendingReplacements);
    return optimisations;
}

bigint ConstantOptimisationMethod::simpleRunGas(AssemblyItems const& _items)
{
    bigint gas = 0;
    for (AssemblyItem const& item: _items)
        if (item.type() == Push)
            gas += GasMeter::runGas(Instruction::PUSH1);
        else if (item.type() == Operation)
        {
            if (item.instruction() == Instruction::EXP)
                gas += GasCosts::expGas;
            else
                gas += GasMeter::runGas(item.instruction());
        }
    return gas;
}

bigint ConstantOptimisationMethod::dataGas(bytes const& _data) const
{
    assertThrow(_data.size() > 0, OptimizerException, "Empty bytecode generated.");
    return bigint(GasMeter::dataGas(_data, m_params.isCreation));
}

size_t ConstantOptimisationMethod::bytesRequired(AssemblyItems const& _items)
{
    return eth::bytesRequired(_items, 3); // assume 3 byte addresses
}

void ConstantOptimisationMethod::replaceConstants(
    AssemblyItems& _items,
    map<u256, AssemblyItems> const& _replacements
)
{
    AssemblyItems replaced;
    for (AssemblyItem const& item: _items)
    {
        if (item.type() == Push)
        {
            auto it = _replacements.find(item.data());
            if (it != _replacements.end())
            {
                replaced += it->second;
                continue;
            }
        }
        replaced.push_back(item);
    }
    _items = std::move(replaced);
}

bigint LiteralMethod::gasNeeded() const
{
    return combineGas(
        simpleRunGas({Instruction::PUSH1}),
        // PUSHX plus data
        (m_params.isCreation ? GasCosts::txDataNonZeroGas : GasCosts::createDataGas) + dataGas(),
        0
    );
}

CodeCopyMethod::CodeCopyMethod(Params const& _params, u256 const& _value):
    ConstantOptimisationMethod(_params, _value)
{
}

bigint CodeCopyMethod::gasNeeded() const
{
    return combineGas(
        // Run gas: we ignore memory increase costs
        simpleRunGas(copyRoutine()) + GasCosts::copyGas,
        // Data gas for copy routines: Some bytes are zero, but we ignore them.
        bytesRequired(copyRoutine()) * (m_params.isCreation ? GasCosts::txDataNonZeroGas : GasCosts::createDataGas),
        // Data gas for data itself
        dataGas(toBigEndian(m_value))
    );
}

AssemblyItems CodeCopyMethod::execute(Assembly& _assembly) const
{
    bytes data = toBigEndian(m_value);
    AssemblyItems actualCopyRoutine = copyRoutine();
    actualCopyRoutine[4] = _assembly.newData(data);
    return actualCopyRoutine;
}

AssemblyItems const& CodeCopyMethod::copyRoutine()
{
    AssemblyItems static copyRoutine{
        u256(0),
        Instruction::DUP1,
        Instruction::MLOAD, // back up memory
        u256(32),
        AssemblyItem(PushData, u256(1) << 16), // has to be replaced
        Instruction::DUP4,
        Instruction::CODECOPY,
        Instruction::DUP2,
        Instruction::MLOAD,
        Instruction::SWAP2,
        Instruction::MSTORE
    };
    return copyRoutine;
}

AssemblyItems ComputeMethod::findRepresentation(u256 const& _value)
{
    if (_value < 0x10000)
        // Very small value, not worth computing
        return AssemblyItems{_value};
    else if (dev::bytesRequired(~_value) < dev::bytesRequired(_value))
        // Negated is shorter to represent
        return findRepresentation(~_value) + AssemblyItems{Instruction::NOT};
    else
    {
        // Decompose value into a * 2**k + b where abs(b) << 2**k
        // Is not always better, try literal and decomposition method.
        AssemblyItems routine{u256(_value)};
        bigint bestGas = gasNeeded(routine);
        for (unsigned bits = 255; bits > 8 && m_maxSteps > 0; --bits)
        {
            unsigned gapDetector = unsigned((_value >> (bits - 8)) & 0x1ff);
            if (gapDetector != 0xff && gapDetector != 0x100)
                continue;

            u256 powerOfTwo = u256(1) << bits;
            u256 upperPart = _value >> bits;
            bigint lowerPart = _value & (powerOfTwo - 1);
            if ((powerOfTwo - lowerPart) < lowerPart)
            {
                lowerPart = lowerPart - powerOfTwo; // make it negative
                upperPart++;
            }
            if (upperPart == 0)
                continue;
            if (abs(lowerPart) >= (powerOfTwo >> 8))
                continue;

            AssemblyItems newRoutine;
            if (lowerPart != 0)
                newRoutine += findRepresentation(u256(abs(lowerPart)));
            newRoutine += AssemblyItems{u256(bits), u256(2), Instruction::EXP};
            if (upperPart != 1)
                newRoutine += findRepresentation(upperPart) + AssemblyItems{Instruction::MUL};
            if (lowerPart > 0)
                newRoutine += AssemblyItems{Instruction::ADD};
            else if (lowerPart < 0)
                newRoutine.push_back(Instruction::SUB);

            if (m_maxSteps > 0)
                m_maxSteps--;
            bigint newGas = gasNeeded(newRoutine);
            if (newGas < bestGas)
            {
                bestGas = move(newGas);
                routine = move(newRoutine);
            }
        }
        return routine;
    }
}

bool ComputeMethod::checkRepresentation(u256 const& _value, AssemblyItems const& _routine)
{
    // This is a tiny EVM that can only evaluate some instructions.
    vector<u256> stack;
    for (AssemblyItem const& item: _routine)
    {
        switch (item.type())
        {
        case Operation:
        {
            if (stack.size() < size_t(item.arguments()))
                return false;
            u256* sp = &stack.back();
            switch (item.instruction())
            {
            case Instruction::MUL:
                sp[-1] = sp[0] * sp[-1];
                break;
            case Instruction::EXP:
                if (sp[-1] > 0xff)
                    return false;
                sp[-1] = boost::multiprecision::pow(sp[0], unsigned(sp[-1]));
                break;
            case Instruction::ADD:
                sp[-1] = sp[0] + sp[-1];
                break;
            case Instruction::SUB:
                sp[-1] = sp[0] - sp[-1];
                break;
            case Instruction::NOT:
                sp[0] = ~sp[0];
                break;
            default:
                return false;
            }
            stack.resize(stack.size() + item.deposit());
            break;
        }
        case Push:
            stack.push_back(item.data());
            break;
        default:
            return false;
        }
    }
    return stack.size() == 1 && stack.front() == _value;
}

bigint ComputeMethod::gasNeeded(AssemblyItems const& _routine) const
{
    size_t numExps = count(_routine.begin(), _routine.end(), Instruction::EXP);
    return combineGas(
        simpleRunGas(_routine) + numExps * (GasCosts::expGas + GasCosts::expByteGas(m_params.evmVersion)),
        // Data gas for routine: Some bytes are zero, but we ignore them.
        bytesRequired(_routine) * (m_params.isCreation ? GasCosts::txDataNonZeroGas : GasCosts::createDataGas),
        0
    );
}